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Some Statistical Applications

of Poisson’s Work
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Abstract. Statistical applications and repercussions of Poisson’s work are
reviewed in historical perspective with special reference to (i) the distinction
he made between two kinds of probability; (ii) the law of large numbers;
(iii) the Poisson distribution; (iv) the difference between two proportions;
(v) legalistic statistics; (vi) Poisson’s summation formula; (vii) the Cauchy
distribution; and (viii) the Poisson bracket.
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1. INTRODUCTION

Winston Churchill (1951) said that “Everybody
has a right to pronounce foreign names as he chooses.”
I pronounce Poisson’s name more or less as a French-
man would pronounce it, but I have heard it pro-
nounced “Poyson” as if it were Brooklynese for “per-
son.”

Poisson (1781-1840), a protégé of Laplace, although
outshone by his rivals Cauchy and Fourier (see Grat-
tan-Guinness, 1972), did distinguished work in me-
chanics, celestial mechanics, the theory of heat, geo-
physics, wave propagation, electricity and magnetism,
potential theory, elasticity, hydrodynamics, the cal-
culus of variations, integral equations, divergent se-
ries, complex integration, differential equations, and
on the remainder in the Euler-Maclaurin summation
formula. (Poisson’s work on all these topics is dis-
cussed, for example, by Kline, 1972.) But I shall con-
fine my attention to the influences that his work has
had on statistics and probability interpreted in a broad
sense.

According to Gratton-Guinness (1972, pp. 302, 445,
450, 458, 460-471), Poisson’s exposition was often
unclear, and his character left a non-negligible amount
to be desired, but these matters will not be much
discussed in the present essay.
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Most of what I shall say pertains to (i) the law of
large numbers and the distinction between kinds of
probability, (ii) the Poisson summation formula, and
(iii) the Poisson distribution. There is a good reason
for treating the Poisson distribution third instead of
first, namely that Poisson was scarcely responsible for
introducing this distribution, nor for its applications.
But there were other things for which he was respon-
sible that were named after other people, so the epon-
ymy does rough justice.

2. KINDS OF PROBABILITY AND THE LAW
OF LARGE NUMBERS

In about 1961 George Barnard told me he was
reading Poisson (1837) and that Poisson had repeat-
edly emphasized the distinction between two kinds of
probability. This is historically interesting because
philosophers were and still are crediting this distinc-
tion to Carnap (1950) who also emphasized it. A few
years ago I examined Poisson’s book for the first time
and found the distinction made on the second page of
Chapter 1 (p. 31). He calls a physical probability, to
be defined below, a chance and reserves the word
probability for its epistemic or intuitive meaning.

He says on page 30 that the probability of an event
is [measures] the reason that we have to believe that
it will or has occurred. He goes on to say that prob-
ability depends on the knowledge that we have con-
cerning an event and can be different for different
people because they can have different knowledge. He
does not mention that, in a modern notation, even
P(A | B) might vary from one person to another, nor
from one time to another for a single person. I there-
fore take it that his concept of probability was not
quite that of subjective (= personal) probability, but
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rather that of logical probability, sometimes called
credibility. The logical probability of an event A, when
information B is given, is usually assumed, somewhat
metaphysically, to have a numerical value (or perhaps
an interval of values) that every entirely rational
person would accept. It is the unique rational degree
(or perhaps interval) .of belief in A (or intensity of
conviction concerning A) given B, or the degree to
which B logically implies A. Carnap attempted to
define logical probabilities in terms of a given lan-
guage. The empirical evidence that gives some support
for the existence of logical probabilities, or at least
multipersonal probabilities, is that, for many pairs
(A, B), the judgments of P(A | B) by different people
do not differ very much. This point is made especially
clear when ratios of related probabilities are considered.
Suppose, for example, that we are making bets about
the weight, w kilograms, of the next candidate in a
beauty competition. Suppose that Jones was to regard
the inequality 65.2 < w < 65.3 as three times more
probable than 65.1 < w < 65.2, and was prepared to
make a conditional bet in accordance with this belief,
without having some special information. Then it
seems to me that Jones would be objectively irrational.

It is customary, when talking about subjective prob-
ability, to assume that a set of (rational) subjective
probabilities that a person has over a short time
period, or expresses in a single document, ought to obey
the usual axioms, at least approximately; in other
words, that the subjective probabilities should be in
some sense at least approximately self-consistent. But
even precise self-consistency is not enough to guar-
antee rationality.

The expression “epistemic probability,” used before,
means a probability that is either logical, subjective,
or multisubjective. Strictly speaking, logical probabil-
ities need to be entirely self-consistent and in many
circumstances can be regarded as an unattainable
ideal. The existence of logical probabilities is con-
troversial, but presumably it was this concept that
Poisson had in mind.

On the other hand, a physical probability, or intrin-
sic probability, or chance, or propensity, is supposed
to be a probability that exists in the “outside world,”
and would exist even if there were no conscious beings
considering it. The notation P(A | B) can still be used,
but now B is intended to be a complete description of
the true or hypothetical state of the world. Poisson
does not describe the matter in such terms, but the
following free translation of some of his page 31 seems
to agree with this description:

For example, in the game of heads and tails,
the chance of obtaining heads, and that of
obtaining tails, depend on the constitution
of the eoin; one can regard it as physically
[almost] impossible that these two chances

are equal [to one-half]. On the other hand,
if the constitution of the coin is not known
to us, and if we have not already made
trials, the probability of obtaining heads is,
for us, exactly the same as that of obtaining
tails. We have in fact no reason to believe
in the one event rather than the other. It is
no longer the same if the coin has been
tossed several times. The “chance” of each
face does not change during these trials,
but for someone who knows the results of
the trials, the probability varies with the
numbers of times that the two faces are
presented.

A loaded die would have been a somewhat better
example because loaded dice are easier to construct
than biased coins.

If Poisson had known about quantum mechanics he
might have used the probabilities derived from Schro-
dinger’s equation as examples of physical probabilities
because these probabilities are calculable in terms of
the “state” of a physical system and of the experimen-
tal set-up. Most, although by no means all, physicists
regard these quantum mechanical probabilities as
physically intrinsic and not dependent upon the be-
liefs or existence of the experimenter or of any one
else. Of course if a rational person somehow knows
that a physical probability is equal to some value p,
then that person’s subjective probability must also
equal p.

The existence of physical probabilities is controver-
sial. Einstein, for example, said that “God does not
play dice” and that quantum mechanics is an incom-
plete theory that does not describe “the whole of
reality” (see, for example, Pais, 1982, p. 456). Just as
in classical (prequantum) statistical mechanics, it is
natural to think of the so-called physical probabilities
as merely a way of describing our own (inevitably)
incomplete knowledge.

Most card-carrying Bayesians regard epistemic
probabilties as primary in the sense that physical
probabilities, if they exist, can be estimated only by
making use of epistemic probabilities. de Finetti (1974,
p. x) goes further and claims in capital letters that
[physical] probabilities do not exist, a statement that
can only be properly understood in terms of his rep-
resentation theorem for permutable (exchangeable)
events. For a statement and proof of the theorem for
binomial and multinomial sampling see, for example,
Good (1965b, pp. 13, 21-23) and for a historical ac-
count and a vast generalization see Hewitt and Savage
(1955). In a nutshell these representation theorems
show that the Bayesian formalism used by Poisson,
depending on two kinds of probability, can be reinter-
preted and justified in terms of epistemic probability
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alone. One way of expressing the matter is that a
Bayesian behaves as if he believes in both epistemic
and physical probabilities. de Finetti’s theorem really
proved only that it is not essential to assume that
physical probabilities exist, not that they cannot exist.

Savage (1954) showed that a perfectly rational being
would behave as if she had subjective probabilities and
utilities, and de Finetti’s theorem in effect adds an-
other “as if”: see also Vaihinger (1911) for a general
“Als Ob” philosophy, also known as fictionalism.
(Vaihinger was influenced by Kant who said “the
world that is the object of our knowledge is a world of
appearances, existing only insofar as it is con-
structed”; Walsh, 1967, p. 316ii. Earlier influences
were William of Occam and Thomas Hobbes, while
Jeremy Bentham forestalled many of Vaihinger’s con-
clusions according to Ogden, 1932.) Vaihinger (1935,
p. viii) says “An idea whose theoretical untruth ... is

admitted ... may have great practical importance.”
The use of pseudorandom numbers as if they were
random is a good example of fictionalism, better than
the use of imaginary numbers which constituted one
of Vaihinger’s examples. The assumption that physi-
cal probabilities exist is, in some contexts, not even
theoretically self-contradictory in my opinion, and in
such contexts their use can be regarded as an exem-
plification of pragmatism rather than fictionalism.
Not knowing any description of reality that clearly
goes beyond the “as if,” it seems to me that the easiest
procedure is to talk about epistemic and physical
probabilities as if they are both real, just as Poisson
did. When someone succeeds in defining reality clearly
sans Als Ob we might be able to resolve some of the
controversies.

The notion that physical probabilities are only a
theoretical construction of our minds somewhat
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resembles but is less extreme than philosophical
solipsism interpreted in the sense that the self is the
only reality. I don’t know any card-carrying solipsists
but I like to think of de Finetti’s theorem as showing
that solipsism cannot be disproved although he
didn’t put it that way. I believe that most statis-
ticians today would agree with Poisson that phys-
ical probability and epistemic probability are both
useful concepts. This distinction is still in need of
emphasis, for it is often not taught to students of
statistics. Although the distinction is controversial,
it will be adopted in this article. Those who prefer
de Finetti’s approach will be able mentally to
“translate” what is said into the terminology of
permutability (exchangeability).

In modern times distinctions have been made be-
tween at least five kinds of probability, for example
by Kemble (1942), Good (1959, 1966), and Fine (1973),
but the main distinction is still between physical prob-
ability on the one hand and epistemic probability on
the other. In connection with physical probability,
Poisson was much concerned with the law of large
numbers which he extended from the Bernoulli case
to sequences of trials in which the probability
pi(i=1,2, --., n) varies from trial to trial. Putting
it roughly, Poisson’s Law of Large Numbers states
-that in a long sequence of trials the fraction of suc-
cesses will very probably be close to the average of the
“chances” for the individual trials even when this
average does not tend to a limit (see Uspensky, 1937,
pp. 208 and 294). This theorem is perhaps Poisson’s
main direct contribution to the mathematical theory
of probability and statistics.

Feller (1968, p. 218) comments that Bernoulli trials
with variable probabilities are “known under the con-
fusing name of ‘Poisson trials’.” But this name is
historically much more justifiable than the name
“Poisson distribution” in its familiar sense. To avoid
confusion with the Poisson distribution, the number
of “successes” in a sequence of Poisson trials is some-
times said to have a “generalized binomial distribu-
tion” although this expression can be misinterpreted
as a multinomial distribution.

Poisson (1837, Chapter 4) bases his.discussion on
the generating function
IL(up; + vgq;) (gi=1-p).

He puts u = e* and v = e, so his approach is more
or less equivalent to the use of characteristic functions
(which had been introduced by Laplace). In arriving
at an asymptotic formula he does not use the assump-
tion that the p;/s do not vary very much, so his argu-
ment cannot be rigorous. According to Heyde and
Seneta (1977, p. 49), the formula for the variance of

the number of successes, namely
np(1—p)— X (m—p)* (p=3p/n),

might have been given first by Czuber in 1899. Heyde
and Seneta also point out how the notion of Poisson
trials led to the study of homogeneity and stability in
repeated trials, or dispersion theory, by Bienaymé,
Lexis, and other well known statisticians. “Stability”
here refers to the degree of constancy of the relative
frequencies over different parts of a series or popula-
tion, as in Keynes (1921, pp. 392-393). The work of
Lexis anticipated Fisher’s F statistic, the distribution
theory being obtained by Helmert in 1876 (see Heliss,
1978). Thus there seems to be a causal chain from
Poisson trials to the analysis of variance.

The mathematical theory of probability originated
largely from games of chance where probabilities can
often be calculated based on judgments of equal phys-
ical probability and of physical statistical indepen-
dence. Poisson may have been the first to emphasize
that, outside of games of chance, it is usually necessary
to estimate physical probabilities by repeated sam-
pling, and this was one reason why he was interested
in the Law of Large Numbers. He wrote:

Things of all kinds are subject to a uni-
versal law that may be called the law of
great numbers . .. From cases of all kinds,
it follows that the universal law of great
numbers is a general and incontestable fact,
resulting from experiments that never con-
tradict it. (Quoted by Keynes, 1921, p. 333,
in the French.)

Keynes goes on to say:

It is not clear how far Poisson’s result is
due to a priori reasoning, and how far it is
a natural law based on experience; but it is
represented as displaying a certain har-
mony between natural law and the a priori
reasoning of probabilities. Poisson’s con-
ception was mainly popularized through
the writings of Quetelet ... and he [Que-
telet] has a very fair claim . . . to be regarded
as the parent of modern statistical method.

That would perhaps make Poisson and Gauss grand-
fathers, and Laplace a great-grandfather. But we now
need to add a couple of generations, and Karl Pearson
has been described as the grandfather of 20th century
statistics.

3. THE DIFFERENCE BETWEEN TWO
PROPORTIONS

Suppose that we have two binomial samples, with
unknown parameters, or physical probabilities, p and
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p’. These samples might correspond to two medical
treatments. Let the numbers of “successes” be r and
r’, respectively, let the sample sizes be n and n’, and
let 6 = (r/n) — (r’/n’) which is assumed to be positive.
Poisson (1837, p. 225) asks what is the asymptotic
probability that p — p’ > e when r, n, r’, and n’ are
large? He uses a Bayesian approach (naturally: the
question is itself Bayesian) and arrives at the asymp-
totic formula

81 P(p—p' >¢)= (27)—1/2f et 4t

where

_ ’ o —1/2
(3.2) v=«—a{”23”+'026’q .

According to Westergaard (1932, pp. 149-150),
Poisson’s work on the difference between two propor-
tions was popularized, for medical applications, by
Gavarret (1840), “an enthusiastic pupil of Poisson.” It
is unclear that “popularized” is the right word because
Westergaard goes on to say that unfortunately Gavar-
ret’s “contemporaries took very little notice of his
book.”

4. JUDICIAL DECISIONS

Laplace (1820, first supplement, p. 33) had given a
formula for the probability that an accused person is
innocent if he is acquitted by r members of a jury of
n people, under certain Bayesian assumptions. Inde-
pendently, Good and Tullock (1984, 1985) dealt in a
similar manner with the probability that the Supreme
Court reaches a “correct” decision when the voting is
say 5 to 4, where “correctness” now has to be given a
definition. We decided that the probability in this case
is no more than 0.63. Poisson (1837, p. 364) discusses
Laplace’s result somewhat critically and states:

... it is fair to say that Condorcet should
be credited with the ingenious idea of re-
garding the guilt or innocence of the ac-
cused as the cause of the verdict reached,
the latter being the observed event from
which one can infer the probability of the
cause by using the principle of Blayes [sic].

(Poisson, 1837, p. 2; free translation)

It is safe to assume that Poisson means Bayes, not
Blayes (although he spells it this way twice), otherwise
we have a new candidate for Stigler’s question “Who
discovered Bayes’s theorem?” (Stigler, 1983).

But Poisson’s main interest in the application of
statistics to judicial decisions is again connected with
the law of large numbers. A simple example of this
work of Poisson, based on the records of the Cours

d’Assises, is given by Féron (1978). The required ma-
jority for conviction used to be 7 to 5, but became 8 to
4 in 1831. Poisson noted that 0.07 was the proportion
of the time that the vote was 7 to 5 and the accused
was convicted, and that therefore this could have been
used as an estimate of the additional proportion of
acquittals once the law was changed. Moreover the
prediction would have been correct for 1831. As Féron
says “at the time it [the reasoning] was received with
skepticism.”

Poisson’s idea has been extended by Gelfand and
Solomon (1973, 1974, 1975) in considerable detail, and
their papers contain further references on the topic.

5. POISSON’S SUMMATION FORMULA

Poisson is usually credited with an extremely ele-
gant formula in infinite series which can be usefully
applied in probability and statistics although Poisson
did not make such applications as far as I know. Let
us first consider a special case. For positive values of
t, let

(5.1) Y(t)=1+2 f e ™t
n=1

Then Poisson (1823, p. 420) proved that

(5.2) Y(OVE = Y (1/t).

An entertaining way of writing (5.2) is

(—log 3c)1/“<l + i x"2>
2 7
(5.3) ]
= (—log y)”“(1 +3 y"2>
2 1

where

0<x<1 and log xlogy = =2

Formula (5.2) is about ¢ functions (Whittaker and
Watson, 1927, pp. 124 and 475). The 6 function ap-
pears in the theory of heat but Poisson’s writings
on this theory appeared later. (Series of the form
> ane *""'sin nx appear in Fourier, 1812, in relation to
the propagation of heat in a solid sphere.) Poisson
(1827, p. 592) generalized this identity to give

oo

(5.4) w2 Y e @’ = T e cos(2naw).
As Whittaker and Watson state, Jacobi’s “imaginary
transformations” for all four # functions, published in
1828, can then be readily derived by elementary alge-
bra. Courant (1962, pp. 199-200) shows how (5.4) can
be obtained by solving, in two different ways, the heat
equation for a wire bent into a circle (compare Lévy,
1939, p. 37).
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A further generalization is the following result
known as Poisson’s Summation Formula (Poisson,
1827, p. 591):

Va S‘, f(an)

(5.5) S

=vb i gbn) if ab=2r (a>0)

n=—o

where g and f are Fourier transforms, that is

60 = | e an

and where certain regularity conditions are satisfied.
A pair of simple sufficient conditions for (5.5) are
(Mordell, 1928):

(a) f(x) and f’(x) are continuous for all real x and

tend to zero as | x| — ; and
(b) the integrals [* f(x) dx and [*_ |f"(x)]| dx
converge, and f’ is an integral of f”.

Other sets of sufficient conditions, at least for cosine
transforms, are given by Linfoot (1928), Titchmarsh
(1932, pp. 443-444; 1937, p. 61), and Courant (1962,
p. 77). Feller (1971, p. 630) shows that it is sufficient
to have f non-negative and g absolutely integrable
over (—», ),

The formula can be written in the negligibly more
general but convenient form

(56) va ¥ f(na)e™ =vb T g(mb+y),
which we obtain by applying (5.5) to the function
g(- +y) instead of to g(-). We now give a well known
formal proof of (5.6) without attending to points of
rigor.

Let ¢(v) denote the right side of (5.6). It has period
b and so (formally at least) has a Fourier series

o

Y(y) = X c.e™ (where a = 27/b)

n=-—ow

where

1 b/2
cn=5f Y(yle ™™ dy -
—b/2

b/2 o0
=——f e ¥ g(mb+y)dy

b/2 m=—co

b/2
f e mg(mb+y)dy

(m+1/2)b
f e ™g(y) dy

(m—1/2)b

1 = (m+1/2)b
7= e "g(y) dy

me—oo ¥ (m—1/2)b

«l

\&; ‘J‘w —inay i
=D e g(y) dy
= «/c_zf(na).

Therefore the left side of (5.6) is the Fourier series for
the right side with period b.

Poisson’s summation formula appears in Poisson
(1827, pp. 591-592) where he calls it a “nouvelle
formule.” In accordance with a literal reading of Stig-
ler's Law that eponymy is always wrong (Stigler,
1980), it is impossible that Poisson could have been
the original discoverer of Poisson’s summation for-
mula. Indeed it appears in Cauchy (1817) who says,
with French understatement, “Cette proposition nou-
velle nous parait digne d’étre remarquée” (translated
into Britisn understatement: this new theorem seems
to us to deserve notice), and he mentions (5.2) as a
special case. But perhaps Poisson discovered the for-
mula independently of Cauchy and seems to have
made more applications of it, so the eponymy is not
totally unreasonable and is well entrenched.

One statistical application of Poisson’s summa-
tion formula is for the theory of roulette. Without
using Poisson’s summation formula, Poincaré (1912,
pp. 148-150) made the following contribution to this
theory:

Suppose a wheel, divided into a very large
number of equal sectors alternately colored
red and black, is given a rapid rotation.
When it stops, one of its sectors is opposite
a certain fixed point: what is the probability
P that this sector is red?

Poincaré gives the following simple solution:

Let f(x) denote the probability density for the total
angle x rotated by the wheel, starting from some given
position, where f(x) = 0 when x exceeds some value
A. Suppose |f'(x)| < M for all x. Then it is easily
proved that | 2P — 1{ < MAe where ¢ is the angular
width of a sector. Hence P — 4 when ¢ — 0. Feller
(1971, pp. 62-63) gives another easy proof of a similar
result on the assumption that f(x) is unimodal and is
small at its maximum value.

Much stronger results can be obtained when more
is assumed about f(x). Suppose that we measure angles
in units of 27 radians (“circumferences”). Then, after
“wrapping f(x) round the circle,” the density function
is

oo

(5.7) p(x) = ¥ f(x+ n),

n=—c
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and we are interested in whether p(x) is close to 1 for
all x where 0 < x < 1. Let us take, as a measure of
nonuniformity,

1 1
(5.8) « = fo [p(x) — 1)% dx = J(: [p(x)]”dx — 1

which is of course non-negative. We would like to
show that « is small under some assumptions about f.
It would hardly be reasonable to assume that f is a
“normal” density because the croupier’s mood might
vary from one occasion to another. Instead, let us
assume that f(x) is obtained as a mixture of a pa-
rameterized set of densities f(x, #), the mixing function
being g(f), where 6 might be a scalar or a vector
parameter. In other symbols, we assume that

flx) = ff(x, 0)g(6) db

where, for each 6, f(x, #) has a simple form, say
normal. Then

p(x) =fp(x, 6)g(0) do

where
p(x, 0) = Y f(x+n,0).

n=—o0

Denote the nonuniformity corresponding to p(x, 9)
by «(8). To obtain an upper bound to «(6), note first
that

[p(x)]2=ffp(x,ﬁ)p(x,xﬁ)g((?)g(w) do dy.

Therefore,

1: [p(x)]* dx

= f f g(0)g) J(: p(x, O)p(x, ¥) dx df dy

= f f £0)g) { f [p(x, O d

1 1/2
X j(: [p(x, Y)I° dx} do dy
. 1 2 T 2
= [f g(ﬁ){l; [p(x, 6)]? dx} dﬁJ

{ gON1 + (0] dﬁ}

1 2
=< [1 + 2 f g(0)x(9) d()]

= (1 + 8/2)?

where
5= f g(0)x(0) do |
(5.9) C e
s{f [g(0)]2d0f[x(0)]2d0}> .
Therefore
(5.10) k < B(1 + wUpB).

Corollary. From (5.9) and (5.10) we see that

(5.11) kK < ko(l + ko/4)
where

Ko = supyk (6),
and
(5.12) k=< Bo(1 + %pPo)
where

/33=fg2d0f,<2d0.

From (5.11) we see that the nonuniformity of a
mixture is bounded above by a number slightly larger
than the “largest” nonuniformity of the distributions
that are mixed.

As an example, suppose that the distributions that
are mixed are all normal distributions, a typical one
being

f(x; n, 0) = 07(2r) 7 Pexp[—a(x — u)%e 77

Of course # is now the pair (u, o). Then, for
0 < x < 1, we have (compare Lévy, 1939, p. 37)

p(x,8) = _Zz flx+n,0)

o
= 6_1(27r)_1/2 2 e—(x—u+n)2/(202)

n=—o0

(5.13)

=1+2 Y e cos[2rn(x — u)]

n=1

.by Poisson’s summation formula or its special case

(5.2). Hence

(5.14) |p(x,0)—1|=<2 ¥ e > (forall xand u)

n=1
and

o

2
(5.15)  x(0) = 4< ) e_2”2”2”2> = e~
n=1
if ¢ exceeds say one-tenth of a “circumference,” as it
always would in practice. It now follows from (5.11)
that x does not exceed a number approximately equal
to dexp(—4w%c3) where oo is the greatest lower
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bound of all the values of ¢ that occur. For example,
K< 10_16 if 0 — 1.

We have oversimplified the real roulette problem in
a few ways: (1) We need to assume also that u/o is not
too small to justify using a normal distribution when
x is necessarily positive; (ii) strictly in roulette, in
addition to rotating the wheel, the croupier sends an
ivory ball round in the opposite direction, and it comes
to rest in a numbered pocket near the circumference
after a certain amount of bouncing around. The angle
traveled by the ball relative to the wheel is the sum of
two random variables, namely the angle traveled by
the wheel and the angle traveled by the ball; (iii) the
wheel might not be exactly horizontal and the pockets
might not be exactly equal; (iv) we have analyzed a
measure of nonuniformity for this relative angle, re-
duced modulo 1, whereas it would be of more direct
interest to the gambler and to the casino to use a
discrete measure of nonuniformity for the probabili-
ties py, p2, - - - , Pe corresponding to the ¢ slots (where
t is 37 in Monte Carlo and is 38 at Las Vegas where
the casinoes are greedier). The discrete measure anal-
ogous to x is t 3, (p, — t™1)? = tp — 1 where p is the
“repeat rate” Y p?. A relationship between x and
tp — 1 can be worked out by using properties of the
midpoint method of integration, or by using the Euler-
Maclaurin summation formula, but the details are
omitted; and (v) perhaps more realistic than a mixture
of normal distributions would be a mixture of gamma

distributions, with
flx, 8) = B~ x*"'e™*/T (a)
(5.16)
(«>0,8>0,x>0).

It then turns out, by means of Poisson’s summation
formula, that

& 2 cos vyn
: =1+
(5 17) p(x’ 0) 1 n§1 [1 + 41r262(n + x)2]tx/2

where tan v, = 27 (n + x)08. Hence

o 2
(5.18) K(ﬁ) < [2 Z a+ 47r262n2)—a/2:|

n=1
and
(519) K(ﬂ) < 4e_4‘”2ﬂ2a — 4e—41erar(x)

if this is small, and we can then apply (5.11) as before.
Thus the result is essentially the same as if we had
assumed a mixture of normal distributions. Perhaps
this result is true under much less restrictive assump-
tions than have been made here.

The roulette theory leads to a fairly adequate expla-
nation of why the distributions of the initial digits of
numbers in large data sets. are not uniform, in fact the
digit 1 often occurs about 30% of the time and digit 9

only 5% (Benford, 1938; Feller, 1971, p. 63; Raimi,
1976). Feller states that “A distinguished applied
mathematician was extremely successful in bets that
a number chosen at random in the Farmer’s Almanac,
or the Census Report or a similar compendium, would
have the first digit less than 5.” Wallis and Roberts
(1957, pp. 331-332) refer to the use of the phenomenon
as “a parlor game or swindle.” Even with third digits
one would be unlucky not to be able to discriminate a
sample of 100,000 digits from a flat random population
(Good, 1965a). A random number x, that is obtained
by multiplying together several other numbers, has a
logarithm obtained by adding logarithms. The man-
tissa of log x can be expected to be roughly uniformly
distributed on a circular slide rule. It may be noted
too that Jeffreys (1939, p. 100) proposed a uniform
“improper” prior for the logarithm of a positive ran-
dom variable x, in other words the prior density 1/x
for x. He pointed out that this prior is invariant for
powers. We seem to have a case here where a Bayesian
prior roughly mirrors actual frequencies of occurrence
in the real world (over some range of values of x)
(compare Raimi, 1985). Note that the “first digit”
phenomenon is intended to apply to small numbers
like 2.31 X 107! as well as to large numbers like
3.7 X 10°.

Poisson’s summation formula can be used to prove
the important sampling theorem of communication
theory concerning band-limited time series (see, for
example, Feller, 1971, p. 631). It states that a function
[, the Fourier transform of which vanishes outside
(—%b, Yb) is uniquely determined by the values of
[ at the points 2nx/b(n = 0, 1, £2, ...); in other
words, by two values per shortest wavelength. The
theorem is often attributed to H. Nyquist or to C. E.
Shannon, but it occurs in Whittaker (1915) and there
are even earlier anticipations as reviewed by Higgins
(1985). If f satisfies the band-limited condition, then
the right side of (5.6) when |y| < ¥b reduces to the
single term vbg(y). On then taking the inverse Four-
ier transform of (5.6) we obtain f(x) in terms of the

‘values of f at the points na, that is, the points 27n/b.

Poisson’s summation formula has also been applied
to a problem in Brownian motion (Feller, 1971, pp.
341-342), to Kolmogorov-Smirnov tests (for example,
Pelz and Good, 1976), to a problem in inventory
control (Good, 1962a), and to a statistical theory of
“remnants” related to a manufacturing process
(Aitchison, 1959). The spectral density functions
corresponding to the autocorrelation functions
p'"! and p™’ can both be neatly expressed by using the
summation formula (for example, Good, 1981b).

An entertaining combinatorial formula related to
the summation formula occurs in connection with
w(n), defined as the number of orderings of n candi-
dates when ties are permitted; for example, w(3) = 13.
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It can be shown (Good, 1975; and, for further citations,
Sloane, 1973, item 1191) that

i w(n)x™

n=0 n!

= (2 —e’)!
(5.20) o
2_: ™ (1x| <log 2)

and therefore

w(m)= 3 fim) (n>0)

(5.21)
where

_ JVexme™He2 (x> 0)
(5.22) ﬂﬂ—{o (x=0).

It then follows from (5.4) that

wln) = n!(logge)"“]% + Y cos™*4,,
m=1
(5.23)

X cos[(n + l)ﬁm]} (n=1)

where 6, is the angle the tangent of which is
27m logze. We can obtain w(n) exactly by taking the
series as far as the first term for which m > n/(2xe).
The term n!(logze)”*!/2 is all that’s needed when
n < 13; for example, w(13) = 536,858,348,381.

Poisson’s summation formula has a discrete ana-
logue, related to the discrete Fourier transform, and
is given an elementary but not easy proof by Good
(1962b). The formula is

(5.24) |G| X a,=|H|72 ¥ af
reG SEH

where G and H are “orthogonal” subgroups of a finite
Abelian group, the orders of these subgroups are | G |
and |H|, and a¥ is the discrete multidimensional
Fourier transform of a,. (For a full explanation see
the reference cited.) I think it may well have applica-
tion to the design and analysis of fractional factorial
experiments. The reason for this conjecture is that the
theory of fractional factorial designs is expressible in
terms of subgroups of a finite Abelian group (Fisher,
1942, 1945), and the “characters” of these groups are
themselves closely related to multidimensional dis-
crete Fourier transforms. Moreover, the interactions
in a 2" factorial experiment are expressible as the
components of an n-dimensional modulo 2 discrete
Fourier transform (Good, 1958a, 1960). The theory of
optimal fractional factorial experiments is compli-
cated (Raktoe et al., 1981) and might profit by a neat
and nontrivial formula that, as far as I know, has not
vet been used.

Another analogue is the formula

u—1 o0
1 2 f<27rr> = Y Cu

U r=0 n=—o

(5.25)

if f has the Fourier series
(5.26) f(0) =

It would be interesting to know whether Poisson ob-
tained his summation formula by analogy with the
more elementary formula (5.25), but I have no evi-
dence that he did. The formula (5.25) is a “Fourier
series” form of a formula due to Thomas Simpson
(1757/1758) for determining the sum of regularly
spaced coefficients in a power series. According to
Chrystal (1900, p. 417), Simpson’s method was used
apparently independently by Waring in 1784. It fol-
lows at once from (5.25) (Good, 1955) that if f is
“pand-limited” so that ¢, = 0 when n = m, say, then

(627  — f £(6) db _% g (2’”)

whenever ¢ = m. One of many deductions is that the
Legendre polynomial can be computed, often conven-
iently, as

N
Py(x) = - Z [x+ V(x? —l)cos——r]
(5.28) r=0 ¢

(t>N).

When ¢ — o this tends to a well known integral due
to Laplace, namely

(5.29) Pn(x) = %J; [x + v(x2 — 1)cos 6]V do

(Whittaker and Watson, 1927, pp. 312-314, who cite
Laplace’s Mécanique Céleste, Livre xi, Chap. 2). Thus
(5.28) can be regarded as a generalization of Laplace’s
formula. It is surprising that this generalization was
apparently not published before 1954,
As a closely related deduction from (5.27), consider

a “trinomial” random walk on the integers with prob-
abilities a, b, c, respectively, of moving, at each stage,
one place to the left, staying still, or one place to the
right. Then, starting at the origin, the probability of
arriving at position s at time n is

1 t—1

7 Zo {(aw™ + b + cw)w™™

(5.30)

whenever ¢t > | s | + n, where w = exp(2xi/t). Thus the
probability distribution is the discrete Fourier trans-
form of (aw™ + b+ co ). Ifa=c=pands=0
(return to the origin) the probability is

1°
(5.31) Py

> [1— 4p sin? W?r] (t > n),
and, by letting ¢t — o, we see this is equal to

1
(5.32) f (1 — 4p sin’rx)" dx,
0
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but (5.31) is easier to compute. The relationship be-
tween Legendre polynomials and trinomial random
walks was discussed by Good (1958b).

6. THE POISSON DISTRIBUTION

The Poisson distribution is of course of great im-
portance in modern statistics. Haight (1967, p. 113)
cites three authors who credit de Moivre (1718) with
the discovery of the distribution although de Moivre
did not give the formula e™a”/n! explicitly. Stigler
(1982) gives a translation of the passage in Poisson
(1837, p. 206) which is apparently the only place where
Poisson mentions the distribution. He derived it as a
limiting form of the negative binomial as did de
Moivre. Clearly Poisson was unaware of the impor-
tance that the distribution was destined to have. In
many textbooks today the distribution is first regarded
as an approximation to the binomial.

Was de Moivre unfairly treated from a kudological
point of view? (“Kudology” is the science of assigning
credit or kudos; cf. Good, 1962¢c, p. 3.) Well, the
formula e” = cos 0 + i sin 6 is often called de Moivre’s
formula, but it seems to be due to Cotes (1714, p. 32),
although he did not express it neatly at least in this
place. This formula is itself so important that rough
justice has been done to de Moivre, although perhaps
not to Cotes.

Perhaps the Poisson distribution should have been
named after von Bortkiewicz (1898) because he was
the first to write extensively about rare events whereas
Poisson added little to what de Moivre had said on
the matter and was probably aware of de Moivre’s
work. See also Gumbel (1978).

An early example of the Poisson distribution in real
data was provided by the number of Prussian soldiers,
in various corps and years, who died of Bortkiewicz’s
disease, that is, were kicked to death by a horse.
Bortkiewicz’s disease is always fatal by definition.
There are many other examples of the Poisson distri-
bution of greater scientific interest. For example,
Fisher (1922, p. 89) pointed out that the multinomial
distribution can be regarded as generated by several
independent Poisson distributions made conditional
‘on a total sample size which itself has a Poisson
distribution. This is because the multinomial proba-

bility N! [1i=1 (p}/n,!) can be written in the form
t n,,,—n, N_—N
(Apr) e }\ e
6.1
( ) ,I=I1 n,! N!

An important use of the Poisson distribution occurs
in Poisson processes in radioactive decay and in the
theory of queues which originated in the theory of
telephone traffic. Doob (1953, pp. 404—406) mentions

applications of the Poisson process to molecular and
stellar distributions. Parzen (1962) mentions applica-
tions to particle counters, birth processes, renewal
processes, shot noise, and Brownian motion. Other
applications can be readily found from the various
volumes of the Current Index to Statistics. The distri-
bution of the duration of a busy period in a queue with
Poissonian input can be neatly obtained from branch-
ing theory (the Bienyamé-Galton-Watson process), by
regarding customers and time elements as forming the
two phases of a species with alternating generations
(Good, 1951).

It is reasonable to maintain that even de Moivre
was anticipated by de Montmort (1708) who discussed
the matching problem (or treize). If two packs, each
of n cards, the cards being labeled 1, 2, - - - , n in each
pack, are shuffled and laid out in two rows, the prob-
ability of exactly r matches, when n — oo, tends to
e '/r!, that is, the Poisson distribution with mean 1.
In fact n — r need not be at all large to give a good
approximation. For example, with n = 10 and r = 3,
the probability is 0.061310, whereas e™*/3! = 0.061313.
Montmort stated the correct result for the matching
problem with r = 0 in 1708 and published a proof that
he received from Nicolas Bernoulli in 1713. The case
r = 0 contains the only difficulty of the problem (and
involves what was probably the first example of the
principle of “inclusion and exclusion”), so the fact
that de Moivre (1718 or perhaps 1711) gave the result
for general r is not by itself a strong argument for his
priority. This is an example where the special case is
95% of the job. Such examples are not at all rare.

An interesting application of the Poisson distribu-
tion relates to the generation of random digits. If a
Poisson variable of mean ¢ is reduced modulo n, let
Do, P1, - - -, Pn—1 be the probabilities of the “digits” 0,
1,.--,n—1soobtainedandlet p = p% +p?+ .-- +
pZ_i, the “repeat rate.” Then it can be proved that

(6.2) np—1= nil exp[—4c sin2<%r>]

r=1

. which when n = 2 reduces to the more easily proved

result e,

Since we are commemorating Poisson rather than
the Poisson distribution I have perhaps said too much
about this distribution although much more could be
said. The inclusion of the discussion of this distribu-
tion here can be largely justified from the point of
view of information retrieval, because statisticians
who are interested in the Poisson distribution, and
most of them are, might consult the present paper for
such a discussion. Then again, Poisson was so great
a scientist that we can continue to use the name
“Poisson distribution” to help to perpetuate his name.
We don’t have much choice.
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7. THE CAUCHY DISTRIBUTION

Although Poisson did not invent the Poisson distri-
bution, he invented other things not usually ascribed
to him. For example, he invented Abel summation in
which the sum of a series Y a, that is not convergent
can sometimes be usefully defined as

(7.1) lim Y a,x™
x—1—-0

In particular,1 — 1+ 1 —1+ ... is equal to Y2 with
this, and with other sensible definitions; for example,
White’s advantage in a game of chess is half a move
on the average and also by the definition (7.1). Poisson
also invented the Cauchy distribution (Stigler, 1974;
Poisson, 1824). His purpose was to show that least
squares was not necessarily the best estimation pro-
cedure; but, as Stigler says, Poisson did not attach
much importance to this distribution because mea-
surement “errors” do not have such thick tails if
mistakes rather than “errors” are excluded. The
Cauchy distribution arises as a ratio of two normal
distributions and as the distribution of tan 8 where
is uniform in (—#/2, =/2). The distribution is now
seen as a very special case of Student’s £, the square
of which in its turn is a special case of Fisher's F
which is basic to the Analysis of Variance. The Cauchy
and normal distributions are both special cases of
the symmetric stable distributions the characteristic
functions of which are of the form exp(—a|t[®)
(0 < b = 2). The case b = 3, half-way between the
Cauchy and the normal, is of interest in physics and
astronomy and was first noted by Holtsmark (see, for
example, Good, 1961).

A Cauchy prior arose in the theory of invariant
priors due to Jeffreys (1961, p. 343) and out of a
geometrical invariance argument related to stereo-
graphic projection in Good (1962d). Apart from invar-
iance arguments, Cauchy priors might be regarded as
sensible because of their thick tails, and have been
used, for example, by Tiao and Tan (1965), Rogers
(1974), and Zellner and Siow (1980). Both univariate
and multivariate Cauchy priors were used by Zellner
(1984, p. 293ff). Distributions with very thick tails are
apt to be more reasonable as priors than as physical
distributions.

In my work and joint work concerned with the
hierarchical Bayesian approach to categorical data, I
have used log-Cauchy hyperpriors for a positive hy-
perparameter k (for mixing conjugate priors) because
these hyperpriors are almost as noncommittal as pos-
sible for large k, while still being “proper.” (They are
asymptotically proportional to k'(log k) 2.) See, for
example, Good (1981a, 1983b) and Good and Crook
(1985). In the application to multinomials, &£ can be

regarded as specifying an inductive procedure in the
continuum of inductive procedures developed by Car-
nap (1952) but in effect anticipated by: William Ernest
Johnson (1924).

I think Poisson would have found these ideas of
some interest, because they use his Cauchy distribu-
tion in a modern Bayes-Laplace context that explicitly
uses two kinds of probability (even if it doesn’t have
to).

8. THE SEQUENTIAL USE OF BAYES FACTORS

Poisson (1837) was much concerned with legal is-
sues and included a discussion of the effect of several
independent witnesses. Suppose that the initial or
prior probability of some event is p, and that n inde-
pendent witnesses (or jurymen) are asked whether it
occurred or not, and they all said that it did. Let the
probabilities that these witnesses speak the truth be
g1, 2, -+ » Gn- Then the final or posterior probability
of the event is given by Poisson as

p
p+ (1 —plpipz...pn
where p; = (1 — ¢;)/¢;. This formula depends on the
over-simplified assumption that witness i will tell the

truth with probability g; whether or not the event

occurred.
If the formula is rewritten in terms of odds it

assumes the form

(8.2) Final odds = initial odds + (p1p2 - -- pn)

(8.1)

and is then seen to be a special case of the principle
that independent “Bayes factors” are multiplicative.
A Bayes factor in favor of a hypothesis H, provided
by evidence E, is defined as the ratio of the final odds
of H to its initial odds, that is, O(H|E)/O(H).
(“Odds” means p/(1 — p) where p is a probability.)
This Bayes factor is equal to

(8.3) P(E|H)/P(E|H)

" where H denotes the negation of H. When H and H

are both simple statistical hypotheses, (8.3) reduces
to a simple likelihood ratio, but even in this case the
Bayesian interpretation has more intuitive appeal.
Legal logic is largely Bayesian and when the evi-
dence becomes overwhelming optional stopping is per-
missible, that is, it is not necessary for the law to
specify in advance exactly how much effort should be
expended in collecting the evidence. A simple statis-
tical analogy is the use of sequential sampling for
deciding whether a die is loaded. The Bayesian can
stop sampling when the final odds that the die is
loaded reaches some convincing level. If instead a non-
Bayesian decides to sample until some tail probability
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becomes smaller than some “convincingly small”
value, then even a fair die, with probability 1, will be
judged to be biased. This is sometimes called “sam-
pling to a foregone conclusion.” (See, for example,
Greenwood, 1938; Jeffreys, 1939, pp. 359-360; Feller,
1940; Robbins, 1952; Anscombe, 1954; and, for some
more history, Good,.1982.) Thus optional stopping is
not permitted in non-Bayesian statistics, and this may
be regarded as support for the view stated above that
the Law is largely Bayesian.

Formula (8.2) is of course not restricted to legal
applications; it is applicable whenever evidence arrives
in several independent pieces. It is then convenient to
use logarithms. A log factor is sometimes called a
weight of evidence, a term that is always appropriate
but especially so in a legal context (Good, 1985). One
notation for it is W(H:E), the weight of evidence in
favor of H provided by E. It has the additive property

(8.4) WI[H:E&F)] = W(H:E) + W(H:E|F)

which does not require that E and F should be inde-
pendent. The concept of weight of evidence, for the
case where numerous independent pieces of evidence
are sequentially combined, was of great help in crypt-
analysis in World War II and therefore in the destruc-
tion of Hitler. The original application was suggested
by A. M. Turing in relation to an attack on the engima
known as Banburismus. This was a refinement of
Rozycki’s “clock method” that is described by
Rejewski (1981, p. 223). Turing introduced a name,
“deciban,” for a unit for weight of evidence, and this
had immediate intuitive appeal to the Banburists even
if they had had no previous statistical training. A
Bayes factor F corresponds to 10 log;oF decibans, and
a deciban is about the smallest unit of weight of
evidence perceptible to the human judgment. Simple
concepts, like weights of evidence, decibans, the
Poisson distribution, and the distinction between ep-
istemic and physical probability, are often valuable,
partly because of their very simplicity. Obversely, as
J. E. Littlewood wittily commented, in complicated
doctoral theses there is often “less than meets the

”

eye.
9. INDIRECT EFFECTS

In addition to Poisson’s direct effect on statistics
and probability, some of his work in mathematics and
physics has had indirect effects. His summation for-
mula is one example. Another is the Poisson bracket
which is important in classical mechanics (Poisson,
1809, p. 281; Goldstein, 1950, pp. 250-272). Its ana-
logue [u, v] = uv — vu in quantum mechanics is even
more important especially in Dirac’s formulation
(Dirac, 1947, pp. 84-89, 112-113). Since quantum
mechanics is a statistical theory—at least that is the

usual assumption—we can regard the Poisson bracket
as having had an indirect but important effect on
statistics if “statistics” is broadly interpreted.

In another direction, Stigler (1978, p. 294) states
that Edgeworth got his start on the Edgeworth series
from Poisson.

10. CONCLUDING COMMENTS

Another French mathematical genius of the early
nineteenth century was Evariste Galois who was trag-
ically killed by an expert swordsman in a duel at the
age of 20, and might have been tricked into it by the
French secret service because of his anti-Royalist ac-
tivities. A recent article by Rothman (1982) indicates
that Galois was psychologically somewhat unbalanced
and had been whitewashed in some other accounts in
which Poisson had also been blackwashed for having
rejected a path-breaking paper by Galois on permu-
tation groups. It seems that Poisson merely demanded
that the paper should be rewritten so as to be intelli-
gible, but Galois was too proud or paranoid to accept
this demand at its face value. (T'wo earlier versions of
his work had been lost by Cauchy, according to Kline,
1972, p. 756, so some paranoia was justified.) It seems
therefore that Rothman’s historical research has
cleared Poisson’s name as far as this incident is con-
cerned.

In conclusion, I would like to quote a comment from
the oration of Arago (1854) at Poisson’s funeral. Arago
said that a genius does not die, he survives in his work.
130 years later we know that Poisson’s work and his
name will survive as long as civilization does.
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