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Abstract 

 

      The aim of the work in this thesis is to carry out dimension reduction (DR) for high 

dimensional (HD) data by using statistical methods for variable selection, feature 

extraction and a combination of the two. In Chapter 2, the DR is carried out through 

robust feature extraction. Robust canonical correlation (RCCA) methods have been 

proposed. In the correlation matrix of canonical correlation analysis (CCA), we suggest 

that the Pearson correlation should be substituted by robust correlation measures in 

order to obtain robust correlation matrices. These matrices have been employed for 

producing RCCA. Moreover, the classical covariance matrix has been substituted by 

robust estimators for multivariate location and dispersion in order to get RCCA.  

      In Chapter 3 and 4, the DR is carried out by combining the ideas of variable 

selection using regularisation methods with feature extraction, through the minimum 

average variance estimator (MAVE) and single index quantile regression (SIQ) 

methods, respectively. In particular, we extend the sparse MAVE (SMAVE) reported in 

(Wang and Yin, 2008) by combining the MAVE loss function with different 

regularisation penalties in Chapter 3. An extension of the SIQ of Wu et al. (2010) by 

considering different regularisation penalties is proposed in Chapter 4. 

      In Chapter 5, the DR is done through variable selection under Bayesian framework. 

A flexible Bayesian framework for regularisation in quantile regression (QR) model has 

been proposed. This work is different from Bayesian Lasso quantile regression 

(BLQR), employing the asymmetric Laplace error distribution (ALD). The error 

distribution is assumed to be an infinite mixture of Gaussian (IMG) densities. 
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Chapter 1 

 

Introduction 

      Data appears throughout society and trends show that the size of the data sets is 

becoming larger all the time. Recent developments in data gathering and storage 

capacities have resulted in huge amounts of multivariate data being collected at a rapid 

rate. For such large amounts of multivariate data, the well known “Curse of 

Dimensionality” (CD) poses a challenge to most statistical methods. Richard Bellman 

(1961) introduced the concept of the CD. The reason for the CD is the exponential 

increase in volume associated with adding extra dimensions to an associated 

mathematical space. This means that the increasing of the sparsity will be exponential 

given a fixed amount of data points. This problem causes the standard statistical 

methods fail in high dimensional (HD) data.  

      The number of the variables refers to the dimension of the data. The operation of 

reducing the number of random variables with as little loss of information as possible is 

called the dimension reduction (DR). It is one of the main solutions for the CD. The 

main two ways to shorten the dimensionality of the data are the subset selection and the 

feature extraction. The subset selection is the process of selecting a subset of the 

important variables and the feature extraction is the process of transforming 

(projecting) the variables into a fewer number of new ones. 
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1.1. Subset selection 

      Subset selection has become a popular topic of research in many fields. It is the 

process of choosing a subset of important variables for use in model building. All 

unimportant variables that have not been chosen are then implicitly assigned 

coefficients with a value of zero. The main assumption when using a variable selection 

technique is that the data contains many unimportant variables. Unimportant variables 

are those which provide no more information than the chosen variable, or that provide 

no useful information in any context. 

      Improving the performance of the model’s prediction, providing faster and lower 

cost models and giving a good understanding of the dataset are the central aim of subset 

selection (Guyon and Elisseeff, 2003). Ranging from simple to sophisticated, many 

approaches have been developed for the sake of doing variable selection. 

      Traditional variable selection techniques, such as stepwise selection and best subset 

regression may suffer from instability, due to their inherent discreteness (Brieman, 

1996). To tackle the instability, regularisation methods can also carry out variable 

selection, as long as the penalty term is appropriately chosen. Regularisation methods 

are usually formed by adding penalty terms onto the model parameters with respect to 

the standard loss functions, such as the squared error loss. Compared to traditional 

subset selection methods, which are discrete procedures, hence with high variance, 

regularisation methods supply a tool with which we can develop the model’s 

interpretation ability and prediction precision via continuous shrinkage and automatic 

variable selection, where variable selection is carried out during the process of 

parameter estimation.  

      The first use of regularisation idea for variable selection is made by Donoho and 

Johnstone (1994) and then further developed by Tibshirani (1996) and many other 
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researchers. For example, Zou and Hastie (2005), Yuan and Lin (2006), Fan and Li 

(2001), Tibshirani et al. (2005), Zou (2006), Zou and Zhang (2009), Park and Casella 

(2008), Hans (2009, 2010), Scheipl and Kneib (2009) and Kyung et al. (2010), among 

others. Although the quadratic loss has some nice mathematical properties, it is very 

sensitive to non normal errors. Least absolute deviation (LAD) and quantile regression 

(QR) have lately been used in variable selection approaches as robust regressions.  

      Koenker and Bassett (1978) introduced the QR. It becomes a widespread approach 

to characterise the distribution of an outcome of interest, given a set of covariates. In 

many applications, the extreme conditional quantiles based on the predictors 

completely different from the centre. Therefore, QR provides a comprehensive analysis 

of the relationships among variables. It can be seen as an expansion for regression 

analysis in order to get a more complete and robust analysis (Koenker, 2005). QR has 

been employed in many real world applications such as finance, microarrays and 

ecological studies, see Koenker (2005) and Yu et al. (2003) for an overview. For the 

regularisation methods in the QR, see Koenker (2004), Wang et al. (2007), Li and Zhu 

(2008), Zou and Yuan (2008), Wu and Liu (2009), Yuan and Yin (2010), Li et al. 

(2010), Bradic et al. (2011), Alhamzawi et al. (2011), Alhamzawi and Yu (2012), 

Alkenani et al. (2012) and Alkenani and Yu (2013). 
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1.2. Feature extraction 

      Feature extraction shares the objective of subset selection, with the difference that 

the results must be explained in terms of all of the variables. It denotes the process of 

finding the transformation that projects the data from the original space to the feature 

space.  

      A vast number of feature extraction techniques have emerged in the literature for 

reducing the dimensionality, without the loss of as much information as possible from 

the data. These include principal component analysis (see Jolliffe, 2002; Zhang and 

Olive, 2009), factor analysis (see Gorsuch, 1983), independent component analysis 

(Comon, 1994), canonical correlation analysis (Hotelling, 1936; Fung et al., 2002; 

Branco et al., 2005; Zhou, 2009; Zhang, 2011; Alkenani and Yu, 2013), single index 

models (Powell et al., 1989; Härdle and Stoker, 1989; Ichimura, 1993; Delecroix et al. 

2003), the sliced inverse regression (SIR) (Li, 1991), the sliced average variance 

estimation (SAVE) (Cook and Weisberg, 1991), the principal Hessian directions (pHd) 

(Li, 1992), the minimum average variance estimator (MAVE) and the outer product of 

gradients (OPG) methods (Xia et al., 2002, see also Xia 2007, 2008) and successive 

direction estimation (Yin and Cook, 2005; Yin et al, 2008), among others. On the other 

hand, there are a number of investigations that have used the feature extraction 

techniques to solve the CD problem in QR models. For example, Chaudhuri (1991), 

Gannoun et al. (2004), Wu et al. (2010), Jiang et al. ( 2012) and Hua et al. (2012). 

Recently, many studies have been done on combining subset selection and feature 

extraction. This feature has greatly enhanced the power of DR in applications. For 

example, see Li et al. (2005), Ni et al. (2005), Zou et al. (2006), Li and Nachtsheim 

(2006), Li (2007), Zhou and He (2008), Li and Yin (2008), Wang and Yin (2008) and 

Zeng et al. (2012).  
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1.3. Thesis outline 

      This thesis consists of a number of published journal papers that are organised into 

chapters. Therefore, each chapter can be understood separately and any linkages to 

other chapters have been clarified. The outline of the thesis is given as follows: 

      In Chapter 2, robust canonical correlation (RCCA) methods have been proposed. In 

the correlation matrix, the Pearson correlation has been substituted with the percentage 

bend correlation and the winsorised correlation in order to get robust correlation 

matrices. The resulting matrices have been employed to produce RCCA methods. 

Moreover, the fast consistent high breakdown (FCH), reweighted fast consistent high 

breakdown (RFCH) and reweighted multivariate normal (RMVN) estimators are 

employed to estimate the covariance matrix in the canonical correlation analysis (CCA) 

in order to obtain RCCA methods. After that, these estimators are compared with the 

existing estimators. The practical precision of the proposed methods is studied by 

means of simulation experiments under different sampling schemes. Furthermore, to 

assess the robustness of the estimators, we make use of the breakdown plots and apply 

the test of independence. 

       In Chapter 3, we combine MAVE method (Xia et al., 2002) with smoothly clipped 

absolute deviation (SCAD) (Fan and Li, 2001), Adaptive least absolute shrinkage and 

selection operator (adaptive Lasso) (Zou, 2006) and the minimax concave penalty 

(MCP) (Zhang, 2010). Our proposed methods have merits over the sparse MAVE 

(SMAVE) (Wang and Yin, 2008) because all of these regularisation methods have the 

oracle properties (OP's) and have preferences over sparse inverse DR methods (Li, 

2007), in that there is no need for any particular distribution on   and it is able to 

estimate the dimensions in the conditional mean function (CMF). The proposed 
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methods are studied via simulation and real dataset examples in order to examine their 

performance. 

      In Chapter 4, we propose an extension of the single index quantile regression (SIQ) 

method of Wu et al. (2010) by considering the least absolute shrinkage and selection 

operator (Lasso) and the adaptive Lasso methods for estimation and variable selection. 

In addition, computational algorithms have been evolved in order to calculate the 

penalised SIQ estimates. The performance of the proposed methods is verified by both 

simulation and real data analysis. 

      In Chapter 5, we develop a flexible Bayesian framework for regularisation in the 

QR model. Similar to Reich et al. (2010), the error distribution is assumed to be an 

infinite mixture of Gaussian (IMG) densities. This work is different from Bayesian 

Lasso employing asymmetric Laplace distribution (ALD) for the error. In fact, the use 

of the ALD is undesirable due to the lack of coherency. For example, for different   we 

have a different distribution for the   ’s and it is difficult to reconcile these differences.  

      In Chapter 6, the conclusions of the thesis and recommendations for potential future 

work are summarised. 
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Chapter 2 

 

A Comparative study for robust canonical 

correlation methods1        

                                                                                 

      The purpose of this chapter is to get robust canonical correlation (RCCA) methods. 

In the correlation matrix, an approach that substitutes the Pearson correlation with the 

percentage bend correlation and the winsorised correlation in order to obtain robust 

correlation matrices is presented. Moreover, the fast consistent high breakdown (FCH), 

reweighted fast consistent high breakdown (RFCH) and reweighted multivariate normal 

(RMVN) estimators are employed to obtain robust covariance matrices in the canonical 

correlation analysis (CCA). Simulation studies are conducted and real data is employed 

in order to compare the performance of the proposed approaches with the existing 

methods.  

      The breakdown plots and independent tests are employed as criteria of the 

robustness and performance of the estimators. Based on the computational studies and  

real data example, suggestions on the practical implications of the results are proposed.
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2.1. Introduction 

      The CCA, originally proposed by Hotelling (1936), is a method that is used for 

gauging the linear relationship between two sets of variables. The aim of this method is 

to find basis vectors for two groups of variables achieve the correlations between the 

projections of the variables into these basis vectors are mutually maximised. 

      The CCA has been widely applied in many statistical areas and a major advantage 

of the CCA is its application for dimension reduction (DR) and thus, it acts as a 

valuable tool that facilitates the understanding of complicated relationships among 

multidimensional variables (Das and Sen, 1998). The CCA is routinely discussed in 

many multivariate statistical analysis textbooks. For example, see Anderson (2003), 

Johnson and Wichern (2003) and Mardia et al. (1979).  

      Suppose that   is a  -dimensional random variable and   is a  -dimensional 

random variable, with    . Furthermore, suppose that   and   have the covariance 

matrix (if it exists) 

                                                                                                                                            
where     and     are non-singular. The objective of the CCA is to explore the linear 

relationship between   and  , as measured by the correlation between the linear 

combination (LC) of both groups of variables. Specifically, we look for  

                                                                                                           
where      is the Pearson correlation and the vectors       and       are called 

the first pair of canonical vectors. Let          and         , which are the first 

pair of canonical variates. According to Equation (2.2), the vectors    and    are not 

unique. The normalisation constraint                         is required in order 

to identify    and    uniquely (up to a sign). 
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      While the    and    are useful, they do not capture the full dependence structure 

between   and  . To this end, higher order canonical vectors defined for            

as  

                                                                                                               
are used where the pairs of canonical variates of order   are          and          

and 

                                                                                                              
The correlation    between the canonical variates of the  th pair,               , is 

the  th canonical correlation. Moreover, the canonical vectors    and    are the 

eigenvectors corresponding to the eigenvalues               of the matrices 

                                                       and                                                
or  

                                                       and                                              
where                          is the correlation matrix. The matrices in Equations       and       have the same eigenvalues which correspond to the squared canonical 

correlations. 

      Hsu (1941) derived the limiting distributions (LD) of the canonical correlations in 

the case of a multivariate normal distribution. His result is valid under some very 

general assumptions regarding the population’s canonical correlations. The LD of the 

canonical vectors have been considered in several papers, see Anderson (1999) for an 

overview. Kettenring (1971) has generalised CCA to more than two sets of variables. 

Beaghen (1997) has used a canonical variate approach to analyse the means of repeated 

measurements. Anderson (1999) gave the complete LD of the canonical correlations 

and vectors assuming that the nonzero population correlations are distinct.  
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      In order to estimate the canonical correlations and canonical vectors of the 

population, we first estimate   by the sample covariance matrix followed by the 

computation of the eigenvalues and eigenvectors of the matrices    and    as given by 

Equation      . This procedure works best when   and   are from a multivariate 

normal distribution; however, it appears to be less efficient with respect to outlying 

observations. From a practical point of view, it is well known that the sample 

covariance matrix is not resistant to outliers and thus the CCA based on this matrix will 

result in uncertain and misleading results. Similarly, Romanazzi (1992) showed that the 

classical canonical vectors and correlations are also sensitive to outliers. Consequently, 

in order to obtain accuracy and robustness, there is a need to estimate the population 

covariance matrix using robust approaches. 

      An apparent procedure to make CCA more robust, is to estimate a sample 

covariance or correlation matrix using methods that can account for outliers. One such 

approach was presented by Karnel (1991), who considered M-estimators as robust 

estimator of   and then followed the classical approach. However, the robustness 

properties of the M-estimators are poor in high dimensions (Kent and Tyler, 1996).  

      There are many estimators for robust multivariate location and dispersion (RMLD). 

The minimum covariance determinant (MCD) estimator is the fastest estimator of the 

RMLD that has been shown to be both consistent and having a high breakdown point. It 

has       complexity, where             (see Bernholt and Fischer, 2004). The 

complexity of the minimum volume ellipsoid (MVE) is far higher and there may be no 

known method for computing the      projection based, constrained M, M-estimate of 

the scale of the residuals and the M-estimate of the parameters and Stahel–Donoho 

estimators (Olive and Hawkins, 2010). 
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      Since the mentioned estimators are computationally time consuming, these 

estimators have been replaced by practical estimators which strike a balance between 

accuracy and computing cost. However, none of the workable estimators have been 

proved to be consistent and having a high breakdown point. For example, the fast 

minimum covariance determinant (FMCD) estimator, which is given in (Rousseeuw 

and Van Driessen, 1999), is used to replace the MCD estimator. The robust multivariate 

techniques (one of which is the robust canonical correlation) that claim to use the 

impractical MCD estimator actually use Rousseeuw and Van Driessen (1999) FMCD 

estimator. 

      Taskinen et al. (2006) obtained the influence function and asymptotic properties for 

CCA based on robust covariance matrix estimates. Following the approach suggested 

by Wold (1966), Filzmoser et al. (2000) devised a robust method for getting    and    by using robust alternating regressions (RARs).  

      Branco et al. (2005) compared and discussed a number of approaches for robust 

canonical correlation analysis (RCCA). The authors proposed a robust method for 

obtaining all of the canonical variates using the RARs. Also, they stated that the CCA 

based on the FMCD estimator for the covariance matrix, is predominantly preferred due 

to its high breakdown point.  

      Zhou (2009) studied a weighted canonical correlation (WCC) method and its 

asymptotic properties. In the WCC, each observation is weighted based on its 

Mahalanobis distance. The author used the FMCD estimator to compute the 

Mahalanobis distance.  

      Jiao and Jian (2010) derived the asymptotic normal distributions of estimators of 

the projection pursuit method based on the CCA. Recently, Kudraszow and Maronna 

(2011) proposed a method for the RCCA based on the prediction approach. 
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      Olive and Hawkins (2010) showed that the FMCD estimator is not a high 

breakdown estimator. The authors proposed practical    consistent, outlier resistant 

estimators for multivariate location and dispersion. They suggested the FCH, RFCH 

and RMVN estimators. The authors suggested employing the RMVN estimator for 

CCA, discrimination, factor analysis, principal components and regression. The RMVN 

estimator uses a slightly modified method for reweighting such that it gives good 

estimates of       for multivariate normal data, even when there are outliers in the 

data. Zhang and Olive (2009) used the RMVN estimator with principle component 

analysis. They suggested employing the RMVN estimator with the classical 

multivariate procedures. Zhang (2011) used the RMVN estimator for CCA. 

      Estimators with high complexity require considerable computing time and 

therefore, their usage will be seldom. The FCH, RFCH and RMVN estimators are 

roughly 100 times faster than the FMCD estimator (Olive, 2013).  

      Cannon and Hsieh (2008) suggested robust nonlinear canonical correlation analysis 

(NLCCA) to deal effectively with data sets with that have low signal-to-noise ratios. To 

achieve this, they employed a neural network model architecture of standard NLCCA. 

The authors substituted the cost functions, which were used to set the model parameters 

using more robust variants. The Pearson correlation was replaced by a biweight 

midcorrelation. 

      Wilcox (2004) studied the percentage bend correlation (     which is based on the 

M-estimators of location and the percentage bend measure of scale. 

      Wilcox (2005) stated that robust versions of the Pearson correlation are divided into 

two types. The first type consists of those that are robust against outliers, without taking 

into account the general structure of the data, whereas the second type takes into 

account the general structure of the data when dealing with outliers. In the literature, 
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the first and second types are referred to as the M correlation and O correlation, 

respectively. Moreover, Wilcox (2005) described the four types of M correlations as 

the    , biweight midcorrelation (  ), winsorised correlation (     , and Kendall’s tau 
correlation (    ). Similarly, the author also presented a number of O correlation 

methods, such as the fast minimum volume ellipsoid (FMVE), FMCD and skipped 

measures of correlations. The FMVE and FMCD measures employ the central half of 

the data to estimate location, scatter, covariance and correlation. Skipped correlations 

are obtained by detecting the outliers using one of the multivariate outlier detection 

methods and then removing these outliers and applying some of the correlation 

coefficients to the remaining data (see Wilcox, 2005). 

      To the author’s knowledge, there is no study that has focused on replacing the 

Pearson correlation in the correlation matrix of the CCA with the     and       
However, Olive and Hawkins (2010) recommended to employ the FCH, RFCH and 

RMVN estimators for the CCA, discrimination, factor analysis, principal components 

and regression and Zhang (2011) used the RMVN for CCA. Until now there has been 

no research employed regarding the FCH and RFCH estimators for estimating the 

covariance matrix in the CCA. To this end, the goal of this chapter is to get RCCA 

methods that depend on the     and    in the correlation matrix. Furthermore, we aim 

to employ the FCH and RFCH estimators in order to estimate the covariance matrix in 

the CCA to obtain RCCA and then compare these estimators with other known 

estimators. 

      In this chapter, we conduct a comparative study to explore the performance of 13 

different estimators for canonical vectors and correlation. Simulation studies have been 

used in order to compare the numerical performances of the 13 different estimators 
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under different sampling schemes. To assess the robustness of the estimators, we use 

the breakdown plots and apply the test of independence. 

      In Section 2.2, different robustifications of CCA are discussed. In Section 2.3, the 

different estimators are compared using simulation studies. In Section 2.4, the 

breakdown plots in order to study the robustness of the estimators are used. In Section 

2.5, tests of independence are done for the different estimators. An application is used 

to evaluate the methods in Section 2.6. The conclusions are summarised in Section 2.7. 

 

2.2. RCCA based on robust correlation and robust covariance 

matrices. 

2.2.1. The percentage bend correlation (   ) 
      Let a special case of Huber’s function be defined as 

                       
Furthermore, let     and     be the respective population medians for the random 

variables    and    and then define    as the solution to the following equation: 

                                                                                                               
where          . 

Let      and      denote the percentage bend measure of the location for   and  , 

respectively. Furthermore, let               and              ,  such that          
         . 
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      The percentage bend correlation between   and    is: 

                                                                                                                                     
 where           and      is a robust measure of the linear association between   

and  , such that the variables   and   are said to be independent when      . The     depends, in part, on    which is a generalisation of the median of the absolute 

deviations from the median (MAD). 

      The Huber’s function is selected to be used in the percentage bend correlation for a 

number of reasons. Firstly, Huber’s function is a monotonic function. Secondly, 

Huber’s function gives a consistent estimator of location. Thirdly, it has the convenient 

feature of a single iteration being sufficient in the application. Finally, when                      , the resulting gauge of scale is a gauge of dispersion (Wilcox, 

1994). This means,    is a measure of dispersion when                      .  
 

      In order to estimate the percentage bend correlation,  

1) Let    ,    ),….,    ,     , be a random sample. Let    be the sample median for the 

observations          . Select a value for   , where         .  

2) Compute            and            and let         , where              are the      values written in ascending order.  

3) Compute                    and                         , where    is the number of    
values, such that 

              and    is the number of    values, such that  
            .  

http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Absolute_deviation
http://en.wikipedia.org/wiki/Absolute_deviation
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4) Set                 . Repeat these computations for the     values,               . 

5) The estimated percentage bend correlation (    ) between   and   is: 

                                                                                                                                 
    where, 

                 ,         ,          and                        . 
      In order to test the hypothesis                                                                              
when   and   are independent, we need to compute: 

                                                                                                                                  is rejected if            , the     quantile of    distribution with degrees of 

freedom (D.F)       (Wilcox, 2005). Here,   is a significance level.  
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2.2.2. The biweight midcorrelation (  ) 
      Let   be any odd function and let    and    be any measure of location for random 

variables   and  , respectively. Let    and    be some measure of scale for random 

variables   and  , respectively. Let   be some constant and let:   

                and                . Then, a measure of covariance 

between   and   is: 

                                                                                                                                               
where       is the derivative of      . 
and the corresponding measure of correlation is given by 

                                                                                                                   
Wilcox (2005) chose   as the biweight function and     , where the biweight 

function is defined as follows: 

                                                                                                                                                                 
      Let    and    denote the respective medians calculated from the random sample                  .  
Define                     and                    then the      and      are the values of      for the   and   values. 
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Let                                                                        and                                                              
 It follows that the sample biweight midcovariance between   and   is  

                                                                                                                                                 
and the bi-weight mid-correlation is then given by: 

                                                                                                                                    
To test the null hypothesis                                                                                        
when   and   are independent, we need to compute the test statistic 

                                                                                                                                 
Under       , we reject     if             , the        quantile of t distribution 

with D.F       .  

 

2.2.3. The winsorised correlation (    ) 
      Let    and    be two random variables. Then, the population winsorised correlation 

between    and    is:  

                                                                                                               
 where               is the population winsorised standard deviation of    and         is the winsorised expected value of   . We can obtain the winsorised standard 

deviation and the winsorised expected value by computing the usual standard deviation 

and expected value, based on the winsorised observations. 
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      In order to estimate     , based on the random sample (                    , first 

winsorise the observations by computing the     values as follows: 

                                                                                                                                                                                                                                                               
where   is the number of observations trimmed, or winsorised, from each end of the 

distribution, corresponding to the     group. Then      is estimated by computing the 

Pearson’s correlation with the     values: 

                                                                                                                                           
To test the null hypothesis   

                                                                                                                              
we need to compute: 

                                                                                                                             
Under       , we reject    if              , the       quantile of t distribution 

with D.F      , where   is the effective sample size and equal to the number of 

pairs of observations that are not winsorised. 

 

2.2.4. Kendall’s tau correlation (    ) 
      Kendall’s tau correlation is a nonparametric M-type correlation. Because of being 

resistant to outlying observations, it is often said to be robust. Consider two pairs of 

observations          and        , such that       and with the assumption that tied 

values never occur. If      , then         and         will be concordant; otherwise          and          are discordant. 
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    For   pairs of points, let 

                                                                                                         
Kendall’s tau correlation formula is 

                                                                                                                                             
Although Kendall’s tau correlation provides resistance against outliers, the presence of 

outliers can substantially change its value if the percentage of outliers is greater than 

0.05. 

      Under independence, the population Kendall’s tau correlation        .  

To test the null hypothesis  

                                                                                                                                    
we compute: 

                                                                                                                                                             
If            ,  our decision will be rejecting    . 

For the sake of comparison the canonical correlation estimators based on Kendall’s tau 

correlation with other canonical correlation estimators, we apply the transformation              to obtain a consistent estimator under normality. 

2.2.5. Spearman’s rho correlation (  ) 
      Spearman’s rank correlation    is the most popular non-parametric correlation, 

which is a Pearson correlation based on the ranks of the observations. This correlation 

provides resistance against outliers; however, outliers that are properly placed can alter 
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its value considerably. In applications, a simple procedure can be used to calculate   .  
In order to estimate    based on a random sample the formula is given by: 

                                                                                                                                           
where                   , which is the difference between the ranks of each 

observation on the two variables (Myers and Arnold, 2003). 

If the sampling from a bivariate normal distribution,    does not estimate the same 

quantity as the Pearson correlation. To compare the estimators of canonical correlations 

based on spearman’s rho correlation with other estimators, we need to apply the 

transformation             in order to obtain a consistent estimator under normality. 

      Under the statistical independence,     .  To test the following hypothesis 

                                                                                                                                         
We need to calculate the statistic: 

                                                                                                                                  
   should be rejected if            , the       quantile of t distribution with D.F      . 
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2.2.6. The MVE estimator 

      The MVE estimator is an affine equivariant estimator that has a high breakdown 

point (see Rousseuw and Leroy, 1987). Assume any ellipsoid containing 50% of the 

data. The idea is to find the ellipsoid having the smallest volume among all the 

ellipsoids. When this ellipsoid is found, the mean and covariance matrix of its points 

are taken as the estimated measures of location and scatter, respectively. In the 

multivariate normal model, the covariance matrix needs to be rescaled for consistency. 

In general, the group of all of the ellipsoids containing half of the data is very large, 

therefore the approximation must be used to find the MVE. 

      Let        , rounded down to the nearest integer. The approach for computing 

the FMVE estimator is summarised as follows: 

1. Select    random points from the available   points without replacement. 

2. Compute the volume of the ellipse containing these points. 

3. Repeat step 1 and 2 many times.  

The FMVE ellipsoid is the set of points giving the smallest volume (Wilcox, 2005). 

 

2.2.7. The MCD estimator 

      The MCD estimator is also an affine equivariant estimator that has a high 

breakdown point. The difference between the MCD and MVE estimators is that rather 

than searching for the subset of 50% of the data that has the smallest volume, the MCD 

estimator searches for the 50% of the data that has the smallest generalised variance. 
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The MCD estimator searches for 50% of the data that is most tightly clustered together 

among all of the subsets containing 50% of the data, as measured by the generalised 

variance. Like the MVE estimator, the group of all subsets of 50% of the data is very 

large, hence an approximate method must be used. Rousseeuw and Van Driessen 

(1999) described an FMCD algorithm employed to achieve this aim. After we find an 

approximation of the subset of 50% of the data that minimise the generalised variance, 

we can obtain the MCD estimate of location and scatter by computing the usual mean 

and covariance matrix, based on its points. The MCD estimator has several merits over 

the MVE. The MCD estimator is more efficient than the MVE estimator because the 

MCD is asymptotically normal, whereas the MVE has a lower rate of convergence ( 

Rousseeuw and Van Driessen, 1999). In our comparative study, we used the FMCD 

and reweighted MCD (WMCD) measures as practical approximations for the MCD.  

 

2.2.8. The constrained M-estimators 

      Rocke (1996) suggested a modified biweight estimator, which is a constrained M-

estimator, where values of   and   are to be determined and the non-decreasing 

function ξ    is defined as: 

ξ    
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      The values of   and   can be selected to obtain the wanted breakdown point and the 

asymptotic rejection probability (ARP). The ARP is the probability that an observation 

will obtain weight equals to zero when the size of the sample is huge. If the ARP is  , 

then   and   are determined by       ξ         and      

               
 

where    is a constant and          is the      quantile of a chi-squared distribution 

with   D.F. Rocke (1996) showed that this estimator can be computed iteratively. 

 

2.2.9. The FCH estimator 

      Olive and Hawkins (2010) proposed the FCH estimator. The FCH estimator uses 

the    consistent DGK estimator in (Devlin et al., 1981) and the high breakdown 

median ball (MB) estimator in (Olive, 2004) as attractors. An attractor is one of the trial 

fits used by the robust estimator. Therefore if the robust estimator draws   elemental 

sets and then refines them with concentration, then the   refined elemental sets are the 

attractors. The FCH estimator also uses a location criterion to choose the attractors. If 

DGK location estimator      has a greater Euclidean distance from        than 50% 

of the data, where        is the coordinate-wise median, then FCH uses the MB 

attractor. The FCH estimator uses only the attractor with the smallest determinant if 

                                                                                                 
where               is the Euclidean distance from        and    is     

identity matrix. Here     refers to the Euclidean distance. 
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      Let         be the attractor that is used, where    and    are the location and 

dispersion estimators, respectively. Then, the estimator         takes        and  

                                                                                                                                     
where            is the  th squared sample Mahalanobis distance, which takes the form                                         for each observation, the         is the        percentile of a chi-squared distribution and   is the FCH estimator. Olive and 

Hawkins (2010) showed that the FCH estimator is a high breakdown estimator and    

is non-singular, even with up to nearly 50% outliers. 

 

2.2.10. The RFCH estimator 

      Olive and Hawkins (2010) used two standard reweighting steps to produce the 

RFCH estimator. Let            be the traditional estimator computed to    cases with                          and let  

                                                                                                                                                        
Then, let             be the traditional estimator computed to the cases with                         and let    

                                                                                                                               
Olive and Hawkins (2010) showed that the RFCH is also a    consistent estimator.  
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2.2.11. The RMVN estimator 

      Olive and Hawkins (2010) suggested the RMVN estimator as a RMLD estimator 

and they showed this estimator is a    consistent estimator of        where    .  

The RMVN estimator uses a slight modification to a standard reweighting method, such 

that the RMVN estimator produces good estimates of       for multivariate normal 

data, even if outliers are present (Olive and Hawkins, 2010). 

The RMVN estimator uses           with                          based on    cases. 

Let                              and                                 Then, let             be the traditional estimator computed to    cases with                       .  

                                  , 

where                             . 
 

 Olive (2013) shows that the FCH, RFCH and RMVN methods of RCCA produce 

consistent estimators of the  th canonical correlation    on a wide category of 

elliptically contoured distributions, see (Olive, 2013).  
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2.3. Simulation study 

      In this section, we employ a simulation study to compare the different methods. We 

considered the following: 

 

      CL is the classical CCA based on eigenvalues and eigenvectors of the matrices 

(2.5), which were estimated using the sample covariance matrix. 

      RP, RM, RW, RK and RS are the CCA based on eigenvalues and eigenvectors of 

the matrices (2.6) after we used    ,   ,     ,      and   , respectively, instead of the 

Pearson correlation. 

      MV, MC, WM, CM, FC, RF and RMV are the CCA based on eigenvalues and 

eigenvectors of the matrices (2.5), which are estimated using the FMVE, FMCD, 

WMCD, CM, FCH, RFCH and RMVN estimators, respectively, instead of the classical 

sample covariance matrix. 

      The functions pball and winall from the Wilcox package at (http://www.unt.edu/ 

rss/class/mike/Rallfun-v9_2.txt) have been used to compute the correlation matrices of     and     , respectively. The function bicor from the package (weighted gene co-

expression network analysis) (WGCNA) has been used in order to compute the 

midcorrelation matrix. The base functions cor(,method = c("kendall")) and cor(, 

method = c("spearman")) have been used to calculate Kendall and Spearman 

correlation matrices, respectively. 

      The base functions cov.mve and cov.mcd have been used for computing the FMVE 

and FMCD covariance matrices. The functions covRob (,estim="weighted") and 

covRob (,estim="M") from the package (robust) have been used to calculate the 

weighted MCD (WM) and constrained M (CM) covariance matrices, respectively. The 

function covfch from the package (rpack.txt) at (www.math.siu.edu/olive/rpack.txt) has 

http://www.unt.edu/
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been used for calculating the FCH and RFCH covariance matrices and the function 

covrmvn has been used to calculate the RMVN covariance matrix.  

 
      We follow the simulation settings given in Branco et al. (2005).       samples 

with size       have been generated. We have assumed        and       . The 

choices for     are summarised in Table 2.1. 

      Following the work of Branco et al. (2005), the following sampling distributions 

were assumed: 

1) Normal distribution (NOR),          . 
2) Multivariate   distribution with three D.F ( ). 

3) Symmetric contamination (SCN), where     of the observations have been 

generated from           and    have been generated from           . 
4) Asymmetric contamination (ACN), where     of the observations have been 

generated from           and    of the observations equals the point          

(where       is the trace of   ). 

      The estimated parameters for a replication   (         are denoted by     ,     , 

and      for        . We compare the estimated parameters with the “true” 

parameters   ,   , and   . The true parameters were computed from the specific 

matrix  . The mean squared error (MSE) has the following forms: 

                                                                                                              
where                  is the Fisher transformation of    . 
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                                            ,                                                                    
 

 

 

Table 2.1. Simulation Setup.         and        . 

        

2 2              
4 4                                

 

 

Table 2.2. The      of    ,    ,    ,    ,        and        multiplied by      for 13 

different methods, when the data is from NOR,      and    . 

                               
CL 22.33 44.07 22.41 44.29 2.02 2.21 

RP 23.96 45.83 24.08 43.67 5.46 3.22 

RM 22.92 44.71 23.23 43.62 2.44 2.39 

RW 25.74 47.34 27.04 45.49 21.19 6.74 

RK 21.91 39.74 21.75 38.69 2.30 2.57 

RS 23.75 45.72 23.82 43.97 4.37 2.89 

MV 28.48 56.15 28.73 54.79 3.35 3.68 

MC 27.78 54.07 28.78 53.02 2.76 3.32 

WM 27.12 55.78 27.99 54.04 3.11 2.90 

CM 28.12 52.62 29.52 56.39 3.24 3.24 

FC 62.89 123.70 60.29 121.65 16.26 16.72 

RF 26.59 50.94 24.88 50.03 2.66 2.35 

RMV 26.57 51.30 24.98 50.14 2.64 2.36 
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Table 2.3. The      of    ,    ,    ,    ,        and        multiplied by      for 13 

different methods, when the data is from SCN,       and     . 

                               
CL 35.38 69.18 35.32 70.82 5.28 5.09 

RP 25.11 46.32 25.82 46.21 9.04 3.46 

RM 26.14 47.38 26.99 46.46 8.57 3.48 

RW 26.24 46.69 27.79 47.76 25.73 7.09 

RK 22.71 41.48 23.55 41.28 2.93 2.45 

RS 25.29 46.71 26.01 46.71 7.93 3.29 

MV 29.54 56.49 27.89 55.89 3.49 3.27 

MC 28.59 55.61 28.34 54.68 3.11 3.03 

WM 27.89 54.50 28.13 56.11 3.16 3.37 

CM 28.82 58.54 26.75 56.45 3.39 2.99 

FC 62.54 119.45 60.79 124.31 18.30 7.94 

RF 25.73 49.93 25.97 49.13 2.42 2.74 

RMV 26.25 51.18 26.08 49.89 2.43 2.88 

 

 

Table 2.4. The      of    ,    ,    ,    ,        and        multiplied by      for 13 

different methods, when the data is from  ,      and     . 

                               
CL 67.9 124.8 65.3 125.4 21.4 17.0 

RP 27.5 48.3 28.1 49.7 15.0 5.0 

RM 29.6 48.3 28.9 49.0 22.8 7.1 

RW 28.2 46.7 27.5 47.5 37.3 8.6 

RK 25.4 43.4 25.0 44.5 3.6 3.1 

RS 27.5 48.2 28.0 49.5 14.9 4.9 

MV 35.5 71.7 37.4 72.0 5.7 5.6 

MC 32.1 62.0 32.3 64.7 4.1 4.4 

WM 35.7 68.6 34.1 66.9 4.9 4.7 

CM 33.9 66.7 36.3 67.9 5.2 4.4 

FC 54.3 107.4 53.8 105.3 11.9 11.0 

RF 33.9 68.7 34.3 66.9 4.7 4.1 

RMV 34.8 69.4 35.3 67.7 4.8 4.4 

 

 

 

 



38 

 

Table 2.5. The      of    ,    ,    ,    ,        and        multiplied by      for 13 

different methods, when the data is from ACN,     and    . 

                               
CL 103.36 482.04 103.80 483.60 113.22 44.62 

RP 37.09 159.47 37.49 163.25 3.94 5.11 

RM 39.72 175.93 39.07 179.34 8.54 8.16 

RW 33.89 118.39 34.30 122.33 7.52 2.92 

RK 70.08 162.09 70.95 165.02 15.96 12.00 

RS 39.64 174.70 40.14 178.36 4.71 5.63 

MV 29.47 56.70 29.55 55.85 3.32 3.29 

MC 29.58 55.49 28.29 53.65 3.16 2.89 

WM 27.53 55.40 27.54 53.51 3.12 3.00 

CM 29.14 55.79 28.23 55.02 3.17 2.93 

FC 66.19 133.87 64.49 136.49 19.01 19.50 

RF 25.64 50.06 26.24 48.01 2.46 2.66 

RMV 26.59 50.89 27.01 49.27 2.56 2.79 

 

 

Table 2.6. The      of    ,    ,    ,        ,    ,    ,           ,               and        
multiplied by      for 13 different methods, when the data is from NOR,      

and    . 

                                                             
CL 40.2 189.3 370.0 350.8 42.1 189.5 367.5 345.0 2.0 2.3 1.7 2.0 

RP 43.0 203.0 396.6 372.7 45.0 203.6 395.7 369.3 5.1 2.6 1.7 2.6 

RM 41.0 194.5 379.4 357.4 43.4 195.6 377.5 353.0 2.4 2.2 1.7 2.1 

RW 46.0 223.1 431.2 398.8 48.9 220.1 429.8 397.6 20.7 5.6 2.6 4.0 

RK 38.3 196.4 391.9 366.7 40.4 197.4 388.9 362.1 2.4 2.5 1.9 2.2 

RS 42.0 201.2 393.1 368.9 44.8 201.5 391.3 364.6 4.3 2.5 1.7 2.4 

MV 47.7 223.0 445.7 419.9 47.9 224.8 439.9 411.0 2.9 3.4 2.6 2.9 

MC 45.7 212.7 412.2 388.6 47.7 213.2 412.5 387.8 2.7 2.9 2.3 2.5 

WM 45.8 219.4 414.0 376.5 45.5 219.9 418.7 383.5 2.9 2.8 2.4 2.7 

CM 47.2 222.1 434.5 411.4 45.8 222.2 434.9 406.5 2.3 2.6 2.2 2.6 

FC 86.0 440.4 744.2 651.4 90.4 446.3 746.0 660.0 13.0 9.9 7.0 10.8 

RF 43.6 205.9 427.1 402.4 43.4 207.6 426.6 401.7 2.5 2.5 2.1 2.0 

RMV 43.9 206.8 426.4 401.4 43.5 208.6 426.9 402.0 2.6 2.5 2.1 2.0 
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Table 2.7. The      of    ,    ,    ,        ,    ,    ,           ,               and        multiplied by      for 13 different methods, when the data is from SCN,     

and    . 

                                                             
CL 63.6 322.7 594.3 523.1 61.6 321.5 585.4 515.4 5.3 5.7 4.1 4.5 

RP 46.3 217.6 435.3 400.1 45.3 213.4 428.9 395.5 7.1 2.9 2.0 2.6 

RM 47.6 218.3 439.0 406.4 46.5 214.8 432.0 401.0 6.8 2.9 2.0 2.7 

RW 49.2 232.7 450.9 413.0 48.6 228.2 443.3 407.9 22.7 5.3 2.9 3.8 

RK 42.1 209.8 433.0 398.6 41.1 209.5 425.9 392.9 2.6 2.6 2.3 2.2 

RS 46.6 218.2 435.2 399.0 45.3 215.1 427.7 394.2 6.1 2.9 2.0 2.6 

MV 48.4 232.7 465.5 428.7 46.7 228.4 459.1 423.5 2.8 2.7 2.5 2.6 

MC 45.6 224.4 454.2 422.4 46.0 218.4 449.8 417.7 2.6 2.7 2.4 2.5 

WM 46.5 212.2 448.7 423.3 48.3 213.4 451.2 423.2 3.0 2.9 2.2 2.3 

CM 47.6 221.8 448.2 411.7 47.0 223.2 448.5 417.5 2.3 2.4 2.3 2.6 

FC 88.5 453.2 707.3 616.0 88.7 452.5 707.5 628.8 10.9 10.4 6.8 10.9 

RF 44.2 200.7 393.7 369.0 43.0 200.7 395.1 374.9 2.5 2.4 2.1 2.2 

RMV 44.6 203.6 400.1 373.5 43.4 204.0 401.9 379.5 2.5 2.5 2.1 2.2 

 

 

Table 2.8. The      of    ,    ,    ,        ,    ,    ,           ,               and        
multiplied by      for 13 different methods, when the data is from  ,     and     . 

                                                             
CL 102.3 499.4 767.9 695.0 104.5 489.6 761.3 676.9 44.4 24.0 9.2 10.7 

RP 48.3 226.9 474.6 445.3 50.0 223.6 476.3 448.8 15.4 3.4 2.4 3.4 

RM 51.6 242.5 510.3 472.5 53.5 239.2 511.1 475.1 7.9 4.7 2.8 4.3 

RW 49.0 231.9 479.5 450.9 50.7 228.9 487.8 456.4 38.7 6.2 3.4 4.5 

RK 43.8 223.0 461.7 435.9 45.2 218.9 466.1 440.0 3.6 3.2 2.5 2.6 

RS 48.3 227.5 468.6 441.4 49.7 223.7 472.0 445.1 15.6 3.4 2.4 3.4 

MV 58.3 282.7 548.7 505.2 57.8 289.2 559.5 510.2 4.2 5.0 4.0 4.5 

MC 54.8 267.1 528.9 493.1 54.8 271.7 534.0 493.2 4.1 4.3 3.5 3.8 

WM 60.6 293.2 533.8 484.4 59.1 291.0 532.5 477.8 4.3 5.0 3.6 4.0 

CM 60.0 298.4 556.0 511.5 56.7 393.5 547.9 494.4 4.7 4.7 3.6 4.1 

FC 78.6 380.5 686.6 612.5 77.5 295.6 685.8 614.9 23.7 7.8 5.5 7.0 

RF 59.2 267.3 555.1 506.1 57.6 271.4 557.5 517.9 4.1 4.5 3.2 3.8 

RMV 59.9 273.3 549.4 505.3 57.9 273.9 548.3 507.9 4.3 4.8 3.5 3.8 
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Table 2.9. The      of    ,    ,    ,        ,    ,    ,           ,               and        multiplied by      for 13 different methods, when the data from ACN,      

and    . 

                                                             
CL 237.7 1101. 962.4 693.3 238.5 1101.1 960.8 690.8 777.1 198.5 15.4 3.1 

RP 62.0 497.7 711.6 579.4 63.5 497.8 710.8 576.7 4.1 12.7 6.1 2.2 

RM 40.9 190.5 404.5 383.8 41.5 190.2 403.0 379.3 2.4 2.0 1.9 2.1 

RW 57.6 429.8 666.6 566.1 59.2 431.9 665.1 564.1 7.2 3.2 2.6 2.3 

RK 117.9 583.9 756.7 595.2 118.9 583.9 755.2 592.9 17.9 32.5 10.2 3.0 

RS 66.0 529.5 735.6 592.1 67.4 530.4 734.6 590.1 4.9 15.0 6.4 2.3 

MV 45.5 219.4 454.2 428.8 46.8 214.3 450.0 427.5 2.7 2.8 2.4 2.6 

MC 45.2 211.5 436.6 410.6 46.1 210.1 433.3 409.1 2.7 2.7 2.3 2.4 

WM 47.0 211.4 434.4 411.7 47.5 211.5 438.0 415.4 2.7 2.8 2.3 2.4 

CM 46.2 221.5 440.9 409.3 47.1 225.2 444.3 411.4 2.5 2.9 2.5 2.5 

FC 91.3 461.0 742.7 645.6 92.3 456.8 734.4 643.1 11.4 11.4 7.7 10.0 

RF 44.5 196.6 406.6 384.6 44.5 198.6 405.1 387.7 2.5 2.6 2.1 2.2 

RMV 44.7 199.6 414.1 391.0 44.9 201.0 413.3 395.5 2.5 2.7 2.2 2.2 

 

The findings of the simulation are reported in Tables 2.2–2.9 and Figures 2.1–2.4. 

      From Table 2.2, the data from the NOR shows that the lowest MSEs for the 

estimated canonical vectors    ,    ,     and     were achieved from the RK method, 

while the largest MSEs were achieved from the FC method. For canonical correlations, 

the lowest MSEs for the transformed estimated canonical correlation        and        
were achieved from the CL method, while the largest MSEs for        and        were 

achieved from the RW and FC methods, respectively.  

      From Table 2.3, the data from the SCN shows that the best estimates for    ,    ,     

and     were achieved from the RK method, while the worst estimates were achieved 

from the FC method, with respect to the MSE. For canonical correlations, the best 

estimate for        was achieved from the RF method, while the worst estimate was 

achieved from the RW. The best estimate for        was achieved from the RK, while 

the worst estimate was achieved from the FC method. 

      From Table 2.4, the data from   distribution shows that the best estimates for    ,    ,     and     were achieved from the RK method, while the worst estimates were 
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achieved from the CL method, with respect to the MSE. For canonical correlations, the 

best estimates for        and        were achieved from the RK method, while the 

worst estimates were achieved from RW and CL methods, respectively. 

      From Table 2.5, the data from the ACN shows that the lowest MSEs for    ,    ,     

and     were achieved from the RF method, while the biggest MSEs were achieved 

from the CL method. For canonical correlations, the lowest MSEs for        and        
were achieved from the RF method, while the biggest MSEs were achieved from the 

CL method. 

      Figure 2.1 shows the MSEs for dimensions     and    . The first picture from 

the left and that from the right show the MSEs for     and    . The second picture from 

the left and that from the right present the MSEs for     and    . The third picture from 

the left and that from the right present the MSEs for        and       . The horizontal 

axis refers to the 13 different methods and the vertical axis refers to the MSEs of the 

estimators. From Figure 2.1, it is clear that the largest MSEs are for the estimators in 

the case of ACN and then for those in the case of   distribution. When considering the 

ACN, the lowest MSEs for    ,    ,    ,    ,        and        were achieved from the 

RF and RMV methods, while the biggest MSEs were achieved from the CL and RK 

methods for     and     , or the CL and RM methods for     and    , or the CL and FC 

methods for        and       . For the case of the   distribution, the lowest MSEs for    ,     and     were achieved from the RK and RW methods, while the lowest MSEs 

for    ,        and        were achieved from the RK and RP methods, RK and MC 

methods and Rk and RF methods, respectively. The biggest MSEs for    ,    ,    ,     

and        were achieved from the CL and FC methods, while the biggest MSEs were 

achieved from the RW and RM methods for       . 
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Figure 2.1. The MSEs for the canonical correlations and vectors for 13 estimators and 

under 4 sampling settings for      and     .    

      

      From Table 2.6, for the dimensions     and    , the data from the NOR shows 

that the lowest MSEs for    ,     and     were achieved from the RK method, while the 

biggest MSEs were achieved from the FC method. The lowest MSEs for    ,    ,    ,     

and     were achieved from the CL method, while the biggest MSEs were achieved 

from the FC method. For canonical correlations, the lowest MSE for        was 

achieved from the CL method, while the biggest MSE was achieved from the RW 

method. The lowest MSEs for       ,        and        were achieved from the RM 
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method. The biggest MSEs for       ,        and        were achieved from the FC 

method. 

      From Table 2.7, for the dimensions      and    , the data from the SCN shows 

that the lowest MSEs for     and     were achieved from the RK method, while the 

biggest MSEs were achieved from the FC method. The lowest MSEs for         ,    ,    ,     and     were achieved from the RF method, while the biggest MSEs were 

achieved from the FC method. For canonical correlations, the lowest MSEs for        
and        were achieved from the CM method, while the biggest MSE for        was 

achieved from the RW method. The lowest MSE for        was achieved from the RM 

method. The lowest MSE for        was achieved from the RK method. The biggest 

MSEs for       ,        and        were achieved from the FC method. 

      From Table 2.8, for the dimensions     and     , the data from   distribution 

shows that the lowest MSEs for    ,    ,    ,        ,    ,     and     were achieved from 

the RK method, while the biggest MSEs were achieved from the CL method. For 

canonical correlations, the lowest MSEs for       ,        and        were achieved 

from the RK method, while the biggest MSEs were achieved from the CL method. The 

lowest MSE for        was achieved from the RS method, while the biggest MSE was 

achieved from the CL method.  

      From Table 2.9, for the dimensions     and     , the data from the ACN 

shows that the lowest MSEs for    ,    ,    ,        ,    ,     and     were achieved from 

the RM method, while the biggest MSEs were achieved from the CL method. For the 

canonical correlations, the lowest MSEs for       ,       ,        and        were 

achieved from the RM method. The biggest MSEs for       ,        and        were 

achieved from the CL method and for        was achieved from the FC method. 
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Figure 2.2. The MSEs for    ,    ,     and     for 13 estimators and under 4 sampling 

settings for     and    . 
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Figure 2.3. The MSEs for    ,    ,     and     for 13 estimators and under 4 sampling 

settings for     and    . 
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Figure 2.4. The MSEs for                      and        for 13 estimators and under 

4 sampling settings for     and    . 
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      Figures 2.2–2.4, show the MSEs for     to     and     to     and        to        for     and    . In general, it is clear that ACN leads to the largest MSEs, followed 

by   distribution and SCN. 

 

 

2.4. Breakdown plots 

      A simulation was carried out in order to study the robustness of the estimators, 

when considering outliers. We assumed two groups of variables. Each of them has three 

variables (       and the data was generated from          , with       ,        and  

                         
      The values of the contamination   were 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35% 

and 40%, where   is the percentage of contamination. The contaminated observations 

were from the ACN distribution. We chose       and the MSEs were computed 

over       . The results are summarised in Figures 2.5–2.7.  

In the figures, each line refers to different estimator. The breakdown plots show how 

the robustness of the estimator is under increasing  . 
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Figure 2.5. Breakdown plot: MSE for    ,     and     as a function of  , from 0% to 40 

%. The lines represent the different methods. 
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Figure 2.6. Breakdown plot: MSE for    ,     and     as a function of  , from 0% to 40 

%. The lines represent the different methods. 
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Figure 2.7. Breakdown plot: MSE for               and        as a function of  , from 

0% to 40%. The lines represent the different methods. 
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      Figure 2.5 and Figure 2.6 show the resistance of the MSE of    ,     and     and    ,     and     for the different methods, respectively. It is obvious that the MSE of the 

CL quickly increases in the existence of outliers and the results in Figure 2.5 and Figure 

2.6 confirm that the CL is very sensitive to the presence of the outliers. It is clear that 

the resistance of the methods based on RP, RW, RK and RS estimators, to the existence 

of outliers is less than that of other robust methods, where the performance of these 

estimators decreases as   is increased beyond 5%. Similarly, it can be noted that the 

performance of RM and MV estimators reduces as the   increases beyond 10%.  

      The performance of the methods based on the MC, WM and CM estimators become 

worst when   is 15% or more, while that of the methods based on the RF and RMV 

estimators is still the best for all  . The effectiveness of the method based on the FC 

estimator is better when the   increases. 

      Figure 2.7 represents the breakdown plots for               and       . Generally, 

the MSEs become less for high order canonical correlations. The CL is very sensitive to 

the outliers and its performance is the worst out of all of the canonical correlations and 

at all  . For the first canonical correlations, the performance of the method based on the 

RK estimator becomes worst when   is 5% or more. The efficiency of the methods 

based on the RP, RS and MV estimators become worst when   is 10% or more. The 

performance of the methods based on the RM and RW estimators become worst when   

is 15% or more. The effectiveness of the methods based on the MC, WM and CM 

estimators becomes worst when   is 20% or more. The performance of the methods 

based on the RF and RMV estimators is still the best for all of  , while the performance 

of the method based on the FC estimator becomes better as   increases. For the second 

canonical correlation, the performance of the method based on the RW estimator 
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becomes worst when   is 10% or more. The performance of the methods based on the 

RK, RP, RS, MV, RM, MC, WM, CM, RF, RMV and FC estimators is still similar to 

their performance in the case of the first canonical correlation. For the third canonical 

correlation, the effectiveness of the methods based on the RP and RK estimators 

becomes worst when   is 25% or more. The performance of the method based on the 

RM estimator becomes worst when   is 35% or more. The performance of the methods 

based on the RF, RMV, RW and RS estimators is still good for all the percentages of 

contamination. The performance of the methods based on the MV, MC, WM and CM 

estimators become worst when   is 20% or more. The performance of the method based 

on the FC estimator becomes better when   increases. 

 

2.5. Tests of Independence 

      Assuming that       is a multivariate normally distributed and set the 

independence hypothesis is given by  

                 against                     . 

If the above    holds, this means             . 

      A simulation study was implemented in order to check the impact of the outliers in 

tests of independence. We assumed that   and   are independent. After that, the 

frequency of rejecting    at the 5% significance level is computed. We assumed that 

each of   and   has two variables       ,            and                    . Data from NOR, SCN and ACN have been generated. The CL, RP, 

RM, RW, RK and RS are considered. 
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      The functions pball, winall and spear, which are available from Wilcox package at 

(http://www.unt.edu/rss/class/mike/Rallfun-v9_2.txt) have been used in order to 

conduct the test for the RP, RW and RS in Equations       ,        and       ,  
respectively.  We have used the functions bicorAndPvalue from the package WGCNA 

and Kendall from the package Kendall in order to test RM in Equation        and the 

RK in Equation       , respectively.  -values associated with the above functions have 

been calculated for         replications. 

Table 2.10. The percentage of rejection    in 1000 simulations. 

 CL RP RM RW RK RS 

NOR 0.007 0.011 0.010 0.010 0.008 0.009 

SCN 0.089 0.014 0.009 0.009 0.017 0.014 

ACN 1.000 0.785 0.447 0.447 0.928 0.939 

 

    From Table 2.10, in the case of the NOR data, the test with the CL gave good results. 

In the case of SCN and ACN, the test with the RM and RW gave the best results. The 

test with the CL estimates was rejected in all 1000 simulations for the ACN data.  

 

2.6. Real data  

      An example of CCA on the dataset of 3 psychological variables ( ), 4 academic 

variables (standardised test scores) and gender ( ) for       students, which have 

been provided by Academic Technology Services (UCLA). The CCA example is 

available at (http://www.ats.ucla.edu/stat/R/dae/canonical.htm.) and the dataset is 

available at (http://www.ats.ucla.edu/stat/R/dae/mmreg.csv.). The first group of 

variables   are locus of control (   ), self- notion (   ) and stimulus (   ). The second 

group of variables   are standardised tests in reading (  ), writing (  ), maths (  ) and 

http://www.ats.ucla.edu/stat/R/dae/mmreg.csv
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science (  ). Additionally, the sex variable (  ), where   =1 for a female student and   =0 for a male student. In our analysis, the categorical variable (sex) was excluded. 

The aim is to determine how   is related to  .  

      In the first case, we computed the canonical correlation methods based on the RM, 

FMCD, RFCH, RMVN and CL estimators with the above data. In the second case, we 

contaminated the data with 10% data from   distribution. Then, all the previous 

methods have been computed. 

 

 

Table 2.11.         and      for the non-contaminated and contaminated data.         

             

CL  No contamination 0.446  0.153 0.023 
10% contamination 0.369 0.073 0.046     0.077 0.080 0.023 

RM No contamination 0.449  0.161 0.034 
10% contamination 0.428 0.101 0.009     0.021 0.060 0.025 

MCD No contamination 0.469  0.168 0.036 
10% contamination 0.494 0.139 0.035     0.025 0.029 0.001 

RFCH No contamination 0.459  0.167 0.034 
10% contamination 0.452 0.137 0.029     0.007 0.030 0.005 

RMVN No contamination 0.462 0.174 0.034 
10% contamination 0.461 0.144 0.042     0.001 0.030 0.008 
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Table 2.12.    ,     and     for the non-contaminated and contaminated data. 

Method                
CL     no contamination -0.838 0.167 -0.428  

10% contamination -0.425 -0.081 -0.809      0.413 0.248 0.381 1.042     no contamination 0.513 0.594 -0.903  

10% contamination 0.545 0.716 -0.548      0.032 0.122 0.355 0.509     no contamination 0.333 -0.850 -0.375  

10% contamination 0.757 -0.714 -0.307      0.424 0.136 0.068 0.628 

RM     no contamination -0.839 0.229 -0.428  

10% contamination -0.677 0.131 -0.617      0.162 0.098 0.189 0.449     no contamination 0.527 0.599 -0.861  

10% contamination 0.519 0.739 -0.657      0.008 0.140 0.204 0.352     no contamination -0.326 0.824 0.448  

10% contamination -0.592 0.704 0.536      0.266 0.120 0.088 0.474 

MCD     no contamination -1.383 0.441 -1.285  

10% contamination 1.323 -0.349 1.170      2.706 0.790 2.455 5.951     no contamination 0.798 1.114 -2.411  

10% contamination -0.763 -0.930 2.698      1.561 2.044 5.109 8.714     no contamination -0.608 1.307 1.626  

10% contamination -0.457 1.395 1.226      0.151 0.088 0.400 0.639 

RFCH     no contamination -1.259 0.348 -1.238  

10% contamination -1.215 0.251 -1.107      0.044 0.097 0.131 0.272     no contamination 0.756 1.041 -2.399  

10% contamination 0.708 0.905 -2.474      0.048 0.136 0.075 0.259     no contamination -0.551 1.242 1.408  

10% contamination -0.489 1.250 1.196      0.062 0.008 0.212 0.282 

RMVN     no contamination -1.247 0.369 -1.292  

10% contamination -1.269 0.276 -1.149      0.022 0.093 0.143 0.258 

     no contamination 0.784 1.032 -2.404  

10% contamination 0.747 0.954 -2.611      0.037 0.078 0.207 0.322     no contamination -0.548 1.252 1.392  

10% contamination -0.489 1.326 1.225      0.059 0.074 0.167 0.300 
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Table 2.13.    ,     and      for the non-contaminated and contaminated data. 

Method                              

CL     no contamination -0.4450 -0.5358 -0.1827 0.0369   

10% contamination -0.5816 -0.4628 -0.0739 0.0953       0.1366 0.0730 0.1088 0.0584 0.3768      no contamination -0.0161 -0.8794 -0.0278 1.2056   

10% contamination 1.6120 -2.5241 0.4485 0.4895       1.6281 1.6447 0.4763 0.7161 4.4652      no contamination -0.8924 0.9349 -0.8268 0.8589   

10% contamination 2.0993 0.6399 -2.5597 -0.3026       2.9917 0.2950 1.7329 1.1615 6.1811  

RM     no contamination -0.4282 -0.5806 -0.1214 0.0058   

10% contamination -0.4063 -0.6342 -0.1682 0.1304       0.0219 0.0536 0.0468 0.1246 0.2469      no contamination -0.1154 -0.7279 -0.2124 1.3314   

10% contamination 0.1018 -1.1584 0.1847 1.1768       0.2172 0.4305 0.3971 0.1546 1.1994      no contamination 0.8458 -1.0293 0.8655 -0.6467   

10% contamination 1.6446 -0.3097 -0.9924 -0.4579       0.7988 0.7196 1.8579 0.1888 3.5651  

MCD     no contamination -0.0496 -0.0594 -0.0078 0.0019   

10% contamination 0.0502 0.0575 0.0002 0.0051       0.0998 0.1169 0.0080 0.0032 0.2279      no contamination -0.0255 -0.0773 -0.0084 0.1403   

10% contamination 0.0214 0.0953 -0.0228 -0.1213       0.0469 0.1726 0.0144 0.2616 0.4955      no contamination 0.0771 0.0356 -0.1635 0.0264   

10% contamination 0.0301 0.0391 -0.1648 0.0727       0.0470 0.0035 0.0013 0.0463 0.0981  

RFCH     no contamination -0.0426 -0.0613 -0.0085 0.0015   

10% contamination -0.0414 -0.0553 -0.0067 -0.0039       0.0012 0.0060 0.0018 0.0054 0.0144      no contamination -0.0162 -0.0757 -0.0139 0.1345   

10% contamination -0.0072 -0.0971 0.0217 0.1066       0.0090 0.0214 0.0356 0.0279 0.0939      no contamination 0.1020 0.0137 -0.1464 0.0043   

10% contamination 0.1014 -0.0069 -0.1384 0.0202       0.0006 0.0206 0.0080 0.0159 0.0451  

RMVN     no contamination -0.0445 -0.0619 -0.0086 0.0046   

10% contamination -0.0449 -0.0573 -0.0020 -0.0069       0.0004 0.0046 0.0066 0.0115 0.0231      no contamination -0.0216 -0.0716 -0.0131 0.1373   

10% contamination -0.0295 -0.0903 0.0253 0.1209       0.0079 0.0187 0.0384 0.0164 0.0814      no contamination 0.1032 0.0106 -0.1460 0.0059   

10% contamination 0.0871 -0.0022 -0.1534 0.0432       0.0161 0.0128 0.0074 0.0373 0.0736  
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Figure 2.8. The first picture: the absolute differences for         and      for the non-

contaminated and contaminated data. The second picture: the absolute differences for         and     for the non-contaminated and contaminated data. The third picture: the 

absolute differences for    ,     and     for the non-contaminated and contaminated data. 
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Table 2.14. The computing time is measured in seconds for different estimation 

procedures for       samples with size,        
 NOR     SCN         ACN    NOR    SCN         ACN    

RP 25 325 26 27 110 437 111 112 

RM 27 327 28 29 89 418 91 100 

RW 30 329 31 30 70 401 71 86 

RK 81 381 81 81 284 618 285 282 

RS 9 311 8 8 10 347 10 10 

MV 107 411 106 106 256 611 256 249 

MC 60 368 60 60 124 428 123 125 

WM 63 386 63 63 124 474 124 129 

CM 78 396 78 78 132 448 132 138 

FC 16 345 16 16 19 341 19 21 

RF 16 348 16 16 19 348 19 22 

RMV 16 343 16 16 20 349 20 22 

 

 

Table 2.15. The MSEs of        ,    ,    ,        and         multiplied by      for the 

FMCD method by using cov.mcd  and covMcd  functions when the data are from NOR, 

SCN,   and ACN,      and    . The computing time is measured in seconds for       samples with size,      . 

 NOR SCN   ACN 

cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd     27.78 27.24 28.59 26.53 32.12 32.41 29.58 28.29     54.07 54.32 55.61 52.26 61.98 65.97 55.49 53.25     28.78 27.58 28.34 28.08 32.30 36.39 28.29 26.37     53.02 56.70 54.68 55.94 64.74 69.76 53.65 52.55        2.76 3.03 3.11 2.84 4.12 4.279 3.16 2.92        3.32 3.17 3.03 2.96 4.38 4.50 2.89 3.23 

The 

compute 

time 

702 60 1011 368 703 60 703 60 

         

 

 

 

 



59 

 

Table 2.16. The MSEs of        ,            ,    ,    ,           ,               and        multiplied by      for the FMCD method using cov.mcd and covMcd  

functions when the data are from NOR, SCN,   and ACN,      and    , and the 

computing time, measured in seconds, for       samples with size,      . 

 NOR SCN   ACN 

cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd cov.mcd covMcd     45.66 45.89 45.64 44.99 54.79 58.92 45.23 46.31     212.69 215.43 224.39 218.43 267.12 284.09 211.48 217.86     412.24 444.68 454.15 437.79 528.93 547.40 436.61 433.56     388.61 412.85 422.36 409.68 493.06 513.04 410.57 409.35     47.65 46.05 45.97 44.78 54.83 59.34 46.06 45.16     213.21 214.77 218.40 218.35 271.66 282.99 210.11 213.12     412.51 437.16 449.79 445.43 533.95 543.88 433.29 428.15     387.79 412.50 417.72 412.08 493.19 502.59 409.14 404.48        2.66 2.42 2.58 2.66 4.05 5.07 2.71 2.56        2.91 2.77 2.65 2.78 4.33 5.00 2.71 2.95        2.25 2.32 2.41 2.52 3.51 3.62 2.29 2.28        2.50 2.44 2.48 2.15 3.78 4.09 2.43 2.47 

The 

compute 

time 

1808 124 2152 428 1808 123 1800 125 

         

   

      The absolute differences     between the values of            ,        ,        ,     

and     in the non contaminated and contaminated data have been used to measure the 

changes. From Tables 2.11–2.13 and Figure 2.8, we can observe that the results of the 

methods based on the RFCH and RMVN estimators are stable and less sensitive to 

outliers. However, the results of the method based on the RM and FMCD estimators are 

changeable and unstable. As expected, the results of the classical method were highly 

affected by the outliers. 

      Later, we took into account the computation time, along with robustness and 

efficiency of estimation. Table 2.14 shows the computation time, measured in seconds, 

for different estimation methods for       samples with size      . From this 

table, we can see that the computing time for the RS, FC, RF and RMV methods is 
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significantly lower than that of the other methods. Also, it is obvious that the MV, CM, 

WM and MC methods are time consuming. 

      From Tables 2.15 and 2.16, we can see that the covMcd estimator from the 

roustbase library is a much faster implementation of FMCD than cov.mcd from the 

MASS library, but the MSEs for the canonical coefficients and canonical correlations 

are larger in many cases.  

 

 

2.7. Chapter Summary 

      In this chapter, a number of canonical correlations methods have been compared. 

From our simulation study and real data, we can conclude that the canonical vectors 

and correlations based on the RFCH and RMVN estimators perform better than the 

canonical vectors and correlations based on the FMCD estimator or the weighted 

FMCD estimator. Furthermore, from studying the breakdown plots of different 

estimators, we clearly observe that the effectiveness of the methods based on the RFCH 

and RMVN estimators is unrivalled for all percentages of contamination.  

      Moreover, from the ACN data the simulation study indicated that the performance 

of the canonical vectors and canonical correlation based on the RM is very promising; 

this fact is especially emphasised in the case when       than in that when        Additionally, the breakdown plot indicated that the canonical vectors and 

canonical correlations based on the RM estimator are higher than those of other M-type 

correlations. We also observed that although the breakdown plot showed that the FCH 

estimator had a high breakdown point, this estimator was one of the worst estimators 

for all cases. 
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      From examining the simulation results of the study, we make a number of practical 

recommendations. Firstly, in the presence of outliers, we advise the usage of CCA 

based on the RFCH and RMVN estimators. Secondly, when the percentage of outliers 

is pre-determined to be less that 15%, we suggest the employment of CCA based on the 

RM estimators due to the fact that it has performed very well and that the computing 

time remains very reasonable. Thirdly, in the case of contamination above 20%, we do 

not recommend the usage of the FMCD estimators. Finally, we recommend the use of 

the covMcd function from the roustbase library to compute FMCD, if computation time 

is taken into account. 
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Chapter 3 

 

Sparse MAVE via the adaptive Lasso, SCAD and 

MCP penalties2 

 

      The well-known sufficient dimension reduction (SDR) methods supply a tool to 

find sufficient dimensions without needing to pre-specify a model or an error 

distribution.  These methods replace the original   predictors with  -dimensional linear 

combinations (LC's) of predictors where      without losing of any regression 

information. However, the explanation of the resulting estimates is not simple because 

each dimension reduction (DR) component is an LC of all the original predictors. 

      In this chapter, we propose to combine the shrinkage ideas of the adaptive Lasso, 

SCAD and MCP with the MAVE, to give sparse and precise solutions. The 

performance of the proposed methods is assessed by both simulation and real data 

analysis. 
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3.1. Introduction 

      In many statistical applications, statistical analysis is very complicated due to the 

dimension   of predictor vector   is large. A familiar approach that is used to cope with 

the high dimensional (HD) data in the regression model is to take down shorthand the 

dimension of the predictors without losing of any information and without the need for 

a pre-assigned parametric model. This has been obtained via the SDR.  

      The SDR theory (Cook, 1998) has been introduced to minimise the HD of the 

predictors, while keeping the regression information and making few assumptions. For 

regression models, assume   is a scalar response variable and              is a     predictor vector. The SDR investigates a     matrix  , such that         , 

where   refers to independence. The column space spanned by   is called the DR 

subspace. The intersection of all of the DR subspaces is called the central subspace if it 

is a DR subspace, which is denoted by     . Finding a      is an essential goal in SDR 

because the      contains all of the regression information of  , given  . The dimension     of the      is called the structural dimension (Yu and Zhu, 2013). Knowledge of the      is beneficial to answer the question, “how does the distribution of     alter with 

the value of  ?”. Various approaches have been proposed to estimate     . For example, 

the SIR method (Li, 1991), SAVE method (Cook and Weisberg, 1991), pHd method 

(Li, 1992), see Cook (1998) for more details.  

      In many situations, the regression analysis focuses on deducing the conditional 

mean of the dependent variable that is given to the explanatory variables. Cook and Li 

(2002) presented the idea of the Central Mean Subspace, where a natural inferential 

object is used for DR when the mean function is of attention. Also, the authors 

proposed the Iterative Hessian Transformation (IHT) method. There are a number of 
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DR approaches have been prposed to estimate        , for example the IHT (Cook and 

Li, 2002) and the MAVE method (Xia et al., 2002). However, all of the SDR methods 

suffer because each DR component is an LC of all of the explanatory variables, 

therefore making it very difficult to explain the resulting estimates. As mentioned in 

Section 1.1, the variable selection is very important in building a multiple regression 

model. The choice of an appropriate subset of predictors can help to develop prediction 

accuracy. Also, the interpretation of a smaller subset of predictors is often easier to 

understand and interpret than a large subset of predictors in practice. Variable selection 

using the regularisation methods in the ordinary least squares has attracted considerable 

research interest. For example, the Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), 

fused Lasso (Tibshirani et al., 2005), adaptive Lasso (Zou, 2006) and MCP (Zhang, 

2010). 

      Under the framework of the SDR, the work of Li et al. (2005) has produced good 

outcomes. For example, Ni et al. (2005) suggested a shrinkage SIR; Li and Nachtsheim 

(2006) proposed the sparse SIR method; and Li (2007) unified the inverse DR 

procedures to obtain sparse SDR. Zhou and He (2008) suggested constrained canonical 

correlation (CCC). The CCC method uses CANCOR method which is reported in 

(Fung et al., 2002) with an    norm constraint. However, Fung et al. (2002) 

demonstrated that CANCOR method is based on the matrix of SIR; thus the CCC can 

be considered as an alternative method to that used in Li (2007). The major focus of the 

methods mentioned concentrates on the distribution of  |  without assuming any 

specific model. However, these methods do need particular assumptions on  , such as 

the linearity condition. Li and Yin (2008) suggested a regularised SIR method to adapt 

SIR to deal with the cases when     and highly correlated covariates. Wang and Yin 

(2008) suggested adding Lasso penalty to the MAVE loss function in order to get 
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sparse MAVE (SMAVE) estimate. Fan and Li (2001) considered a number of 

regularisation methods. The authors stated that a good penalty function should have 

three properties, namely unbiasedness, sparsity and continuity. Fan and Li (2001) 

conjectured that the (oracle properties) OP's do not hold for the Lasso.  

      In this chapter, extensions for SMAVE (Wang and Yin, 2008) are proposed. We 

combine the DR method MAVE (Xia et al., 2002) with the regularisation methods 

SCAD (Fan and Li, 2001), adaptive Lasso (Zou, 2006) and the MCP (Zhang, 2010). 

The proposed methods have merits over the SMAVE and the sparse sliced inverse 

regression method (SSIR) (Li, 2007) because the proposed methods use penalisation 

which benefits from OP's, while SMAVE and SSIR use Lasso which does not. Also, 

the proposed methods have advantages over SSIR in that these methods do not need 

any certain distribution on   and are able to estimate the dimensions in the conditional 

mean function (CMF).  

     The remainder of the chapter is arranged as follows. In Section 3.2, a brief review of 

SDR for the mean function and MAVE method is given. SMAVE method is reviewed 

in Section 3.3. Sparse MAVE with adaptive Lasso penalty, SCAD and MCP penalties 

are introduced in Sections 3.4, 3.5 and 3.6, respectively. Simulation studies are 

conducted in Section 3.7. The methods have been applied to two sets of real data in 

Section 3.8. Finally, the conclusions are summarised in Section 3.9. 
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3.2. SDR for the mean function and MAVE 

      For regression problems with a scalar response variable   on a     predictor 

vector   assume the following model: 

                                                                                                                  
where                      and          . The aim of SDR for the mean 

function is to explore a subset   of the predictor space such that  

                                                                                                                                  
where   denotes statistical independence and      refers to a projection operator. 

Subspaces satisfying       are called mean DR subspaces (Cook and Li, 2002). Thus if          and                is a basis for  ,   can be substituted by LC's                      without losing any information on the CMF. That is,                     . If the intersection of all subspaces satisfies (3.2), this is 

called the central mean subspace (CMS) (Cook and Li, 2002) and is denoted by        .         is assumed existent over this chapter. Several methods are available for 

estimating         and one of these methods is the MAVE (Xia et al., 2002). The 

MAVE is described in detail, as follows: 

Xia et al. (2002) proposed the MAVE such that the matrix   is the solution of  

                                                                                                                    
where       . The conditional variance given     is  

                                                                                                          
Thus, 

                                                                                                       
For any given   ,          can be locally approximated as follows 
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where                  is the local linear expansion of            at   , 

and       are the kernel weights centred at      with           . So the problem 

of finding   is the same as solving the following minimisation: 

                    
                                                     .                  

 

 

 

3.3. The SMAVE method 

      Wang and Yin (2008) suggested the SMAVE method. They add an    penalty to the 

loss function of MAVE in (3.6) to produce a sparse estimate.  The authors proposed 

SMAVE minimises: 

                                                                                                                                                    
for        . 

They assumed that   is known, then suggested that they could estimate   according to a 

new version of the Bayesian information criterion (BIC). The algorithm for SMAVE is 

as follows: 

1. Initialise      and set     , any arbitrary     vector. 

2. For a given  , obtain         where         , by solving the following problem: 

                                                                                                 
3. For a given          ,        , solve         from the following minimisation: 
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4. Replace the     column of   by          and repeat steps 2 and 3 until 

convergence.  

5. Update   by                                    and set   to be    . 

6. If      continue steps 2 to 5 until    . 

Wang and Yin (2008) used the same refined multidimensional Gaussian Kernel that 

was proposed by Xia et al. (2002) for MAVE                                         , 

and the optimal bandwidth selected in order to minimise the mean integrated squared 

errors. Also, they used the Gaussian product kernel and                   , where 

                    , where   is the dimension of the kernel function. 

 

 

3.4. Sparse MAVE with adaptive Lasso penalty (ALMAVE) 

      Fan and Li (2001) considered a number of regularisation methods and one of these 

methods is the Lasso. The authors explained that the Lasso produces biased estimates 

for the large coefficients. Consequently, the Lasso does not have the OP's. As an 

extension for Lasso, Zou (2006) proposed the adaptive Lasso. The idea of the adaptive 

Lasso is to allow the penalization for the coefficients of different predictors by using 

adaptive weights. The authors proved that the OP's are achieved for the adaptive Lasso. 

Zou (2006) defined the adaptive Lasso minimises 
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where     is the tuning parameter. The weights are set to be             ,        ,    is a non-penalised regression estimate and     . 

      The ALMAVE has been proposed as follows: 

                                                                    ,                   
for        . 

The algorithm for the ALMAVE is similar to the algorithm in Section 3.3, except in 

step 3, for a given          ,        , solve          from the following problem: 

                                                                       
                                                                                                                                             
and then we follow the same steps of the algorithm in Section 3.3.  

 

3.5. Sparse MAVE with SCAD penalty (SCADMAVE) 

      Fan and Li (2001) suggested the SCAD penalty. The authors proved that the SCAD 

estimator has the OP's. The SCAD penalty Fan and Li (2001) defined on       is given 

by   

                                  
                                                                                                                                                                                                                                            

and its first derivative is given by   



74 

 

                                                                                                                                                                                                                                                                                              
where      and     are tuning parameters.  

      The SCAD penalised regression minimises 

                                                                                                        
      The SCADMAVE has been suggested as follows: 

                                                                    (                 
The algorithm for the SCADMAVE is similar to the algorithm in Section 3.3, except in 

step 3, for a given          ,        , solve        from the following problem: 

                                                                       
                                                                                                                              

                              

and then we follow the same steps of the algorithm in Section 3.3.  

 

 

 

 

 

 



75 

 

3.6. Sparse MAVE with MCP penalty (MCPMAVE) 

      Zhang (2010) proposed a minimax concave penalty (MCP). It supplies the 

convexity of the penalised loss in sparse areas to a great extent, given particular 

thresholds for variable selection and unbiasedness. 

 The MCP Zhang (2010) defined on       is given by   

                                                                                                                                                                                        
and its first derivative is given by   

                                                                                                                                                                                              
where     and     are tuning parameters. The logic behind the             can be 

understood through             . The MCP starts with the rate of penalization (ROP) 

equivalent to that in the Lasso, but continuously reduces that penalization until      

and the ROP goes down to 0.  

       The MCP penalised regression minimises 

                                                                                                        
        The MCPMAVE has been suggested as follows: 

                                                                            
The algorithm for the MCPMAVE is similar to the algorithm in Section 3.3, except in 

step 3, for a given          ,        ,       can be obtained by solving the 

following problem: 
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                                                 ,                                                                           
and then we follow the same steps of the algorithm in Section 3.3.  

 

3.7. A simulation study 

      In this section, we demonstrate the behaviour of the suggested methods using many 

simulation examples and some typical examples are given below: 

Example 1:        datasets were generated with size       from the model 

                               , where              ,     and   are independent and are 

identically distributed from an       ,               and                 with                  . This means, the model is                          . 

Example 2:       data sets were generated with size      and      from the 

linear model            , where              ,     and   are independent and 

are identically distributed from an        and                    with                 . In order to evaluate the performance of the proposed methods when the 

predictors are correlated, we generate   from a        with                      for 

this model. This means, the model is                 . 
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Example 3:        datasets were generated with size       observations from 

the model                                   , where              ,     and    are independent and are identically distributed from an         There are three 

different forms for     and   , namely: 

(1)                     and                    . 

(2)                         and                        . 

(3)                   and                  , where each   has 10 elements 

equal to 1 with                 . This means, the models are                                                       for case(1).                                                                  

for case(2).                                                    for case(3). 

 

Example 4:        datasets were generated with size      and     from the 

linear model            , where              ,     and   are independent and 

are identically distributed from       ,            with                 . This 

means, the model is                    . 

Example 5:       data sets were generated with size       from the linear 

model            , where               ,     and   are independent and are 

identically distributed from an        and                  with                 . In order to evaluate the performance of the proposed methods when the 

predictors are correlated, we generate   from a        with                      for 

this model. This means, the model is                 . 
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      After we write the first term in Equations (3.12), (3.17) and (3.22) in the least 

squares form, we use the functions (adalasso) from Package ‘parcor’ (Kraemer and 

Schaefer, 2012), ncvreg(, penalty=c("SCAD")) and ncvreg(, penalty=c("MCP")) from 

Package ‘ncvreg’ in R (Breheny and Huang, 2011) to do the computations in Equations 

(3.12), (3.17) and (3.22), respectively. To evaluate the precision of the estimation, we 

compute the average number of zero coefficients (Ave 0’s), mean and standard 

deviation (SD) of the absolute correlation      between       and      and the mean 

and SD of the mean squared error (MSE),               . 

 

Table 3.1. Simulation results for the methods which are studied based on the model in 

Example 1. 

                 

 
Method 

Ave 
0’s 

     
Mean 

     
SD 

MSE 
Mean 

MSE 
SD 

Ave 
0’s 

     
Mean 

     
SD 

MSE 
Mean 

MSE 
SD 

SMAVE 5.67 0.9516 0.0497 0.0005 0.0005 2.33 0.8090 0.1266 0.0060 0.0080 
ALMAVE 8.67 0.9791 0.0422 0.0003 0.0001 8.00 0.9840 0.0338 0.0003 0.0006 

SCADMAVE 5.00 0.9619 0.0425 0.0004 0.0004 2.67 0.8511 0.1103 0.0028 0.0065 
MCPMAVE 5.00 0.9590 0.0479 0.0004 0.0005 2.33 0.8263 0.1146 0.0058 0.0075 

 

 

Table 3.2. Simulation results for the methods which are studied based on the model in 

Example 2. 

 Independent predictors Correlated predictors 

Method Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

n=60           
 SMAVE 12.67 0.9796 0.0075 0.0155 0.0400 12.00 0.9479 0.1085 0.0119 0.0088 
 ALMAVE 19.33 0.9918 0.0074 0.0147 0.0360 17.00 0.9866 0.0348 0.0112 0.0074 
 SCADMAVE 12.00 0.9919 0.0074 0.0149 0.0363   8.00 0.9866 0.0349 0.0111 0.0074 
 MCPMAVE 12.33 0.9920 0.0100 0.0157 0.0380   8.33 0.9865 0.0350 0.0111 0.0088 
n=120           
 SMAVE 19.50 0.9899 0.0047 0.0050 0.0100 17.00 0.9934 0.0022 0.0062 0.0087 
 ALMAVE 21.00 0.9969 0.0031 0.0043 0.0065 20.75 0.9988 0.0007 0.0057 0.0081 
 SCADMAVE 19.50 0.9956 0.0046 0.0044 0.0065 17.50 0.9982 0.0015 0.0060 0.0082 
 MCPMAVE 19.50 0.9956 0.0049 0.0045 0.0066 17.75 0.9978 0.0019 0.0061 0.0085 
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Table 3.3. Simulation results for the methods which are studied based on the model in 

Example 3. 

           

 Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

  Method   

Case(1)           
  SMAVE   9.25 0.9760 0.0071 0.0062 0.0087   3.50 0.8603 0.1045 0.0095 0.0096 
  ALMAVE 15.00 0.9938 0.0029 0.0061 0.0080 15.75 0.9641 0.0882 0.0045 0.0028 
  SCADMAVE 10.25 0.9924 0.0062 0.0062 0.0082   3.75 0.8674 0.1075 0.0088 0.0076 
  MCPMAVE 10.25 0.9934 0.0043 0.0062 0.0080   3.75 0.8729 0.0889 0.0086 0.0074 
Case(2)           
  SMAVE 11.00 0.9798 0.0078 0.0009 0.0012 2.00 0.6903 0.2194 0.0036 0.0066 
  ALMAVE 16.00 0.9954 0.0024 0.0007 0.0008 12.75 0.8049 0.1202 0.0015 0.0032 
  SCADMAVE 11.00 0.9920 0.0055 0.0008 0.0010 2.00 0.7348 0.1213 0.0016 0.0038 
  MCPMAVE 11.00 0.9918 0.0059 0.0009 0.0011 2.00 0.6972 0.2359 0.0039 0.0069 
Case(3)           
  SMAVE 2.50 0.9159 0.0408 0.0192 0.0165 2.50 0.9313 0.0398 0.0239 0.0355 
  ALMAVE 5.75 0.9409 0.0360 0.0179 0.0145 6.50 0.9545 0.0309 0.0231 0.0354 
  SCADMAVE 2.25 0.9189 0.0360 0.0190 0.0163 2.50 0.9352 0.0309 0.0238 0.0355 
  MCPMAVE 2.25 0.9158 0.0365 0.0192 0.0163 2.50 0.9332 0.0337 0.0240 0.0356 

 

     

      According to the mean and SD of the      between the       and      and the 

mean and SD of the MSE,               . From Tables 3.1, 3.2, 3.3 and 3.5, it 

can be seen that the ALMAVE and SCADMAVE show a better performance than the 

other methods for all cases under consideration, except in Example 3, case (1) where 

the ALMAVE and MCPMAVE were the best two methods among all of the methods.  
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Table 3.4. Simulation results for the methods which are studied based on the model in 

Example 4. 

 Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

Method  

n=60      
SMAVE 0.00 0.9959 0.0101 0.0564 0.0645 
ALMAVE 0.00 0.9466 0.1895 0.0587 0.0653 
SCADMAVE 0.00 0.9958 0.0100 0.0563 0.0645 
MCPMAVE 0.00 0.9958 0.0100 0.0563 0.0645 

n=120      
SMAVE 0.00 0.9976 0.0008 0.0619 0.0557 
ALMAVE 0.00 0.9976 0.0009 0.0619 0.0559 
SCADMAVE 0.00 0.9975 0.0008 0.0619 0.0557 

MCPMAVE 0.00 0.9975 0.0008 0.0619 0.0557 

 

Table 3.5. Simulation results for the methods which are studied based on the model in 

Example 5. 

 Independent predictors Correlated predictors 

Method Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

Ave 
0’s 

    
Mean 

    
SD 

MSE 
Mean 

MSE 
SD 

 SMAVE 87.83 0.9736 0.0073 0.0019 0.0014 80.00 0.9881 0.0024 0.0036 0.0037 
 ALMAVE 96.83 0.9979 0.0014 0.0016 0.0016 97.00 0.9985 0.0004 0.0031 0.0043 
 SCADMAVE 87.50 0.9743 0.0073 0.0019 0.0014 80.00 0.9888 0.0022 0.0035 0.0042 
 MCPMAVE 87.67 0.9741 0.0072 0.0019 0.0014 79.50 0.9881 0.0023 0.0036 0.0042 

 

 

Also, we can see from Table 3.4 that the SCADMAVE and MCPMAVE have a better 

performance than the other methods. In general, this shows that the ALMAVE, 

SCADMAVE and MCPMAVE produce more accurate estimates and these methods are 

more efficient than the SMAVE method.  

      It can be seen that in all of the examples, the proposed methods produce a lower 

MSE and a bigger     than the SMAVE method. The variations in the ALMAVE, 

SCADMAVE and MCPMAVE estimates are approximately similar in the majority of 

cases and are less than the variations in the estimate of the SMAVE method.  
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3.8. Real data  

      To explain the performance of the methods which are studied in this chapter we use 

two data sets, namely air pollution (AP) data and body fat (BF) data. 

3.8.1. Air pollution (AP) data  

      In this section, we illustrated the methods via an analysis of the AP data. The data 

contains       observations. The dataset is available from the website 

(http://lib.stat.cmu.edu/datasets/NO2.dat). The response   is the logarithm (LOG) 

values of the concentration of Nitrogen dioxide per hour measured in the period from 

10/2001 to 08/2003. The seven predictors are the LOG of the number of cars /hour (  ), 

temperature 2m above ground (  ), wind velocity (  ), the temperature difference 

between 25 and 2m above ground (  ), wind trend (  ), hour of the day (  ) and day 

number from 01/10/2001 (  ).  

 

Table 3.5. The values of the adjusted R-squared for the model fit based on the AP data. 

 SMAVE ALMAVE SCADMAVE MCPMAVE 

      

Model 

fit 

Linear 0.76 0.93 0.76 0.76 

Quadratic 0.90 0.94 0.90 0.90 

Cubic 0.93 0.94 0.93 0.93 

Quartic 0.93 0.94 0.93 0.93 

      

 

Table 3.6. The prediction error of the cubic fit for the methods which are studied based 

on the AP data. 

Method Prediction error 

SMAVE 0.7768 

ALMAVE 0.6692 

SCADMAVE 0.7740 

MCPMAVE 0.7741 
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Figure 3.1. A plot explaining the estimated coefficients    's which are estimated by the 

different methods based on the AP data.  

 

      Table 3.5 reports the values of the adjusted R-squared for the model fit, based on 

the AP data for all the studied methods. The studied methods discover a nonlinear 

structure, which can be approximated by a cubic fit. Also, it can be seen that the 

adjusted R-squared is slightly larger than the SMAVE (Wang and Yin, 2010) for the 

ALMAVE method (adjusted R-squared= 0.94) and it is similar to the SMAVE for the 

other methods (adjusted R-squared= 0.93). 

      Table 3.6 presents the prediction error of the cubic fit for the methods which are 

studied based on the AP data. It is clear that the ALMAVE, SCADMAVE and 

MCPMAVE methods have a lower prediction error than the SMAVE method. This 

means that these methods show a better performance than the SMAVE method.   

      From Figure 3.1, it can be seen that the estimated cofficients for the SMAVE, 

SCADMAVE and MCPMAVE methods were approximatly similar, which could be 

because these methods have the same value for the adjusted R-squared.  
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3.8.2. Body fat (BF) data  

      Percentage of BF is a substantial gauge of health. It can be precisely estimated by 

underwater weighing methods. These methods oftentimes need particular tools and are 

at times not available, so fitting the percentage of BF to simple measurements of body 

is an appropriate path to predict the BF. Johnson (1996) presented a dataset in which 

the percentage of BF and 13 simple measurements about the body (like weight, height 

and abdomen circumference) were recorded for 252 men. The data set is available in 

the package (‘mfp’) in R. The response variable   is the percent of BF     . The 

predictors are the age (  ), the weight (  ), the height (  ), the neck circumference 

(  ), the chest circumference (   , the abdomen circumference (  ), the hip 

circumference (  ), the thigh circumference (  ), the knee circumference (  ), the 

ankle circumference (   ), the extended biceps circumference (   ), the forearm 

circumference (   ) and the wrist circumference (   ). 

 

 

Table 3.7. The values of the adjusted R-squared for the model fit based on the BF data 

 SMAVE ALMAVE SCADMAVE MCPMAVE 

Model 

fit 

 linear 0.92 

 

0.92 

 

0.92 

 

0.92 

 

Quadratic 0.95 

 

0.95 

 

0.95 

 

0.95 

 

Cubic 0.96 

 

0.96 

 

0.96 

 

0.96 

 

Quartic 0.96 

 

0.96 

 

0.96 

 

0.96 
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Table 3.8. The prediction error of the cubic fit for the methods which are studied based 

on the BF data. 

Method Prediction error 

SMAVE 24.4095 

ALMAVE 22.6263 

SCADMAVE 23.5089 

MCPMAVE 23.0635 

 

          

Figure 3.2. A plot explaining the estimated coefficients   's which are estimated by 

studied methods based on the BF data. 

 

      Table 3.7 reports the values of the adjusted R-squared for the model fit based on the 

BF data for all the studied methods. All of these methods discover the nonlinear 

structure better than the linear and the adjusted R-squared is same for all of the methods 

and for all of the fitted models. 

      Table 3.8 presents the prediction error of the cubic fit for the methods which are 

studied based on the BF data. It is clear that all of the proposed methods show a better 

performance than the SMAVE method. In general, the results are similar to those which 

are based on the AP data in Table 3.6.  

      Figure 3.2 presents plots and explains the estimated      , which are estimated by 

studied methods based on the BF data. It can be seen from this figure that there are no 

big differences among the estimated cofficients for all of the methods. 
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3.9. Chapter Summary 

      In this chapter, we merge the shrinkage ideas of the adaptive Lasso, SCAD, MCP 

with well known sufficient dimension reduction method MAVE, to produce sparse and 

accurate solutions based on MAVE method. Sparse MAVE based on the adaptive 

Lasso, SCAD and MCP has been compared with the sparse MAVE method (Wang and 

Yin, 2008). In order to assess the numerical performance, a simulation study was 

conducted based on the models in the Examples 1, 2, 3 and 4, as described in Section 

3.7. From the simulation study and the real data examples, it can be concluded that the 

sparse MAVE based on the adaptive Lasso, SCAD and MCP behaves well in 

comparison to the sparse MAVE (Wang and Yin, 2008), which is based on Lasso 

penalty, and thus we believe that the sparse MAVE based on the adaptive Lasso, SCAD 

and MCP is useful practically. 
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Chapter 4 

 

Penalised single-index quantile regression3 

 

 
      The single-index (SI) regression and single-index quantile regression (SIQ) 

estimation methods provide linear combinations of all the original predictors. However, 

it is possible that there are many unimportant predictors within the original predictors. 

Thus, the accuracy of parameter estimation and the precision of prediction will be 

affected by the existence of those unimportant predictors when the mentioned methods 

are used.  

      In this chapter, an extension of the SIQ method of Wu et al. (2010) has been 

proposed, which considers Lasso and adaptive Lasso for estimation and variable 

selection. Computational algorithms have been developed in order to calculate the 

penalised SIQ estimates. A simulation study and a real data application have been used 

to assess the effectiveness of the methods under consideration.  
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4.1. Introduction 

      In many applications the linear relationship does not hold. Thus, the use of linear 

regression to describe the relations in these cases is not suitable. The SI model is an 

extension of the linear regression to deal with nonlinear relationships. It is more elastic 

than the parametric models and retains their good properties. Besides its ability to 

reduce the risk of misspecifying the link function, it helps to overcome the “course of 

dimensionality” (CD). Due to the index     aggregates the high dimensionality of  , 

many researchers have been used the single index model to deal with the CD problem. 

The SI technique has been proven over the years to be an active and efficient method to 

deal with estimation for high-dimensional regression issues. It has gained much 

attention in recent years because of its usage in many fields.  For example, qualitative 

choice models in econometrics and exposure–response models in biometrics (Härdle et 

al, 1993). It has the following form: 

                                                                                                                             
where   is a real valued response variable and   is a vector of  -dimensional predictors,      is an unknown univariable measurable function, the error   is independent of   

with        and          , and   is the unknown SI vector coefficient satisfying       and the first component    is positive for the sake of model identifiability. 

Here     denotes the Euclidean norm.  

      There are three types of procedures that have been suggested to estimate   in the 

statistical literature. The first type utilises the truth that   is proportional to the 
        

        , which includes the average derivative estimation method (Härdle and 

Stoker, 1989), the structure adaptive method (Hristache et al., 2001) and the outer 
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product of gradients (OPG) method (Xia et al., 2002). The second type contains 

methods that estimate      and   in the same time. For example, the semiparametric 

least squares estimation method (Ichimura, 1993) and the minimum average variance 

estimator (MAVE) method (Xia et al., 2002). The third type consists of methods that 

use regressing   on   instead of regressing   on   and were primarily proposed to deal 

with the sufficient dimension reduction (SDR). For example, the sliced inverse 

regression (SIR) (Li, 1991), the sliced average variance estimation (SAVE) (Cook and 

Weisberg, 1991) and the directional regression (Li and Wang, 2007).  

      The majority of known estimation approaches for model (4.1) were constructed on 

either least squares or likelihood based methods. Thus, these approaches are expected to 

be sensitive to outliers. In contrast to the stated approaches, quantile regression (QR) 

(Koenker and Bassett, 1978) provides a robust alternative. As mentioned in Section 1.1, 

it supplies us with a full analysis of the relationships among the predictors and the 

response variable. Also, the QR has been applied in many different fields such as 

econometrics, finance, microarrays, medical and agricultural studies, see Koenker 

(2005) and Yu et al. (2003) for more details. A lot of work exists on QR; see for 

example, He and Shi (1996), He et al. (2002), Lee (2003), Cai and Xu (2009), Wang et 

al. (2010) and  Kai et al. (2011), among others. 

      Although, a lot of work exists on nonparametric standard mean regression, 

however, very little exists on nonparametric QR. Nonparametric QR includes local 

linear methods and the spline methods. The local linear QR method for univariate QR is 

proposed by Yu and Jones (1998). Theoretically, while the extension of nonparametric 

conditional quantiles from univariate to higher dimension cases is quite clear, its 

practical success is impeded by the CD. Therefore, the challenge is to decrease the  -
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dimensional predictor vector   without the loss of any information and without needing 

a pre-specified parametric model. 

      Recently, dimension reduction (DR) methods for nonparametric QR models have 

received a great interest in the statistical literature. Many approaches attempt to reduce 

the  -dimensional predictor vector   without losing information and then estimate the 

conditional quantile. Chaudhuri (1991), Gooijer and Zerom (2003), Yu and Lu (2004), 

Horowitz and Lee (2005), Dette and Scheder (2011) and Yebin et al. (2011) used 

variants of the adaptive model to reduce the dimension and thereafter estimate the 

conditional quantiles. In order to introduce a more efficient estimator of conditional 

quantiles, Gannon et al. (2004) used the SIR to reduce the dimensionality of the 

covariates. Recently, Wu et al. (2010) proposed SIQ method. A practical algorithm is 

introduced where the authors used the local linear QR to estimate      and linear QR to 

estimate the parametric index. Jiang et al. (2012) proposed the local linear composite 

QR estimator for a SI model. Hua et al. (2012) developed a Bayesian method for fitting 

models with a SI using conditional QR. Kong and Xia (2012) suggested an adaptive 

estimation method for SIQ model. 

      As mentioned in Section 1.1 and Section 3.1, variable selection is fundamental and 

very crucial to select important predictors in the high dimensional (HD) data analysis. It 

can save money and time used to collect unessential information, reduce computation 

time and improve efficiency and stability. A lot of articles are existed on subset 

selection by penalising the ordinary least squares; see for example, Lasso (Tibshirani, 

1996), SCAD (Fan and Li, 2001), fused Lasso (Tibshirani et al., 2005) and adaptive 

Lasso (Zou, 2006).  

      Because SI methods produce linear combinations (LC's) of all of the predictors, the 

variable selection approaches become needful for SI modelling when the number of 
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predictor variables is large and when there are unimportant predictors. Many 

researchers suggested to generalise a number of classical variable selection methods 

from linear regression to the SI model, such as the Akaike information criterion (AIC) 

and cross-validation and others, see for example, Naik and Tsai (2001) and Kong and 

Xia (2007). These methods are computationally intensive and unstable. 

      Some research has proposed to generalise the Lasso (Tibshirani, 1996) under the SI 

model assumptions. Under the scope of the SDR, Li and Yin (2008) combined the idea 

of Lasso with the SIR. Recently, Wang and Yin (2008) suggested the SMAVE. The 

authors proposed to add an    penalty term            to the MAVE loss function to 

obtain the SMAVE. The idea of merging MAVE and Lasso, which is proposed in 

Wang and Yin (2008), was exploited by Zeng et al. (2012) by proposing an    penalty 

that penalises the   and the norm of the  
         together.  

      Koenker (2004) proposed to use the regularisation in QR. In order to shrink 

individual effects towards a common value, the author put an    penalty on the random 

effects in a mixed-effects QR model. Li and Zhu (2008) evolved a piecewise linear 

solution path for the    penalised QR. Moreover, Wu and Liu (2009) proposed 

penalised QR with the SCAD and the adaptive Lasso penalties. Yuan and Yin (2010) 

proposed a Bayesian approach to shrink the random effects towards a common value by 

introducing an    penalty to the usual QR check loss function. Li et al. (2010) suggested 

Bayesian regularized QR. The authors proposed different penalties such as Lasso, 

group Lasso and elastic net penalties. Alhamzawi et al. (2012) extended the Bayesian 

Lasso quantile regression (BLQR) reported in Li et al. (2010) to Bayesian adaptive 

Lasso quantile regression (BALQR) by using different penalization parameters for 

different regression coefficients. 
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      In this chapter, we propose an extension of the SIQ model of Wu et al. (2010) by 

considering Lasso and adaptive Lasso for estimation and variable selection. 

Computational algorithms have been developed in order to calculate the penalised SIQ 

estimates. Our motivating example is an analysis of the Boston housing (BH) data 

which is available in (‘MASS’) package in R. The aim of this study is to investigate the 

relationship between the median value of owner-occupied homes and 13 statistical 

measurements on the 506 census tracts. In this study, we are interested in choosing the 

most significant statistical measurements of the 13 statistical measurements for the SIQ 

model, relating to the median value of owner-occupied homes. A certain correlation is 

present between the predictors in the BH data. For example, the correlation coefficient 

is (-0.7692) between the nitric oxides concentration and the weighted mean of distances 

to five Boston employment centres, (0.7636) between the nitric oxides concentration 

and the proportion of non-retail business acres/town, (-0.7478) between the weighted 

mean of distances and proportion of owner-occupied units, (0.7315) between the nitric 

oxides concentration and proportion of owner-occupied units built and so on. The 

selection of variables is important in this application, in order to know which predictors 

have coefficients that vary among subjects. The high correlation between the predictors 

is an argument to use the adaptive Lasso because the procedure deals with correlated 

predictors by using adaptive weights for the different predictors. 

      The remainder of the chapter is organized as follows. A brief review of the SIQ 

method is given in Section 4.2. Penalised SIQ with Lasso and adaptive Lasso are 

introduced in Section 4.3 and Section 4.4, respectively. Simulation studies are 

conducted under different settings in Section 4.5. The applications of the methods using 

real data are reported in Section 4.6. Lastly, the conclusions are summarised in Section 

4.7. 
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4.2. Single-index quantile regression (SIQ) method 

      Given        , Wu et al. (2010) proposed a SIQ model for the  th conditional 

quantile        of     given   , as follows 

                                                                                                                           
where   is a real valued response variable and   is a vector of  -dimensional predictors,      is an unknown univariable measurable function,   is the unknown SI vector 

coefficient satisfying       and    is positive for the sake of model identifiability.   

      By replacing the nonparametric counterpart        in model (4.2) with    , we 

obtain the linear QR of Koenker and Basset (1978). For the SIQ model      , note      
should be       and   should be   . For notational convenience the subscript   was 

omitted. 

      Let          be an independent identically distributed (i.i.d) sample from      . For      close enough to  ,         can be locally approximated by  

                                                                                         
where        and        . Wu et al. (2010) proposed an estimation procedure for 

estimating   and      as follows: 

 

Step 0. Find the initial       from the average derivative estimate (ADE) of Chaudhuri et 

al. (1997). The       will be standardised such that        and      . 
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Step 1. Given   , obtain               
 by solving the following  

                                                                                                      (4.4)                       

where       is the check loss function defined by                        
               , the weight function                                           and       is 

a kernel function with the bandwidth    chosen to be  optimal. 

Step 2. Given                
, obtain    by solving 

         
                            

    

                                                                                                          
where            ,                 and          evaluated at the current estimate 

of  . In step 2,   is estimated via the linear QR without an intercept on    observations                    with known weights              evaluated at the estimate of   from the 

former iteration. 

Step 3. Continue repeating the steps 1 and 2 until convergence. 

The standardisation of    is done as             , where        is the sign of the 

  . The final estimate of        is                 where  

                                                                             .                  
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4.3. Single-index quantile regression with Lasso penalty 

(LSIQ) 

      The Lasso is proposed by Tibshirani (1996) for simultaneous variable selection and 

parameter estimation. According to the Lasso, the residual sum of squares is minimised 

subject to           being less than a constant. By assuming this constraint, the Lasso 

shrinks some coefficients and sets other to 0. As an extension to Lasso Tibshirani 

(1996), Li and Zhu (2008) suggested Lasso quantile regression (LQR) minimises 

                                                                                                                      
where     is the tuning parameter. The term            in (4.7) is the    penalty QR, 

which is important for the Lasso.  

     The LSIQ is proposed here according to an algorithm similar to the algorithm in 

Section 4.2, except in the initial step where we obtain the       from the Lasso linear QR 

from Li and Zhu (2008). Also, in step 2, given                
, we obtain         by solving 

          
                            

           
     

                                                                                              
The final estimate of      is                      where  

                                                                           .                
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4.4. Single-index quantile regression with adaptive Lasso   

penalty(ALSIQ) 

      Under specific situations, Lasso has been shown to be consistent by Zou (2006), 

who derived a necessary condition for the Lasso to be consistent. Consequently, the 

Lasso is inconsistent in other certain conditions.  A flexible version of Lasso method 

has been suggested by Zou (2006) via assigning different weights for shrinkage the 

different coefficients of predictors. The author explained that the main merit of his 

method compared to the Lasso estimator is that the adaptive Lasso has the OP's. Zou 

(2006) stated that the LARS (Least angle regression) algorithm can be used for solving 

the adaptive Lasso. Wu and Liu (2009) suggested the adaptive Lasso quantile 

regression (ALQR) minimises 

                                                                                                            
where the weights are set to be             ,        ,    is the non-penalised QR 

estimate and     . 

      The ALSIQ has been suggested according to the algorithm similar to the algorithms 

in Section 4.2 and 4.3, except in the initial step we obtained the       from the ALQR of 

Wu and Liu (2009). Also, in step 2, given                
, we got          by solving 

          
                            

              
     

                                                                                                 
Thus, we can obtain           by solving the minimisation problem in (4.11) as ALQR 

by using LARS algorithm, see Wu and Liu (2009). 



98 

 

The final estimate of      is                     , where  

                                                                           .              
 

 

4.5. A simulation study 

      Many simulations have been implemented in order to check the behaviour of the 

suggested methods and some examples are reported below:  

Example 1:        datasets were generated with size       observations from 

the following model: 

                             
where             ,                   ,                       ;          ,  the 

error term           ,       s and   are mutually independent. The   is estimated for                             .  
 

Example 2:        data-sets were generated with size       observations from 

the following model with homoscedastic errors.  

                            
where              and                    .  Here,               ,               ,                       ,           and      s and   are mutually independent. The    is estimated for                             .  
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Example 3:       datasets were generated with size       observations from 

the model             , where               are generated as i.i.d standard 

normals. The error term is assumed to be          and that it is independent of  .                             is used.  

The   is estimated for                                 
       

      We analysed each simulated data set using three methods. The LSIQ and ALSIQ 

methods, which are described in Sections 4.3 and 4.4, respectively, are compared with 

the SIQ method. The                              function in the quantreg 

package is used to obtain          in Equation (4.8). The ALassoQR function from the 

code of Wu and Liu (2009) (Personal communication with Wu) is used to obtain           in Equation (4.11). Similar to Wu and Liu (2009),   was chosen via a grid 

search based on the tuning error in terms of the mean squared error (MSE) evaluated on 

the data. This means that the   value has been chosen to minimise the MSE.  
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Table 4.1. The mean and standard deviation (SD) of MSE for      based on the model 

in example 1. 

  Method    SIQ LSIQ ALSIQ       

M.MSE 0.0014 0.0006 0.0005 

SD.MSE 0.0011 0.0005 0.0004       

M.MSE 0.0046 0.0022 0.0020 

SD.MSE 0.0049 0.0026 0.0022    0  

M.MSE 0.0138 0.0046 0.0046 

SD.MSE 0.0128 0.0064 0.0065       

M.MSE 0.0467 0.0335 0.0311 

SD.MSE 0.0593 0.0454 0.0443       

M.MSE 0.0661 0.0581 0.0509 

SD.MSE 0.0857 0.0734 0.0702 

 

Table 4.2.The mean and SD of MSE for      based on the model in example 2. 

  

 Method  

SIQ LSIQ ALSIQ       

M.MSE 0.0294 0.0372 0.0136 

SD.MSE 0.1025 0.0396 0.0220       

M.MSE 0.0077 0.0067 0.0047 

SD.MSE 0.0086 0.0070 0.0045    0  

M.MSE 0.0044 0.0043 0.0042 

SD.MSE 0.0048 0.0048 0.0048       

M.MSE 0.0169 0.0072 0.0031 

SD.MSE 0.0198 0.0108 0.0048       

M.MSE 0.0197 0.0070 0.0018 

SD.MSE 0.0230 0.0080 0.0025 

 

Table 4.3.The mean and SD of MSE for      based on the model in example 3.  

  

 Method  

SIQ LSIQ ALSIQ       

M.MSE 0.0688 0.0565 0.0412 

SD.MSE 0.0434 0.0479 0.0343       

M.MSE 0.0494 0.0452 0.0367 

SD.MSE 0.0325 0.0278 0.0197    0  

M.MSE 0.0403 0.0336 0.0330 

SD.MSE 0.0455 0.0300 0.0206       

M.MSE 0.0495 0.0370 0.0360 

SD.MSE 0.0747 0.0298 0.0272       

M.MSE 0.0489 0.0453 0.0406 

SD.MSE 0.0298 0.0345 0.0285 
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Figure 4.1. Plots explain the mean of MSE for      based on the model in examples 1, 

2 and 3 respectively. 

       

According to the mean and the SD of the MSE for     , from Tables 4.1, 4.2 and 4.3 

and Figure 4.1, it can be seen that the proposed methods (ALSIQ and LSIQ) perform 

better than the SIQ method described in Wu et al. (2010) for all the models under 

consideration. This indicates that the proposed methods give precise estimates even 

when the error distribution is asymmetric. Most noticeably, when        and         the ALSIQ and LSIQ are significantly more efficient than the SIQ method.  
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Table 4.4. The mean and MSE for single-index coefficient estimates based on the 

model in example 1. 

                   Method                               SIQ Mean 0.4750 0.8776 0.0081 0.0049 0.0122 

MSE 0.0017 0.0006 0.0005 0.0016 0.0012 

LSIQ Mean 0.4609 0.8859 0.0037 0.0021 0.0037 

MSE 0.0016 0.0005 0.0003 0.0006 0.0003 

ALSIQ Mean 0.4667 0.8829 0.0021 0.0050 0.0010 

MSE 0.0021 0.0006 0.0002 0.0002 0.0002       SIQ Mean 0.4865 0.8651 -0.0019 -0.0117 0.0097 

MSE 0.0038 0.0016 0.0018 0.0042 0.0069 

LSIQ Mean 0.4737 0.8759 -0.0009 -0.0050 0.0010 

MSE 0.0039 0.0013 0.0010 0.0016 0.0021 

ALSIQ Mean 0.4727 0.8766 0.0013 -0.0020 0.0029 

MSE 0.0042 0.0013 0.0009 0.0013 0.0020       SIQ Mean 0.4482 0.8664 -0.0149 0.0029 -0.0083 

MSE 0.0098 0.0032 0.0114 0.0111 0.0154 

LSIQ Mean 0.4658 0.8725 -0.0026 0.0043 0.0016 

MSE 0.0089 0.0027 0.0049 0.0027 0.0044 

ALSIQ Mean 0.4654 0.8727 -0.0028 0.0060 -0.0008 

MSE 0.0088 0.0027 0.0048 0.0026 0.0045      SIQ Mean 0.5429 0.7331 0.0158 0.0058 -0.0230 

MSE 0.0247 0.0531 0.0426 0.0592 0.0323 

LSIQ Mean 0.5053 0.7881 0.0308 -0.0265 -0.0020 

MSE 0.0359 0.0290 0.0303 0.0268 0.0227 

ALSIQ Mean 0.5486 0.7660 0.0407 -0.0433 -0.0059 

MSE 0.0412 0.0339 0.0305 0.0211 0.0181      SIQ Mean 0.5659 0.6591 -0.0229 -0.0099 -0.0299 

MSE 0.1015 0.0824 0.0456 0.0401 0.0202 

LSIQ Mean 0.5943 0.6474 -0.0016 -0.0078 -0.0418 

MSE 0.1012 0.0923 0.0332 0.0385 0.0114 

ALSIQ Mean 0.6029 0.6443 0.0140 0.0017 -0.0420 

MSE 0.0988 0.1017 0.0288 0.0324 0.0123 
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Table 4.5. The mean and MSE for single-index coefficient estimates based on the 

model in example 2. 

                   Method                                    SIQ Mean 0.6702 0.6924 -0.0253 0.0163 0.0132 -0.0421 

MSE 0.0217 0.0175 0.0136 0.0053 0.0189 0.0192 

LSIQ Mean 0.7686 0.4655 -0.0068 0.0072 -0.0077 0.0054 

MSE 0.1217 0.1222 0.0011 0.0011 0.0016 0.0027 

ALSIQ Mean 0.8211 0.5174 -0.0014 -0.0007 0.0086 0.0143 

MSE 0.0723 0.0447 0.0001 0.0003 0.0012 0.0052      SIQ Mean 0.7753 0.5937 0.0008 0.0238 0.0108 -0.0021 

MSE 0.0517 0.0172 0.0031 0.0054 0.0021 0.0076 

LSIQ Mean 0.7771 0.5915 -0.0040 0.0160 0.0031 0.0008 

MSE 0.0551 0.0211 0.0017 0.0040 0.0014 0.0042 

ASIQ Mean 0.6971 0.7016 0.0074 0.0165 0.0228 -0.0032 

MSE 0.0168 0.0180 0.0031 0.0043 0.0054 0.0045      SIQ Mean 0.6884 0.7125 0.0059 0.0125 0.0211 -0.0102 

MSE 0.0143 0.0198 0.0028 0.0045 0.0056 0.0024 

LSIQ Mean 0.7750 0.6099 0.0010 0.0197 0.0114 0.0062 

MSE 0.0472 0.0118 0.0003 0.0035 0.0022 0.0032 

ALSIQ Mean 0.7738 0.6115 0.0015 0.0202 0.0115 0.0061 

MSE 0.04667 0.01183 0.0003 0.0035 0.0022 0.0032      SIQ Mean 0.7154 0.6355 0.0187 0.0330 0.0114 0.0232 

MSE 0.0368 0.0247 0.0058 0.0121 0.0110 0.0182 

LSIQ Mean 0.6981 0.7016 0.0193 0.0103 0.0137 -0.0042 

MSE 0.0163 0.0172 0.0035 0.0044 0.0043 0.0052 

ALSIQ Mean 0.7343 0.6680 0.0056 0.0115 0.0060 0.0074 

MSE 0.0274 0.0113 0.0009 0.0028 0.0017 0.0035      SIQ Mean 0.7045 0.6420 0.0264 0.0447 0.0246 0.0247 

MSE 0.0819 0.0843 0.0079 0.0160 0.0143 0.0189 

LSIQ Mean 0.7019 0.6936 0.0087 -0.0038 0.0072 -0.0045 

MSE 0.0176 0.0155 0.0061 0.0057 0.0053 0.0057 

ALSIQ Mean 0.7606 0.6430 0.0015 0.0068 -0.0023 0.0024 

MSE 0.0357 0.0075 0.0003 0.0015 0.0004 0.0008 
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Table 4.6. The mean and MSE for single-index coefficient estimates based on the 

model in example 3. 

            Method                                                         SIQ Mean 0.5775 0.5570 0.5365 -0.0112 -0.0030 0.0008 0.0208 0.0047 0.0092 0.0023 

MSE 0.0078 0.0070 0.0099 0.0042 0.0056 0.0049 0.0069 0.0072 0.0119 0.0075 

LSIQ Mean 0.5564 0.5784 0.5483 -0.0152 -0.0236 0.0188 0.0226 -0.0175 0.0221 -0.0275 

MSE 0.0051 0.002 0.0027 0.0088 0.0058 0.0068 0.0078 0.0074 0.0061 0.0061 

ALSIQ Mean 0.5939 0.5380 0.5650 0.0013 -0.0068 -0.0168 0.0006 0.0033 0.0015 0.0127 

MSE 0.0089 0.0050 0.0062 0.0031 0.0019 0.0027 0.0032 0.0027 0.0032 0.0050      SIQ Mean 0.5716 0.5540 0.5633 0.0058 0.0008 0.0171 -0.0108 0.0130 -0.0035 0.0207 

MSE 0.0042 0.0038 0.0032 0.0045 0.0040 0.0084 0.0057 0.0038 0.0069 0.0071 

LSIQ Mean 0.5698 0.5716 0.5519 -0.0272 -0.0142 -0.0234 0.0187 0.0105 -0.0089 -0.0215 

MSE 0.0032 0.0024 0.0033 0.0055 0.0039 0.0060 0.0048 0.0060 0.0072 0.0042 

ALSIQ Mean 0.5685 0.5506 0.5810 0.0025 -0.0051 -0.0170 0.0061 0.0114 -0.0125 0.0025 

MSE 0.0050 0.0066 0.0042 0.0023 0.0034 0.0026 0.0047 0.0041 0.0032 0.0023      SIQ Mean 0.5574 0.5779 0.5627 -0.0073 0.0013 0.0236 0.0041 -0.0028 -0.0054 -0.0058 

MSE 0.0033 0.0012 0.0077 0.0026 0.0046 0.0042 0.0018 0.0042 0.0048 0.0072 

LSIQ Mean 0.5958 0.5735 0.5330 0.0045 0.0053 -0.0137 0.0351 0.0003 -0.0157 -0.0112 

MSE 0.0027 0.0012 0.0038 0.0019 0.0014 0.0029 0.0079 0.0040 0.0057 0.0046 

ALSIQ Mean 0.5737 0.5512 0.5770 -0.0047 -0.0084 0.0094 -0.0025 0.0023 -0.0095 0.0152 

MSE 0.0018 0.0036 0.0021 0.0027 0.0037 0.0032 0.0049 0.0056 0.0051 0.0033      SIQ Mean 0.5788 0.5446 0.5645 -0.0036 -0.0162 -0.0020 -0.0001 -0.0056 -0.0004 -0.0006 

MSE 0.0020 0.0083 0.0026 0.0102 0.0034 0.0032 0.0036 0.0049 0.0061 0.0084 

LSIQ Mean 0.5833 0.5600 0.5558 0.0166 -0.0081 0.0100 0.0106 -0.0140 -0.0128 0.0046 

MSE 0.0026 0.0042 0.0026 0.0022 0.0050 0.0058 0.0046 0.0065 0.0052 0.0021 

ASIQ Mean 0.5747 0.5514 0.5742 -0.0110 0.0069 0.0125 0.0195 -0.0015 -0.0093 0.0071 

MSE 0.0019 0.0071 0.0041 0.0033 0.0039 0.0054 0.0029 0.0028 0.0045 0.0022      SIQ Mean 0.5577 0.5646 0.5671 0.0043 -0.0235 -0.0154 0.0265 0.0087 0.0116 -0.0235 

MSE 0.0041 0.0054 0.0031 0.0041 0.0067 0.0052 0.0066 0.0033 0.0051 0.0074 

LSIQ Mean 0.5866 0.5553 0.5512 0.0099 0.0060 0.0074 0.0072 -0.0184 -0.0169 0.0092 

MSE 0.0040 0.0054 0.0045 0.0039 0.0037 0.0039 0.0057 0.0041 0.0089 0.0025 

ALSIQ Mean 0.5939 0.5559 0.5457 -0.0177 0.0034 -0.0067 -0.0043 -0.0097 -0.0111 0.0020 

MSE 0.0065 0.0064 0.0090 0.0039 0.0018 0.0017 0.0031 0.0048 0.0028 0.0036 
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Figure 4.2. Plots explain the MSE for single-index coefficient estimates based on the 

model in example 1. 
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Figure 4.3. Plots explain the MSE for single-index coefficient estimates based on the 

model in example 2. 
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Figure 4.4. Plots explain the MSE for single-index coefficient estimates based on the 

model in example 3. 
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      According to the MSE for the single-index coefficient estimates, from Tables 4.4, 

4.5 and 4.6 and Figures 4.2, 4.3 and 4.4, it can be observed that in the majority of the 

estimated coefficients, the proposed methods produce a lower MSE than the SIQ 

method. Furthermore, one can see that the coefficients estimators of the proposed 

methods are close to the true values. 

      The variations in the ALSIQ and LSIQ estimates are similar in the majority of cases 

and less than the variations in the estimate of the SIQ method.  

 

 

4.6. Boston housing (BH) data 

      In this section, the methods are illustrated through an analysis of the BH data. The 

data consist of       observations on 14 variables; medv is the median value of 

owner-occupied homes and it refers to the response variable. The dataset consist of 13 

predictors on the 506 census tracts, which is available in the package (‘MASS’) in R. In 

our analysis, the dummy variable (chas) and the categorical variable (rad) were 

excluded. The predictors under consideration are crime average (  ), ratio of residential 

land (  ), ratio of non-retail business acres/town (  ), nitric oxides concentration (  ), 

rate number of rooms/dwelling (  ), ratio of owner-occupied units (  ), weighted mean 

of distances (  ), tax average of the property (  ), pupil-teacher proportion by town 

(  ), black population ratio town (   ), and lower status of the population (   ). The 

response variable medv and the predictor variables were also standardised. 
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Table 4.7. Single-index coefficient estimates for Boston housing data based on the BH 

data.              Method                                                    SIQ 0.351 0.012 -0.104 0.169 -0.494 0.191 0.228 0.311 0.220 -0.139 0.584 

LSIQ 0.342 -0.022 -0.059 0.296 -0.372 0.079 0.279 0.250 0.227 -0.202 0.644 

ALSIQ 0.446 0 0 0 -0.354 0 0.013 0.181 0.175 -0.158 0.767      SIQ 0.647 -0.028 -0.030 0.031 -0.489 0.177 0.213 0.067 0.166 -0.166 0.451 

LSIQ 0.153 0 0 0.243 -0.513 0.042 0.228 0.266 0.314 -0.246 0.609 

ALSIQ 0.123 0 0 -0.252 0.659 -0.146 -0.254 -0.325 -0.328 0.250 -0.354      SIQ 0.335 -0.009 -0.026 0.055 -0.500 0.130 0.217 0.059 0.206 -0.246 0.681 

LSIQ 0.110 -0.014 0 0.198 -0.597 0.092 0.246 0.165 0.325 -0.225 0.583 

ALSIQ 0.108 -0.014 0 0.198 -0.597 0.093 0.247 0.165 0.325 -0.224 0.583      SIQ 0.234 -0.032 -0.006 0.085 -0.585 0.109 0.283 -0.002 0.214 -0.308 0.601 

LSIQ 0.084 -0.046 0 0.155 -0.715 0.090 0.282 0.063 0.295 -0.192 0.490 

ALSIQ 0.112 -0.003 0 0.190 -0.656 0.069 0.235 0.009 0.338 -0.217 0.547      SIQ 0.174 -0.042 0.065 0.165 -0.461 -0.029 0.302 -0.090 0.204 -0.235 0.726 

LSIQ 0.033 -0.016 0.045 0.155 -0.722 0 0.187 0 0.379 -0.132 0.505 

ALSIQ 0.001 -0.057 0.053 0.069 -0.781 0 0.219 0 0.355 -0.135 0.432 

 

 

Table 4.8. MSE for estimated quantiles curves          based on the BH data. 

Method 

                               

SIQ 0.5083 0.3780 0.0901 0.0144 0.3117 

LASSO-SIQ 0.4509 0.2957 0.0406 0.0141 0.2833 

ALASSO -SIQ 0.4404 0.2611 0.0392 0.0130 0.2922 
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Figure  4.5. Plots explain the single-index coefficient estimates based on the BH data. 
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Figure 4.6. MSE for the smooth estimated quantiles curves          based on the BH . 

 

        

Figure 4.7. Plots for the smooth estimated quantiles curves          which are 

estimated by the ALSIQ, LSIQ and SIQ, respectively from the right to the left based on 

the BH data. 
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      Table 4.8 and Figure 4.6 present the MSEs for estimated quantile curves          
which are estimated by the proposed methods and the SIQ method based on the BH 

data for different quantile values.  From Table 4.8 and Figure 4.6, it is clear that the 

proposed methods outperform the SIQ method in fitting the BH data set.  Again, it can 

be seen that when        and         the proposed methods are significantly more 

efficient than the other methods. Figure 4.7 shows the smooth estimated quantile curves          which are estimated by all the methods under consideration based on the BH 

data for different quantile values.  

      Similar to Wu et al. (2010) possible quantile curves crossing at both tails can be 

seen, which due to the sparsity of data in the region concerned. The results of the real 

data example confirm the results of the simulation studies that the suggested methods 

behave well.  

 

 

4.7. Chapter Summary 

      In this chapter, an extension of the SIQ method of Wu et al. (2010) has been 

proposed, which considers Lasso and adaptive Lasso for estimation and variable 

selection. The effectiveness of the proposed extensions is explained via many 

simulation examples, as well as a real data analysis.  From the simulation study and the 

real data example, it can be concluded that the proposed extensions perform well in 

comparison to the SIQ method. We believe that the proposed extensions would supply 

helpful dimension reduction tools. Also, it would support the applicability of shrinkage 

methods to SIQ models. 
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Chapter 5 

 

Penalised Flexible Bayesian quantile regression
4
 

 
  

 

      Selecting an appropriate subset of predictors can help to develop prediction 

precision and interpretation. In this chapter, we proposed two regularisation 

approaches, the flexible Bayesian Lasso quantile regression and its adaptive version. 

The proposed methods have been compared with three existing methods. Extensive 

simulation studies and a study based on real data using the body fat dataset are 

conducted in order to examine the performance of the methods under consideration. 

The proposed methods perform well in comparison to the other methods in terms of the 

median mean squared error (MMSE), mean and the standard deviation (SD) criteria of 

the absolute correlation    , where the median, mean and SD are taken over the number 

of simulations. The results suggest that the proposed methods are useful practically. 
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5.1. Introduction 

      As pointed out in Section 1.1 and Section 4.1, quantile regression (QR) has become 

a widespread technique which can be used to describe the distribution of an outcome 

variable, given a set of predictors. It has been employed in many areas such as 

econometrics, social sciences, microarrays and agricultural studies, see Koenker (2005) 

for an overview.   

      Let    be a response variable and    a     vector of predictors for the     

obsevation,        is the inverse cumulative distribution function (ICDF) of    given   . Then, the relationship between        and    can be modelled as             , 
where    is a vector of   unknown parameters and   determines the quantile level.  

      According to Koenker and Bassett (1978),    can be estimated by 

                                                                                                                       
where       is the check loss function defined by 

                                                                                                         
      As a possible parametric link with minimising the check loss function (5.1), 

Koenker and Machado (1999) showed that the maximum likelihood solution of the 

asymmetric Laplace distribution (ALD) is equivalent to the minimisation problem in 

(5.1). Later, this idea was exploited by Yu and Moyeed (2001). The authors suggested a 

fully Bayesian approach for QR (BQR) under ALD error distribution. Recently, 

Bayesian approaches for QR have attracted much significant interest in the literature. 

For example, Tsionas (2003) developed a Gibbs sampling (GS) algorithm for the QR 

model, while Yu and Standard (2007) proposed Bayesian Tobit QR. Additionally, 

Geraci and Bottai (2007) considered BQR for longitudinal data using an ALD. 
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Likewise, Reed and Yu (2009) and Kozumi and Kobayashi (2009) proposed a GS 

algorithm based on a location-scale mixture representation of the ALD while Benoit 

and Poel (2011) proposed Bayesian binary QR. 

      Some researchers suggested nonparametric methods in order to avert the restrictive 

assumptions of the parametric approaches. See for example Walker and Mallick (1999), 

Kottas and Gelfand (2001), Hanson and Johnson (2002), Hjort (2003), Hjort and 

Petrone (2007), Taddy and Kottas (2007) and Kottas and Krnjajic (2009). Recently, 

Reich et al. (2010) proposed the Flexible Bayesian Quantile Regression (FBQR) 

approach. The authors assumed that the distribution of the error is an infinite mixture of 

Gaussian (IMG) densities. They called their method "flexible" because it does not 

impose parametric assumptions (e.g., ALD) or shape restrictions on the residual 

distribution (e.g., mode at the quantile of interest), as with other approaches (personal 

communication with Reich). 

      As pointed out in the previous chapters, selection of the important predictors from 

the original predictors is crucial for building a good multiple regression models. Subset 

selection by penalising the ordinary least squares has attracted considerable research 

interest. For example see, Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001) and 

adaptive Lasso (Zou, 2006). 

      Although the well-known classical least squares approach has many good 

mathematical properties, it is sensitive and is not robust to outliers (Bradic et al., 2011; 

Koenker and Bassett, 1978). However, robust variable selection can be achieved using 

a rigorous method, such as QR. 

      Koenker (2004) suggested using the regularisation method in conjunction with the 

QR model. The author placed an    penalty term on the random effects in a mixed-

effect QR model. Yuan and Yin (2010) suggested a Bayesian method to shrink the 
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random effects via adding an    penalty term to the QR check function. In addition, 

Wang et al. (2007) suggested merging the LAD and the Lasso in order to obtain robust 

parameter estimation and variable selection simultaneously. Li and Zhu (2008) 

developed the piecewise linear solution approach of the    penalised QR. Furthermore, 

Wu and Liu (2009) considered regularised QR with the SCAD and adaptive Lasso. Li 

et al. (2010) suggested Bayesian regularised QR. The authors proposed different 

regularisation methods from a Bayesian viewpoint, such as Lasso, elastic net and group 

Lasso. Alhamzawi et al. (2012) proposed Bayesian adaptive Lasso quantile regression 

(BALQR), which gives different penalisation parameters to different regression 

coefficients.  

      In this chapter, we evolve a flexible Bayesian framework for regularisation in the 

QR model. Similar to Reich et al. (2010), we assume the error distribution to be the 

IMG densities. This work is different from Bayesian Lasso quantile regression (BLQR) 

employing the ALD for the error. In fact, the use of the ALD is unfavourable due to the 

lack of coherence (Kottas and Krnjaji´c, 2009). For example, for a different   we have a 

different distribution for   ’s and it is difficult to resolve these differences. Our 

motivating example is an analysis of the Body fat (BF) data which is previously 

analysed by Johnson (1996) and is available in “mfp” package. This study included 

total body measurements of 252 men.  The aim is to explore the relationship between 

the percentage of the BF and 13 simple body measurements. In this study, we want to 

choose the most important simple body measurements for the QR model, relating to the 

percentage BF. High correlations are existent between the predictors in the BF data. For 

example, the correlation is 0.943 between the weight and the hip circumference, 0.916 

between the chest circumference and the abdomen circumference, 0.894 between the 

hip circumference and the thigh circumference, 0.894 between the weight and the chest 
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circumference, 0.887 between the weight and the abdomen circumference, 0.874 

between the abdomen circumference and the hip circumference and so on. The subset 

selection is significant in this data, in order to know which predictors have coefficients 

that vary among subjects. The high correlation between the predictors is an excuse in 

favour of using Bayesian adaptive Lasso because it deals with correlated predictors by 

using different weights for the different predictors.  

      The rest of this chapter is organised as follows. A short review of the FBQR model 

for independent data is given in Section 5.2. The FBLQR and FBALQR are proposed in 

Section 5.3 and Section 5.4, respectively. Simulations studies are implemented and 

applications of the proposed methods on real data are given in Section 5.5. Finally, the 

conclusions are summarised in Section 5.6. 

 

 

5.2. Flexible Bayesian Quantile Regression (FBQR) 

      Following He (1997), Reich et al. (2010) considered the heteroscedastic linear 

regression model 

                                                                                                                                 
where        for all    and    are independent and identically distributed. The 

authors rewrote the above model as a QR model: 

                                                                                                                       
where                has  th quantile equal to 0,       is the ICDF of   . In order to 

analyse   ’s  th quantile        , the authors only considered distributions for    with  th quantile equal to 0. Also, they fixed the element of     , corresponding to the 
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intercept at 1, in order to separate out the scale of the errors from     . The subscript   

is omitted in the rest of the chapter for notational convenience. 

      Reich et al. (2010) suggested a fully Bayesian approach for QR inference. The 

authors proposed a flexible residual distribution as an IMG densities. They assumed     
distribution as follows: 

                                                                                                          
where    are mixture proportions with           and                is given by  

                                                                                       
where the mixture proportion          is given by 

                                                        
                                                                       

Here,   refers to the        distribution,         uniform       for large constant    

and         ALD (0,     ), where the parameters are the location, scale and the 

skewness, respectively. The prior for the scale parameter    is Gamma           The 

proportions    are defined via the latent variables    which are independently and 

identically distributed from beta     , where   controls the strength of the prior for   . The first proportion is       and the others are given by                        . 

      Reich et al. (2010) rewrite the described model as a mixture model by introducing 

latent variables            and          as follows 

               , 
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where                     ,    Categorical          and     Categorical           . 
They assign a normal prior distribution for each                with mean zero and 

variance   . The prior for    is a vague normal prior subject to        for all   . 
Under these assumptions, the conditional distribution of   , given       and        is as 

follows: 

                                                                                                               
 

 

5.3. Flexible Bayesian Quantile Regression with Lasso penalty 

(FBLQR) 

      As mentioned in Section 4.3, Tibshirani (1996) proposed the Lasso for 

simultaneous variable selection and parameter estimation. As a possible link with 

Bayesian inference, the author showed that if the regression coefficients have 

independent and identical Laplace priors, the Lasso estimates can be interpreted as 

posterior mode estimates. This connection motivated Park and Casella (2008) and Hans 

(2009) to suggest Lasso-based models from a Bayesian perspective. Li et al. (2010) 

extended the idea of Bayesian Lasso (BL) regression to Bayesian Lasso quantile 

regression (BLQR). In BLQR, the ALD for the error is employed. Kottas and Krnjaji´c 

(2009) and Reich et al. (2010) showed that the use of the ALD is undesirable because 

of the deficiency of coherence.   



124 

 

      In this section, a flexible Bayesian framework for regularisation in QR is 

developed. Similar to Reich et al. (2010), the error distribution is assumed to be the 

IMG densities. We propose FBLQR minimises 

                                                                                                     
where                and   is a diagonal matrix with the element              on 

the diagonal  .  
A Laplace prior on    has been considered, taking the form of                    , 
which can be represented as a member of a scale mixture of normals (SMN) (Andrews 

and Mallows, 1974). 

                                 
                                      ,                               

Then the         can be written as:  

                                                                                                
We consider gamma priors,                       , on    (not  ). Then, we have the 

following hierarchical model:                                               , 

                                     , 

                   ,         ALD (0,     ),    Gamma                   Uniform      ,    Categorical         ,     Categorical           , 
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                                        , 
where      ,                 and the latent variables    are independently 

and identically distributed from beta     . The details of the Gibbs sampler are given 

in the appendix. 

 

 

5.4. Flexible Bayesian quantile regression with Adaptive    

Lasso penalty (FBALQR) 

      As pointed out in Sections 3.4 and 4.4, Zou (2006) suggested the adaptive version 

of the    norm via employing different weights onto different regression coefficients. 

From a Bayesian viewpoint, Bayesian adaptive Lasso (BAL) was considered by Griffin 

and Brown (2007) and Sun et al. (2010). Later, Alhamzawi et al. (2012) proposed the 

Bayesian adaptive Lasso QR (BALQR) using the ALD for the errors. Employing an 

ALD in Bayesian QR is undesirable, therefore we propose the FBALQR minimises: 

                                                                                                   
In this section, a Laplace prior on    has been proposed taking the 

formula,                      , which can be interpreted as the SMN (Andrews and 

Mallows, 1974) 

                             
                                                .                              

Then the          can be written as: 

                                                                   .                           
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Furthermore, we assume a gamma prior on    ,                          . To 

summarise, we propose the following hierarchical Bayesian model:                                               , 

                                        , 

                      ,         ALD (0,     ),    Gamma                   Uniform      ,    Categorical         ,     Categorical           ,                                         , 
 

where      ,                 and the latent variables    are independently 

and identically distributed from beta     . 
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5. 5. A simulation study 

      A numerical study was implemented in order to assess the behaviour of the 

proposed methods. We have generated       data-sets with size       

observations from                , where    are generated as independently and 

identically distributed standard normals. The error    is simulated from three possible 

error distributions:       , a      distribution with 3 D.F and       with 3 D.F. The 

following designs for the vector    are assumed: 

Design 1:                                                    

Design 2:                                                    

Design 3:                                                      

Design 4:                                                       
where the first element in   corresponds to the intercept. 

     

      Each simulated data set is analysed via five methods. The FBLQR and FBALQR, 

which are proposed in Sections 5.3 and 5.4 respectively, are compared with the Lasso 

quantile regression (LQR), the standard frequentist (QR) and the FBQR. The LQR and 

the standard frequentist (QR) are implemented using the “quantreg” package in R.  We 

run our algorithm for 15000 iteration discarding the first 5000. We set    ,               and           . 

      To compare the performance of the estimators, we report the mean and SD of     
between      and     and the median of the mean squared error (MMSE) of     . 
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Table 5.1. Simulation results for the FBALQR, FBLQR, FBQR, LQR and QR based on 

design 1.   Method  Error Distribution                        
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE 

     FBALQR 0.9972 0.0013 0.0034 0.9949 0.0022 0.0118 0.9946 0.0017 0.0154 
FBLQR 0.9968 0.0012 0.0036 0.9946 0.0024 0.01495 0.9921 0.0016 0.0167 
FBQR 0.9966 0.0014 0.0045 0.9935 0.0025 0.0191 0.9905 0.0014 0.0262 
LQR 0.9959 0.0014 0.0045 0.9936 0.0039 0.0185 0.9908 0.0014 0.0226 
QR 0.9957 0.0014 0.0070 0.9932 0.0037 0.0201 0.9881 0.0020 0.0330     FBALQR 0.9971 0.0013 0.0033 0.9955 0.0011 0.0053 0.9854 0.0082 0.0315 

FBLQR 0.9970 0.0013 0.0034 0.9954 0.0011 0.0055 0.9846 0.0073 0.0326 

FBQR 0.9969 0.0014 0.0048 0.9951 0.0024 0.0054 0.9797 0.0073 0.0552 

LQR 0.9958 0.0018 0.0041 0.9953 0.0021 0.0053 0.9822 0.0060 0.0393 

QR 0.9957 0.0018 0.0056 0.9949 0.0013 0.0056 0.9785 0.0066 0.0570      FBALQR 0.9962 0.0010 0.0050 0.9934 0.0025 0.0157 0.9453 0.0179 0.0534 

FBLQR 0.9960 0.0010 0.0053 0.9933 0.0024 0.0163 0.9433 0.0166 0.0544 

FBQR 0.9958 0.0009 0.0065 0.9932 0.0032 0.0179 0.9385 0.0176 0.0751 

LQR 0.9952 0.0014 0.0055 0.9931 0.0034 0.0169 0.9398 0.0178 0.0612 

QR 0.9950 0.0014 0.0067 0.9930 0.0031 0.0190 0.9362 0.0229 0.0829 

 

 

Table 5.2. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR based on 

design 2. 

  Method  Error Distribution                        
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE      FBALQR 0.99964 0.00021 0.00415 0.99335 0.00264 0.02084 0.99949 0.00035 0.03962 

FBLQR 0.99963 0.00013 0.00473 0.99293 0.00271 0.02313 0.99926 0.00055 0.04691 

FBQR 0.99962 0.00022 0.00544 0.99190 0.00233 0.06672 0.99903 0.00036 0.06922 

LQR 0.99951 0.00021 0.00693 0.99241 0.00210 0.05682 0.99913 0.00043 0.06550 

QR 0.99941 0.00023 0.00694 0.99134 0.00312 0.07380 0.99874 0.00043 0.07351     FBALQR 0.99973 0.00013 0.00377 0.99952 0.00024 0.00254 0.99885 0.00061 0.01026 

FBLQR 0.99972 0.00014 0.00412 0.99951 0.00024 0.00272 0.99873 0.00062 0.01094 

FBQR 0.99971 0.00016 0.00503 0.99943 0.00025 0.00355 0.99790 0.00070 0.02183 

LQR 0.99962 0.00021 0.00605 0.99942 0.00030 0.00471 0.99861 0.00095 0.01263 

QR 0.99961 0.00020 0.00675 0.99941 0.00050 0.00493 0.99781 0.00095 0.02541      FBALQR 0.99972 0.00022 0.00342 0.99923 0.00033 0.01215 0.99589 0.00212 0.01207 

FBLQR 0.99961 0.00022 0.00391 0.99915 0.00033 0.01342 0.99574 0.00157 0.01765 

FBQR 0.99960 0.00024 0.00471 0.99882 0.00036 0.04641 0.99432 0.00243 0.05400 

LQR 0.99953 0.00022 0.00614 0.99911 0.00050 0.03240 0.99515 0.00291 0.05099 

QR 0.99951 0.00023 0.00690 0.99878 0.00051 0.04671 0.99391 0.00292 0.07122 
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Table 5.3. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR based on 

design 3. 

  Method  Error Distribution                        
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE      FBALQR 0.99868 0.00042 0.00602 0.99755 0.00128 0.01001 0.99699 0.00066 0.01391 

FBLQR 0.99855 0.00044 0.00603 0.99744 0.00123 0.01043 0.99654 0.00091 0.01661 

FBQR 0.99754 0.00060 0.00624 0.99713 0.00132 0.01180 0.99603 0.00163 0.02303 

LQR 0.99853 0.00051 0.00613 0.99731 0.00130 0.01122 0.99615 0.00100 0.02275 

QR 0.99732 0.00063 0.00643 0.99701 0.00142 0.01263 0.99586 0.00157 0.02370     FBALQR 0.99875 0.00052 0.00435 0.99852 0.00072 0.00593 0.99541 0.00173 0.01253 

FBLQR 0.99872 0.00054 0.00484 0.99824 0.00074 0.00664 0.99511 0.00180 0.01727 

FBQR 0.99823 0.00056 0.00543 0.99811 0.00077 0.00690 0.99270 0.00196 0.02465 

LQR 0.99863 0.00055 0.00495 0.99815 0.00076 0.00685 0.99491 0.00190 0.01965 

QR 0.99821 0.00059 0.00563 0.99802 0.00079 0.00688 0.99225 0.00201 0.03368      FBALQR 0.99835 0.00052 0.00434 0.99765 0.00080 0.01025 0.98729 0.00471 0.04346 

FBLQR 0.99833 0.00055 0.00430 0.99757 0.00100 0.01044 0.98661 0.00505 0.04612 

FBQR 0.99812 0.00060 0.00476 0.99752 0.00112 0.01699 0.98354 0.00547 0.05250 

LQR 0.99815 0.00058 0.00441 0.99755 0.00111 0.01652 0.98453 0.00521 0.04792 

QR 0.99803 0.00061 0.00478 0.99754 0.00115 0.01910 0.98255 0.00574 0.05293 

 

 

Table 5.4. Simulation results for FBALQR, FBLQR, FBQR, LQR and QR based on 

design 4. 

  Method  Error Distribution                        
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE     
mean 

    
SD 

MMSE      FBALQR 0.99994 0.00011 0.00435 0.99977 0.00010 0.02063 0.99978 0.00011 0.01440 

FBLQR 0.99991 0.00014 0.00482 0.99975 0.00012 0.03141 0.99976 0.00013 0.01622 

FBQR 0.99983 0.00018 0.00510 0.99973 0.00017 0.03340 0.99973 0.00022 0.01678 

LQR 0.99985 0.00015 0.00495 0.99974 0.00014 0.03272 0.99974 0.00021 0.01673 

QR 0.99982 0.00022 0.00530 0.99969 0.00019 0.04525 0.99963 0.00023 0.01701      FBALQR 0.99996 0.00011 0.00114 0.99989 0.00012 0.00844 0.99962 0.00024 0.02352 

FBLQR 0.99993 0.00013 0.00122 0.99987 0.00014 0.00864 0.99941 0.00031 0.02796 

FBQR 0.99984 0.00022 0.00262 0.99982 0.00017 0.01826 0.99921 0.00036 0.03619 

LQR 0.99992 0.00017 0.00127 0.99985 0.00015 0.00958 0.99933 0.00034 0.02842 

QR 0.99982 0.00023 0.00300 0.99980 0.00021 0.02028 0.99906 0.00037 0.03653      FBALQR 0.99987 0.00009 0.00286 0.99978 0.00012 0.02270 0.99876 0.00050 0.04221 

FBLQR 0.99986 0.00011 0.00445 0.99976 0.00013 0.02281 0.99852 0.00062 0.04271 

FBQR 0.99980 0.00020 0.00563 0.99970 0.00017 0.02403 0.99810 0.00073 0.04899 

LQR 0.99983 0.00014 0.00460 0.99972 0.00015 0.02322 0.99821 0.00065 0.04754 

QR 0.99977 0.00024 0.00670 0.99964 0.00020 0.02470 0.99791 0.00076 0.05685 
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Figure 5.1. The left column explains the plots for the     between      and     for 

design 1, where the error distributions are       ,      and      , respectively. The right 

column explains the plots for the MMSE of      for design 1, where the error 

distributions are       ,      and      , respectively. 
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Figure 5.2. The left column explains the plots for     between      and     for design 

2, where the error distributions are       ,      and      , respectively. The right column 

explains the plots for the MMSE of      for design 2, where the error distributions are       ,      and      , respectively. 
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Figure 5.3. The left column explains the plots for     between      and     for design 

3, where the error distributions are       ,      and      , respectively. The right column 

explains the plots for the MMSE of      for design 3, where the error distributions are       ,      and      , respectively. 
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Figure 5.4. The left column explains the plots for     between      and     for design 

4, where the error distributions are       ,      and      , respectively. The right column 

explains the plots for the MMSE of      for design 4, where the error distributions are       ,      and      , respectively. 
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      The results of the simulation are presented in Tables 5.1–5.4 and Figures 5.1–5.4. 

From Tables 5.1–5.4 and Figures 5.1–5.4 and for all of the distributions under 

consideration, it can be observed that the results of     between       and     for the 

proposed methods are higher than the other methods, suggesting a good performance 

from the FBALQR and FBLQR. Instead of looking at    , we may also look at the 

MMSE for     . The results of the MMSE also support the good characteristics of the 

FBALQR and FBLQR. This shows that the FBALQR and FBLQR produce accurate 

estimates even when the distribution of the error is asymmetric. Most noticeably, when        and        the FBALQR and FBLQR are significantly more efficient than 

the other methods. In addition, we can observe that the worst estimators for all of the   

values are QR. 

 

      We have illustrated the practical performance of the methods which are discussed in 

this chapter by using the BF data which is described in subsection 3.8.2.  

  

 

Table 5.5. MSE for     , which is estimated by FBALQR, FBLQR, FBQR, LQR and 

QR based on the BF data for        ,       and       . 

Method                   

    FBALQR 0.1084258 1.133324e-05 0.1370678 

FBLQR 0.1241451 7.436673e-05 0.1423978 

FBQR 0.1377442 9.326444e-05 0.1477935 

LQR 0.1270168 0.001221321 0.1497241 

QR 0.1414865 0.0009612835 0.1639030 
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Table 5.6. The estimated coefficients   , which are estimated by FBALQR, FBLQR, 

FBQR, LQR and QR based on the BF data for        ,       and       . 
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Figure 5.5. Plots explaining MSE for       which is estimated by FBALQR, FBLQR, 

FBQR, LQR and QR based on the BF data for        ,       and       . 
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Figure 5.6. Plots explaining the estimated coefficients   , which are estimated by 

FBALQR, FBLQR, FBQR, LQR and QR based on the BF data for        ,       

and       . 
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      The results of the BF data analysis are reported in Tables 5.5–5.6 and Figures 5.5–

5.6. From Table 5.5 and Figure 5.5, we have made the following observations. 

According to the MSE criterion, it can be seen that the performance of the FBALQR 

and FBLQR is better than the performance of the other methods. Also, it is clear that 

the FBALQR and FBLQR give accurate estimates. Again, we can see that when        and       , the FBALQR and FBLQR are significantly more efficient than 

the other methods. The results of the simulation studies and the real data example 

suggest that the suggested methods perform well. 

  

 

 

5.6. Chapter Summary 

      In this chapter, we have suggested the FBLQR and FBALQR by suggesting a 

hierarchical model framework. These methods have been compared with FBQR, LQR 

and the standard frequentist QR methods. In order to assess the numerical performance, 

simulation studies have been carried based on the model                , as 

described in Section 5.5. From the simulation studies and body fat data, we can 

conclude that the FBALQR and FBLQR perform well in comparison with the other 

methods and thus we believe that the proposed methods are practically useful. 
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Appendix 

      The details of the Gibbs sampler for the FBLQR method are given as follows: 

1- The full conditional distribution (FCD) of    is a            , where   

                                     , 

and                                                             . 
2- The FCD of    is inverse Gaussian           ,        , where              

and         . 

3- The FCD of     is                           
Given                and        , the parameters                    

and the standard deviation parameters can be updated using a Gaussian distribution. 

The group indicators    are also updated using Metropolis-Hasting sampling (see Reich 

et al. (2010) for more details). 

 

      The FCD for all parameters in the FBALQR method is similar to the above 

description, except for the FCD for    and              which are given by  

1- The FCD of    is           ,        , where                and         . 

2- The FCD of     is                    . 
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Chapter 6 

 

Conclusions and Future Research 

      The work in this thesis focuses on some statistical methods relating to variable 

selection, feature extraction and a combination of the two. The major contributions of 

the thesis and possible future research are summarised as follows. 

 

 

6.1. Main Contributions  

      In Chapter 2, the main contributions are from proposing a number of robust 

canonical correlation (RCCA) methods.  In the correlation matrix of the CCA, we 

suggest an approach that replaces the Pearson correlation with the percentage bend 

correlation and the winsorized correlation in order to obtain robust correlation matrices. 

The resulting correlation matrices have been employed to produce the RCCA methods. 

Moreover, the FCH, RFCH and RMVN estimators are employed to estimate the 

covariance matrix in the CCA. After that, these estimators are compared with the 

existing estimators. Researches on robust estimators such as the FCH, RFCH and 

RMVN, which are backed by theory, are needed to oppose large amount of material 
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available in the literature on zero breakdown estimators, such as Fast-MCD and Fast-

MVE estimators that are not backed by theory, which were used instead of the MCD 

and MVE estimators.  

      In Chapter 3, we extended the Sparse MAVE (SMAVE) (Wang and Yin, 2008) by 

combining the MAVE method with the variable selection methods SCAD, adaptive 

Lasso and the MCP. The proposed methods have merits over the SMAVE and SSIR 

method (Li, 2007) because the proposed methods use penalisation, which benefits from 

oracle properties, while SMAVE and SSIR use Lasso, which does not. Also, the 

proposed methods have advantages over SSIR in that these methods do not need any 

certain distribution on   and are able to estimate the dimensions in the conditional mean 

function. 

      Extensions of the SIQ model of Wu et al. (2010) via considering Lasso and adaptive 

Lasso are proposed in Chapter 4. In addition, the practical algorithms have been 

suggested in order to calculate the penalised SIQ estimates. 

      In Chapter 5, a flexible Bayesian framework for regularisation in quantile 

regression models is developed. The error distribution is assumed to be an infinite 

mixture of Gaussian densities. This work is different from Bayesian lasso quantile 

regression, employing the ALD for the error. In fact, the use of the ALD is undesirable 

because of the deficiency of coherence (Kottas and Krnjaji´c, 2009).  
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6.2. Recommendations for Future Research 

      The topic of Chapter 2 offers the possibility of using robust multivariate location 

and dispersion RFCH and RMVN to estimate the covariance matrix in the classical 

multivariate procedures, such as discriminant analysis, factor analysis, principal 

components and sliced inverse regression in order to obtain robust estimators because 

the classical multivariate procedures are sensitive to the outliers. 

      The work is presented in Chapter 3 motivates us to recommend a number of 

interesting future work recommendations. Two of these are: 

1. To study the MAVE with group variable selection-(group Lasso, group MCP and 

group Bridge). 

2. It is possible to extend the MAVE method to the MAVE-QR method. The MAVE- 

QR method will inherit the same advantages as the MAVE method. Also, we are 

planning to study the sparse MAVE- QR method with Lasso, adaptive Lasso and 

other regularisation penalties.  

 

      Although the QR has become very popular as a comprehensive extension of 

classical mean regression, it nonetheless sometimes suffers from two problems. The 

first problem is the crossing of regression functions estimated for different orders of 

quantiles. The second problem is its practical success suffers from the “curse of 

dimensionality” (CD) in HD data. As we have pointed out in Chapter 4, the SIQ 

method reported by Wu et al. (2010) solved the CD problem, but still suffers from the 

crossing of regression functions at different orders of quantiles. It is possible to develop 

the SIQ method from Wu et al. (2010) to deal with this problem.     
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      From Chapter 5, we can recommend the following future work: 

1. The proposed methods can be extended to binary and left censored response 

variables. 

2. To study other penalties, like the fused Lasso (Tibshirani et al., 2005), group Lasso 

(Yaun and Lin, 2006) and Elastic Net (Zou and Hastie, 2005). 
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