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   1. Summary and introduction. 

   Let X1, X2, ••• , X, be a random sample of size n from a population with an 
unknown probability density function f(x). The estimator of the form f(x) = 

 1 " - E wn(x-X,) of the unknown density f(x) based on this sample, where wn(y)> 0 

 n on R1 and .1 w„(y)dy =1, is shown to be not unbiased for any probability density 
function. For the class of all continuous probability density functions, the estimator 

fn(x) is asymptotically unbiased if and only if the sequence of functions { wn(y)dy} 
converges to the unit distribution function except for the origin. Furthermore for 
this class the consistency and the asymptotic normality of the estimator fn(x) is dis-
cussed. In case f(x) is symmetric around zero, we propose an estimator f,i(x)= 

1 -2 { fn(x)+ f„(- x)} . Then the variance of the proposed estimator fn(x) is asympto-
tically half of the variance of the estimator fm(x) at a non-zero point x of continuity. 
We also consider the integration of our estimator Fn(x) as an estimator of the dis-
tribution function, which is compared with the empirical distribution function Pnqx). 

We propose an estimator P„(x)=-1-{F,(x)+1-F„(-x)1 and the corrected empirical 

distribution function P,,*(x)= -1-{F:(x)+1-F,*(- x-0)1 for all (absolutely) continuous 

symmetric distribution functions. The mean square error of P:(x) is smaller than 
half of the mean square error of F,*(x) for x with F(x) 0 or 1, and the estimator 
P„(x) is asymptotically at least as good as F„(x). 

   The density estimator of the form : 

                                      1 7' (1.1)fn(x) =- - E w„(x-X1) 
                                          n ;=, 

was introduced by Rosenblatt [8], and several authors have discussed the statistical 

properties of the estimator f,(x). Concerning the unbiasedness of density estimators, 
the following result is obtained by Rosenblatt [8] : let a function S(y: x1, ••• , x„) .� 0 
be Borel measurable in (y, x1, ••• , x„) and symmetric in (x1, --• , x„). Then there are 
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114H .  YANIATO

no estimators S(y: Xl, ••• , Xn) unbiased for all continuous probability density func-
tions, f(y). Therefore it is obvious that there are no unbiased estimators f n(x) given 
by (1.1) with wn(y)� 0 on R1 for all probability density functions . Now there arises a 

question if there exists a subset of the class of all continuous densities, where den-
sity functions have unbiased positive estimators f„(x). We shall answer the ques-
tion in section 2. 

   Next we prepare ourselves with the brief review on the asymptotic unbiased-

ness, asymptotic variance, consistency and asymptotic normality of the density 

estimator fn(x) given by (1.1), which were treated by Parzen [7], Leadbetter [3], 

Murthy [6] and Craswell [1]. 

   In Parzen [7] it is shown that if a sequence of real positive numbers Ihnj con-
verges to zero and a measurable function K(y) satisfies 

(1.2)sup I K(y)1<u) 

(1.3)                              K( ,)idy < co , 

(1.4)lim yK(y) 0 , 

(1.5)                            K(y)dy= 1 , 

then the density estimator fn(x) given by (1.1) with w„(y)= h1h                                          K(Y) satisfies 
                         nn 

(1.6)lim Efn(x).= f(x) 
                                                                n•co 

and 

(1.7)lim nhn Var [f7,(x)] f(x)f K2(y)dy 
at all points x of continuity of f. Furthermore, if nh.„---00 as then 

(1.8)lim El fn(x)— f(x)12 = 0 
                                         n-00 

and fn(x) is asymptotically normal at all points x of continuity of f. 

   If we are intereted in continuous probability density functions, (1.6), (1.7), (1.8) 

and the asymptotic normality of fn(x) hold for K(y) satisfying (1.2), (1.3) and (1.5), 

but not necessarily (1.4). 

   Next, we shall state the results in general case given by Leadbetter [3], in 

which {tun} is a 5-function sequence, that is, {wn} satisfies the following conditions : 

                w (x)idx < A for all n and some fixed A, 

               Tv (x)dx= 1 for all a , 

             wn(x)—,0 uniformly in I x I > 2 for any fixed 2 > 0 ,                  

I wn(x)idx--,0 asfor any fixed 2 > 0 . 

                    

ix 1)-2 

If {wn} is a 3-function sequence, then (1.6) and



Some Statistical Properties of Estimators of Density115

 lim n V ar[fn(x)] = f(x) 
                                               n— 

hold at a point x of continuity of f, where a„ = wax)dx < co. Furthermore 

                  lim n Coy (fn(x), fn(Y)>= —f(x)f(Y) 

at two distinct points x and y of continuity of f . If {w„} be a ö-function sequence 
such that a„ < oo, an = 0(n) and for some constant Ko, wri(u)i < Koan for all a and u, 
then the distribution of 

                        A/ [fn(x)— Ef„(x)] 
                             [a,f(x)11'2 

'converges to the standardized normal distribution at a point x of continuity of f 

with f(x) 0. 

   Murthy [6] discussed the properties (1.6), (1.7), (1.8) and the asymptotic normality 
of the same one as the density estimator in Parzen [7] , in case a randcm sample 
X„ ••• , X, is obtained from a distribution with no singular part. He proved that if 

h„ and 71/77,---,00 as Do and the measurable function K(y) satisfies K(y) 0 on 

R1, K(—y)= K(y), (1.4) and (1.5), then the density estimator fn(x) given by (1.1) with 
         1

n 
wri(Y)=--—12) have the properties (1.6), (1.7), (1.8) and the asymptotic normality           /I7, 
at a point of continuity of the distribution function and the derivative of the ab-

solutely continuous part. 

   At last, we state the results given by Craswell [1] in case the sample space is 

    Suppose wn is real-valued, non-negative, symmetric and integrable function on 
R1 such that 

                                                           o (1.9)                              wn(y)dy= 1 , 

•1.10) for any e> 0 

   (a){f--c              wn(y)cly±f wn(y)dy} = 0 

   (b) wn(y)— 0 uniformly for almost all y (—Do, --E)U (c)o, . 

Then the density estimator fn(x) is asymptotically unbiased at a point of continuity 

of f. In addition, if {C„} is a sequence of positive constants , converging to zero, 
for which {Cniv,(y)} satisfies (1.9), (1.10a) and (1.10b), then 

                     lim nC, V ar [ fn(x)] = f(x) 
                                                        n•0. 

at a point x of continuity of f and { fn(s), fn(t)} is jointly asymptotically normal and 

independent when s and t are two distinct continuous points of f with f(s)+f(t) # 0. 

   In section 3, we shall treat the necessary and sufficient condition that the den-

sity estimator fn(x) given by (1.1) is asymptotically unbiased for the class of all 

continuous density functions. 
   In section 4, we shall make use of a sequence similar to {C,} in Craswell [1] 

and {an} in Leadbetter [3], determined by {w„} itself and discuss the asymptotic
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properties of  V  ar [fn(x)] and the consistency of fn(x) for continuous density func-
tions. 

   In section 5, we shall give the limit distribution of fn(x) for continuous density 

functions, which is derived from the result in section 3. 

   In section 6, we shall treat the case where the density function is symmetric 

around the origin. Keeping in mind the fact that the covariance of density esti-

mators fn(u) and fn(v) is asymptotically zero at two distinct points u, v of continuity 

of f, which is given by Leadbetter [3], we propose the estimator 

         2M                              Ifii(x)+—x)} 

for symmetric density functions. We discuss the asymptotic unbiasedness, con-

sistency and asymptotic normality of fn(x), and the variance of fn(x) is shown to be 
asymptotically half of the variance of fn(x). 

   In section 7, we shall compare the estimator of the distribution function obtained 
by integrating the density estimator fn(x) with the empirical distribution function. 
We propose the estimator obtained by integrating in(x) and the corrected empirical 
distribution function for all (absolutely) continuous symmetric distribution functions 
and four estimators of distribution functions are compared. 

   The author would like to acknowledge the continuing guidance and encourage-
ment of Prof. A. Kudo of Kyushu University.

   2. Unbiasedness. 

   THEOREM 1. Let X1, X2, '•', X, be independently, identically distributed radom 

variables with a probability density function f(x). Let W be the class of measurable. 

functions w satisfying 

(2.1)w(y)� 0 on 

and 

(2.2) w(y)dy =1. 

Then there does not exist any function wn E clifi such that the estimator fn(x), given by 

(1.1), of the density function f(x) is unbiased. 

   PROOF. We suppose conversely that there were the function wn E 5,11 such that 

                          Efn(x),--- f(x) on R1, 
i. e., 

(2.3)rw.(x—Y)fKY)dY=f(x) onR1. 
By using Fourier transform of the function wn, Co n, and the characteristic function,. 
w, we can reduce (2.3) to 

(2.4)0„,.(u) co(u) = co(u) on R1.
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Since the characteristic function  co(u) is equal to 1 and continuous at u = 0, there 
exists a s > 0 such that 

<2.5)co(u)# 0 on (—E, r) . 

From (2.4) and (2.5) we have 

                          Own(u)= 1 on (—s, s) . 

Therefore by Proposition a on p. 202 in Loeve [5] we have 

<2.6) w n(u)= 1 on R1. 

There does not exist the function wn satisfying (2.1), (2.2) and (2.6), which contradicts 
to the assumption. Thus the theorem is proved. 

   We note that the estimator given by (1.1) with w„ W is also a probability 
density function. If we allow that the function wn to take negative values , then 
we can give an artificial example of the unbiased density estimator fn(x) given by 

<1.1). Such the estimator may not be non-negative. Consider the density function 

                     f(x)= ( sin(x/2)                           27rx/2 

and the function 

         wn(x,_ 1 ((i+ao, j sin ((1+an)x/2) 12( sin (x/2)2)         )27ra
n(1 + an)x/2x/2 

where {an} is a sequence of positive numbers diverging to +00 . Then we have 

                  wn(x)dx = 1 , 

                           0 if x < 0 
                     wn(x)dx = 

                           1 if x> 0 

                      1—Hui on [-1, 1] 
              y(u)= 

                          0 on (— co, —1) (1, co) 

                       1 on [-1, 1] 
                 w n(u)= 

                            0 on (—co, —1—an) `.J (1 + a., 00) 

where yo is the characteristic function of f and Own is Fourier transform of wn. 
Thus we have 

                      Own(u)y(u)= y(u) on R1 , 
and consequently 

                Jw (x—y)f(y)dy= f(x) on R1. 

Therefore the density estimator fn(x) given by (1.1) with the above wn(x) is unbiased .
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   3. Asymptotic unbiasedness. 

   By the similar method to the proof of Theorem 1, we can show the following 

   LEMMA 1. For arbitrary probability density function f(x), the distribution function 
Go satisfying 

                     f(x—y)dGo(y)= f(x) on R' 

is the unit distribution function. 

   Hereafter we shall denote the unit distribution function by G,, i. e., 

                           0 if x 0 
                     G0 (x) = 

                             1 if x� 0 

and the distribution function induced by the corresponding function wn E by Wn, 
i. e., 

(3.1)W n(x)--= x w ,,,(t)dt for all wn E , 

where W is defined in Theorem 1. It should be noted that the function Wn is a 
distribution function. Now, we can give the necessary and sufficient condition for 

the density estimator fn(x) to be asymptotically unbiased for the class of continuous 

probability density functions. 

   THEOREM 2. If the sequence of functions {WO converges to the unit distribution 

function G, except for the origin, then the density estimator fn(x) given by (1.1) is 
asymptotically unbiased for all continuous density functions, f(x). Conversely if the 
estimator fn(x) is asymptotically unbiased for all continuous probability density func-
tions, then the sequence {WO converges to the unit distribution function Go except for 
the origin. 

   PROOF. At first, we shall note that 

                     Efn(x)= w,i(x f(y)dy 

(3.2)= 3 f(x—Y)wn(Y)dY 

                               i(x—Y)dWn(Y). 

If the sequence of the distribution functions {W7,} converges to the unit distribution. 

function Go, then by the continuity of f(x) and Theorem 11.2 in Ito [21, we have 

                lim f(x—y)dW,i(y)= f(x—y)dGo(y) 

                                 = f(x) .
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   Conversely we assume that 

(3.3) lim  Ef7,(x)=  f(x) on R1 
                                                71-00 

for all continuous density functions, f. From (3.2), we can reduce (3.3) to 

(3.4)lim f(y)w,i(x—y)dy = f(x) on R1 
                                                      —co 

for all continuous density functions, f. Let Co be the class of all continuous func-

tions equal to zero except for on some bounded set on R1. Then, for any h e 

h+(y)= max (h(y), 0) and h-(y)= max (—NY), 0) are also contained in Co and h(Y)=- 

h+(y)—h-(y). Since for any 7 > 0 both 

               h÷(y---r)h-(y—r)  

                    h+(t)dtandh-(t)dt 

are continuous density functions in y, inserting these in (3.4), taking off constant 

terms and taking the difference, we have 

              lim h(y—r)W7,(x—y)dy = h(x—r) , for any h E Co . 
                                n--.00 

By the transformation after putting r equal to x, we have 

             Urn h(—Y)wn(Y)dY = h(0) for any h e Co 
                                  —co 

Consequently 

            lim h(Y)wn(Y)dY = h(0) for any h C Co 
                       n--co—co 

i. e., 

             /im h(y)dWi,(y)=-- h(Y)dGo(Y) for any h e Co , 
                    n—co —co 

which implies that the sequence of distribution functions { Wn} converges to the 

unit distribution function Go at all points of continuity of CO, that is, except for 
the origin (See, for example, Theorem 11.2 in Ito [2]). Thus the theorem is proved .

   4. Variance. 

   In section 3, we showed that the density estimator fm(x) given by (1.1) is asymp-

totically unbiased if and only if the sequence of functions { WO converges to the 
unite distribution function, in other words, the sequence of functions { WO converges 

to Dirac 5-function 5 in distribution. Whereas the above convergence does not 

imply that lim wn(x)= 5(x) on R1. We shall consider the convergence of sup wn(x) 

in the following 

   LEMMA 2. Let wn e LW be continuous on [—c, c] for all n and some positive con-
stant c and
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(4.1) Mn, = sup wn(x)< co for all n . 
                                     _00<x‹. 

Let the corresponding sequence of distribution functions {Wn} converge to the unit 

distribution function G, except for the origin. Then we have 

                                  lim Mn= co . 
                                                   n—co 

    PROOF. Conversely, we suppose that there exist a constant K> 0 and a sequence 

of positive integers {nk} such that 

(4.2)Mnk < IC for all nk 

For the above constant c > 0, let us put 

(4.3)Gtk(x)= fx wiik(t)dt for all nk on [—c, c] . 

The function Gtk(x) is continuous on c] for all nk and 

(4.4)lim Gtk(x)=-- G0(x) for x 0 on [—c, c] . 

By the first mean value theorem and the continuity of wn we have 

(4.5)I GI; k(x)— Gtk(Y)I = I x--.Y I w nk(e) for all nk , 

where e is some value between x and y E [— c, c]. From (4.3) and (4.5), we have                      

I G' k(x)—Gt k(y)I I x—yIK 

for all nk and x, y E c], which implies that {Gtk(x)} are equicontinuous on [—c, 

c]. On the other hand, it is obvious that I Gtk(x)1 1 for all nk and x E [— c, c], 

that is, {Gtk(x)} is uniformly bounded. Therefore by Ascoli-Arzela's theorem the 

convergence of (4.4) holds uniformly. On the other hand we have 

                sup I Gtk(x)—G0(x)I = max {Gtk(0), 1—G4,4(0)} 

which does not converge to zero. Thus the lemma is proved. 

   The result in Lemma 2.1 of Leadbetter [3] can be generalized to the case where 

the sequence of functions {WO, induced by {wn}, converges to the unit distribution 

except for the origin, because the property that 

                               2 
                   lim wn(y)dy =1 for any A > 0 

                                            —a 

holds also for our sequence twnl. Note that {wn} contains the 5-function sequences 

which he considered, in non-negative case. 

   LEMMA 3. If the sequence of functions {WO converges to the unit distribution 

function except for the origin and 

(4.6)an= (x)dx < oo for all n ,
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then we have 

 lim  an=  co 

   PROOF. Although the proof is identical with that of Leadbetter [3], we dare 

to present the proof as the present author is not able to locate any literature, widely 

available, which gives the proof. 

   Since the sequence of distribution functions {Wn} converges to the unit distri-

bution function, we have easily 

                                               C 

                    limwn(x)dx= 1 for any s > 0 . 
                                71—..—6 

By Scharz's inequality we have 

                   05_JEwn(x)dx_5_(20112(fw;,(x)dx)1/2 
     ss 

Hence it follows that 

               (201/2 lim inf (fOn(x)dx)1/2 
                                                  n—.00 

                                                                        1/2 

                     lim inf (2s)112(f On(x)dx) 
                                                                     -e 

                            >.= lim infwn(x)dx-=1. 
                              n-00-e 

Thus for any s> 0 we have 

                            lirninf an�-1- 
                        n-.—2s' 

which yields the conclusion. 

   Obviously for Mn and an given by (4.1) and (4.6) respectively 

                           0a                                �.urn<1 

                                                         n and the limit also lies, if exists, between 0 and 1. 

   THEOREM 3. Let wnEcW be continuous on [—c, c] for all 77, and some constant 

c> O. Suppose that the corresponding sequence of functions {W,} converges to the 

unit distribution Go except for the origin and the limit in the left hand side of (4.7) 
exists 

(4.7)lima=-                                   .-.0 Mn 

Then for the density estimator fn(x) of continuous density functions f(x), given by (1.1), 

we have 

(4.8)lim              Mn                    n-a)Var[fn(x)]-=i3f(x) on R1 . 

   PROOF. In case of 13 = 0, (4.8) is obvious. We consider the case of P 0. We 
have
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(4.9)                 a
n-,,Var[fn(x)1=.1(x—Y)w-9,,(y)dy 

                                   — n-oo 
                          1 itrr-,2                                   1(x—Y)wn(Y)d.Y1. 

The second term of the right hand side of (4.9) tends to zero as n tends to 00 by 

Theorem 2 and Lemma 3. On the other hand we can reduce the first term of the 

right hand side of (4.9) to 

                          f(x—y)d117,(y) , 

              1Y where H
n(y)=wat)dt. By (4.1), (4.6), (4.7) and the convergence of {WOit is 

             an-- 

shown that {HO is a sequence of distribution functions and converges to the unit 

distribution function Go except for the origin. Therefore, from the continuity of 

f(x), we have 

(4.10)lim f(x—y)d117,(y)= f(x—y)dGo(y) 
        n—co 0000 

                                    =- f(x) on R1 . 

Consequently we have 

                            limlim Var[fi,(x)]= ltmx-301v1(Y)dY 
          7,—Mnn-00 ivin"n r-                                     An 

                             pf(x) on R1 . 
Thus the theorem is proved. 

   In the above theorem with p # 0, (4.9) is reduced to 

(4.11)lim Var[f,i(x)]= f(x) , 
                                       n—co a 7, 

which is the same representation as in Theorem 2.5 of Leadbetter [3]. Now we 
           1

7,x shall put wn(x)—h 

          = 

                        ), where{hn} is a sequence of positive constants con- 

verging to zero and K(x) is a continuous, positive, bounded function and K(x)dx 

=1. Then we have 

                        Mn=1 sup K(x), 

                           an =1--SK-2(x)dx                                -1
1„— 

and 

                       LK2(x)dx 
                       1117, sup K(x) 

In Theorem 3 if we asssume furthermore lirn(A/17,1n)=0, then we have 

(4.12)lim Var [ f7,(x)] = 0 on R1 .
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and the combination of Theorem 2 and (4.12) yields 

                 lint E[ If n(x)— f(x) I 2i = 0 on R1 . 

Thus we have the following 

   COROLLARY. If we assume 

(4.13)limMn= 0 

                                        n in addition to the assumption in Theorem 3, then we have 

                    urn V ar [f(x)] = 0 on R1 

and 

(4.14)lim EE If .(x)— f I 21 = 0 on R1. 
                                    n—co 

   Now by (4.14) we have 

                     p 
                          fn(x) ----> f(x) on R1 , 

and therefore the estimator fn(x) is consistent at all point x. We assume in Theo-
rem 3 that wa E cf7V is continuous on [—c, c] for all n and some positive constant c 
and it is natural that we use the continuous function w a E cl4; in order to estimate 
a unknown continuous density. 

   5. Asymptotic normality. 

   We shall show the asymptotic normality of the density estimator fa(x) for con-
tinuous density functions. 

   THEOREM 4. Under the same assumptions as in Theorem 3 and its corollary ex-
cept for 13 = 0, the density estimator fn(x) is asymptotically normal. 

   PROOF. By putting 

                       Va./ =wa(x—Xj) for j= 1, 2, ••• , n 

our estimator can be expressed as 

                                                          n 

                         fn(x) — E Vnj 7                                            n=i 

where 17,11, V71 ••• Vnn are statistically independent and identically distributed as 

V, = wn(x—Xa). By (4.10) we have 

(5.1)1Var [V a]= nVar Cfn(x)1 f(x) as n-00 . 

On the other hand, 

(5.2)El Vn 13 = f u'l(x—Y)f(Y)dY On(Y)Ax—y)dy
0.                     = Ainf 74,(y)f(x—Y)dY.
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By applying (4.10) on (5.2), we have 

(5.3)limEI V.I3                                  �f(x). 
                                                                                                         n, 

From (4.7), (4.13), (5.1) and (5.3), we have 

                 EEI V7013                                     EIV .I3           lim   -1   =lim 
                                      n"{Var[V„]13/2                n-°° E V

arIV70113/2 
                                     =1 

                          Mn\1/27Mn)1/2ElV7113/(1                 =limVar[V7,1)312 
              n)anariMnan 

                   = 0 . 

The condition of the basic lemma on p. 277 in Loeve [5] is satisfied and therefore 
the distribution of 

 fn(x)—Efn(x)j(Vii —EV")=i 
                  A/ Var[fri(x)]                                      Var[V

,01 

                                                              1 converges to the normal distribution N(0, 1). Thus the theorem is proved.

   6. Estimation of symmetric density functions. 

   In this section, we suppose that {wn} is a sequence of measurable functions 

satisfying 

(6.1)wn(Y)= wn(—y) for all y R1 , 

(6.2)wn(y)_� 0 on R1 , 

(6.3) wn(y)dy= 1 , 

(6.4)limawn(y)dy =1 for any 5 > 0 , 
                                   — a 

(6.5)wn(y)--,0 uniformly as n—,00 on (—co, —5)U(6,00) for any 5> 0. 

Following the definition given in Craswell [1] and Leadbetter [3], we call the 

sequence of these functions lwril as a 5-function sequence. It can be easily seen 

that the sequence of functions {W„}, induced by the 5-function sequence with (3.1), 

converges to the unit distribution function Go except for the origin. We state the 

asymptotic unbiasedness, asymptotic covariance and asymptotic variance of the 

estimators f7,(x), given by (1.1) with the ö-function sequence {w„}, in the following 

Lemmas 4 and 5, which are found in Craswell [1] and Leadbetter DJ. 

   LEMMA 4. Let {wn,} be a 5-function sequence. Then the density estimators fn(x) 

and fn(y) satisfy 

(6.6)lim Pfm(x)=f(x)
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at a point x of continuity of density f and 

(6.7)lim n Coy (.fn(x), fn()))= —f(x)f(y) 

at two distinct points x, y of continuity of f. 

   The above lemma implies that 

(6.8)lim Con (f „(x), fn(y))= 0 
                                                  71—.0 

at two distinct points x, y of continuity of f. 

   LEMMA 5. Let {wn} be a 5-function sequence with am On(y)dy < cc for all n. 

Then for the density estimator fn(x) we have 

(6.9)   Var[fn(x)]_= f(x) 
                                 n—oo an 

at a point x of continuity of f. 

   We give the asymptotic normality of f„(x) in the following lemma, which is 

essentially identical with Theorem 2.7 in Leadbetter [3] except for the condition of 

continuity of wn. 

   LEMMA 6. Let {wn} be a 5-function sequence and continuous on [—c, c] for all 

n and some positive constant c. Suppose that M„.= 0(n) and Mn=-0(an), where Mn 

= sup wn(y) < 00 and an = 24(Y)dy for all n. Then the density estimator fn(x) is 
    --.0<91<o. 

asymptotically normal at all points x of continuity of f. 

   PROOF. We dare to present the different proof from the one given by Leadbetter 

[3]. 
   From the assumption Mn< 00 it is obvious that an< 00. Hence, by Lemma 2.2 in 
Leadbetter [3], {/40/Van} is also a 5-function sequence. Consequently we can prove 

the lemma by the same method as that of Theorem 4. 

   Motivated by the asymptotic property of the covariance of the density estimator 

fn(x), (6.8), let us propose the density estimator 

                        21  (6.10)in(x)-= {fn(x)+M—x)} 

of density function f(x) which is symmetric with respect to the axis of ordinates. 
The density estimators fn(x) are asymptotically at least better than the density 
estimators fn(x) given by (1.1). 

   THEOREM 5. Let the density function f(x) be symmetric with respect to the axis 
of ordinates and {wn} be a 3-function sequence with an< 00 for all n. Then for den-
sity estimators fn(x) and fn(x), given by (1.1) and (6.10) respectively, we have 

(6.11)Var[I,i(x)]<Var[fn(x)] for all n and x,
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(6.12)lim                              V ar [fn(x)] = —1- f(x)        -.032 

at all points x of continuity of f and 

                       E.(x)f(x)I (6.13)—< 1 
                        .-- El f.(x)— f (x)I2 

at all non-zero points x of continuity of f. 

   PROOF. (6.11) is obvious. (6.12) is proved as follows : we have 

(6.14) 
                  an 

             V ar [fn(x)] =4 arla                                 Var [f„(x)1+ nV ar [1„(-17)]       nn 

                        +2anCoy (f „(x), f„(— 7c))} 
By applying (6.7) and (6.9) on the right hand side of (6.14), we have (6.12). (6.13) is 
easily obtained by (6.9) and (6.12). Thus the theorem is proved. 

   At all points x of continuity of the symmetric density function f, it follows that 
the density estimator .17,(x) given by (6.10) is asymptotically unbiased under the con-
dition of Lemma 4, and consistent under the condition of Lemma 4, 5 and, in addi-

tion, an/n 0 as n 00. The asymptotic normality of in(x) holds under the condi-
tion of Lemma 6. 

   In case the density function f(x) is symmetric with respect to the axis of ordi-
nates and continuous on R1, it follows that the density estimator fn(x) is asympto-
tically unbiased at all points x under the condition of Theorem 2 and consistent at 

all points A. under the condition of Corollary of Theorem 3. Furthermore we have 

the asymptotic normality of in(x) under the condition of Theorem 4. 
   In practice we may not be sure that the underlying distribution is symmetric. 

The use of the estimator f 7,(x) may be still recommended over the use of the ordi-
nary estimator f„(x), after testing the symmetry of the distribution by the method 
such as the permutation test, etc. Because the bias of the estimator fn(x) is identical 
with the one of the estimator fn(x) for all n and x, which converges to zero and 
the variance of the estimator fn(x) is asymptotically half of the one of the estimator 
f.(x).

   7. Estimation of distribution functions. 

   We shall consider the estimation of the absolutely continuous distribution func-

tion F(x) with the unknown density function f(x). We can easily obtain the esti-

mator of the distribution function F(x) by integrating the density estimator fn(x), 

                         Fn(x) = x f„(t)dt 

which may be denoted in another form by W



Some Statistical Properties of Estimators of Density127

 n 

(7.1) F,i(x)= - E Wn(x—X,), 

                                     n where Wn, is given by (3.1) for wn V. The estimator Fn(x) is absolutely continuous. 
We have 

(7.2)E F n(x) = f 4 n( — d F (t) 
and 

(7.3)n Var [F,,(x)]=;,(xt)dF(t)— tfHin(x —NFU,2). 
If Wn—*G0 as n--,00, then W;-->G0 as n-,00. Therefore we have by the continuity 
of F(x) 

(7.4)lim EF„(x)= Go(x—Oc/F(t) 
                                               n--co 

                             = F(x) at all points x 

and 

(7.5)lim n Var [Fn(x)] = f G ,(x — t)d F (t)— Go(x—t)dF(t)} 
                      = F (x)[1— F (x)] at all points x . 

   Thus the condition Wn—G, as n 00 is sufficient for the asymptotic unbiaseness 
of Fn(x). It is interesting to note that this condition is necessary and sufficient for 

the asymptotic unbiasedness of the estimator f,i(x) of a continuous density, and is 

satisfied if {w7,} is a 3-function sequence, which is the sufficient condition for fn(x) 

to be asymptotically unbiased at all continuous points x of a density. 

   Now let us denote the empirical distribution function by Ft(x), which can be 

expressed by G,, 

                                                              n (7.6)F (x) = .E G 0(x— X ;) . 

For the empirical distribution function Ft (n), we have 

(7.7)EFt (x) = F(x) for all n and x 

and 

(7.8)n Var [F (x)] = F (x)[1— F (x)] for all n and x , 

which is given by Rosenblatt [8]. From (7.5) and (7.8) we have 

(7.9) lim El F;,(x)— F(x)1<                             1 for all x with F(x) � 0 or 1 .               EF
,i(x) — F (x) I2 

Thus we have the following 

   THEOREM 6. If the distribution function F(x) is absolutely continuous and the 

sequence of distribution functions {W„} satisfies that 1W n(Y)—Go(Y)} 0 as n 00 for 

.y O. Then for estimators Fn(x) and Ft (x) of F(x) we have 

(7.10)lim EFn(x)= F(x) ,
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(7.11)lim n V ar [F„(x)] = F(x)[1—F(x)] 

for all x and 
                       El F:(x)—F(x)12        lim<1 

                        „_.00El F(x)—F(x) I2 
for all x with F(x) 0 or 1. 

   (7.10) and (7.11) are a generalization of the result given by Leadbetter, which is 
stated on p. 25 in [5], where he considered the case of 5-function sequence, whereas 
we discussed on the more general class of functions wn, in nonnegative case. 

   On the other hand for arbitrarily fixed x the empirical distribution function 
Fn (x) is the uniformly minimum variance unbiased estimator of F(x) for F E 
where 9 is the family of all absolutely continuous distribution functions or the 
family of all continuous distribution functions. Because the order statistic is suffi-
cient and complete for 9 (See, for example, p. 40-42 and p. 133 in Lehmann [41), 
and Fn (x) is symmetric in X1, ••• , Xn, and satisfies (7.7) for all F 

   The empirical distribution function Fn (x) may be said to be preferable as it is 
the uniformly minimum variance unbiased estimator. Also the estimator Fn(x) is 
not the uniformly minimum variance unbiased estimator but it may be still said to 
to preferable because of its absolutely continuity and asymptotic properties. 

   Concerning the covariance of estimators F,i(x) and Fn(y) we have the following 
result. 

   LEMMA 7. If the sequence of distribution functions {Wn} converges to the unit 
distribution function except for the origin, then we have 

(7.12) lim n Coy (F„(x), Fn(y))= F(min (x, y))—F(x)F(y) for x 
            n-. 

   PROOF. We have 

            n Coy (F,,(x), Fn(y) = Wii(x—OW,i(y—OdF(t) 

                        — f W n(x—t)dF (Of W „(y —t)dF (t) 

(7.13) Go(x—t)Go(y—t)dF(t)—F(x)F(Y) as n— co . 

Application of the equality Go(x—t)Go(y—t)=G0(min (x, y)—t) on (7.13) implies (7.12). 
   For the empirical distribution functions Fn (x) and Fn (y), it hold that 

(7.14) n Coy (F,,(x), Fn(y))= F(min (x, y))— F(x)F(y) for x y , 

which is given by Rosenblatt [8]. 
   Next we consider the estimation of the symmetric and absolutely continuous 

distribution function F(x) with the derivative f(x), in which case for all x 

                  F(x)=1—F(—x) and f(x) =- f(— x) . 

Integrating the estimator in(x) of f(x), given by (6.10), we have an estimator of the 
distributian function
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 Fn(x)  = x In(x)dx 

                                                                 x 

                    =-2-1j .f.(x)dx+ _f.(—x)dx} , 
which can be expressed by the estimator Fn(x) given by (7.1), 

(7.15)Fn(x) = 21 IF.(x)+1—Fn(— 

Our estimator may be understood as the arithmetic mean of the estimators of 

quantities F(x) and 1—F(—x). Motivated by the above consideration we propose to 
revise the empirical distribution function Ft (x) as follows, 

(7.16)t',';(x)= 2 {Ft (x)±1—Ft (—x-0)} . 
The estimator Fn (x) may be called as the corrected empirical distribution function 

for symmetric distribution functions. Both estimators En(x) and P: (x) are sym-

metric, that is, 

              Pn(x)-= 1—Fn(—x-0) and Pt (x)= 

We discuss the unbiasedness and variances of Fn(x) and t (x) in the following 

   THEOREM 7. Let the distribution function F(x) be symmetric and absolutely con-

tinuous and the sequence of symmetric distribution functions {Wn} converge to the unit 
distribution function except for the origin. Then for estimators Pi(x) and Fn (x), we 

have 

(7.17)lim EP,i(x)= F(x) for all x , 

(7.18)EF':(x)= F(x) for all n and x , 

(7.19) lim n V ar [Pn(x)]= 21{F(x)F(—x)—F2(—I x I)} for all x 
    11-.00 

and 
                   1 (7.20) n Var[F:(x)]= 2{F(x)F(—x)—F2(—I xi)} for all n and x . 

   PROOF. (7.17) is easily seen by applying (7.4) on (7.15) and (7.19) is from (7.5), 

(7.12) and (7.15). (7.18) and (7.20) are:proved as follows: at first we note that 

                P:(x)= {Go(x— X;)+Go(x+ Xi)} 
                                 4n j=i 

and (7.18) is easily seen. Since 

                   { 0 if x<0            G 0(x — Y)G 0(x+ = 
                            1 when —x�y�x if x�0 

we have 

                              0 if x<0 
          Coy (Go(x— X;), Go(x+ XJ))= 

                                 F(x)— F (— x)— F2(x) if x 0
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for j = 1, 2, ••• , n. By applying the above relation and 

       VarEGo(x-XX=Var[Go(x±X,)]-= F(x)C1-F(x)1 for j= 1, 2, , n 
on 

          Var [Fn (x)1= 1IVar EG0(x- X ,)1+ Var [Go(x+ X j)]                               4
n23=, 

                            +2 coy EG 0(x - X ,), Go(x+X.Oil 
we have (7.20). 

   On the other hand for arbitrarily fixed x the corrected empirical distribution 
function Pt (x) is the uniformly minimum variance unbiased estimator of F(x) for 
FE 9'1, where g' is the family of all absolutely continuous symmetric distribution 
functions or the family of all continuous symmetric distribution functions . Because 
Fn (x) can be reduced to 

                      -1n                        -EGo(x+ I X3 1) if x 0 
                              2n J=1             F

n (x) 
                1 1 " 

                  22n                                  G 0(x- I X.,1) if x> 0 ,                                                      3=1 

which is symmetric in 1 X 11, •-• , 1X7,1, and it is well known that the statistic 
(1 , IX1(11)), where 1 X1 (1), ••• , 1 X1' are values 1X11, X7,1 arranged in order 
of magnitude, is sufficient and complete for 9' . 

   Now we shall compare the mean square error of the corrected empirical distri-

bution function, which is best in the above sense , with the mean square error of 
other estimators. It is easily shown that 

(7.21)F(x)F(- IXI)� F(x)[l-F(x)] for all x , 

where the equality holds for x with F(x)=0 or 1. Combination of Theorem 6, 7 
and (7.21) yields 

   COROLLARY. Under the assumptions in Theorem 7, for estimators F,i(x), P.(x), 
Fn (x) and Fn (x) we have 

        EitVx)-F(x)121  
         EIF:(x)-F(x)I22for all n and x with F(x) * 0 or 1 , 

            El Pn(x)-F(x)I2          lim< 1 f
or all x with F(x)# 0 or 1           n_. E1 F7,(x)- F(x)I2 -

and 

     EItt (x)F(x)I21 (7.22)- �1 for all x with F(x) * 0, -1 1.      El P ,i(x)- F2- 

   At the point x=0 both Fn (x) and Fn(x) are equal to F(x)=1/2 with probability 

one. Thus the point x=0 is excepted from (7.22). From the above corollary it fol-

lows that the corrected empirical distribution function Fn (x) has less than half of 

the variance of the empirical distribution function. 

   In this section up to this point we considered the case where the distribution
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is absolultely continuous. But the above discussion can be extended to the case of 

continuous distribution  functions. Theorem 6, Lemma 7, Theorem 7 and its Corol-

lary also hold for continuous distribution functions and a sequence of given distri-

bution functions {W,}.
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