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Abstract. We focus on stochastic comparisons of lifetimes of series and parallel systems
consisting of independent and heterogeneous new Pareto type components. Sufficient con-
ditions involving majorization type partial orders are provided to obtain stochastic compar-
isons in terms of various magnitude and dispersive orderings which include usual stochastic
order, hazard rate order, dispersive order and right spread order. The usual stochastic order
of lifetimes of series systems with possibly different scale and shape parameters is studied
when its matrix of parameters changes to another matrix in certain sense.
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1. Introduction

The concept of majorization was introduced to study Schur-convexity of a function.

Various key ideas on majorization were discussed by Hardy at al. [16]. Prior to

the volume by Marshall and Olkin [19], scholars were unconscious of the literature

related to majorization, in spite of the availability of several works in this direction.

Since last two-three decades, the notion of majorization has played a prominent

role to study various stochastic orders in different fields such as reliability theory,

economics, quantum information theory, mathematics, probability and statistics.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Rn, the set of

real n-vectors. Further, let x1:n 6 x2:n 6 . . . 6 xn:n and y1:n 6 y2:n 6 . . . 6

yn:n be the ranked values of x and y, respectively. Then y is said to be majorized
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by x, denoted by x �m y, if
j∑

i=1

xi:n 6
j∑

i=1

yi:n, j = 1, 2, . . . , n − 1 and
n∑

i=1

xi =

n∑
i=1

yi. Thus, x �m y means that though sums of the components of two vectors

are the same, the components in x are more dispersed compared to those of the

vector y. More specifically, the concept of majorization deals with the diversity of the

components of the vectors. It is used as a measure of income inequality and species

diversity. Further, various useful inequalities can be obtained by applying some order

preserving function to a suitable majorization ordering. For a comprehensive survey

on this topic, we refer to [19] and [1].

Order statistics are of great interest in operations research, reliability theory, data

analysis, statistical inference and other areas of applied probability. They have re-

ceived a lot of attention from many researchers. For details on order statistics, see

[3] and [7]. Denote by X1:n 6 X2:n 6 . . . 6 Xn:n the order statistics from indepen-

dent random variables X1, X2, . . . , Xn. In reliability theory, we often encounter with

a k-out-of-n system. It works if and only if at least k components out of n work.

In particular, an n-out-of-n system and a 1-out-of-n system represent, respectively,

series and parallel systems. Note that series and parallel systems are the simplest

examples of coherent systems which have been widely considered in the literature.

In general, the kth order statistic Xk:n represents the lifetime of (n− k+1)-out-of-n

system.

We often face various situations in reliability and survival studies, where stochas-

tic comparisons of system lifetimes are useful to choose the most reliable system.

These comparisons are also helpful to obtain various bounds of aging characteris-

tics of a complex system. Because of their important applications, there has been

a considerable interest in studying stochastic comparisons of lifetimes of systems

having independent heterogeneous components. Many authors have considered sev-

eral statistical models in this direction. Dykstra et al. in [8] studied the problem

of stochastically comparing the order statistics of two sets of n exponential random

variables, where the random variables in one set are independent and heterogeneous

and the random variables in the other set are independent and identically distributed.

Khaledi and Kochar in [18] stochastically compared order statistics corresponding to

two sets of independent Weibull and gamma random variables with a common shape

parameter under the condition that their scale parameters majorize each other. Zhao

and Balakrishnan in [23] obtained dispersive ordering results of fail-safe systems com-

prising of heterogeneous exponential components. For two sets of Weibull random

variables, where one set contains n independent but heterogeneous random variables

and the other set contains independent but identical random variables, Fang and

Zhang in [12] obtained sufficient conditions for dispersive ordering of the largest order
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statistics. Balakrishnan and Zhao in [4] proved some hazard rate comparison results

of parallel systems associated with heterogeneous gamma distributed components.

Fang and Zhang in [13] stochastically compared parallel systems with exponentiated-

Weibull components in terms of the usual stochastic order, dispersive order and the

likelihood ratio order. They provided sufficient conditions for stochastic comparisons

between lifetimes of parallel systems. Gupta et al. in [15] obtained ordering results

for parallel as well as series systems having Fréchet distributed components. Fang

and Balakrishnan in [9] compared the largest order statistics arising from indepen-

dent heterogeneous Weibull random variables based on the likelihood ratio order.

Fang and Balakrishnan in [10] discussed stochastic comparisons of the smallest and

largest order statistics from independent heterogeneous exponential-Weibull random

variables. Further, they obtained sufficient conditions for the hazard rate ordering

of the smallest order statistics. For some recent references on the problems related

to stochastic comparisons, we refer to [14], [5], [11], [20] and the references therein.

In this paper, we consider stochastic comparisons of series and parallel systems

with a new Pareto type components. This distribution was proposed by [6] as a gener-

alization of the usual Pareto distribution. It has upside-down bathtub or a decreasing

hazard rate function depending on the values of the parameters. For some applica-

tions of this distribution in reliability engineering and finance, one may refer to [6].

They pointed out that the newly proposed distribution fits better in various real life

situations. Let a random variable X follow a new Pareto type distribution. Then

the cumulative distribution function (cdf) and the probability density function (pdf)

of X are given by

(1.1) F (x;α, β) =
xα − βα

xα + βα
, x > β, α > 0

and

(1.2) f(x;α, β) =
2αβαxα−1

(xα + βα)2
, x > β, α > 0,

respectively. Here, α is a shape parameter and β (> 0) is a scale parameter. For

convenience, we use the notation X ∼ NP(α, β).

The arrangement of the paper is as follows. In the next section, we present some

definitions and results which are useful to derive our main results. In Section 3,

based on vector majorization, we obtain some ordering results such as usual stochas-

tic, hazard rate and dispersive orderings for comparisons of two series and parallel

systems having heterogeneous NP type components. Further, for a series system,

stochastic comparison has been studied with respect to multivariate chain majoriza-

tion. In Section 4, we provide some applications of the established results. Finally,

some concluding remarks are added in Section 5.
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Throughout the paper, the terms increasing and decreasing are used in nonstrict

sense. Prime “′” denotes ordinary derivative. The random variables used in this

paper are taken to be nonnegative.

2. Preliminaries

In this section, we provide some preliminary definitions and lemmas which will be

useful in the sequel. To compare lifetimes of series and parallel systems, stochastic

orders have been extensively used in the literature. Below, we present a few of them.

For more on various stochastic orders, see [22].

Definition 2.1. Let Xi, i = 1, 2 be two random variables with pdfs fXi
(·),

cdfs FXi
(·), survival functions F̄Xi

(·) = 1 − FXi
(·), failure rate functions rXi

(·) =

fXi
(·)/F̄Xi

(·), and reversed failure rate functions r̃Xi
(·) = fXi

(·)/FXi
(·). Then X1

is said to be smaller than X2 in the

(a) failure rate ordering (written asX1 6fr X2) if rX1(x) > rX2 (x) for all x in (0,∞);

(b) usual stochastic ordering (written as X1 6st X2) if FX2(x) 6 FX1 (x) for all x

in (−∞,∞);

(c) dispersive ordering (written as X1 6disp X2) if F
−1
1 (u2)−F−1

1 (u1) 6 F−1
2 (u2)−

F−1
2 (u1) for 0 6 u1 < u2 6 1;

(d) right spread ordering (written as X1 6rs X2) if
∫
∞

F
−1
1 (p)F̄1(t) dt 6

∫
∞

F
−1
2 (p)F̄2(t) dt

for 0 6 p 6 1.

It is well known that

X1 6disp X2 ⇒ X1 6rs X2 ⇒ Var(X1) 6 Var(X2),

where Var(X) denotes the variance of the random variable X. To establish various

stochastic inequalities and bounds, the notion of majorization (see [19]) plays a vital

role which are presented below.

Definition 2.2. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two real

vectors in A ⊂ Rn. Also let x1:n 6 x2:n 6 . . . 6 xn:n and y1:n 6 y2:n 6 . . . 6 yn:n be

the ranked values of x and y, respectively. Then

(a) y is said to be majorized by x (written as x �m y) if

j∑

i=1

xi:n 6

j∑

i=1

yi:n, j = 1, 2, . . . , n− 1, and

n∑

i=1

xi =

n∑

i=1

yi;
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(b) y is said to be weak lower majorized by x (written as x �w y) if

j∑

i=1

xi:n 6

j∑

i=1

yi:n, j = 1, 2, . . . , n− 1, and

n∑

i=1

xi >

n∑

i=1

yi.

Definition 2.3. A real valued function φ : A → R is said to be Schur-concave

(Schur-convex) on A if for x, y ∈ A, x �m y ⇒ φ(x) 6 φ(y) (> φ(y)).

The following well-known lemma provides the relationship between two forms of

majorization as described in Definition 2.2.

Lemma 2.1 ([21]). Let x and y be two n-dimensional real vectors. Then x �w y

if and only if there exists an n-dimensional vector z such that x �m z and z > y

(i.e., zi > yi, i = 1, 2, . . . , n).

Lemma 2.2 ([19]). A permutation symmetric differentiable function φ(x) is

Schur-concave (Schur-convex) if and only if

(xi − xj)
(∂φ(x)
∂xi

−
∂φ(x)

∂xj

)
6 0 (> 0),

for all i 6= j.

Lemma 2.3 ([17]). Let Xλ1 , Xλ2 , . . . , Xλn
be nonnegative random variables with

Xλi
∼ F (λix), where λi > 0, i = 1, 2, . . . , n and F (·) is an absolutely continuous

distribution function. Let r(·) be the failure rate function corresponding to F (·). If

x2r′(x) is decreasing and (λ1, λ2, . . . , λn) �m (λ∗1, λ
∗

2, . . . , λ
∗

n), then

(a) Xλ
1:n >fr X

λ∗

1:n;

(b) Xλ
1:n >disp X

λ∗

1:n, provided r(x) is decreasing.

Lemma 2.4. Let a function δ : (0,∞)× (0, 1) → (−∞, 0) be defined as δ(α, t) =

(1 + tα)−1ln t. Then

(a) δ(α, t) is increasing with respect to t;

(b) δ(α, t) is decreasing with respect to α.

P r o o f. Differentiating δ(α, t) with respect to t, we get

∂δ(α, t)

∂t
=

1

t(1 + tα)2
{1 + tα − αtα ln t},
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which is positive, since 0 < t < 1. This shows that δ(α, t) is increasing with respect

to t. Next, differentiating δ(α, t) with respect to α, we obtain

∂δ(α, t)

∂α
= −

tα(ln t)2

(1 + tα)2
< 0.

Thus δ(α, t) is decreasing with respect to α. �

Lemma 2.5. Consider a function ̺ : (0,∞)× (0, 1) → (0,∞) defined as ̺(α, t) =

α/(t(1 + tα)). Then

(a) ̺(α, t) is decreasing with respect to t;

(b) ̺(α, t) is increasing with respect to α.

P r o o f. Differentiating ̺(α, t) with respect to t, we get

∂̺(α, t)

∂t
= −

α

t2(1 + tα)2
{αtα + (1 + tα)} < 0.

This proves that ̺(α, t) is decreasing with respect to t. Again differentiating ̺(α, t)

with respect to α, we have

∂̺(α, t)

∂α
=

1

t(1 + tα)
{1 + tα − αtαln t} > 0.

Hence, the result follows. �

It is well known that a square matrix Π is called a permutation matrix if each row

and column has exactly one entry unity and zeros elsewhere. It is not hard to see that

there exist n! such matrices of size n×n. A T -transform matrix is of the form Tw =

wIn + (1−w)Π, 0 6 w 6 1, where Π is a permutation matrix that just interchanges

two coordinates. Consider two T -transform matrices Tw1 = w1In + (1 − w1)Π1 and

Tw2 = w2In + (1−w2)Π2, where Π1 and Π2 are two permutation matrices that just

interchange two coordinates. The matrices Tw1 and Tw2 have the same structure if

Π1 = Π2, otherwise they have different structures. Below, we present the notion of

multivariate majorization.

Definition 2.4. Consider two m× n matrices M1 = {aij} and M2 = {bij} with

respective rows aR1 , . . . , a
R
m and b

R
1 , . . . , b

R
m. Then M1 is said to chain majorize M2,

abbreviated by M1 ≫ M2, if there exists a finite set of n× n T -transform matrices

Tw1 , Tw2 , . . . , Twk
such that M2 =M1Tw1Tw2 . . . Twk

.

60



The following results whose proofs are analogous to Theorems 2 and 3 of [2] are

useful to obtain stochastic comparisons based on multivariate chain majorization.

For i, j = 1, 2, . . . , n, let

(2.1) Sn =

{
(x, y) =

(
x1x2 . . . xn

y1y2 . . . yn

)
: xi > 0, yj > 0 and (xi − xj)(yi − yj) 6 0

}
.

Lemma 2.6. A differentiable function η : R+4

→ R+ satisfies

(2.2) η(A) > η(B) for all A,B such that A ∈ S2, and A≫ B

if and only if

(a) η(A) = η(AΠ) for all permutation matrices Π and

(b)
2∑

i=1

(aik−aij)[ηik(A)−ηij(A)] > 0 for all j, k = 1, 2, where ηij(A) = ∂η(A)/∂aij .

Lemma 2.7. Let the function ϕ : R+2

→ R+ be differentiable and the function

ηn : R+2n

→ R+ be defined as

(2.3) ηn(A) =

n∏

i=1

ϕ(a1i, a2i).

Assume that η2 satisfies (2.2). Then for A ∈ Sn and B = ATw, we have ηn(A) >

ηn(B).

3. Main results

In this section, we carry out stochastic comparisons of lifetimes of series and paral-

lel systems having independent but not identically distributed NP type components.

Note that any comparison of the random variables should be over a common do-

main. Below in a few cases, we will notice that the distributions of X1:n and Y1:n
as well as Xn:n and Yn:n are defined over domains with different lower end points.

In our results, we always take a common domain with the lower end point being the

maximum of the two lower limits. First we consider this problem based on vector

majorization.

3.1. Stochastic comparisons based on vector majorization and other

results. Our first result establishes that there exist usual stochastic orders between

X1:n(Xn:n) and Y1:n(Yn:n) under some conditions on parameters.
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Theorem 3.1. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(α, βi), i = 1, 2, . . . , n, and Y1, Y2, . . . , Yn independent random variables with

Yi ∼ NP(α, β∗

i ), i = 1, 2, . . . , n. Then

(a) (β1, β2, . . . , βn) �m (β∗

1 , β
∗

2 , . . . , β
∗

n) implies Xn:n >st Yn:n for α > 1,

(b) (β1, β2, . . . , βn) �m (β∗

1 , β
∗

2 , . . . , β
∗

n) implies X1:n 6st Y1:n for α > 0.

P r o o f. (a) Denote β = (β1, β2, . . . , βn). The cdf of Xn:n is

FXn:n(x;α, β) =

n∏

i=1

xα − βα
i

xα + βα
i

, x > max
16i6n

βi

and the corresponding survival function is given by

(3.1) F̄Xn:n(x;α, β) = 1−

n∏

i=1

xα − βα
i

xα + βα
i

, x > max
16i6n

βi.

Differentiating (3.1) with respect to βi, we get

(3.2)
∂F̄Xn:n(x;α, β)

∂βi
=

2αxαβα−1
i

x2α − β2α
i

F̄Xn:n(x;α, β).

Define

(3.3) g(z) = 2αxα
zα−1

x2α − z2α
, z > 0.

Then for α > 1 it can be shown that g′(z) > 0, i.e., g(z) in (3.3) is increasing in

z > 0. Now using (3.2) and after some simplifications, it is not hard to see that

(βi − βj)

(
∂F̄Xn:n(x;α, β)

∂βi
−
∂F̄Xn:n(x;α, β)

∂βj

)

= 2(βi − βj)αx
αF̄Xn:n(x;α, β)

(
βα−1
i

x2α − β2α
i

−
βα−1
j

x2α − β2α
j

)
> 0.

Hence, from Lemma 2.2, F̄Xn:n(x;α, β) is Schur-convex in β. Thus utilizing Defini-

tion 2.3, the desired result follows.

(b) For x > max
16i6n

βi, the survival function of X1:n is given by

(3.4) F̄X1:n(x;α, β) = 2n
n∏

i=1

βα
i

xα + βα
i

.
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Differentiating (3.4) with respect to βi we get

(3.5)
∂F̄X1:n(x;α, β)

∂βi
=

1

x
F̄X1:n(x;α, β)̺

(
α,
βi
x

)
,

where ̺(α, t) = α/(t(1 + tα)), α > 0, 0 < t < 1. Note that using Lemma 2.5, for

0 < t < 1, it can be shown that ̺(α, t) is decreasing in t. Now, from (3.5) we get

(βi − βj)

(
∂F̄X1:n(x;α, β)

∂βi
−
∂F̄X1:n(x;α, β)

∂βj

)

= (βi − βj)
1

x
F̄X1:n(x;α, β)

(
̺
(
α,
βi
x

)
− ̺

(
α,
βj
x

))
6 0,

which implies that F̄X1:n(x;α, β) is Schur-concave in β. Hence, the result follows. �

The following counterexample shows that the usual stochastic order as in the first

part of Theorem 3.1 need not hold if either β �m β∗ or α > 1 does not hold.

C o u n t e r e x a m p l e 3.1. (i) Let (X1, X2, X3) be a set of independent ran-

dom variables such that Xi ∼ NP(1.5, βi), i = 1, 2, 3 with β1 = 1, β2 = 8,

and β3 = 1.1. Further, let (Y1, Y2, Y3) be a set of independent random variables

following Yi ∼ NP(1.5, β∗

i ), i = 1, 2, 3 with β∗

1 = 8, β∗

2 = 1.1, and β∗

3 = 4.

Clearly, (β1, β2, β3) 6�m (β∗

1 , β
∗

2 , β
∗

3), though α > 1. Now, we plot the difference

FX3:3(x) − FY3:3(x) in Figure 1(a) which shows that X3:3 �st Y3:3.

(ii) Let X1, X2, X3 be three independent random variables with Xi ∼ NP(0.8, βi),

i = 1, 2, 3,with β1 = 0.1, β2 = 1, and β3 = 9.Also, let Y1, Y2, Y3 be three independent

random variables with Yi ∼ NP(0.8, β∗

i ), i = 1, 2, 3, with β∗

1 = 0.1, β∗

2 = 4, and

β∗

3 = 6. It is easy to observe that (β1, β2, β3) �m (β∗

1 , β
∗

2 , β
∗

3). Note that α = 0.8 < 1.

In Figure 1(b), we plot the difference FX3:3 (x)−FY3:3(x) which ensures that there is

a cut between the plots of FX3:3(x) and FY3:3(x), that is, X3:3 �st Y3:3.

50 100 150 200
x

0.02

0.04

0.06

0.08

FX3:3
(x)− FY3:3

(x)

(a)

20 30 40 50 60 70
x

−0.015

−0.010

−0.005

0.005

0.010

0.015

FX3:3
(x)− FY3:3

(x)

(b)

Figure 1. (a) presents plot of FX3:3
(x)− FY3:3

(x) as in Counterexample 3.1(i).
(b) presents plot of FX3:3

(x)− FY3:3
(x) as considered in Counterexample 3.1(ii).
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We consider the following counterexample to show that in the second part of

Theorem 3.1 if β 6�m β∗ then, X1:n 6st Y1:n need not hold for α > 0.

C o u n t e r e x a m p l e 3.2. LetX1, X2, X3 be three independent random variables

with Xi ∼ NP(0.5, βi), i = 1, 2, 3. Further, let Y1, Y2, Y3 be three independent

random variables with Yi ∼ NP(0.5, β∗

i ), i = 1, 2, 3. Assume that β1 = 2.1, β2 = 1,

β3 = 1.8, β∗

1 = 3.5, β∗

2 = 0.8, and β∗

3 = 0.9. Clearly, (β1, β2, β3) 6�m (β∗

1 , β
∗

2 , β
∗

3 ).

Now, using graphical plot, it can be shown that X1:3 �st Y1:3. The graph has not

been provided for brevity.

Theorem 3.2. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(α, βi), i = 1, 2, . . . , n, and Y1, Y2, . . . , Yn independent random variables with

Yi ∼ NP(α, β∗

i ), i = 1, 2, . . . , n. Then for α 6 1, (1/β1, 1/β2, . . . , 1/βn) �m

(1/β∗

1 , 1/β
∗

2 , . . . , 1/β
∗

n) implies X1:n >st Y1:n.

P r o o f. Denote ξi = 1/βi and ξ
∗

i = 1/β∗

i , i = 1, 2, . . . , n. Then the given

condition is equivalent to (ξ1, ξ2, . . . , ξn) �m (ξ∗1 , ξ
∗

2 , . . . , ξ
∗

n). For x > max
16i6n

1/ξi, the

survival function of X1:n is given by

(3.6) F̄X1:n(x;α, ξ) =
n∏

i=1

2

1 + (xξi)α
,

where ξ = (ξ1, ξ2, . . . , ξn). Differentiating (3.6) with respect to ξi, i = 1, 2, . . . , n, we

get

(3.7)
∂F̄X1:n(x;α, ξ)

∂ξi
= −

αxαξα−1
i

(xξi)α + 1
F̄X1:n(x;α, ξ).

Let us define h(z) = zα−1((xz)α + 1)−1 for z > 0. Note that this function h(z) is

decreasing in z > 0 for α 6 1. Hence, from (3.7) it is not hard to check that

(ξi − ξj)

(
∂F̄X1:n(x;α, ξ)

∂ξi
−
∂F̄X1:n(x;α, ξ)

∂ξj

)

= − (ξi − ξj)αx
αF̄X1:n(x;α, ξ)

(
ξα−1
i

(xξi)α + 1
−

ξα−1
j

(xξj)α + 1

)
> 0.

Thus, from Lemma 2.2, we have that F̄X1:n(x;α, ξ) is Schur-convex in ξ, and then

the desired result readily follows. �

Theorem 3.3. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(α, βi), i = 1, 2, . . . , n, and Y1, Y2, . . . , Yn independent random variables with

Yi ∼ NP(α, β∗

i ), i = 1, 2, . . . , n. If
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(a) (β1, β2, . . . , βn) > (β∗

1 , β
∗

2 , . . . , β
∗

n), i.e., βi > β∗

i , then Xn:n >st Yn:n;

(b) (1/β1, 1/β2, . . . , 1/βn) > (1/β∗

1 , 1/β
∗

2 , . . . , 1/β
∗

n), i.e., 1/βi > 1/β∗

i , then

Y1:n >st X1:n.

P r o o f. The survival functions of Xn:n and X1:n are given by (3.1) and (3.4),

respectively. Moreover, it can be shown that the function (xα − βα)(xα + βα)−1 is

decreasing in β. Hence, using Definition 2.1, the results follow. �

R em a r k 3.1. Theorem 3.3(a) is a generalization of Theorem 3.1(a) to a wider

range of scale parameters.

The following consecutive counterexamples show that if the conditions made in

Theorem 3.3 are not satisfied then the mentioned stochastic orders may not hold.

C o u n t e r e x a m p l e 3.3. Consider three independent random variablesX1, X2,

X3 such that Xi ∼ NP(0.5, βi), i = 1, 2, 3. Assume β1 = 0.2, β2 = 0.5, and β3 = 0.7.

Take another set of three random variables Y1, Y2, Y3 such that Yi ∼ NP(0.5, β∗

i ), i =

1, 2, 3. Here, let β∗

1 = 0.4, β∗

2 = 0.3, and β∗

3 = 1.2. Clearly, (β1, β2, β3) ≯ (β∗

1 , β
∗

2 , β
∗

3 ).

The difference between FX3:3(x) and FY3:3(x) is depicted in Figure 2(a) which shows

that X3:3 �st Y3:3.

100 200 300 400
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FX3:3
(x)− FY3:3

(x)

(a)
20 40 60 80 100

x
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0.002

0.003

0.004

0.005

0.006

F̄X1:3
(x)− F̄Y1:3

(x)

(b)

Figure 2. (a) presents plot of FX3:3
(x)− FY3:3

(x) as considered in Counterexample 3.3.
(b) presents plot of F̄X1:3

(x)− F̄Y1:3
(x) as in Counterexample 3.4.

C o u n t e r e x a m p l e 3.4. Let X1, X2, X3 be a set of independent random

variables such that Xi ∼ NP(0.8, βi), i = 1, 2, 3. Here, we take β1 = 1.2, β2 = 0.5,

and β3 = 1.7. Take another set of three random variables Y1, Y2, Y3 such that

Yi ∼ NP(0.8, β∗

i ), i = 1, 2, 3. Let β∗

1 = 0.4, β∗

2 = 0.8, and β∗

3 = 1.2. Clearly,

(1/β1, 1/β2, 1/β3) ≯ (1/β∗

1 , 1/β
∗

2 , 1/β
∗

3). Based on this data, we have plotted

F̄X1:3(x) − F̄Y1:3(x) in Figure 2(b) which guarantees that Y1:3 �st X1:3.

The following result provides a stochastic comparison for the lifetimes of two par-

allel systems having independently distributed new Pareto type components with
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varying scale parameters but fixed shape parameters. This comparison is studied

based on the vector weak lower majorization of the scale parameters.

Theorem 3.4. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(α, βi), i = 1, 2, . . . , n, and Y1, Y2, . . . , Yn independent random variables with

Yi ∼ NP(α, β∗

i ), i = 1, 2, . . . , n. Then for α > 1, (β1, β2, . . . , βn) �w (β∗

1 , β
∗

2 , . . . , β
∗

n)

implies Xn:n >st Yn:n.

P r o o f. If (β1, β2, . . . , βn) �w (β∗

1 , β
∗

2 , . . . , β
∗

n) holds then by Lemma 2.1 there

exists a vector (µ1, µ2, . . . , µn) such that (β1, β2, . . . , βn) �m (µ1, µ2, . . . , µn) and

(µ1, µ2, . . . , µn) > (β∗

1 , β
∗

2 , . . . , β
∗

n). Now let Z1, Z2, . . . , Zn be independent random

variables with Zi ∼ NP(α, µi). Then from Theorem 3.1(a) we obtain Xn:n >st Zn:n.

Moreover, we have (µ1, µ2, . . . , µn) > (β∗

1 , β
∗

2 , . . . , β
∗

n), i.e., µi > β∗

i , i = 1, 2, . . . , n.

Hence, according to Theorem 3.3(a), we get Zn:n >st Yn:n. Thus Xn:n >st Yn:n.

This completes the proof of the theorem. �

Theorem 3.5. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(α, βi), i = 1, 2, . . . , n, and Y1, Y2, . . . , Yn independent random variables with

Yi ∼ NP(α, β∗

i ), i = 1, 2, . . . , n. Then, for 0 < α 6 1,

(a) (β1, β2, . . . , βn) �m (β∗

1 , β
∗

2 , . . . , β
∗

n) implies X1:n >fr Y1:n;

(b) (β1, β2, . . . , βn) �m (β∗

1 , β
∗

2 , . . . , β
∗

n) implies X1:n >disp Y1:n.

P r o o f. (a) Note that for known α, the NP variable belongs to the scale model.

The failure rate function of a random variable X having NP(α, β) distribution is

(3.8) rX(x) =
αxα−1

xα + βα
.

Denote g(x) = x2r′X(x). Then we have

g′(x) =
−x2α−1βαα(α + 1) + xα−1β2αα(α − 1)

(xα + βα)3
.

For α 6 1, it is clear that g′(x) < 0, and hence g(x) is decreasing. Thus, by

Lemma 2.3 (a), the result follows.

(b) It is easy to see that for α 6 1, rX(x) given by (3.8) is decreasing. So by

Lemma 2.3 (b), Part (b) follows immediately. This completes the proof. �

The next corollary immediately follows from Theorem 3.5(b).

Corollary 3.1. Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two sets of inde-

pendent random variables as described in Theorem 3.5. Then, for 0 < α 6 1,

(β1, β2, . . . , βn) �m (β∗

1 , β
∗

2 , . . . , β
∗

n) ⇒ X1:n >rs Y1:n ⇒ Var(X1:n) > Var(Y1:n).
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In our next result, we obtain a stochastic comparison of lifetimes of parallel and

series systems based on vector majorization on shape parameters.

Theorem 3.6. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(αi, β), i = 1, 2, . . . , n and Y1, Y2, . . . , Yn independent random variables with Yi ∼

NP(α∗

i , β), i = 1, 2, . . . , n. Then

(a) (α1, α2, . . . , αn) �m (α∗

1, α
∗

2, . . . , α
∗

n) implies Xn:n >st Yn:n;

(b) (α1, α2, . . . , αn) �m (α∗

1, α
∗

2, . . . , α
∗

n) implies X1:n 6st Y1:n.

P r o o f. (a) Note that the cdf of Xn:n is

(3.9) FXn:n(x;α, β) =

n∏

i=1

xαi − βαi

xαi + βαi
, x > β.

Differentiating (3.9) with respect to αi, we get

∂FXn:n(x;α, β)

∂αi

= 2(lnx− lnβ)
βαixαi

x2αi − β2αi
FXn:n(x;α, β).

Thus,

(αi − αj)
(∂FXn:n(x;α, β)

∂αi

−
∂FXn:n(x;α, β)

∂αj

)

= 2(αi − αj)(ln x− lnβ)
{ βαixαi

x2αi − βαi
−

βαjxαj

x2αj − β2αj

}
FXn:n(x;α, β).

Let us define

(3.10) φ(α) =
(βx)α

x2α − β2α
.

Differentiating (3.10) with respect to α, we get

(3.11) φ′(α) =
(βx)α(x2α + β2α)

(x2α − β2α)2
(lnβ − lnx).

Thus, for x > β, φ′(α) < 0. This implies that φ(α) is decreasing in α > 0 for x > β.

Hence for αi > αj (αi 6 αj) we have φ(αi) 6 φ(αj) (φ(αi) > φ(αj)), which implies

(αi − αj)(φ(αi)− φ(αj)) 6 0. Thus

(αi − αj)
(∂FXn:n(x;α, β)

∂αi

−
∂FXn:n(x;α, β)

∂αj

)
6 0.
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From Lemma 2.2, we can easily conclude that FXn:n(x;α, β) is Schur-concave in

α. Thus under the given hypothesis, we get FXn:n(x;α, β) 6 FYn:n(x;α
∗, β) which

in-turn implies that Xn:n >st Yn:n. This completes the proof of the first part.

(b) The survival function of X1:n can be written as

(3.12) F̄X1:n(x;α, β) =

n∏

i=1

2βαi

xαi + βαi
, x > β.

Differentiating (3.12) with respect to αi, we get

∂F̄X1:n(x;α, β)

∂αi

= F̄X1:n(x;α, β)(ln β − lnx)
xαi

xαi + βαi
.

Thus,

(αi − αj)

(
∂F̄X1:n(x;α, β)

∂αi

−
∂F̄X1:n(x;α, β)

∂αj

)

= (αi − αj)(ln β − lnx)
{ xαi

xαi + βαi
−

xαj

xαj + βαj

}
F̄X1:n(x;α, β).

Now, for fixed x and β, let us define the function ψ(α) as ψ(α) = xα/(xα + βα). To

study its monotonicity, we differentiate ψ(α) with respect to α, which is given by

(3.13) ψ′(α) =
(βx)α(lnx− lnβ)

(xα + βα)2
.

Note that for x > β, ψ′(α) > 0. So, ψ(α) is increasing in α > 0. Thus, for any

αi > αj (αi 6 αj), we have ψ(αi) > ψ(αj) (ψ(αi) 6 ψ(αj)). Hence, (αi − αj)×

(lnβ − lnx)(ψ(αi)− ψ(αj)) 6 0, which implies that

(αi − αj)

(
∂F̄X1:n(x)

∂αi

−
∂F̄X1:n(x)

∂αj

)
6 0.

So, according to Lemma 2.2, F̄X1:n(x;α, β) is Schur-concave in α and hence

X1:n 6st Y1:n. This completes the proof. �

The following result generalizes Theorem 3.6(b) to a wide range of shape param-

eters.

Theorem 3.7. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(αi, β), i = 1, 2, . . . , n and Y1, Y2, . . . , Yn independent random variables with

Yi ∼ NP(α∗

i , β), i = 1, 2, . . . , n. If (α1, α2, . . . , αn) > (α∗

1, α
∗

2, . . . , α
∗

n), i.e. αi > α∗

i ,

i = 1, 2, . . . , n, then X1:n 6fr Y1:n.
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P r o o f. The failure rates of X1:n and Y1:n can be obtained as

rX1:n(x;α, β) =
1

x

n∑

i=1

αi

1 + (β/x)αi
, x > β

and

rY1:n(x;α
∗, β) =

1

x

n∑

i=1

α∗

i

1 + (β/x)α
∗

i

, x > β,

respectively. Now consider the difference

(3.14) rX1:n(x;α, β)− rY1:n(x;α
∗, β) =

1

x

n∑

i=1

{ αi

1 + (β/x)αi
−

α∗

i

1 + (β/x)α
∗

i

}
.

Let η(α) = α/(1 + (β/x)α) for x > β. Then it can be shown that η(α) is an

increasing function in α > 0. Hence, under the hypothesis made, and from (3.14), we

have that rX1:n(x;α, β) − rY1:n(x;α
∗, β) > 0 implies X1:n 6fr Y1:n. This completes

the proof. �

C o u n t e r e x a m p l e 3.5. Let X1, X2, X3, X4 be independent random variables

with Xi ∼ NP(αi, 1.6), i = 1, 2, 3, 4 with α1 = 0.6, α2 = 1.9, α3 = 0.3, and α4 = 1.8.

Further, let Y1, Y2, Y3, Y4 be another set of independent random variables with Yi ∼

NP(α∗

i , 1.6), i = 1, 2, 3, 4 with α∗

1 = 0.4, α∗

2 = 2.1, α∗

3 = 0.8, and α∗

4 = 1.6. It is easy

to see that (α1, α2, α3, α4) � (α∗

1, α
∗

2, α
∗

3, α
∗

4). Now, we have plotted rX1:n(x)−rY1:n(x)

in Figure 3(a). Thus, X1:4 �fr Y1:4.
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Figure 3. (a) Plot of rX1:4
(x) − rY1:4

(x) for the random variables as described in Coun-
terexample 3.5. (b) Graphs of the survival functions of X1:2 and Y1:2 considered
in Counterexample 3.6.

Theorem 3.8. Let X1, X2, . . . , Xn be n independent random variables with Xi ∼

NP(αi, β), i = 1, 2, . . . , n, and let Y1, Y2, . . . , Yn be n independent random variables

with Yi ∼ NP(α∗

i , β), i = 1, 2, . . . , n. Then, for (α1, α2, . . . , αn) �w (α∗

1, α
∗

2, . . . , α
∗

n),

we have X1:n 6st Y1:n.
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P r o o f. It is given that (α1, α2, . . . , αn) �w (α∗

1, α
∗

2, . . . , α
∗

n). Thus by virtue

of Lemma 2.1, there exists a vector (λ1, λ2, . . . , λn) such that (α1, α2, . . . , αn) �m

(λ1, λ2, . . . , λn) and (α1, α2, . . . , αn) > (λ1, λ2, . . . , λn). Let W1,W2, . . . ,Wn be an-

other set of independent random variables withWi ∼ NP(λi, β), i = 1, 2, . . . , n. Thus

from Theorem 3.6(b) we have

(3.15) (α1, α2, . . . , αn) �m (λ1, λ2, . . . , λn) ⇒ X1:n 6st W1:n.

Further, from Theorem 3.7 we get

(3.16) (α1, α2, . . . , αn) > (λ1, λ2, . . . , λn) ⇒W1:n 6fr Y1:n ⇒W1:n 6st Y1:n.

By combining (3.15) and (3.16), the required result follows. �

R em a r k 3.2. One can use the results obtained in this subsection to get lower

(upper) bounds for the survival functions, failure rates, variance of parallel (series)

system consisting of independent and heterogeneous NP type components in terms of

the corresponding functions of the parallel (series) system consisting of independent

and heterogeneous NP type components.

3.2. Stochastic comparisons based on multivariate chain majorization.

In this part of the paper, we consider a system with independent NP type compo-

nents. We assume heterogeneity in both the scale and shape parameters. In this

case, the parameters can be represented in the form of a matrix. Here, we study

stochastic comparisons of lifetimes of two series systems when the matrix of the pa-

rameters changes to another matrix of parameters in the sense of multivariate chain

majorization. Below we consider series systems with two components.

Theorem 3.9. LetX1, X2 be independent random variables withXi∼NP(αi, βi),

i=1, 2 and Y1, Y2 other independent random variables with Yi∼NP(α∗

i , β
∗

i ), i=1, 2.

Let
( α1 α2

β1 β2

)
∈S2 be defined as in (2.1). Then, for

(
α1 α2

β1 β2

)
≫

(
α∗

1 α∗

2

β∗

1 β∗

2

)
,

we have X1:26st Y1:2.

P r o o f. The survival function of X1:2 is given by

(3.17) F̄X1:2 (x;α, β) =

2∏

i=1

2βαi

i

xαi + βαi

i

, x > max{β1, β2}.
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Differentiating (3.17) with respect to αi, we get

∂F̄X1:2(x;α, β)

∂αi

= F̄X1:2(x;α, β)
ln(βi/x)

1 + (βi/x)αi
= F̄X1:2(x;α, β)δ(αi, βi/x),

where δ(·, ·) is defined in Lemma 2.4. Further, differentiating F̄X1:2 (x;α, β) given

by (3.17) with respect to βi, we obtain

∂F̄X1:2(x;α, β)

∂βi
=

1

x
F̄X1:2(x;α, β)

αi

(βi/x)(1 + (βi/x)αi)

=
1

x
F̄X1:2(x;α, β)̺(αi, βi/x),

where ̺(·, ·) is defined in Lemma 2.5. Now, let us define ϕ(α, β) as

(3.18) ϕ(α, β) = (α1 − α2)
(∂F̄X1:2(x;α, β)

∂α1
−
∂F̄X1:2(x;α, β)

∂α2

)

+ (β1 − β2)
(∂F̄X1:2(x;α, β)

∂β1
−
∂F̄X1:2(x;α, β)

∂β2

)

= (α1 − α2)F̄X1:2 (x)(δ(α1, β1/x)− δ(α2, β2/x))

+
1

x
(β1 − β2)F̄X1:2 (x)(̺(α1, β1/x)− ̺(α2, β2/x)).

We have assumed that
( α1 α2

β1 β2

)
∈ S2, i.e., if α1 6 α2 (α1 > α2), then β1 > β2

(β1 6 β2). Further, according to Lemma 2.4, δ(α, t) is increasing with respect to t and

decreasing with respect to α. Thus, we have δ(α1, β1/x) > δ(α1, β2/x) > δ(α2, β2/x)

(δ(α1, β1/x) 6 δ(α1, β2/x) 6 δ(α2, β2/x)), which implies

(3.19) (α1 − α2)(δ(α1, β1/x)− δ(α2, β2/x)) 6 0.

Similarly, according to Lemma 2.5, ̺(α, t) is decreasing with respect to t and

increasing with respect to α. Hence, ̺(α1, β1/x) 6 ̺(α1, β2/x) 6 ̺(α2, β2/x)

(̺(α1, β1/x) > ̺(α1, β2/x) > ̺(α2, β2/x)) which implies

(3.20) (β1 − β2)(̺(α1, β1/x)− ̺(α2, β2/x)) 6 0.

By virtue of the inequalities obtained in (3.19) and (3.20), it is not hard to con-

clude from (3.18) that ϕ(α, β) 6 0. Also, F̄X1:2 (x, α, β) is a permutation symmetric

function. Thus using Lemma 2.6, we get
(
α1 α2

β1 β2

)
≫

(
α∗

1 α∗

2

β∗

1 β∗

2

)
⇒ F̄X1:2 (x;α, β) 6 F̄Y1:2(x;α

∗, β∗)

⇒ X1:2 6st Y1:2.

This completes the proof. �
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The following counterexample shows that the result in Theorem 3.9 need not hold

if both the matrices of parameters do not belong to S2.

C o u n t e r e x a m p l e 3.6. Let X1, X2 be two independent random variables

associated with Xi ∼ NP(αi, βi), i = 1, 2. Also, let Y1, Y2 be two independent

random variables associated with Yi ∼ NP(α∗

i , β
∗

i ), i = 1, 2. Let

A =

(
α1 α2

β1 β2

)
=

(
1.5 0.8

0.6 0.4

)
.

We take a T -transform matrix T0.3 =
( 0.3 0.7

0.7 0.3

)
. Then

B =

(
α∗

1 α∗

2

β∗

1 β∗

2

)
= AT0.3 =

(
1.01 1.29

0.46 0.54

)
.

Thus, according to Definition 2.4, we have A ≫ B. Here, the matrices A and B do

not belong to S2. Now from Figure 3(b), we see that X1:2 �st Y1:2.

The next theorem is an extension of Theorem 3.9 for n > 2.

Theorem 3.10. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(αi, βi), i = 1, 2, . . . , n. Further, let Y1, Y2, . . . , Yn be another set of independent

random variables with Yi ∼ NP(α∗

i , β
∗

i ). Then, for

(
α1 α2 . . . αn

β1 β2 . . . βn

)
∈ Sn,

we have

(
α∗

1 α∗

2 . . . α∗

n

β∗

1 β∗

2 . . . β∗

n

)
=

(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw ⇒ X1:n 6st Y1:n.

P r o o f. Let us take ηn(α, β) = F̄X1:n(x;α, β) and ϕ(αi, βi) = 2βαi

i /(xαi + βαi

i )

for i = 1, 2, . . . , n. Then

(3.21) F̄X1:n(x;α, β) = 2n
n∏

i=1

βαi

i

xαi + βαi

i

⇒ ηn(α, β) =

n∏

i=1

ϕ(αi, βi).

We have proved that η2(α, β) satisfies (2.2). So, by Lemma 2.7 we have

ηn(α, β) 6 ηn(α
∗, β∗) ⇒ F̄X1:n(x;α, β) 6 F̄Y1:n(x;α

∗, β∗) ⇒ X1:n 6st Y1:n.

This completes the proof. �
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Further, it can be easily shown that the finite product of T -transform matrices

having the same structure is also a T -transform matrix (see [2]). Hence, the following

corollary immediately follows from Theorem 3.10.

Corollary 3.2. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(αi, βi), i = 1, 2, . . . , n. Further, let Y1, Y2, . . . , Yn be another set of independent

random variables with Yi ∼ NP(α∗

i , β
∗

i ). Then, for

(
α1 α2 . . . αn

β1 β2 . . . βn

)
∈ Sn

we have (
α∗

1 α∗

2 . . . α∗

n

β∗

1 β∗

2 . . . β∗

n

)
=

(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twk

,

where Twi
, i = 1, 2, . . . , k, have the same structure, we get X1:n 6st Y1:n.

Our next theorem shows that the result in Corollary 3.2 holds for T -transform

matrices with different structures.

Theorem 3.11. Let X1, X2, . . . , Xn be independent random variables with Xi ∼

NP(αi, βi), i = 1, 2, . . . , n. Further, let Y1, Y2, . . . , Yn be another set of independent

random variables with Yi ∼ NP(α∗

i , β
∗

i ), i = 1, 2, . . . , n. For i = 1, 2, . . . , k, where

k > 1, let

(
α1 α2 . . . αn

β1 β2 . . . βn

)
∈ Sn and

(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twi

∈ Sn.

Then

(
α∗

1 α∗

2 . . . α∗

n

β∗

1 β∗

2 . . . β∗

n

)
=

(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twk

⇒ X1:n 6st Y1:n.

P r o o f. Let

(
α
(i)
1 α

(i)
2 . . . α

(i)
n

β
(i)
1 β

(i)
2 . . . β

(i)
n

)
=

(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twi

,

for i = 1, 2, . . . , k. Further, assume Z
(i)
1 , . . . , Z

(i)
n , i = 1, 2, . . . , k, are indepen-

dent sets of random variables with Z
(i)
j ∼ NP(α

(i)
j , β

(i)
j ), j = 1, 2, . . . , n and i =
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1, 2, . . . , k. If
( α1 α2 ... αn

β1 β2 ... βn

)
∈ Sn, then from the assumption, it can be easily seen

that
(

α
(i)
1 α

(i)
2 ... α(i)

n

β
(i)
1 β

(i)
2 ... β(i)

n

)
∈ Sn for i = 1, 2, . . . , k. Now

(
α∗

1 α∗

2 . . . α∗

n

β∗

1 β∗

2 . . . β∗

n

)
=

{(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twk−1

}
Twk

⇒

(
α∗

1 α∗

2 . . . α∗

n

β∗

1 β∗

2 . . . β∗

n

)
=

(
α
(k−1)
1 α

(k−1)
2 . . . α

(k−1)
n

β
(k−1)
1 β

(k−1)
2 . . . β

(k−1)
n

)
Twk

⇒ Z
(k−1)
1:n 6st Y1:n (from Theorem 3.10).

Similarly,

(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twk−1

=

{(
α1 α2 . . . αn

β1 β2 . . . βn

)
Tw1 . . . Twk−2

}
Twk−1

⇒

(
α
(k−1)
1 α

(k−1)
2 . . . α

(k−1)
n

β
(k−1)
1 β

(k−1)
2 . . . β

(k−1)
n

)
=

(
α
(k−2)
1 α

(k−2)
2 . . . α

(k−2)
n

β
(k−2)
1 β

(k−2)
2 . . . β

(k−2)
n

)
Twk−1

⇒ Z
(k−2)
1:n 6st Z

(k−1)
1:n .

Repeating this, we get

X1:n 6st Z
(1)
1:n 6st . . . 6st Z

(k−2)
1:n 6st Z

(k−1)
1:n 6st Y1:n,

which completes the proof. �

4. Application

It was mentioned earlier that the stochastic comparison results are useful in various

areas of research. In this section, we discuss applications of a few of the established

results. Note that the new Pareto type distribution has been shown to be a better

model among various other lifetime models by [6] based on the Akaike information

criterion, Bayesian information criterion and consistent Akaike information criterion.

Consider a parallel system consisting of n independently working components. It is

known that the system fails if all the components fail. Let us assume that one is

interested in stochastically comparing the performance of parallel systems comprising

of new Pareto type components.

(i) Consider two parallel systems, say A and B comprising n components each.

Suppose that Xi, i = 1, 2, . . . , n, is the failure time of the ith component of system

A and Yi, i = 1, 2, . . . , n is the failure time of the ith component of system B. For

i = 1, 2, . . . , n, let Xi ∼ NP(α, βi) and Yi ∼ NP(α, β∗

i ). Here, assume α > 1. The
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first part of Theorem 3.1 ensures that for two parallel systems of components having

independent new Pareto type distributed lifetimes, if the scale parameter vector β

of system A is more dispersed than the scale parameter vector β∗ of system B, then

the lifetime of system A will be larger than that of system B in the usual stochastic

order. For the systems considered above, the first part of Theorem 3.3 tells that if

the scale parameter of the ith component of system A is greater than or equal to

that of the ith component of system B, i = 1, 2, . . . , n, then the lifetime of system A

will be larger than that of system B in the usual stochastic order when α > 0. For

α > 1, Theorem 3.4 states that the lifetime of system A is larger than that of system

B in the usual stochastic order when there is weak lower majorization between the

vectors β and β∗.

(ii) As in Part (i), we further consider two parallel systems A and B. Assume

that they each have n independently distributed components. Let Xi ∼ NP(αi, β)

and Yi ∼ NP(α∗

i , β), where i = 1, 2, . . . , n. Also, note that Xi and Yi represent the

failure times of the ith component of the systems A and B, respectively. Thus, for

a fixed β, using the first part of Theorem 3.6, we say that the system corresponding

to the majorized shape parameter vector leads to a parallel system having smaller

lifetime.

(iii) Let us consider two series systems, say C and D. Assume that they have n

components each. We know that a series system will fail if at least one of the com-

ponents fails. If Xi, i = 1, 2, . . . , n, denotes the failure time of the ith component of

system C and Yi, i = 1, 2, . . . , n, the failure time of the ith component of system D,

then X1:n and Y1:n represent the lifetimes of the systems C and D, respectively. For

i = 1, 2, . . . , n, let Xi ∼ NP(α, βi) and Yi ∼ NP(α, β∗

i ). For fixed α, if the scale pa-

rameter vector β of system C is more dispersed than the scale parameter vector β∗ of

system D, then the second part of Theorem 3.1 ensures that the lifetime of system C

will be smaller than that of system D in the usual stochastic order. Analogously,

for fixed α 6 1, Theorem 3.2 tells that if β−1 is more dispersed than β∗−1
, then

the lifetime of system C is smaller than that of system D in the usual stochastic

ordering.

E x am p l e 4.1. Suppose there are two systems, say system-I and system-II.

Let each system have three components which are connected in series. Denote

the components of system-I as I1, I2 and I3 and those of system-II as II1, II2
and II3. Let the failure times of I1, I2 and I3 have NP(0.5, 0.1), NP(0.5, 1) and

NP(0.5, 9) distributions, respectively. Further, let the failure times of II1, II2, and

II3 have NP(0.5, 0.1), NP(0.5, 4), and NP(0.5, 6) distributions, respectively. Clearly,

(0.1, 1, 9) �m (0.1, 4, 6). Thus, as an application of Corollary 3.1, system-II is prefer-

able to use, since its lifetime has smaller variance.
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5. Concluding remarks

The new Pareto type distribution has been proposed by [6] in the literature to

study reliability and income data. In the present communication, we have studied

stochastic comparisons of the lifetimes of series and parallel systems with independent

heterogeneous NP type components. In this context, sufficient conditions associated

with vector majorization and multivariate chain majorization have been provided.

In many practical situations, extremes of more than two random lifetimes are often

encountered. The contribution made in this paper is expected to be of interest to

the reliability theorists and practitioners to obtain better systems.
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