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Abstract

The structural properties of the moments of Markov arrival processes (MAPs) and Rational arrival
processes (RAPs) are considered in this paper. We investigate how many and which moments can
characterize these processes and show that redundant RAPs/MAPs of order n are characterized by less
than n2 independent moments.
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1 Introduction

Markov arrival processes (MAPs) [11, 10, 8] are versatile point processes with flexibility to approximate
real life (possibly correlated) data. The popularity of MAPs come from the fact that efficient numerical
procedures [9, 4] are available for the numerical analysis of complex systems with MAP input and/or service
process and the analysis of those models is supported with nice stochastic interpretations. As it is shown in
[3] practically the same efficient numerical procedures can be used for the analysis of complex systems with
the more general rational arrival processes (RAPs) [1] as input and/or service process, but in this case it is
without a nice stochastic interpretation.

Similar to the relation of phase type (PH) [9, 12] and matrix exponential (ME) [2] distributions the set
of MAPs of a given order is a subset of the set of RAPs of the same order (in case of order 2 the two sets are
identical [5] and in case of higher orders MAPs form a real subset). In this paper we investigate RAP and
MAP properties which are consequences of their matrix exponential nature and we do not devote particular
attention to the question if there exists a MAP or a RAP of order n with a given set of properties.

MAPs and RAPs are commonly defined by a matrix-pair and it is well established how to obtain the
basic properties (like joint density function and joint moments of inter-arrival times, lag correlation, etc.)
based on a matrix-pair representation [9]. Here we focus on the opposite problem. We investigate how to
characterize a MAP/RAP based on a given set of moments. The matrix-pair representation of MAPs/RAPs
is known to contain more parameters than the number of independent parameters [13]. We investigate how
many parameters characterize a MAP/RAP and the nature of these parameters.

The paper is organized as follows. The next section summarizes the main properties of MAPs and RAPs.
In Section 3 we show that no finite set of moments can completely characterize a MAP/RAP of unknown
(unbounded) order. Section 4 presents elements of moments based characterization for the case when the
order is bounded. Classifications of low order cases are summarized in Section 5 and 6, and some properties
of the higher order cases are presented in Section 7. Finally, an example of a redundant MAP arises from a
queueing application is presented in Section 8.

2 Preliminaries

A MAP/RAP has representations of different sizes. We start by introducing an important tool (the Hankel
matrix) to evaluate the order of a representation (which might be different from the size of the representation)
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and than we summarize basic MAP/RAP properties.

Definition 1. The matrix composed by the elements of the series {a0, a1, a2, . . .} as

H({a0, a1, a2, . . .}) =


a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
...

. . .

 , (1)

is referred to as Hankel matrix (1).

According to this definition Hi,j({a0, a1, . . .}) = ai+j , where the rows and the columns of H are numbered
from 0.

Definition 2. The Hankel order of the series {a0, a1, . . .}, denoted as HO({a0, a1, . . .}), is the rank of the
Hankel matrix H({a0, a1, . . .}). I.e., HO({a0, a1, . . .}) = rank(H({a0, a1, . . .})).

For a detailed introduction on MAP and RAP we refer, e.g., to [9] and [1]. Below we summarize only
the main results. Throughout the paper we consider continuous time MAPs and RAPs.

A MAP is a point process which is modulated by a continuous time Markov chain (CTMC). MAPs are
usually defined by two matrices. D0 contains the transition rates of the CTMC without an event (or arrival
in case of an arrival process) and D1 describes the ones with an event. D0 is supposed to be non-singular
and D = D0 + D1 is the generator of the CTMC modulating the point process. Since D is a generator
matrix, its row sums are equal to zero, i.e., D1I = 0, where 1I (0) denotes the column vector of ones (zeros)
of appropriate size. Consequently, D01I = −D11I.

In the analysis of MAPs, the state of the background CTMC (commonly referred to as “phase”) at
arrival instants plays an important role. The state of the background CTMC at consecutive arrivals is
referred to as the process embedded at arrival instants. The embedded process is a discrete time Markov
chain (DTMC) with transition probability matrix P = (−D0)

−1D1. From D01I = −D11I we also have
P1I = 1I. The stationary probability vector of the embedded process, π, is the solution of the linear system
πP = π, π1I = 1. In steady state, the inter-arrival time is PH distributed with initial probability vector π
and transient generator D0.

In case of MAPs the listed matrices obey structural restrictions. The elements of D1,P, π and the non-
diagonal elements of D0,D are non-negative, and the diagonal elements of D0,D are negative. By relaxing
these structural properties the set of arrival processes are generalized to the class of RAPs, whose stationary
inter-arrival time is ME distributed.

The properties of MAPs or RAPs defined by a pair of matrices (D0,D1) are computed in the same ways.
The cumulative distribution function (cdf), the probability density function (pdf) the Laplace transform, the
moments and the reduced moments of the stationary inter-arrival time are FX(x) = P (X < x) = 1−πeD0x1I,
fX(x) = πeD0xD11I, f

∗
X(s) = E(e−sX) = π(sI − D0)

−1D11I, E(Xk) = k! π(−D0)
−k1I, µk = E(Xk)/k! =

π(−D0)
−k1I, where πP = π, π1I = 1 and P = (−D0)

−1D1.

Definition 3. The size of a PH/ME distribution with representation (π,D0) is the size of the square matrix
D0.

Definition 4. The order of a PH/ME distribution is the Hankel order of its reduced moments series, i.e.,
HO({µ0, µ1, µ2, . . .}).

The inter-arrival times in MAPs/RAPs are not independent. The joint density function of the inter-
arrival times X0, X1, . . . , Xk is f(x0, x1, . . . , xk) = πeD0x0D1e

D0x1D1 . . . e
D0xkD11I, and the k + 1-tuple

joint moment of the s0 = 0 < s1 < s2 < · · · < sk-th inter arrival times is

E(Xi0
0 Xi1

s1 . . . X
ik
sk
) = πi0!(−D0)

−i0Pa1i1!(−D0)
−i1 . . . Pak ik!(−D0)

−ik1I, (2)

where ai = si − si−1. The k + 1-tuple reduced joint moment is

γ
(a1,...,ak)
i0,i1,...,ik

=
E(Xi0

0 Xi1
s1 . . . X

ik
sk
)

i0! . . . ik!
= π(−D0)

−i0Pa1(−D0)
−i1 . . . Pak(−D0)

−ik1I. (3)
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To simplify the notation we use γ
(1)
i,j = γi,j and E = (−D0)

−1 in the sequel.

Definition 5. The size of a MAP/RAP with representation (D0,D1) is the size of the square matrix D0.

The matrix representation of a MAP/RAP is not unique. There are infinitely many matrix pairs repre-
senting the same process. E.g., (D0,D1) and (B−1D0B,B−1D1B) represents the same MAP/RAP, if B
is a non-singular square matrix such that B1I = 1I. This similarity transformation maintains the size of the
representation, but there are transformations between representations of different sizes [7].

Definition 6. A MAP/RAP with representation (D0,D1) is minimal if there is no representation of
the same process with smaller size. In this case the (D0,D1) representation is referred to as minimal
representation.

Definition 7. The size of the minimal representation is referred to as the order of the MAP/RAP.

How to find the order and a minimal representation of a MAP/RAP based on its matrix representation
is discussed in [7].

Definition 8. A MAP/RAP is non-redundant if the order of the stationary inter-arrival time distribution
is identical with the order of the MAP/RAP and redundant otherwise.

The moments based characterization of non-redundant MAPs/RAPs is available in [13, 6]. The most
important features are the following:

• a non-redundant MAP/RAP of order n is characterized by n2 parameters,

• the joint density of two consecutive inter-arrivals of a non-redundant MAP/RAP characterizes the
process,

• the first 2n − 1 moments of the inter-arrival time, µi, i = 1, 2, . . . , 2n − 1, and the first (n − 1)2

joint moments of two consecutive inter-arrivals γij , i, j = 1, 2, . . . , n− 1, of an order n non-redundant
MAP/RAP (referred to as basic moments set) fully characterize the process.

We are going to show that none of these features are valid, in general, for redundant MAPs/RAPs. Our
main goal is to investigate the properties of MAPs/RAPs based on their moments (from now on, the general
term moments refers to the set of reduced moments and reduced joint moments including double, triple,
etc. joint moments). The moments based characterization of MAPs/RAPs is motivated by the fact that
the matrix representation contains too many parameters (2n2), while a non-redundant MAP/RAP is fully
characterized by n2 moments (referred to as basic moments set). d

3 Properties of MAP/RAP moments

In the previous section the introduction of MAP/RAPs assumes the existence of a matrix representation. In
this section we assume that all moments of a MAP/RAP is available and restate some of the basic MAP/RAP
properties based on this set of information. The main tool for checking these properties is the Hankel order
of moments series.

3.1 Hankel order of moments series

Theorem 1. If the Hankel order of a moments series is u, then the order of the MAP/RAP is greater or
equal to u.

Proof. We prove the statement for {γ(k,ℓ)
i,0,j , γ

(k,ℓ)
i,1,j , γ

(k,ℓ)
i,2,j , . . .}. The proof for any other moments series follows

the same pattern. The elements of the moments series {γ(k,ℓ)
i,0,j , γ

(k,ℓ)
i,1,j , γ

(k,ℓ)
i,2,j , . . .} can be written as

γ
(k,ℓ)
i,n,j = πEiPkEnPℓEj1I, n = 0, 1, 2, . . . ,
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and the associated Hankel matrix can be decomposed as

H(γ) =


πEiPkE0

πEiPkE1

πEiPkE2

. . .

 [
E0PℓEj1I E1PℓEj1I E2PℓEj1I . . .

]
, (4)

where the first matrix is composed by row vectors and the second one by column vectors of the size of the
representation. Based on this decomposition the order of the process could not be less than u.

3.2 Minimal size and redundancy

From Definition 4 and 8 we have the following corollaries.

Corollary 1. A MAP/RAP is redundant if there exists a series of moments γ = {γ(k,ℓ)
i,0,j , γ

(k,ℓ)
i,1,j , γ

(k,ℓ)
i,2,j , . . .}

such that HO
(
γ
)
> HO

(
µ
)
where µ = {µ0, µ1, µ2, . . .}.

Corollary 2. The order of a MAP/RAP is the maximum of the Hankel orders of all moments series.

Next we investigate how many moments need to be analyzed for finding a moments series γ for which

HO
(
γ
)
> HO

(
µ
)
and how to find a moments series of maximal Hankel order. Unfortunately, in general, these

questions cannot be answered based on a finite number of moments. To prove this we present a MAP/RAP
structure which exhibits a low order MAP/RAP behavior based on the analysis of low order moments and
a higher order behavior based on the analysis of higher order moments. To do that we first introduce the
extended representation of MAPs/RAPs.

3.3 Extended representation

Let (Ď0, Ď1) be a matrix representation of a MAP/RAP where the matrices define the process according to
(2)-(3), i.e., the closing vector is 1I and the initial vector is the solution of π̌(−Ď0)

−1Ď1 = π̌P̌ = π̌, π̌1I = 1.
To study further properties of moments we need representations with general initial and closing vector. A
similarity transformation

π̌ ⇒ δ = π̌B−1, Ď0 ⇒ D0 = BĎ0B
−1, Ď1 ⇒ D1 = BĎ1B

−1, 1I ⇒ h = B1I,

with non-singular matrixB (whereB1I can be different from 1I) results in a representation with general closing
vector. For notational convenience we use E and P instead of D0 and D1 in the extended representation.

Definition 9. We refer to the four-tuple (δ,E,P, h) as extended representation of a MAP/RAP. The
elements of the extended representation satisfy

δP = δ, Ph = h, δh = 1. (5)

3.4 MAPs/RAPs with identical low order behavior

Consider a MAP/RAP of size u1 with extended representation (δ,E,P, h) and a MAP/RAP with extended
representation (δ′,E′,P′, h′), where δ′ = {δ, 0, 0, . . . , 0, 0},

E′ =


E

1
. . .

1
1

 , P′ =


P pv

0 1
. . .

. . .

0 1
ph 0

 , h′ =


h
0
...
0
0

 .

The size of the second MAP/RAP is u1+u2 and the size of the blocks of the representation are u1, 1, 1, . . . , 1, 1,
respectively. To fulfill δ′P′ = δ′ and P′h′ = h′, pv and ph are such that δpv = 0 and phh = 0.
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Corollary 3. The µi moment for i ∈ N, the γ
(k,ℓ)
i,n,j moment for i, j, n ∈ N and k+ ℓ ≤ u2, and the γ

(a1,...,ak)
i0,i1,...,ik

moment for is ∈ N, s ∈ {0, 1, . . . , k},
∑k

u=1 au ≤ u2 are identical for the processes with representation
(δ,E,P, h) and (δ′,E′,P′, h′).

Proof. We first prove the corollary for γ
(k,ℓ)
i,n,j with k+ ℓ ≤ u2. Prime indicates the parameters of the process

with representation (δ′,E′,P′, h′).

γ′(k,ℓ)
i,n,j = δ′E′i︸ ︷︷ ︸P′kE′nP′ℓ E′jh′︸ ︷︷ ︸

= [δEi, 0, 0, . . . , 0, 0]P′kE′nP′ℓ



Ejh
0
0
...
0
0


= [δEiPk, ⋆, . . . , ⋆︸ ︷︷ ︸

k

, 0, . . . , 0]E′n



PℓEjh
0...
0
⋆...
⋆

 }
ℓ

=

= δEiPkEnPℓEjh = γ
(k,ℓ)
i,n,j ,

where ⋆ refers to potentially non-zero vector elements. The proof for the other cases (µi, γ
(a1,...,ak)
i0,i1,...,ik

) follows
the same pattern, since the structure of the initial and closing vector depends only on the number of
multiplications with P′. The multiplications with E′ does not modify the zero structure of the initial and
closing vectors.

As a consequence of Corollary 3 the full characterization of a MAP/RAP requires the analysis of both,
low and high order, moments. If we are not given an upper bound of the order of an MAP/RAP then it
is impossible to obtain its order based on any bounded moments set. In the opposite case it is possible to
characterize the process based on a finite moments set and the next section is devoted to this task.

4 Moments based characterization of MAPs/RAPs

In order to investigate the properties of moments series we study how those moments series are related
with a particular representation. Without loss of generality, we assume that the considered representation
is minimal. As a consequence the identical eigenvalues of D0 (or equivalently E) belong to the same
Jordan block. It is because any representation with identical eigenvalues in different Jordan blocks can be
transformed to a smaller representation. Furthermore we are going to utilize the fact that the eigenvalues of
D0 are non-zero. First we introduce a useful representation which expresses important structural properties
of MAP/RAP moments series, than we investigate how to obtain a moments series with maximal Hankel
order.

4.1 Jordan representation

Let (π,E,P, 1I) be an extended representation of a MAP/RAP and E = B−1ΛB the Jordan decomposition
of E. Applying a similarity transformation with matrix B on (π,E,P, 1I) we obtain

(πB−1,BEB−1,BPB−1,B1I) = (δ,Λ, P̂, h),

where from (5) we have δP̂ = δ, P̂h = h, δh = 1.

Definition 10. The Jordan representation of a MAP/RAP is an extended representation (δ,Λ, P̂, h)
where Λ is a Jordan matrix.
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4.2 Moments series of maximal Hankel order

The computation of the moments based on the Jordan representation,

γ
(a1,...,ak)
i0,i1,...,ik

=
E(Xi0

0 Xi1
s1 . . . X

ik
sk
)

i0! . . . ik!
= δΛi0P̂a1Λi1 . . . P̂akΛikh (6)

is an efficient tool to visualize the rank limitation of the Hankel matrix of moments series. Similar to (4) the

Hankel matrix of the moments series γ = {γ(a1,...,ak)
i0,...,iℓ−1,0,iℓ+1,...,ik

, γ
(a1,...,ak)
i0,...,iℓ−1,1,iℓ+1,...,ik

, γ
(a1,...,ak)
i0,...,iℓ−1,2,iℓ+1,...,ik

, . . .}
can be decomposed as

H(γ) = δΛi0P̂a1 . . .Λiℓ−1P̂aℓΛ0

δΛi0P̂a1 . . .Λiℓ−1P̂aℓΛ1

. . .

 [
Λ0P̂aℓ+1Λiℓ+1 . . . P̂akΛikh Λ1P̂aℓ+1Λiℓ+1 . . . P̂akΛikh . . .

]
,

(7)

where the first matrix is composed by row vectors and the second one by column vectors of the size of the
representation. For the sake of simplicity, we discuss the cases with and without a real Jordan block in Λ
separately.
Matrix Λ is diagonal: A diagonal matrix Λ means that the eigenvalues of Λ are different (because there
is no Jordan block larger than 1 and there are no identical Jordan blocks in a minimal representation) and
non-zero.

In this case the non-zero elements of the row vector u = δΛi0P̂a1 . . .Λiℓ−1P̂aℓ determine the rank of the
first matrix in (7). More precisely, the rank of the first matrix equals to the number of non-zero elements of
u. Similarly the rank of the second matrix in (7) equals to the number of non-zero elements of the column
vector v = P̂aℓ+1Λiℓ+1 . . . P̂akΛikh. The rank of the product equals to the overlapping non-zero entries of
these vectors, i.e., the non-zero entries of u⊙ vT , where ⊙ denotes the element-wise multiplication.

If both, δ and h, are composed of non-zero elements then, the rank of the moments series {µ0, µ1, . . .}
is identical with the size of the representation (which is minimal), i.e., the MAP is non-redundant. For the
analysis of the redundant cases, when δ or h contains at least one zero element, we differentiate structural
and random zero elements in the u type row vectors and in the v type column vectors according to the
following definition.

Let A and B be real or complex valued matrixes of size n×m and m× k, respectively. The i, j element
of A⋆ (B⋆) is 0 if Aij = 0 (Bij = 0) and ⋆ otherwise. Using the following multiplication and summation
rules

a b a+ b ab
0 0 0 0
0 ⋆ ⋆ 0
⋆ 0 ⋆ 0
⋆ ⋆ ⋆ ⋆

one can compute the ⋆-0 structure of the product AB denoted as A⋆B⋆.

Definition 11. Those zero elements of AB whose associated A⋆B⋆ elements are zero as well are referred
to as structural zero elements, while the zero elements of AB whose associated A⋆B⋆ elements are ⋆ are
referred to as (structurally not determined or) random zero elements.

The main difficulty of moments based MAP/RAP characterization comes from the random zeros in u
and v type vectors. The occurrence of structural zero elements is not that hard to characterize, because they
depend on the non-zero structures of δ, h, Λ and P̂. For example, if Λ is diagonal, then the ⋆-0 structure of

u and v type vectors are invariant for multiplication with matrix Λ. E.g., if Λ =

[
λ1 0
0 λ2

]
and δ = [⋆, 0]

then δΛ = [⋆, 0]. Consequently, the zero structure of P̂ and the number of multiplications with P̂ determine
the structural zero elements of the u and v type vectors in this case.
Matrix Λ with real Jordan block: The main difference of this case from the case of diagonal matrix Λ
is that the non-zero structure of the u and v type vectors are not invariant for multiplication with Λ due
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to the presence of real Jordan blocks. For example, if Λ =

[
λ 1
0 λ

]
and u = [⋆, 0] then uΛ = [⋆, ⋆]. In

this case the structural properties of both matrixes, Λ and P̂, play role in the occurrence of structural zero
elements.

The moments series of maximal order is obtained when the overlapping non-zero elements of a u and a
v type vectors are maximal. The random zeros which might show up in the u and v type vectors prevents
efficient search methods for finding u and v type vectors with maximal overlapping non-zero elements and
unfortunately one needs to perform exhaustive search.

4.3 Some MAP/RAP properties obtained form moments series

The moments series of maximal Hankel order defines the order of the MAP/RAP. Several related properties
can be checked based on the the order of the MAP/RAP. First of all, the relation of the order with the
Hankel order of the moments series {µ0, µ1, . . .} determines if the MAP/RAP is redundant.

If the MAP/RAP is non-redundant and Λ is diagonal then neither δ nor h contain a zero element. If
the MAP is redundant then at least one of them contains a zero element, and the way as the structural
zeros disappear from the u and v type vectors due to multiplications with Λ and P̂ characterizes various
interesting MAP properties, e.g., the number of (independent) parameters.

The lower order moments series allow us to investigate the structural properties of the u and v type

vectors. Let µi = {µ0, µ1, . . .}, γ
(1)
i1 = {γ(1)

01 , γ
(1)
11 , γ

(1)
21 , . . .}, γ

(1)
1i = {γ(1)

10 , γ
(1)
11 , γ

(1)
12 , . . .} and γ

(11)
1i1 =

{γ(11)
101 , γ

(11)
111 , γ

(11)
121 , . . .}. If HO

(
µi

)
= HO

(
γ
(1)
i1

)
then from µi = δΛih and γ

(1)
i1 = δΛiP̂Λh we have that

either h does not contain zero element or P̂Λh does not contain more non-zero elements in those positions

where the associated δ element is non-zero. In the opposite case, when HO
(
µi

)
< HO

(
γ
(1)
i1

)
, h contains a

zero element at a position where the associated δ element is non-zero and a multiplication of h with Λ and
P̂, eliminates at least one of such zero elements of h. Similar conclusions can be obtained from the relation

of HO
(
µi

)
, HO

(
γ
(1)
i1

)
, HO

(
γ
(1)
1i

)
, HO

(
γ
(11)
1i1

)
and so on. Unfortunately, randomly occurring zeros in u and

v type vectors might also cause that HO
(
µi

)
> HO

(
γ
(1)
i1

)
, which inhibits several general statements on the

MAP/RAP properties.
The following sections investigate the properties of the simplest cases, the rank 2 and the rank 3

MAPs/RAPs in details.

5 Characterization of order 2 MAPs/RAPs

In this section we show that all order 2 MAP/RAPs are non-redundant. Similar to the previous section we
differentiate the cases with and without real Jordan block in Λ.

When Λ is diagonal, Λ =

[
λ1 0
0 λ2

]
, we can freely interchange the eigenvalues in Λ and the associ-

ated vector and matrix elements in δ, h and P̂ and the obtained representation remains to be a Jordan
representation. We have the following meaningful cases (after a potential reordering of the eigenvalues).

a) δ = {⋆, ⋆}, hT = {⋆, ⋆},
b) δ = {⋆, 0}, hT = {⋆, ⋆},
c) δ = {⋆, ⋆}, hT = {⋆, 0},
d) δ = {⋆, 0}, hT = {⋆, 0},

Case a) is the non-redundant case. It is discussed in [13, 6]. Case b), c) and d) have lower orders. In
case b), without loss of generality, we assume δ = {δ1, 0}, hT = {1, 1}. From δh = 1 we have δ1 = 1. From

δP̂ = δ and P̂h = h we have P̂ =

[
1 0
p21 1− p21

]
. The zero structures of δ = {1, 0}, Λ and P̂ result in

that any multiplication of δ with Λi and P̂j maintains the non-zero structure of the u type vectors, i.e.,
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δΛi1P̂j1Λi2P̂j2 . . . = {⋆, 0}, ∀i1, j1, i2, j2, . . . ≥ 0. As a consequence the rank of any moments series (in (4))
equal to one. That is, the process is a rank 1 MAP, a Poisson process. The rank of case c) and d) can be
obtained in a similar way.

When Λ has a real Jordan block, Λ =

[
λ 1
0 λ

]
, we cannot interchange the vector elements and need

to consider an extended set of cases:

a) δ = {⋆, ⋆}, hT = {⋆, ⋆} ⇒ δΛ = {⋆, ⋆}, (Λh)T = {⋆, ⋆},
b) δ = {⋆, 0}, hT = {⋆, ⋆} ⇒ δΛ = {⋆, ⋆}, (Λh)T = {⋆, ⋆},
c) δ = {⋆, ⋆}, hT = {⋆, 0} ⇒ δΛ = {⋆, ⋆}, (Λh)T = {⋆, 0},
d) δ = {⋆, 0}, hT = {⋆, 0} ⇒ δΛ = {⋆, ⋆}, (Λh)T = {⋆, 0},
e) δ = {0, ⋆}, hT = {⋆, ⋆} ⇒ δΛ = {0, ⋆}, (Λh)T = {⋆, ⋆}
f) δ = {⋆, ⋆}, hT = {0, ⋆} ⇒ δΛ = {⋆, ⋆}, (Λh)T = {⋆, ⋆},
g) δ = {0, ⋆}, hT = {⋆, 0} ⇒ δΛ = {0, ⋆}, (Λh)T = {⋆, 0},
h) δ = {⋆, 0}, hT = {0, ⋆} ⇒ δΛ = {⋆, ⋆}, (Λh)T = {⋆, ⋆},
i) δ = {0, ⋆}, hT = {0, ⋆} ⇒ δΛ = {0, ⋆}, (Λh)T = {⋆, ⋆}.

Among these cases a), b), e), h) represent non-redundant order 2 MAPs/RAPs and all the other cases result
in a lower order processes (case g) is order 0, which is not a process, and the other cases are order 1. Con-
sequently, all order 2 MAPs/RAPs are non-redundant. To study the properties of redundant MAPs/RAPs
we need to consider at least order 3 processes.

6 Characterization of order 3 MAPs/RAPs

From the previous section we also learned that instead of the zero structure of δ and h the zero structure of
δΛn−1 and Λn−1h, where n is the size of the largest Jordan block of Λ, decides the structural properties of
the MAP/RAP. We have following relevant cases of order 3 MAPs/RAPs with diagonal Λ:

a) δΛn−1 = {⋆, ⋆, ⋆}, (Λn−1h)T = {⋆, ⋆, ⋆},
b) δΛn−1 = {⋆, ⋆, 0}, (Λn−1h)T = {⋆, ⋆, ⋆},
c) δΛn−1 = {⋆, 0, ⋆}, (Λn−1h)T = {⋆, ⋆, 0},
d) δΛn−1 = {⋆, ⋆, 0}, (Λn−1h)T = {⋆, ⋆, 0}.

The other cases are either lower order or can be obtained by replacing the role of δ and h or by reordering
the eigenvalues in Λ. A matrix Λ with real Jordan block prevents the interchange of the roles of δ and h,
but apart of that these four cases represents the cases with real Jordan blocks as well.

Case a) is the non-redundant case, which is known to be defined by 32 = 9 independent parameters
[6, 13]. An independent set of parameters from which all moments and a matrix representation can be
computed is µ1, . . . , µ5 moments and the γ11, γ12, γ21, γ22 joint moments. This set of moments composes the
basic moments set of case a).

In the remaining 3 cases we obtain MAPs/RAPs with essentially different properties. These MAPs/RAPs
are defined by less than 9 independent parameters and the sets of independent moments are different from
the one of the non-redundant case.

6.1 Case b): δΛn−1 = {⋆, ⋆, 0}, (Λn−1h)T = {⋆, ⋆, ⋆}
We analyze the case by considering the effect of the zero structure of δΛn−1 and (Λn−1h)T on the rank of
the moments matrices. Using this information we look for a set of moments and a set of equations based on
which all other moments of the MAP/RAP can be computed. From δΛn−1 = {⋆, ⋆, 0} the rank of

M1 =


δΛ0

δΛ1

δΛ2

δΛ3

...


[
Λ0h Λ1h Λ2h

]
=


1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

µ3 µ4 µ5

...
...

...

 ,
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is 2 and the determinant of any 3 × 3 sub-matrix of M1 is zero1. det

 1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

 = 0 allows us to

determine µ4 based on µ1, µ2, µ3 and recursively all higher moments can be obtained in a similar way.
The lower right sub-matrix of M1, separated by the horizontal and vertical lines, contains the unknowns

which can be determined base on the known moments presented in the complementer part of the matrix.
A moment which shows up in both parts is an unknown when it is in the lower right sub-matrix and it
is considered to be known otherwise. For example, µ4 as unknown is determined by the known moments
µ1, µ2, µ3 and in a consecutive step µ5 as unknown is determined by the known moments µ1, µ2, µ3, µ4.
The meaning of the indicated lower right sub-matrix is going to be the same in the consecutive moments
matrices.
Computing γij: The rank of

M2 =


δ
δΛ

δΛP̂

δΛP̂Λ

 [
Λ0h Λ1h Λ2h Λ3h . . .

]
=


1 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ4 · · ·
µ1 γ11 γ12 γ13 · · ·
µ2 γ12 γ13 γ14 · · ·

 ,

is not reduced by the structure of order 3 type b) processes. In this way, based on the 4× 4 sub-matrices of
M2 we can compute γ1j for j ≥ 4 from µ1, µ2, µ3, . . . and γ11, γ12, γ13.

From δΛi = {⋆, ⋆, 0} we have that the rank of

M3 =


δΛ0

δΛ1

δΛ2

...

 [
h Λh P̂Λh P̂Λ2h · · ·

]
=


1 µ1 µ1 µ2 · · ·
µ1 µ2 γ11 γ12 · · ·
µ2 µ3 γ21 γ22 · · ·
...

...
...

...
. . .

 ,

is 2 and the determinant of any 3 × 3 sub-matrix of M3 is zero. We can compute γij for i ≥ 2 based on
µ1, µ2, µ3, . . . and γ1j for j ≥ 1.

Computing γ
(2)
ij : Similarly, the rank of

M4 =


δ
δΛ

δΛP̂

δΛP̂2

 [
Λ0h Λ1h Λ2h Λ3h . . .

]
=


1 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ4 · · ·
µ1 γ11 γ12 γ13 · · ·
µ1 γ

(2)
11 γ

(2)
12 γ

(2)
13 · · ·

 ,

is not reduced by the structure of order 3 type b) processes. From the 4 × 4 sub-matrices of M4 we can

compute γ
(2)
1j for j ≥ 3 from µ1, µ2, µ3, . . ., γ11, γ12, γ13, . . . and γ

(2)
11 , γ

(2)
12 .

Similar to M3, due to the structure of the initial matrix the rank of
δΛ0

δΛ1

δΛ2

...

 [
h Λh P̂2Λjh

]
=


1 µ1 µ1

µ1 µ2 γ2
1j

µ2 µ3 γ2
2j

...
...

...


is 2 and using its 3× 3 blocks we can obtain γ2

ij for i ≥ 2 based on µ1, µ2, µ3, . . . and γ2
1j .

Computing γ
(k)
ij : Now we show that all γ

(k)
ij moments can be obtained based on µ1, µ2, µ3 and

γ11, γ12, γ13, γ
(2)
11 , γ

(2)
12 . Let us assume that the γℓ

ij , i, j ≥ 1, ℓ < k moments are known. From the 4 × 4
sub-matrices of

δ
δΛ

δΛP̂

δΛP̂2

 [
Λ0h Λ1h Λ2h P̂k−2Λh P̂k−2Λ2h . . .

]
=


1 µ1 µ2 µ1 µ2 · · ·
µ1 µ2 µ3 γ

(k−2)
11 γ

(k−2)
12 · · ·

µ1 γ11 γ12 γ
(k−1)
11 γ

(k−1)
12 · · ·

µ1 γ
(2)
11 γ

(2)
12 γ

(k)
11 γ

(k)
12 · · ·

 ,

1To avoid pathological cases in this section we exclude the rank degradation due to random zeros.
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we can compute γ
(k)
1j for j ≥ 1 and from the 3× 3 blocks of

δΛ0

δΛ1

δΛ2

...

 [
h Λh P̂kΛjh

]
=


1 µ1 µ1

µ1 µ2 γ
(k)
1j

µ2 µ3 γ
(k)
2j

...
...

...

 ,

we obtain γ
(k)
ij for i ≥ 2.

Computing higher moments: Finally, any other higher moment can be obtained from computable lower
order ones using the fact that the determinant of

δ
δΛ

δΛP̂
⋆

 [
Λ0h Λ1h Λ2h ⋆

]
=


1 µ1 µ2 ⋆
µ1 µ2 µ3 ⋆
µ1 γ11 γ12 ⋆
⋆ ⋆ ⋆ •


is zero and applying a similar recursive procedure as the one in [6]. As an example we demonstrate the

computation of γ
(11)
111 :

δ
δΛ

δΛP̂

δΛP̂Λ

 [
Λ0h Λ1h Λ2h P̂Λh

]
=


1 µ1 µ2 µ1

µ1 µ2 µ3 γ11

µ1 γ11 γ12 γ
(2)
11

γ11 γ12 γ13 γ
(11)
111

 .

We conclude that a basic moments set of order 3 type b) MAPs/RAPs is composed by 8 moments

µ1, µ2, µ3, γ11, γ12, γ13, γ
(2)
11 and γ

(2)
12 and any other moments of the process can be computed base on this

basic moments set.
Generating a matrix representation: Having the moments we can generate a matrix representation of
an order 3 type b) MAP/RAP. Based on the moments series γ1j j ≥ 0, obtained from

δΛP̂Λ0

δΛP̂Λ1

δΛP̂Λ2

δΛP̂Λ3

...


[
Λ0h Λ1h Λ2h Λ3h . . .

]
=


µ1 γ11 γ12 γ13 · · ·
γ11 γ12 γ13 γ14 · · ·
γ12 γ13 γ14 γ15 · · ·
γ13 γ14 γ15 γ16 · · ·
...

...
...

...
. . .

 , (8)

we generate a row vector α and a matrix Ē of size 3 such that γ1j = αĒj1I. One way to do it is to divide γ1j
by µ1 to obtain µ′

j = γ1j/µ1. Consider the obtained µ′
j series as a moments series of a PH/ME distribution.

Apply the same procedure as in [13] to obtain a vector matrix pair (α′, Ē) which provides µ′
j = α′Ēj1I and

set α = α′µ1. With these α and Ē we have

M7 =

 αĒ0

αĒ1

αĒ2

 [
Ē01I Ē11I Ē21I

]
=

 µ1 γ11 γ12
γ11 γ12 γ13
γ12 γ13 γ14

 . (9)

Comparing (8) with (9) shows that there is only a similarity transformation between α and δΛP̂, Ē and Λ,
and 1I and h. Assuming that there is the same similarity transformation between P̄ and P̂ we have αĒ0

αĒ1

αĒ2

 P̄
[
Ē01I Ē11I Ē21I

]
=

 µ1 γ
(2)
11 γ

(2)
12

γ11 γ
(11)
111 γ

(11)
112

γ12 γ
(11)
121 γ

(11)
122

 . (10)
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Due to the fact that M7 is rank 3 P̄ can be computed from (10) as

P̄ =

 αĒ0

αĒ1

αĒ2

−1
 µ1 γ

(2)
11 γ

(2)
12

γ11 γ
(11)
111 γ

(11)
112

γ12 γ
(11)
121 γ

(11)
122

[
Ē01I Ē11I Ē21I

]−1
,

from which D̄0 = −Ē−1 and D̄1 = Ē−1P̄ is a matrix representation of the process.

Example 1. An example of type b) order 3 matrix representation (with h = 1I) is

D0 =

 −1 0 0
0 −1/2 0
0 0 −2

 , D1 =

 1/10 4/5 1/10
1/220 491/990 −1/1980
2/5 3/5 1

 .

6.2 Case c): δΛn−1 = {⋆, 0, ⋆}, (Λn−1h)T = {⋆, ⋆, 0}
The most remarkable feature of case c) is that the Hankel order of the µi = δΛih = δ1λ

i
11h1 moments series

is one, which means on the one hand that the stationary inter-arrival time is exponentially distributed and
on the other hand that the rank of δΛ0

δΛ1

...

 [
Λ0h Λ1h

]
=

 1 µ1

µ1 µ2

...
...

 ,

is one and the Hankel matrices containing this matrix as a sub-matrix (e.g. M2 of case b)) cannot be used
to compute higher moments due to rank degradation.
Computing γij: Consequently we can apply the following rank 2 matrices to compute higher moments.
From µi, i ≥ 1 and γ11, γ21, γ12 we can compute γi1 ∀i ≥ 3 using δΛ0

δΛ1

δΛ2

 [
h Λ0P̂Λh Λ1P̂Λh · · ·

]
=

 1 µ1 γ11 · · ·
µ1 γ11 γ21 · · ·
µ2 γ21 γ31 · · ·

 ,

and γ1j ∀j ≥ 3 using 
δ

δΛP̂Λ0

δΛP̂Λ1

...

 [
Λ0h Λ1h Λ2h

]
=


1 µ1 µ2

µ1 γ11 γ12
γ11 γ12 γ13
...

...
...

 .

From µi, i ≥ 1 and γi1, γ1j ∀i, j ≥ 1 we can compute γij , for ∀i, j ≥ 2 using
δΛ0

δΛ1

δΛ2

...

 [
P̂Λ0h P̂Λ1h P̂Λ2h · · ·

]
=


1 µ1 µ2 · · ·
µ1 γ11 γ12 · · ·
µ2 γ21 γ22 · · ·
...

...
...

. . .

 .

Computing γ
(2)
ij : From µi, i ≥ 1, γij , i, j ≥ 1, and γ

(2)
11 we can compute γ

(2)
1j for ∀j ≥ 2 using

δ

δΛP̂Λ0

δΛP̂2Λ0

δΛP̂2Λ1

...


[
Λ0h Λ1h Λ2h

]
=


1 µ1 µ2

µ1 γ11 γ12

µ1 γ
(2)
11 γ

(2)
12

γ
(2)
11 γ

(2)
12 γ

(2)
13

...
...

...

 ,
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and from µi, i ≥ 1, γij , i, j ≥ 1, and γ
(2)
1j ∀i ≥ 1 we can compute γ

(2)
ij for ∀i, j ≥ 1 using

δΛ0

δΛ1

δΛ2

...

 [
h P̂Λh P̂2Λ1h P̂2Λ2h P̂2Λ3h · · ·

]
=


1 µ1 µ1 µ2 µ3 · · ·
µ1 γ11 γ

(2)
11 γ

(2)
12 γ

(2)
13 · · ·

µ2 γ21 γ
(2)
21 γ

(2)
22 γ

(2)
23 · · ·

...
...

...
...

...
. . .

 .

Computing γ
(k)
ij : Having µi, i ≥ 1, γij , γ

(2)
ij i, j ≥ 1, and γ

(3)
11 we can compute γ

(3)
ij for ∀i, j ≥ 1 in the same

way as γ
(2)
ij by replacing P̂2 with P̂3 in the matrices. In a similar manner having µi, i ≥ 1, γ

(k)
ij i, j ≥ 1,

k = 1, 2, 3, and γ
(4)
11 we can compute γ

(4)
ij for ∀i, j ≥ 1.

The higher γ
(k)
11 moments (k ≥ 5) can be computed from the rank 3 matrix
δ
δΛ

δΛP̂

δΛP̂2

 [
h P̂Λh P̂2Λh P̂3Λh · · ·

]
=


1 µ1 µ1 µ1 · · ·
µ1 γ11 γ

(2)
11 γ

(3)
11 · · ·

µ1 γ
(2)
11 γ

(3)
11 γ

(4)
11 · · ·

µ1 γ
(3)
11 γ

(4)
11 γ

(5)
11 · · ·

 ,

and the associated γ
(k)
ij i, j ≥ 1 moments can be computed in the same way as γ

(2)
ij .

Up to this point we have computed all double joint moments (E(Xi
0X

j
k)/i!j! = γ

(k)
ij , ∀i, j, k ≥ 1) based

on 7 basic moments: µ1, γ11, γ21, γ12, γ
(2)
11 , γ

(3)
11 and γ

(4)
11 .

Computing triple and higher joint moments: Having all double joint moments and γ
(11)
111 we can further

compute γ
(1j)
111 and γ

(1j)
121 from the rank 3 matrix
δ
δΛ

δΛP̂

δΛP̂2

 [
h P̂Λh P̂2Λh ΛP̂Λh

]
=


1 µ1 µ1 γ11

µ1 γ11 γ
(2)
11 γ21

µ1 γ
(2)
11 γ

(3)
11 γ

(11)
111

µ1 γ
(3)
11 γ

(4)
11 γ

(21)
111

 .

Having these moments we further compute γ
(11)
iℓj from the rank 3 matrix



δ

δΛP̂

δΛP̂2

δΛP̂Λ

δΛP̂Λ2

...


[
h Λh P̂Λh ΛP̂Λh

]
=



1 µ1 µ1 γ11

µ1 γ11 γ
(2)
11 γ

(11)
111

µ1 γ
(2)
11 γ

(3)
11 γ

(21)
111

γ11 γ12 γ
(11)
111 γ

(11)
121

γ12 γ13 γ
(11)
121 γ

(11)
131

...
...

...
...


.

Finally, we conclude that the basic moments set of order 3, type c) MAPs/RAPs is composed by 8

moments µ1, γ11, γ12, γ21, γ
(2)
11 , γ

(3)
11 , γ

(4)
11 and γ

(11)
111 and any other higher order moments of the process can

be computed based on this basic moments set in the form
δ
δΛ

δΛP̂
⋆

 [
h P̂Λh P̂2Λh ⋆

]
=


1 µ1 µ1 ⋆

µ1 γ11 γ
(2)
11 ⋆

µ1 γ
(2)
11 γ

(3)
11 ⋆

⋆ ⋆ ⋆ •

 .

Generating a matrix representation: All the double joint moments series of order 3 type c) MAPs/RAPs

can be computed from rank 2 matrices which means that the γ
(k)
1j j ≥ 0 and γ

(k)
i1 i ≥ 0, moments series are

12



at most order 2 for any k. To characterize the order 3 generator of the process we need to use a moments

series which is computed from rank 3 matrices. γ
(11)
1j1 j ≥ 0 is such a moments series. Taking this moments

series we generate a row vector α and a matrix Ē of size 3 such that γ
(11)
1j1 = αĒj1I. With these α and Ē we

have  αĒ0

αĒ1

αĒ2

 [
Ē01I Ē11I Ē21I

]
=

 γ
(2)
11 γ

(11)
111 γ

(11)
121

γ
(11)
111 γ

(11)
121 γ

(11)
131

γ
(11)
121 γ

(11)
131 γ

(11)
141

 ,

and  αĒ0

αĒ1

αĒ2

 P̄
[
Ē01I Ē11I Ē21I

]
=

 γ
(3)
11 γ

(21)
111 γ

(21)
121

γ
(12)
111 γ

(111)
1111 γ

(111)
1121

γ
(12)
121 γ

(111)
1211 γ

(111)
1221

 .

Due to the fact that the Hankel matrix of the moments series of γ
(11)
1j1 is rank 3 P̄ can be computed as

P̄ =

 αĒ0

αĒ1

αĒ2

−1
 γ

(3)
11 γ

(21)
111 γ

(21)
121

γ
(12)
111 γ

(111)
1111 γ

(111)
1121

γ
(12)
121 γ

(111)
1211 γ

(111)
1221

[
Ē01I Ē11I Ē21I

]−1
,

from which D̄0 = −Ē−1 and D̄1 = Ē−1P̄ is a matrix representation of the process.

Example 2. An example of type c) order 3 Jordan representation is

δ = (1, 0, 1/5), Λ =

 1 0 0
0 2 0
0 0 1/2

 , P̂ =

 1/5 4/5 1/10
1/10 9/10 3/10
4 −4 1/1

 , h =

 1
1
0

 .

Note that this representation satisfies (5).

6.3 Case d): δΛn−1 = {⋆, ⋆, 0}, (Λn−1h)T = {⋆, ⋆, 0}
Based on the properties of δΛn−1 and Λn−1h the rank of

δΛ0

δΛ1

δΛ2

δΛ3

...


[
Λ0h Λ1h Λ2h

]
=


1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

µ3 µ4 µ5

...
...

...

 ,

is 2 and we can compute all µi, i ≥ 4 moments based on µ1, µ2, µ3.
Computing γij: The rank of δ

δΛ

δΛP̂

 [
Λ0h Λ1h Λ2h Λ3h . . .

]
=

 1 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ4 · · ·
µ1 γ11 γ12 γ13 · · ·

 ,

is 2 and we can compute γ1j for j ≥ 2 from µ1, µ2, µ3, . . . and γ11. Similarly, the rank of
δΛ0

δΛ1

δΛ2

...

 [
h Λh P̂Λh P̂Λ2h · · ·

]
=


1 µ1 µ1 µ2 · · ·
µ1 µ2 γ11 γ12 · · ·
µ2 µ3 γ21 γ22 · · ·
...

...
...

...
. . .

 ,

is 2 and we can compute γij for i ≥ 2 based on µ1, µ2, µ3, . . . and γ1j , j ≥ 1.
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Computing γ
(k)
ij : Having, γ

(2)
11 (γ

(3)
11 ) and repeating exactly the same steps as for computing γ1j results in

γ
(2)
ij (γ

(3)
ij ). For the computation of the γ

(k)
ij moments for k ≥ 4 the γ

(k)
11 moment can be obtained from the

rank 3 matrix 
δ
δΛ

δΛP̂

δΛP̂2

 [
h Λh P̂Λh P̂2Λh . . .

]
=


1 µ1 µ1 µ1 · · ·
µ1 µ2 γ11 γ

(2)
11 · · ·

µ1 γ11 γ
(2)
11 γ

(3)
11 · · ·

µ1 γ
(2)
11 γ

(3)
11 γ

(4)
11 · · ·

 .

At this point we can compute all γ
(k)
ij moments based on µ1, µ2, µ3, and γ11, γ

(2)
11 , γ

(3)
11 .

Computing higher moments: Having additionally γ
(11)
111 allows us to compute all higher moments in the

form 
δ
δΛ

δΛP̂
⋆

 [
h Λh P̂Λh ⋆

]
=


1 µ1 µ1 ⋆
µ1 µ2 γ11 ⋆

µ1 γ11 γ
(2)
11 ⋆

⋆ ⋆ ⋆ •

 .

For example the γ
(kℓ)
imj moments can be computed from

δ
δΛ

δΛP̂

δΛP̂Λ

δΛP̂2

 [
h Λh P̂Λh ΛP̂Λh P̂2Λh

]
=


1 µ1 µ1 γ11 µ1

µ1 µ2 γ11 γ21 γ11

µ1 γ11 γ
(2)
11 γ

(11)
111 γ

(3)
11

γ11 γ12 γ
(11)
111 γ

(11)
121 γ

(12)
111

µ1 γ
(2)
11 γ

(3)
11 γ

(21)
111 γ

(4)
11

 .

We conclude that a basic moments set of order 3 type d) MAPs/RAPs is composed by 7 moments

µ1, µ2, µ3, γ11, γ
(2)
11 , γ

(3)
11 and γ

(11)
111 and any other moments of the process can be computed base on this basic

moments set.
Generating a matrix representation: Similar to case c) the γ

(k)
ij moments series are all obtained from

rank 2 matrices. The first rank 3 moments series is γ
(11)
1i1 , i ≥ 0. Based on this moments series we can

generate a D̄0, D̄1 matrix representation following exactly the same steps as in case c).

Example 3. An example of type d) order 3 MAP is

D0 =

 −1 0 0
0 −3/5 1/10
0 1/15 −17/30

 , D1 =

 1/5 18/25 2/25
1/9 1/3 1/18
0 2/45 41/90

 .

6.4 Summary of order 3 MAP/RAP cases

Case a) b) c) d)

δΛn−1 {⋆, ⋆, ⋆} {⋆, ⋆, 0} {⋆, 0, ⋆} {⋆, ⋆, 0}
(Λn−1h)T {⋆, ⋆, ⋆} {⋆, ⋆, ⋆} {⋆, ⋆, 0} {⋆, ⋆, 0}

number of param. 9 8 8 7

HO
(
µi

)
3 2 1 2(

HO
(
γ
(1)
i1

)
,HO

(
γ
(1)
1i

))
(3,3) (2,3) (2,2) (2,2)

HO
(
γ
(11)
1i1

)
3 3 3 3

required information lag-1 joint mom. lag-2 joint mom. triple joint mom. triple joint mom.

basic moments set
µ1, . . . , µ5, µ1, µ2, µ3, µ1, γ11, γ12, γ21, µ1, µ2, µ3,

γ11, γ12, γ21, γ22 γ11, γ12, γ13, γ
(2)
11 , γ

(2)
12 γ

(2)
11 , γ

(3)
11 , γ

(4)
11 , γ

(11)
111 γ11, γ

(2)
11 , γ

(3)
11 , γ

(11)
111
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7 Higher order MAPs/RAPs

Due to the low order of the above studied processes several peculiar properties do not show up in the previous
section. The complexity of the higher order cases seems to be inconceivable, but our main message that the
zero structure of the u and v type vectors characterizes the properties of moments series remains valid also
for higher order processes.

In lack of general roles, we only demonstrate one of the peculiar features. We present a MAP/RAP of

size 7 (if
. . . stands for a single matrix element) with a special structure which cannot be characterized based

on triple joint moments (or equivalently based on triple joint density of inter-arrival times), but requires the
knowledge of higher-tuple moments (or joint density function). The Jordan representation of this MAP/RAP

is (δ,Λ, P̂, h), where δ = {⋆, ⋆, 0, 0, 0, 0, . . .},

Λ =



λ1 1
λ1

λ2 1
λ2

λ3 1
λ3

. . .


, P̂ =



⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆
⋆ ⋆

⋆ ⋆

⋆
. . .


, h =



1
1
1
1
1
...


.

The Hankel orders of the moments series of this MAP/RAP (without the presence of random zeros) are as

follows, HO
(
µi

)
= 2, HO

(
γ
(1)
1i

)
= 3, HO

(
γ
(11)
11i

)
= 5, HO

(
γ
(111)
111i

)
= 7. If

. . . stands for the extension of

the given structure to larger size then the Hankel order of all k-tuple moments series is less than or equal
to 2k − 1. Consequently, if the size of the representation is 9 (k = 5), then only the 5-tuple moments series
indicates the order of the MAP/RAP and all lower-tuple moments series have lower Hankel orders.

8 ETAQA approximation of the output process of a M/PH/1
queue

One of the cases when redundant MAP or RAP arises in applications is the ETAQA approximation of the
output process of various queueing models [14]. The ETAQA approximation of the output process of a

M/PH/1 queue with arrival rate 1, service time PH(τ,T) with τ = {0.5, 0.5}, T =

(
−16 3
0 −5

)
results in

the following MAP

D0 =


−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −17 3 1 0
0 0 0 −6 0 1
0 0 0 0 −16 3
0 0 0 0 0 −5

 , D1 =


0 0 0 0 0 0
0 0 0 0 0 0
6.5 6.5 0 0 0 0
2.5 2.5 0 0 0 0
0 0 6 6 0.5 0.5
0 0 2 2 0.5 0.5

 .

The Hankel order of the moments series of this MAP are HO
(
µi

)
= 3, HO

(
γ
(1)
i1

)
= 5, HO

(
γ
(1)
1i

)
= 3,

HO
(
γ
(11)
i11

)
= 5, HO

(
γ
(11)
1i1

)
= 5, HO

(
γ
(11)
11i

)
= 3, and all higher moments series are order 5 or less. All

joint moments of this process can be obtained from 23 independent moments, which are, e.g., r1, . . . , r5,

γ
(1)
11 , . . . , γ

(1)
51 , γ

(1)
12 , . . . , γ

(1)
52 , γ

(2)
11 , . . . , γ

(2)
41 , γ

(2)
12 , . . . , γ

(2)
42 .
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