
4.3.3 Some Studies in Machine Learning Using the Game of Checkers

Some Studies in Machine Learning

Using the Game of Checkers

Arthur L. Samuel

Abstract: Two machine-learning procedures have been investigated in some detail usi!Jg the game of

checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will

learn to playa better game of checkers than can be played by the person who wrote the program. Further

more, it can learn to do this in a remarkably short period of time (8 or 10 hours of machine-playing time)

when given only the rules of the game, a sense of direction, and a redundant and incomplete list of

parameters which are thought to have something to do with the game, but whose correct signs and relative

weights are unknown and unspecified. The principles of machine learning verified by these 'experiments

are, of course, applicable to many other situations.

535

Introduction

The studies reported here have been concerned with the

progr;Jmming of a uigital computer to behave in a way

which. if done by human beings or animals, would be

descrihcu as involving the process of learning. While

this is not thc place to uwell on the importance of ma

chinc-learning proceuures. or to uiscourse on the philo

sophical aspccts, I there is obviously a very large amount

nf \\'L)rk. now done hy people. which is quite trivial in its

uemanus on the intellect hut does, nevertheless, involve

some learning. We have at our command computers with

adequate data-handling ahility and with sufficient ,com

putational specd to make use of machine-learning tech

niqucs. hut our knowledge of the basic principlcs of these

tcchniqucs is still rudimentary. Lacking such knowledge,

it is neccssary to spccify methods of problcm solution in

minute anu ~ x a c t uetaiL a time-consuming and costly

pr0cedurc. Programming computers to learn from ex

perienec shoulu eventual Iv eliminatc the need for much

of this dctailed programm'ing erfort.

• Ge/ll'l'lll /llelhodl' of llpproach

At thc outset it might he well to distinguish sharply be

twccn two gcncral approaches to thc problem of machine

learning. One method. which might be called the Nellral

Xel ApproliCh. ueals with the possibility of inducing

learncd hchavior into a randomly connected switching

nct (or its simulation on a digital computer) as a result

of a rewaru-and-punishment routine. A seconu. and

1l1uch Illorc ctlicient approach, is to prouucc the equiva

lent nf a highly organizeu network which has been de

signcd tn Icarn nnly certain specific things. The first

Originally published in IBM Journal, Vol. 3, No.3. July, 1959.

method should lead to the dcvelopmcnt of general-pur

pose learning machines. A comparison between the size

of the switching nets that can be reas,?nably constructed

or simulated at the present time and the size of the neural

nets used by animals, suggests that we have a long way

to go before we obtain practical d e v i c e s . ~ The second

procedure requires rcprogramming for each new applica

tion. but it is capable of realization at the present time.

The experimcnts to be describcd here were based on this

second approach.

• Choice of prohlem

For some years the writer has devotcd his spare time to

the subject of machine learning and has concentrated on

the development of learning proccdures as applied to

games.:: A game provides a convenient vehicle for such

study as contrasted with a problem taken from life, since

many of the complications of dctail are removed.

Checkers. rather than chcss,4-7 was chosen because the

simplicity of its rules permits greater emphasis to be

placed on learning techniques. Regardless of the relative

merits cf the two games as intellectual pastimes, it is fair

to state that checkers contains all of the basic characteris

tics of an intellectual activity in which heuristic proce

dures and learning processes can playa major role and

in which these processes can be evaluated.

Some nf these· characteristics might well be enumer

ated. They are:

(l) The activity must not be deterministic in the prac

tical sense. Therc exists no known algorithm which will

guarantee a win or a draw in checkers, and the complete

536 Improving the Efficiency of a Problem Solver

explorations of every possible path through a checker

game would involve perhaps 10.111 choices of moves

which. at 3 choices per millimicrosecond. would still take

1O~I centuries to consider.

(2) A definite goal must exist-the winning of the

game-and at least one criterion or intermediate goal

must exist which has' a bearing on the achievement of the

final goal and for which the sign should be known. In

checkers the goal is to deprive the opponent of the pos

sibility of moving, and the dominant criterion is the

number of pieces of each color on the board. The im

portance of having a known criterion will be discussed

later.

(3) The rules of the activity must be definite and they

should be known. Games satisfy this requirement. Un

fortunately, many problems of economic importance do

not. While in principle the determination of the rules can

be a part of the learning process, this is a complication

which might well be left until later.

(4) There should be a background of knowledge con

cerning the activity against which the learning progress

can be tested.

(5) The activity should be one that is familiar to a

substantial body of people so that the behavior of the

program can be made understandable to them. The

ability to have the program play against human oppo

nents (or antagonists) adds spice to the study and, inci

dentally, provides a convincing demonstration for those

who do not believe that machines can learn.

Having settled on the game of checkers for our learn

ing studies, we must, of course, first program the com

puter to play legal check ~ r s ; that is, we must express the

rules of the game in macl:Jine language and we must ar

range for the mechanics. of accepting an opponent's

moves and of reporting the computer's moves, together

with all pertinent data desired by the experimenter. The

general methods for doing this were described by

ShannonH in 1950 as applied to chess rather than check

ers. The basic program used in these experiments is quite

similar to the program described by Strachey9 in 1952.

The availability of a larger and faster machine (the

IBM 704), coupled with many detailed changes in the

programming procedure, leads to a fairly interesting

game being played, even without any learning. The basic

forms of the program will now be described.

The basic checker-playing program

The computer plays by looking ahead a few moves and

by evaluating the resulting board positions much as a

human player might do. Boal d positions are stored by

sets of machine words. four words normally being used

to represent any particular board position. Thirty-two bit

positions (of the 36 available in an IBM 704 word) are,

by convention, assigned to the 32 playing squares on the

checkerboard, and pieces appearing on these squares are

represented by I's appearing in the assigned bit positions

of the corresponding word. "Looking-ahead" is prepared

for by computing all possible next moves, starting with a

given board position. The indicated moves are explored

in turn by producing new hoard-position records cor

responding .to the conditions after the move in question

(the old board positions being saved to facilitate a return

to the starting. poinn and the process can be repeated.

This look-ahead procc;dure is carried several moves in

advance, as illustrated in Fig. ·1.. The resulting board pe

sitions are then scored in terms of their relative value to

the machine.

The standard method of scoring the resulting board

positions has been in terms of a linear polynomial. A

number of schemes of an abstract sort were tried for

evaluating board positions without regard to the usual

checker concepts, but none of these was suecessfuI.IO

One way of looking at the various terms in the scoring

polynomial is that those terms with numerically small

coefficients should measure criteria related as intermedi

ate goals to the criteria measured l'y the larger terms.

The achievement of these intermediate goals indicates

that the machine is going in the right direction, such that

the larger terms win. eventually increJse. If the program

could look far enough ahead we need only ask, "Is the

machine still in' 'the g a m e ? , ~ J . l Since it cannot look this

far ahead in the usual situation, we must substitute some

thing else, say the piece ratio, and let the machine con

tinue the look-ahead until one side has gained a piece

advantage. But even this is not always possible, so we

have the program test to see if the machine has gained a

positional advantage, et cetera. Numerical measures of

these various properties of the board positions are then

added together (each with an appropriate coefficient

which defines its relative importance) to form the evalu

ation polynomial.

More 3pecifically, as defined by the rules for checkers,

the dominant scoring parameter is the inability for one

side or the other to move,12 Since this can occur but once

in any game, it is tested for separately and is not included

in the scoring polynomial as tabulated by the computer

during play. The next parameter to be considered is the

relative piece advantage. It is always assumed that it is

to the machine's advantage to reduce the number of the

opponent's pieces as compared to its own. A reversal of

the sign of this. term will, in fact, cause the program to

play "give-away" checkers, and with learning it can only

learn to playa better and better give-away game. Were

the sign of this term not known by the programmer it

could. of course, be determined by tests, but it must be

fixed by the experimenter and, in effect, it is one of the

instructions to the machine defining its task. The nu

merical computation of the piece advantage has been ar

ranged in such a way as to account for the well-known

property that it is usually to one's advantage to trade

pieces when one is ahead and to avoid trades when

behind. Furthermore, it is assumed that kings are more

valuable than pieces, the relative weights assigned to

them being three to twO. 13 This ratio means that the

program will trade three men for two kings, or two

kings for three men. if by so doing it can obtain some

positional advantage.

-

-
4.3.3 Some Studies in Machine Learning Using the Game of Checkers 537

INITIAL BOARD POSITION --- •

.' !

....
.' j '.

.\

; \, .
. i .

i

.,
'.

3

4

/ \ .I

.' .
, .

• • •

1 ·!
5

6

7

8
.,

./ ! \. - ~ \

• • •

, I '
.: :.' \
/

9

11

10
/ A\

• • •• • •

• • • • • •

Figure I A "tree" of moves which might be investigated during the look-ahead procedure. The actual

branchings are much more numerous than those shown, and the "tree" is apt to extend to as many
as 20 levels.

538 Improving the Efficiency of a Problem Solver

T h ~ C h l l i c ~ for l h ~ p a r a l l l c l ~ r s to follow this first t ~ r l l l

llf t h ~ scoring polynlllllial and thcir c o c l l i c i ~ n t s t h ~ n b ~

C l l l l l ~ S a Illatter of concern. Two c o u r s ~ s a r ~ open

~ i t h ~ r the e x p e r i l l l ~ n t c r can d ~ c i d ~ what these suhse

ljuent t ~ r m s are to h ~ . or he can arrange for the program

to make the s ~ k c t i o n . We will discuss the first case in

some detail in connection with the r o t ~ - I c a r n i n g studies

am! leave for a lat~r sedion the discussion of various

program methods of s ~ l c c t i n g parameters and adjusting

their coetlicients.

It is not satisfactory to s ~ l e c t the initial move which

kads to the hoard position with the highest score, since

to reach this position would require the cooperation of

the opponent. Instead. an analysis must he made pro

ceeding h(/ck \I"(/rd from the evaluated board positions

through the "tree" of possible moves, each time with

consideration of the intent of the side whose move is

being examined, assuming that the opponent would

always attempt to minimize the machine's score while

the machine acts to maximize its score. At each branch

point, then. the corresponding hoard position is given

the score of the hoard position which would result from

the most favorahle move. Carrying this "minimax" pro

cedure hack to the starting point results in the selection

of a "best move." The score of the board position at the

end of the most likely chain is also brought back. and for

learning purposes this score is now assigned to the pres

ent board position. This process is shown in Fig. 2. The

best move is executed, reported on the console lights.

and tabulated by the printer.

The opponent is then permitted to make his move,

which can be communicated to the machine either by

means of console switches or by means of punched

cards. The computer verifies the legality of the oppo

nent's move, rejecting l-I or accepting it, and the process

is repeated. \Vhen the program can look ahead and pre

dict a win, this fact is reported on the printer. Similarly,

the program concedes when it sees that it is going to

lose.

• Ply lilllilatiolls

Playing-time considerations make it necessary to limit

the look-ahead distance to some fairly small value. This

distance is defined as the ply (a ply of 2. consisting of

one proposed move hy the machine and the anticipated

reply by the opponent). T h ~ ply is not fixed hut depends

upon the dynamics of the situation. and it varies from

move to move and from branch to branch during the

move analysis. A great many schemes of adjusting the

look-ahead distance have been tried at various times,

some of them quite complicated. The most effective one.

although quite detailed. is simple in concept and is as

follows. The program always looks ahead a minimum

Llistance. which for the o p ~ n i n g game and without learn

ing is usually set at three moves. At this minimum ply

the program will evaluate the boarLl position if none of

the following conditions llCCurS: (I) the next move is a

jump. (2) the last move was a jump. or (3) an exchange

olIcr is possihk. If any o n ~ of these conditions exists. the

program continues looking aheaLl. At a ply of 4 the

program will stop and evaluate the resulting board posi

tion if conditions (I) and (3) ahove arc not met. At a ply

of 5 or greater. the program stops the look-ahead when

ever the next ply level docs not offer a jump. At a ply

of I I or greater. the 'program will terminate the look

aheaLl. even if the next move i,;"to he a jump, should one

siLle at this time be ahead by more than two kings (to

prevent the needless exploration of obviously losing or

winning sequences), The program stops at a ply of 20

regardkss of all conditions (since the memory space for

the look-ahead moves is then exhausted) and an adjust

ment in score is made to allow for the pending jump.

Finally. an adjustment is made in the levels of the break

points between the different conditions when time is

saved through rotc learning (see below) and when the

total number of pieces on the board falls below an arbi

trary number. All break points are determined by single

data words which can be changed at any time by manual

intervention.

This tying of the' ply with board conditions achieves

three desired r e ~ u l t s . In the first place. it permits board

evaluations to be· made und'cr conditions of relative sta

bility for so-called dead positions. as defined by T u r i n g . l ~

Secondly, it causes greater surveillance of those paths

which offer better opportunities for gaining or losing an

advantage. Finally, since branching is usually seriously

restricted by a jump situation. the total number of board

positions and moves to be considered is still held down

to a reasonable number and is more equitably distributed

between the various p o s ~ i b l e initial moves.

As a practical maller, machine-playing time usually

has heen limited to appro;.:imately 3D seconds per move.

Elaborate table-lookup procedures. fast sorting and

searching procedures, and a variety of new programming

tricks were developed, and full use was made of all of the

resources of the IBM 704 to increase the operating speed

as much as possible. One can, of course, set the playing

time at any desired value by adjustments of the permitted

ply; too small a ply results in a bad game and too large

a ply makes the game unduly costly in terms of machine

time.

• Other modes of play

For study purposes the program was written to accom

modate several variations of this basic plan. One of these

permits the program to play against itself. that is. to play

both sides of the game. This mode of play has been

found to be especiaJly good during the early stages of

learning.

The program can also follow book games presented to

it either on cards or on magnetic tape. When operating

in this mode. the program lkcides at each point in the

game on its ncxt move in the usual way and rcports this

proposeLl move. Instead of actually making this move.

the program refers to the ~ t o r c d record of a book game

and makes the book move. The program r ~ c o r d s its

evaluation of the two moves. and it also counts and re

ports the number of possible moves which the program

-

4.3.3 Some Studies in Machine Learning Using the Game of Checkers 539

AAA

.--;- -.

-70

.1 \

CD

CD

CD

+7

,
.: '.

MACHINE CHOOSES BRANCH
WITH LARGEST SCORE

OPPONENT EXPECTfD
TO CHOOSE BRANCH
WITH SMALLEST SCORE

MACHINE CHOOSES BRANCH
WI TH MOST POSI TI VE SCORE

A
'· '--., PLY NUMBERCD

+7 +15

CD

EVALUATIONS MADE AT THIS LEVEL

• • • • • • • • • • • • • • • •
+100 +50 +20 -7 +4 -3 o +3 -lD -20 -70 -100 +3 +7 +15 -5

Figure 2 Simplified diagram showing how the evaluations are backed-up through the "tree" of possible

moves to arrive at the best next move. The evaluation process starts at @.

rates as being better than the book move and t h ~ number

it rates as being poorer. The sides are then reversed and

the process is repeated. At the end of a book game a cor

rdation coefficient is computed, relating the machine's

indicated moves to those moves adjudged best by the
checker masters.!!;

It should be noted that the emphasis throughout all of

these studies has been on learning techniques. The

temptation to improve the machine's game by giving it

standard openings or other man-generated knowledge of

playing techniques has been consistently resisted. Even

when book games are played, no weight is given to the

fact that the moves as listed are presumably the best pos

sible moves under the circumstances.

For demonstration purposes, and also as a means of

avoiding lost machine time while an opponent is think

ing. it is sometimes convenient to play several simul

taneous games against different opponents. With the

program in its present .form the most convenient num

her for this purpose has been found to be six, although

eight have been played on a number of occasions.

Games may be started with any initial configuration

fllr the hoard position so that the program may be tested

lIn end games. checkcr puzzles. et cetera. For nonstand

ani starting conditions, the program lists the initial piece

arrangement. From time to time, and at the end of each

game. the program also tabulates various bits of statisti-

cal information which assist in the evaluation of playing

performance.

Numerous other features have also been added to

make the program convenient to operate (for details see

Appendix A), but these have no direct bearing on the

problem of learning, to which we will now turn our

attention.

Rote learning and its variants

Perhaps the most elementary type of learning worth dis

cussing would be a form of rote learning in which the

program simply saved all of the board positions en

countered during play, together with their computed

scores. Reference could then be made to this memory

record and a certain amount of computing time might

be saved. This can hardly be called a very advanced

form of learning; nevertheless, if the program then util

izes the saved time to compute further in depth it will

improve with time.

Fortunately, the ability to store board information at

a ply of 0 and to look up boards at a larger ply provides

the possibility of looking much farther in advance than

might otherwise be possible. To understand this, con

sider a very simple case where the look-ahead is always

terminated at a fixed ply, say 3. Assume further that the

program saves only the board positions encountered

during the actual play with their associated backed-up

540 Improving the Efficiency of a Problem Solver

scorcs. Now it is this list of previous board positions that

is used to look up board positions while at a ply lev"cl of

J in the suhsequent games. If a board position is ("ound,

its score has, in clIeet. already been backed up by three

levels. and if it hecomes etrective in determining the

move to be made. it is a .(i-ply score rather than a simple

J-ply score. This new initial board position with its (i-ply

score is, in turn, saved and "(t may be encountered in a

future game and the score backed up by an additional

set of three levels, et cetera. This procedure is illustrated

in Fig. 3. The incorporation of this variation. together

with the simpler rotc-learning feature. results in a fairly

powerful learning technique which has been studied in

some detail.

Several additional features had to be incorporated into

the program before it was practical to embark on learn

ing studies using this storage scheme. In the first place,

it was necessary to impart a sense of direction to the pro

gram in order to force it to press on toward a win. To

illustrate this, consider the situati9n of two kings against

one king, which is a winning combination for practically

all variations in board positions. In time, the program

can be assumed to have stored all of these variations,

each associated with a winning score. Now. if such a

situation is encountered, the program will look ahead

along all possible paths and each path will lead to a win

ning combination, in spite of the fact that only one of

the possible initial moves may be along the direct path

toward the win while all of the rest may be wasting time.

How is the program to differentiate between these?

A good solution is to keep a record of the ply value of

the ditrerent board positions at all times and to make a

further choice between board positions on this basis. If

ahead. the program can be arranged to push directly

toward the win while. if behind, it can be arranged to

adopt delaying' tactics. The most recent method used is

to carry the effective ply along with the score by simply

decreasing the magnitude of the score a small amount

each time it is backed-up a ply level during the analyses.

If the program is now faced with a choice of board posi

tions whose scores differ only by the ply number, it will

automatically make the most advantageous choice,

choosing a low-ply alternative if winning and a high-ply

alternative if losing. The significance of this concept of a

direction sense should not be overlooked. Even without

"learning," it is very important. Several of the early at

tempts at learning failed because the direction sense was

not properly taken into account.

• Cawloging lind culling stored inlormatioll

Since practical considerations limit the number of board

positions which can be saved, and since the time to

search through those that are saved can easily become

unduly long. one must devisG systems (I) to catalog

hoards that arc saved. (2) to delete redundancies. and

(3) to discard board positions which are not believed to

he of much value. The most effective cataloging system

found to date starts hy standardizing all board positions.

first by reversing the pieces and piece positions if it is a

board POSItion in which White is to move. so that all

boards are reported as if it were Black's turn to move.

This reduces by nearly a factor of two the numher of

boards which must be saved. Board positions. in which

all of the pieces 'are kings, can be reflected about the

diagonals with a possible fourfold reduction in the num

ber which must be saved. A more' compact board repre

sentation than the one employed during play is also used

so as to minimize the storage requirements.

After the board positions are standardized. they are

grouped into records on the basis of (I) the number of

pieces on the board, (2) the presence or absence of a

piece advantage, (3) the side possessing this advantage,

(4) the presence or absence of kings on the board.:(5) the

side having the so-called "move," or .opposition advan

tage, and finally (6) the first moments of the pieces about

normal and diagonal axes through the board. During

play, newly acquired board positions are saved in the

memory until a reasonable number have been accumu

lated. and they are then merged with those on the "mem

ory tape" and a new memory tape is produced. Board

positions within a .record are listed in a serial fashion,

being sorted with respect to the" words which define them.

The records are arranged on the tape in the order that

they are most likely to be needed during the course of a

game; board positions with 12 pieces to a side coming

first, et cetera. This method of cataloging is very impor

tant because it cuts tape-searching time to a minimum.

Reference must be made. of course. to the board posi

tions already saved, and this is done by reading the cor

rect record into the memory ane searching through it by

a dichotomous search procedure. Usually five or more

records are held in memory at o n \ ~ time. the exact num

ber at any time depending upon the lengths of the par

ticular records in question. Normally, the program calls

three or four new records into memory during each new

move, making room for them as needed, by discarding

the records which have been held the longest.

Two different procedures have been found to be of

value in limiting the number of board positions that are

saved; one based on the frequency of use. and the sec

ond on the ply. To keep track of the frequency of use,

an age term is carried along with the score. Each new

board position to be saved is arbitrarily assigned an age.

When reference is made to a stored board position,

either to update its score or to utilize it in the look

ahead procedure, the age recorded for this board position

is divided by two. This is called r e l r e ~ · h i n g . Offsetting

this, each board position is automatically aged by one

unit at the memory merge times (normally occurring

about once every 20 moves). When the age of anyone

board position reaches an arbitrary maximum value this

hoard position is expunged from the r ~ c o r d . This is a

form of lorgelling. New board positions which remain

unused arc soon forgotten. while board positions which

arc used several times in succession will be refreshed to

such an extent that they will be remembered even if not

used thereafter for a fairly long period of time. This form

of refreshing and forgetting was adopted on the basis of

•

4.3.3 Some Studies in Machine Learning Using the Game of Checkers 541

3

2

PLY NUMBER 1

.......

.......... ~.i
/

EVALUATIONS WOULD NORMALLY BE MADE AT THIS LEVEL

\.

PREVIOUS EVALUATION LEVEL •

!

/
/

e

.'\
i '

i

i \

•

i

~ .

.f \
\

\.

\

...

i
!

•

•:\

\
\
\

•

.,

e

!

e.

r\

i
I

i
• • •

•

•

Figure 3 Simplified representation of the rote-learning process, in which information saved from a pre

vious game is used to increase the effective ply of the .backed-up score.

retlections as to the frailty of human memories. It has

proven to be very effective.

In addition to the limitations imposed by forgetting, it

seemed desirable to place a restriction on the maximum

size of anyone record. Whenever an arbitrary limit is

reached. enough of the lowest-ply board positions are

automatically culled from the record to bring the size

well hclow the maximum.

Before embarking o ~ a study of the learning capa

hilities of the system as just described, it was, of course,

first necessary to fix the terms and coefficients in the

evaluation polynomial. To do this, a number of different

sets of values were tested by playing through a series

. of hook games ami computing the move correlation co-

efficients. These values varied from 0.2 for the poorest

polynomial tested, to approximately 0.6 for the one

finally adopted. The selected polynomial contained four

terms (as contrasted with the use of 16 terms in later

experiments). In decreasing order of importance these

were: (l) piece advantage, (2) denial of occupancy,

(3) mobility, and (4) a hybrid term which combined con

trol of the center and piece advancement.

• Rote-learning tests

After a scoring polynomial was arbitrarily picked, a series

of games was played, both self-play and play against

many different individuals (several of these being check

er masters). Many book games were also followed, some

542 improving the Efficiency of a Problem Solver

of these heing end games. The program lcarnel1 to 'play

a very good opening game and to recognize most win- ,

ning and losing end positions many moves in advanc.:,

although its midgame play was not greatly improved.

This program now qualifies as a rather hetter-than

average novice. but definitely not as an expert.

At the present time the ,IJlemory tape contains some

thing over 53.000 board positions (averaging 3.X words

each) which have been selected from a much larger

numher of positions by means of the culling techniques

described. While this is still far from the number which

would tax the listing and searching procedures used in

the program, rough estimates. based on the frequency

with which the saved boards are utilized during normal

play (these figures being tabulated automatically), indi

cate that a library tape containing at least 20 times the

present number of board positions would he needed to

improve the midgame play significantly. At the present

rate of acquisition of new positions this would require

an inordinate amount of play and, consequently. of

machine timeY'

The general conclusions which can be drawn from

these tests are that:

(I) An effective rote-learning technique must include

a procedure to give the program a sense of direction.

and it must contain a refined system for cataloging and

storing information.

(2) Rote-learning procedures can be use'd etlectively

on machines with the data-handling capacity of the

IBM 704 if the information which must be saved and

searched docs not occupy more than, wugh1v. one mil

lion words, and if not more than llne hundred or so ref

erences need to be made to this informatil'n per minute.

These figures are, of course. highly dependent upon the

exact etnciency of cataloging which can be a-:hieved.

(3) Thy game of checkers. when played with a simple

scoring scheme and with rote learning only, requires

more than this number of words for master cal iber of

play and. as a consequence. is not completely amenable

to this treatment on the 18i\'1 70-L

(4) A game, such as checkers. is a suitable vehicle for

use during the development of learning techniques. and

it is a very satisfactory device for demonstrating ma

chine-learning procedures to the unbelieving.

Learning procedure involving generalizations

An obvious way to decrease the amount of storage

needed to utilize past experience is to g e n ~ r a l i z e on the

hasis of cxperience and to save nnly the generalizatil1ns.

This should. of course. be a continulllis process if it is to

be truly e1fective. and it slllluld in\'l1lve se\'cral levels nf

abstractillll. A start has been made in this direction by

having the program select a subsL,t llf possible terms for

use in the evaluation polyllllJllial and by having the pro

gram determine the sign and m a ~ n i t l l d e llf the cnl'lli

cients which multiply these paran1L'ters. i\t the present

time this subset consists of /(, tL'nn, c1lllsen frllm a list

of JX parameters. The piece-advantage term needed to

define the task is computed separately anJ. of course. is

not altered hy the program.

After a number of relatively unsuccessful attempts to

havc thc program generalize while playing both sides of

the gamc. the program was arranged to act as two dif

fe .. ~nt players, for convenience called A Iplw and BetG.

Alph,~ gcneralizes on its experiertce after each m ~ v e bv

a d j u s t i n ~ the coefficients in its evaluation polynomial and

hy replacinb terms which appear to be unilTlPortant by

new parametel ~ drawn from a reserve list. Beta. on the

contrary, uses t h ~ same evaluation polynomial for the

duration of any ont: game. Program Alpha is used to

play against human opponents. and during self-play

Alpha and Beta play each other.

At the end of each self-play game a determination is

made of the relative playing ability of Alpha, as com

pared with Beta, by a neutral portion of the program. If

Alpha wins-or is adjudged to be ahead when a game is

otherwise terminated-the then current scoring system

used by Alpha is given to Beta. If, on the other hand,

Beta wins or is ahead; this fact is recorded as a black

mark for Alpha. 'Yhenever Alpha receives an arbitrary

number of black marks (usu'rrlly set at three) it is as

sumed to be on the wrong track. and a fairly drastic and

arbitrary change is made in its scoring polynomial (by

reducing the coefficient of the leading term to zero).

This action is necessary on occasion, since the entire

learning process is an attempt to find the highest point

in multidimensional scoring space in the presence of

many secondary maxima on which the program can

become trapped. By manual intervention it is possible to

return to some previous condition or make some other

change if it becomes apparent that the learning process

is not functioning properly. In general, however, the

program seeks to extricate itself from traps and to im

prove more or less continuously.

The capability of the program can be tested at any

time by having Alpha play one or more book games

(with the learning procedure temporarily immobilized)

and by correlating its play with the recommendations of

the masters or. more interestingly, by pitting it against
a human player.

• Polynomial modification procedure

~ f Alpha is to make changes in its scoring polynomial.

It must be given some trustworthy criteria for measurin a

performance. A logical difficulty presents itself, sinc;

the only measuring parameter available is this same

scoring polynomial that the process is desi!!ned to im

prove. Recourse is had to the peculiar pro;erty of the

look-ahead procedure. which makes it less important for

the scoring polynomial to be particularlv good the

further ahead the process is continued. T h i ~ means that

one can evaluate the relative change in the positions of

two players, when this evaluation is made over a fairly

large number of moves, by using a scoring system which

is much too gross to be significant on a move-Iw-move
basis. -

Perhaps an even better way of looking at the matter

4.3.3 Some Studies in Machine Learning Using the Game of Checkers 543

is that we arc attempting to make the score, calculatet!

for the current boart! position. look like that calculated

for the terminal hoard position of the chain of moves

which most probably will occur t!uring actual play. Of

course, if one coult! t!evelop a perfect system of this sort

it would be the equivalent of always looking ahead to

the end of the game. The nearer this it!eal is approachet!,

the better would be the p l a y . l . ~

In order to obtain a sufficiently large span to make use

of this characteristic, Alpha keeps a record of the ap

parent goodness of its board positions as the game pro

gresses. This record is kept by computing the scoring

polyno'mial for each board position encountered in actual

play and by saving this polynomial in its entirety. At the

same time, Alpha also computes the backed-up score for

all board positions, using the look-ahead procedure de

scribed earlier. At each play by Alpha the initial board

score, as saved from the previous Alpha move, is com

pared with the backed-up score for the current position.

The difference between these scores, defined as delta, is

used to check the scoring polynomial. If delta is positive

it is reasonable to assume that the initial board evalua

tion was in error and terms which contributed positively

shoult! have been given more weight, while those that

contributed negatively should have been given less

weight. A converse statement can be made for the case

where delta is negative. Presumably, in this case, either

the initial board evaluation was incorrect, or a wrong

choice of moves was made, and greater weight should

have been given to terms making negative contributions,

with less \veight to positive terms. These changes are

not made directly but are brought about in an involved

way which will now be described.

i\ record is kept of the correlation existing between

the signs of the individual term contributions in the ini

tial sCl)rii1g polynomial and the sign of delta. After each

play an adjustment is made in the values of the correla

tion cl)ellicients, due account being taken of the number

of times that each particular term has been used and has

hat! a nonzero value. The coefficient for the polynomial

term (other than the piece-advantage term) with the then

largest correlation coefficient is set at a prescribed maxi

mum value with proportionate values determined for all

of the remaining coefficients. Actually, the term coeffi

cients arc fi:\et! at integral powers of 2, this power being

t!efined by the ratio of the correlation coefficients. More

precisely, if the ratio oCtwo correlation coefficients is

equal to or larger than n hut less than Il+ I, where n is

an integer. then the ratio of the two term coefficients is

set equal to 2". This procedure was adopted in order to

increase the range in values of the term coefficients.

\Vhenever a correlation-coefficient calculation leads to a

negative sign, a corresponding reversal is made in the

sign associated with the term itself.

• IIl.l'w!>ilitie.\'

It should he noted that the span of moves over which

delta is computet! consists of a remembered part and an

anticipated portion. During the remembered play, use

had been made of Alpha's current scoring polynomial to

determine Alpha's moves but not to determine the oppo

nent's moves, while during the anticipation play the

moves for hoth sides are made using Alpha's scoring

polynomial. One is tempted to increase the sensitivity of

delta as an indicator of change by increasing the span of

the remembered portion. This has been found to be

dangerous since the coefficients in the evaluation poly

nomial and, indeed. the terms themselves, may change

between the time of the remembered evaluation and the

time at which the anticipation evaluation is made, As a

matter of fact, this difficulty is present even for a span

of one move-pair. It is necessary to recompute the scor

ing polynomial for a given initial board position after a

move has been determined and after the indicated c o r ~

rections in the scoring polynomial have been made, and

to save this score for future comparisons, rather than to

save the score used to determine the move. This may

seem a trivial point, but its neglect in the initial stages

of these experiments led to oscillations quite analogous

to the instability inouced iri electrical circuits by long

delays in a feedback loop.

As a means of stabilizing against 'minor variations in

the delta values, an arbitrary minimum value was set,

and when delta fell below this minimum for any par

ticular move no change was made in the polynomial.

This same minimum value is used to set limits for the

initial board evaluation score to decide whether or not

it will be assumed to be zero. This minimum is recom

puted each time and, normally, has been fixed at the

average value of the coefficients for the terms in the cur

rently existing evaluation polynomial.

Still another type of instability can occur whenever

a new term is introduced into the scoring polynomial.

Obviously, after only a single move the correlation coeffi

cient of this new term will have a magnitude of 1, even

though it might go to 0 after the very next move. To

prevent violent fluctuations due to this cause, the corre

lation coefficients for newly introduced terms are com

puted as if these terms had already been used several

times and had been found to have a zero correlation co

efficient. This is done by replacing the times-used num-

b
. s

er III the calculation by an arbitrary number (usually

set at 16) until the usage does, in fact, equal this number.

After a term has been in use for some time, quite the

opposite action is desired so that the more recent experi

ence can outweigh earlier results. This is achieved, to

gether with a substantial reduction in calculation time,

by using powers of 2 in place of the actual times-used

and by limiting the maximum power that is used. To be

specific, at any stage of play defined as the Nth move,

corrections to the values of the correlation coefficients

Cx are made using 16 for N until N equals 32, where

upon 32 is used until N equals 64, et cetera, using the

formula:

C ~ ' _ l ± 1
C.v=C.Y_l N

and a value for N larger than 256 is never used.

After a minimum was set for delta it seemed reason a-

544 Improving the Efficiency of a Problem Solver

hie to attach greater weight to situations leading to large

values of tlelta. Accortlingly, two atltlitional categories

are ddinetl. If a contrihution to tlelta is matle hy the first

term. meaning that a change has occurred in the piece

ratio. the indicatetl changes in the correlation coetlicients

arc tloubled, while .if the value of tlelta is so large as to

indicate that an almost sure win or lose will result. the

elfect on the c o r r e l a t i o n " ~ o e f f i c i e n t s is quadrupled.

• Term replacemellt

;\o[ention has been made several times of the procedure

for replacing terms in the scoring polynomial. The pro

gram. as it is currently running, contains 38 different

terms (in addition to the piece-advantage term), 16 of

·these being included in the scoring polynomial at anyone

time and the remaining 22 being kept in reserve. After

each move a low-term tally is recorded against that active

term which has the lowest correlation coefficient and, at

the same time, a test is made to see if this brings its tally

count up to some arbitrary limit, usually set at 8. When

this limit is reached for any specific term. this term is

transferred to the bottom of the reserve list, and it is re-

. placed by a term from the head of the reserve Jist. This

new term enters the polynomial with zero values for

its correlation coefficient. times used, and low-tally

count. On the average, then, an active term is replaced

once each eight moves and the replaced terms are given

another chance after 176 moves. As a check on the ef

fectiveness of this procedure, the program reports on

the usage which has accrued against each discarded term.

Terms which are repeatedly rejected after a minimum

amount of usage can be removed and replaced with com

pletely new terms.

It might be argued that this procedure of having the

program select terms for the evaluation polynomial from

a supplied list is much too simple and that the program

should generate the terms for itself. Unfortunately, no

satisfactory scheme for doing this has yet been devised.

With a man-generated list one might at least ask that

the terms be members of an orthogonal set, assuming

that this has some meaning as applied to the evaluation

of a checker position. Apparently, no one knows enough

about checkers to define such a set. The only practical

solution seems to he that of including a relatively large

number of possible terms in the hope that all of the

contributing parameters get covered somehow, even

though in an involved and redundant way. This is not

an undesirable state of atfairs, however, since it simulates

the situation which is likely to exist when an attempt is

made to apply similar learning techniques to real-life

situations.

:-'1any of the terms in the existing list arc related in

some vague way to the parameters used by checker ex

perts. Some of the concepts which checker experts

appear to use have elutled the writer's attempts at defi

nition, and he has heen unable to program them. Some

of the terms are quite unrelated to the usual checker

lore and have been discovered more or less by accident.

The second moment ahout the diagonal axis through the

double corners is an example. Twenty-seven tlilferent

simple terms are now in use, the rest being com hi national

terms. as will he described later.

A word might be said about these terms with respect

to the exact' way in which they arc definetl and the

general procedures used for their evaluation. Each term

relates to the relative s t a n d i ~ g s of the two sides. with

respect to the parameter in question, and it is numeri

cally equal to the difference hetween the ratings for the

individual sides. A reversal of the. sigh obviously cor

responds to a change of sides. As a further means of

insuring symmetry the individual ratings of the respec

tive sides are determined at corresponding times in the

playas viewed by the side in question. for example,

consider a parameter which relates to the board condi

tions as left after one side has moved. The rating of

Black for such a parameter would be made after Black

had moved, and the rating of White would not be made

until after White had moved. During anticipation play,

these individual ratings are made after each move and

saved for future reference. When an evaluation is de

sired the progrm)1 takes the differences between the most

recent ratings and those mane a move earlier. In general,

an attempt has been made to define all parameters so

that the individual-side ratings are expressible as small

positive integers.

• Binary connecti!'e terms

In addition to the simple terms of the type just described,

a number of combinational terms have been introduced.

Without these terms the s . ~ o r i n g polynomial would, of

course, be linear. A number of different ways of intro

ducing nonlinear terms have been devised but only one

of these has been tested in any detail. This scheme pro

vides terms which have some of the properties of binarv

logical connectives. Four such terms are formed fo'r

each pair of simple terms which are to be related. This

is done by making an arbitrary division of the range in

values for each of the simple terms and assigning the

binary values of 0 and 1 to these ranges. Since most of

the simple terms are symmetrical about 0, this is easilv

done on a sign basis. The new terms are then of t h ~

form A-B, A-B, A-B. and A-8, yielding values either of'

o or I. These terms are introduced into the scorina

polynomial with adjustable coefficients and si!.!ns, and

are thereafter indistinguishable from the other t ~ r m s .
As it would require some 1404 such combinational

terms to interrelate the 27 simple terms originallv used.

it was fountl desirable to limit the actual n l l n ~ b e r of

combinational terms used at anyone time to a small

fraction of these and to introduce new terms onlv as it

became possible to retire older inetfectual t c r m ~ . The

terms actually used are given in Appendix C.

• Preliminary leamiflg-hy-geflerali;;ariofl tests

An idea of the learning ability of this procedure can he

gained by analyzing an initial test series of 28 !.!amesUl

played with the program just described. At the ~ t a r t an

arbitrary selection of 16 terms was chosen and all terms

-

Some Studies in Machine Learning Using the Game of Checkers4.3.3

were assigned equal weights. During the first 14 games

Alpha was assigned the White side, with Beta con

strained as to its first move (two cycles of the seven

different initial moves). Thereafter, Alpha was assigned

Black and White alternately. During this time a total

of 29 different terms was dis·carded and replaced, the

majority of these on two different- occasions.

Certain other figures obtained during these 2S games

~ I r e of interest. At frequent intervals the program lists

the 12 leading terms in Alpha's scoring polynomial with

their correlation coefficients and a running count of the

number of times these coefficients have been altered.

Based on these samplings, one observes that at least 20

different terms were assigned the largest coefficient at

some time or other, some of these alternating with other

terms a number of times, and two even reappearing at

the top of the list with their signs reversed. While these

variations were more violent at the start of the series

of games and decreased as time went on, their presence

indicated that the learning procedure was still not com

pletely stable. During the first seven games there were

at least 14 changes in occupancy at the top of the list

involving 10 different terms. Alpha won three of these

gamcs and lost four. The quality of the play was ex

trcmely poor. During the next seven games there were

at least eight changes made in the top listing involving

live different terms. Alpha lost the first of these games

and won the next six. Quality of play improved steadily

hut the machine still played rather badly. During Games

15 through 11 there were eight changes in the top listing

involving five terms; Alpha winning five g;,mes and

losing two. Some fairly good amateur players who

played the machine during this period agreed that it

lI'as "triek~' but beatable". During Games 22 through 28

there \\'ere at least four changes involving three terms.

Alpha \\'on two games and lost five. The program ap

peared to be approaching a quality of play which caused

it to he described as "a better-than-average player". A

detailed ~Inalysis of these results indicated that the learn

ing procedure did work and that the rate of learning

\\as surprisingly high, but that the learning was quite

erratic and none too stable.

• Second series oj tests

Some of the more obvious reasons for this erratic

hehavior in the first series of tests have been identified.

The program was modified in several respects to i ~
prOve the situation, and additional tests were made. Four

l\f these modifications are important enough to justify a

uetaileu explanation.

I n the first place, the program was frequently fooled

hy bad play on the part of its opponent. A simple solu

tion was to chan!!e the correlation coefficients less dras

tically when delta was positive than when delta was

negative. The procedure finally adopted for the positive

delta case was to make corrections to selected terms in

the polynomial only. When the scoring polynomial was

Positive. changes were made to coefficients associated

lVith the negatively contributing terms, and when the

polynomial was negative, changes were made to the co

efficients associated with positively contributing terms.

No changes were made to coefficients associated with

terms which happened to. be zero. For the negative delta

case, changes were made to the coefficients of all con

tributing terms, just as before.

A second defect seemed to be connected with the

too frequent introduction of new terms into the scoring

polynomial and the tendency for these new terms to

assume dominant positions on the basis.·of insufficient

evidence. This was remedied by the simple expedient

of decreasing the rate of introduction of new terms

from one every eight moves to one every 32 moves.

The third defect had to do with the complete exclusion

from consideration of many of the board positions

encountereq during play by reason of the minimum

limit on delta. This resulted in the misassignment of

credit to those board positions which permitted spec

tacular moves when the credit rightfully belonged to

earlier board positions which. had permitted the neces

sary groundlaying moves. Although no precise way has

yet been devised to insu,e the corr:ect assignment of

credit, a very simple expedient was found to be most

effective in minimizing the adverse effects of earlier

assignments. This expedient was to allow the span of

remembered moves, over which delta is computed, to

increase until delta exceeded the arbitrary minimum

value, and then to apply the corrections to the coeffi

cients as dictated by the terms in the retained poly

nomial for this earlier board position. In this case, the

difficulty which was mentioned in the section on In

stabilities in connection with an arbitrary increase in

span, does not occur after each correction, since no

changes are made in the coefficients of the scoring

polynomial as long as delta is below the minimum value.

Of course, whenever delta does exceed the minimum

value the program must then recompute the initial scor

ing polynomial for the then current board position and

so restart the procedure with a span of a single remem

bered move-pair. This over-all procedure rectifies the

defect of assigning credit to a board position that lies

too far along the move chain, but it introduces the

possibility of assigning credit to' a board position that

is not far enough along.

As a partial expedient to compensate for this newly

introduced danger, a change was made in the initial

board evaluatio·n. Instead of evaluating the initial board

positions directly, as was done before, a standard but

rudimentary tree-search (terminated after the first non

jump move) was used. Errors due to impending jump

situations were eliminated by this procedure, and be

cause of the greater accuracy of the evaluation it was

possible to reouee the minimum delta limit by a small

amount.

F.inally, to avoid the danger of having Beta adopt

Alpha's polynomial as a result of a chance win on

Alpha's part (or perhaps a situation in which Alpha

had allowed its polynomial to degenerate after an early

or midgame advantage had been gained), it was decided

545

546 Improving the Efficiency of a Problem Solver

to re4uire a majority of wins on Alpha's p;u I before

Jkta would aLlopt Alpba's scoring polynomial.

\Vith these mollifications, a new series of t , ~ , > t s was

maLIc. In order to reduce tbe learning time, the initial

selection of terms was made on the has is of tl,,; results

ohtaineLl during the carl ier tests, but no allent ion was

paid to their previously assigned weights. In contrast

with the earlier erratic behavior, the revised p r o l ~ r a m ap

peared to be extremely stahle, perhaps at the ex pense of

a somewhat lower initial learning rate. The way in which

the character of the evaluation polynomial altered as

learning progresseLl is shown in Fig. 4.

The most obvious change in behavior was in regard

to the relative number of games won hy Alpha ;,nd the

prevalence of draws. During the first 2H game'> of the

earlier series Alpha won 16 and lost 12. The eorre

sponding figures for the first 2M games of the neW series

were 18 won by Alpha, and four lost, with six draws.

In all cases the names were terminated, if not finished,

in 70 moves and'" a judgment made in terms of tIll; final

p:>sitions. Unfortunately, these ligures arc not ' > t r i c ~ l y

comparable because of the decreased frequency With

which Beta adopted Alpha's polynomial during the ,ccond

series, both by design and hecause a programming crror

immobilized the adoption procedure during part of the

tests. Nevertheless, the great decrease in the nUlllhcr of

losses and the prevalence of draws seemed to indicate

that the learning process was much more stable. Some

typical games from this second series arc given in Ap

pendix B.
As learning proceeds, it should become harder and

harder for Alpha .to improve its game, and one would

expect the number of wins hy Alpha to decrease with

time. If secondary maxima in scoring space arc en

countered, one might even find siluations in which /\Ipha

wins less than half of the games. With Beta at such a

maximum a ~ y minor change ill Alpha's polynlJlllial

would result in a degradation of ils play, and' several

oscillations about the maximulll might occur 11l'IIlre

Alpha landed at a point which WlHlll1 enable it to heat

Beta. Some evidence of this trend is discernible in Ihe

play, although many more games \\ill have 10 he I'I;p,ed

before it can be ohserved with certainty.

The tentative conclusions which can be drawn InJlll

these tests are:
(I) A simple generalization Schl'1l1e of the typl' hne

used can be an effective learning device for pn1hll'nls

amenable to tree-searching procedures.

(2) The memory requirements llf such schemes ;Ire

quite modest and remain fixed with time.

(3) The operating times arc abll n:asonahle and rl'

main fixed. independent of the anll11ll1t of al'l'umulall'd

learning.

(4) Incipient forms of instabilil\' in the s"IUlilHl l';lIl

he expected hut, at least for Ihe chl'l'ker pr"gralll. Illl'w

can be dealt with hy quite straighlf,l['ward pnlcl'lhlll·S .

(5) Even with the ineolllplete and redundant sl'l Ilf

parameters which have been used III date. it is Pllssihle

for the computer to learn to play ;I b l ' t t e r - t h a n - a \ ' l ' r ; l ~ e

game of checkers in a relatively short period 01 time.

As a final precautionary note, it should be stateLl that

these experiments have not encompassed a sulliciently

large series of games to demonstrate unamhil!uouslv

that the learning procedure is completely stable -or th;t

it will necessarily lend to the best possible choice of

parameters and coetlicients.' .

Rote learning vs. generalization

Some interesting comparisons can he niade between the

playing style developed hy the learning-by-generalization

program and that developed by the carl ier rotc-learning

procedure. The program with rote learning soon learned

to imitate master play during the opening moves. It was

always quite poor during the middle game, b ~ t it easily

learned how to avoid most of the obvious traps during

end-game play and could usually drive on toward a win

when left with a piece advantage. The program with the

generalization procedure has never learned to play in

a conventional manner and its openings are apt to be

weak. On the other hand. it soon learned to play a

good middle game: and with a piece advantage it usually

polishes off its -opponent' in short order. Interestingly

enough, after 28 games it had still not learned how to

win an end game with two kings against one in a

double corner.

Apparently, rote learning is of the greatest help,

either under conditions when the results of any specific

action are long delayed, or in those situations where

highly specialized techniques are required. Contrasting

with this, the generalization proceG'Jre is most helpful

in situations in which the available permutations of con

ditions are large in number and when the consequences

of any specific action 'are not long delayed.

•. Procedures i/ll'oll'ing both forms of learning

The next obvious step is to combine the better features

of the rote-learning procedure with a generalization

scheme. This must be done with some care, since it is

not practical to update the previously saved information

after every change in the evaluation polynomial. A com

promise solution might be to save only a very limited

amount of information during the early stages of learn

ing and to increase the amount as warranted by the

increasing stability of the evaluation coetlicient with

learning. For example, the program could he arranged

to save only the piece-advantage term at the start. -At

some stage in the learning process the next term could

be added. perhaps when no change had been made in

the parameter used for this tern; during some fairlv

long period, say for three complete g a m e s ~ If and w h e ~
the program is able to play an additional perioLl without

changes in the next parameter, this could also be added.

et cetera. \Vhenever a change does occur in a parameter

previously assumed to be stable the entire memory

tape could be reviewed, all terms involving the changed

parameter and those lower on the list could be ex

punged, and the program could drop hack to the earlier

condition with respect to its term-saving schedule.

4.3.3 Some Studies in Machine Learning Using the Game of Checkers

-r-;--r , ,
;. ;.

"
;. . :. :. :. ;; ; , ,

547

548 Improving the Efficiency of a Problem Solver

Another solution woulll hc to utilize the generaliza

tion scheme alone until it hall hecomc fairly stable and

to introduce rote learning at this time. It is, of course,

perfectly feasible to salvage much of the learning which

has been accumulated by both of the programs studicd

to date. This could be done hy appending an abridged

form of the present mcmory tape ,to the generalization

scheme in its present stage of learning and by proceed

ing from there in accordance with the first solution

proposed above.

• Future development

While it is believed that these tests have reached the

stage of diminishing returns, some effort might well be

expended in an attempt to get the program to generate

its own parameters for the evaluation polynomial. Lack

ing a perfectly general procedure, it might still be

possible to generate terms .based on theories as proposed

hy students of the game. This procedure would be at

variance with the writer's previous philosophy, but it is

Footnotes and References

1. Some of these are quite profound and have a bearing on
the questions raised by Nelson Goodman in Fact, Fic
tiol/ I/I/d Fnrecas(. Harvard University Press, 1954.
W a r r e . ~ S. ~[cCulloch ("The Brain as a Computing Ma
.:hllle. £lee. £I/g. 69, 492, 1949) has compared the
lligllal computer 10 the nervous system of a flatworm.
T() extend this comparison to the situation under dis
cussion would he unfair to the worm since its nervous
system is a':lLlally quite highly organ'ized as compared
WIth the random-net studies by B. G. Farley and W. A.
CI.;lrke \..··Simulation of Self-Organizing Systems by
Digital Computers," IRE PGIT 4, 76, Sept. 1954),
N. Ro.:hester, J. H. Holland, L. H. Haibt and W. L.
Duda ('"Tests on a Cell Assembly Theory of the Action
".1 the Brain Using a Large Digital Computer," IRE
7Tc/I/suel/o/ls Oil II/formation Theory IT-2 No.3 80.
S I(re) , , ,-
. cpt. . ' ~ ' .' .and b ~ - F. Rosenblatt ("The Perceptron;
A Probabilistic Model for Information Storage and Or
ganizatIOn III the Brain" Psych. Rev. 6 65 November
1958). ' " ,

The first operating checker program for the IBM 701
was wntten III 1952. This was recoded for the IBM 704
In 195_.:1. The first program with learning was completed
III 19)5 and demonstrated on television on February
2-1. 1956.

-I. C. E. ~hannon. "Programming a Computer for Playing
Chess. PllIl. Mag. 41, 256 (March 1950L

5. A. Ber~;~tein and M. deY. Roberts, "Computer vs. Chess
Player. Snellt..Amer. 198,6 (June 1958).

fl. 1. J;:.lster. P. Steill. S. Ulam, W. Walden, M. Wells, "Ex
penments III Chess," Journal of the ACM 4 174 (April
1957"1. ' ,

7. A. Newell. 1. C. Shaw and H. A. Simon, "Chess-Playing
P r o ! ! r ~ m s and the Problem of Complexity," IBM J. of
Re.\". L~ DCI'e!. 2. 320 (October 1958).

x. Shannon. loe cit.

I). C. S. Strachey, "Logical or Non-Mathematical Pro
grammes," Proc. of ACM Meeting at Toronto, Ontario,
pp. 46-49. Sept. 8-10, 1952. '

highly likely that similar compromises will havc to be

made when one attempts to apply learning procedures

to problems of economic importance.

Conclusions

As a result of thcse experiments one can. say with some

certainty that it is now possible to devise learning

schemes which will greatly outperform an average per

son and that such learning schemes may eventually be

economically feasible as applied to real-life problems.

Acknowledgments

Many different people have contributed to these studies

through stimulating discussions of the basic problems.

From time to time the writer was assisted by several

different programmers, although most of the detailed

work was his own. The forbearance of the machine room

operators and t h e i ~ willingness to play the machine at

all hours of the day and night are also greatly appreciated.

10. One of the more interesting of these was to express a
board position in terms of the first and higher moments
of the white and black pieces separately about two or
thogonal axes on the board. Two such sets of axes were
tried, one set being parallel to the sides of the board
and the second set being those through the diagonals.

11. This apt phraseology was suggested by John McCarthy.

12. Not the capture of all of the opponent's pieces, as popu
larly assumed, although- nearly all games end in this
fashion.

13. The use of a weight ratio rather than this, conforming
more closely to the values assumed by many players.
can lead into certain logical complications, as found by
Strachey, lac. cit.

14. The only departure from complete generality of the
game as programmed is that the program requires the
opponent to make a permissible move. including the
taking of a capture if one is offered. "Huffing" is not per
mitted. .

15. B. V. Bowden, Faster Than Thought, Chapter 25,
Pitman, 1953.

16. This coefficient is defined as C=(L-H)/(L+H), where
. L is the total number of different legal moves which the

machine judged to be poorer than the indicated book
moves, and H is the total number which it judged to be
better than the book moves.

17. This playing-time requirement, while _large in terms of
cost. would be less than the time which the checker
master probably spends to acquire his proficiency.

18. There is a logical fallacy in this argument. The program
might save only invariant terms which have nothing to do
with goodness of play; for example, it might count the
squares on the checkerboard. The forced inclusion of
the piece-advantage term prevents this.

19. Each game averaged 68 moves (34 to a side), of which
approximately 20 caused changes to be made in the
scoring polynomial.

4.3.3 Some Studies in Machine Learning Using the Game of Checkers 549

Appendix A: Programming details

• ,..j pproxilllate siz.e of program

Basic chccker-playing routine .

Input. move verification and output

Game starting and..\crminating routines

Loaders. table generators, dumping, et cetera

Statistical and analytical routincs

Rote-learning routines

Generalization-learning routines

Tables and constants for basic play

Working space for basic play .

\Vorking space for generalization learning

Working space for rote learning

I 100 instructions

1400 instructions

600 instructions

H50 instructions

700 instructions

1500 instructions

650 instructions

700 words

2000 words

500 words

balance of memory

• Approximate compllfation times

To find all available moves from given board position.

To make a single move and find resulting board position

To evaluate a board position (4 terms)

To find score for a saved board position (rote learning)

To evaluate position (with 16 terms for generalization learning)

2.6 milliseconds

1.5 milliseconds

2.4 milliseconds

2.3 milliseconds

7.5 milliseconds

Jump moves are computed by a simple extension of this procedure. Multiple jumps are handled as a sequence of single

jumps separated by null-reply moves.

• Board representations

The standard checkerboard numbering system (see Appendix B) is used in communicating with the machine. A modi

fied numbering system is used for internal computations, the numbers shown on the squares in Fig. A-I corresponding

to the bit positions in an IBM 704 word. Any given board position is represented by four such worc1s; one word (FA)

containing 1's in those bit positions corresponding to squares containing pieces of the color whose turn it is to move

and which normally move in a forward direction. To be specific. if it is Black's turn to move (i.e., i: Black is "active")

FA designates the location of all of Black's pieces, both men and kings. Conversely, if White is active, FA designates

the location of White's kings only, since White's men can only move in the direction arbitrarily called backward.

The other words designate, respectively: BA, backward active pieces; FP, forward passive pieces; and BP, backward

passive pieces.

To conserve space when writing on tape, three words are used to record board positions with kings, and only two

words are used for board positions without kings. These are saved in a standardized form, as explained in the text.

Possible moves are designated by five words; one word to indicate by its sign (with the word itself containing other

information) whether the moves are jumps or not. (If a jump is available, only jump moves are saved.) The other

four words designate the location of those pieces which can move in the four different diagonal directions: RF, for

right forward; LF, for left forward; LB, for left backward; and RB, for right backward, respectively.

By reference to Fig. A-I, it will be observed that a right-forward move results in an increase of 4 in the square

designation. while a left-forward move results in an increase of 5. Bit positions 9, 18 and 27 do not appear on the

board. This notation makes it possible to compute available moves fos all pieces simultaneously. Having previously.

computed a word called EMPTY, which contains 1's in locations corresponding to all unoccupied squares, one can

compute RF, for the normal move case, in four instructions, as listed below (in IBM 704 symbolic language):

CLA

ALS

ANA

STO

EMPTY

4

FA

RF

(puts word EMPTY into the accumulator);

(shifts word to left by 4 positions);

(forms logical AND between EMPTY and FA);

(stores word as newly computed RF).

550 Improving the Efficiency of a Problem Solver

WHITE

!
I

!
@ ® @ ®j

I
I

I
®

I

® ® ®I

II
,

I
II

I
® ! @ ® ®I i

®
!

® @ ®;

I I
I

I I
I,
i
i

,

®
I

® @ ®, I

I !
i

I
I

!

®
i

® ®i @
I

I
I

!
II I,

CD
I

CD CD CDI

1

i I I

I

I

I

I

CD
I

I
! CD CD CD
i

II I I

o
0<

<
3:
0<

o....

I

BLACK

Fil:llr,' A -I Checkerboard notation for internal computations.

• ", ddilio//lIllillle-s(/\'ing expedie//Is

Ilit counting is done hy a table-lookup procedure in a closed subroutine of 16 executed instructions (408 microseconds).

'I his reLJuires a 156-word tahle which is generated at the start by a 13-word program. Similar table-lookup procedures

arc used. 10 llIrn a word end-for-end. and to locate the l's in a word for move reporting.

.\Iulliplications are usually avoided. In several places where multiplication by small integers must be done, it is

programmed in terms of shifts and logical operations.

During the look-ahead procedure a complete record is kept of the sequence of board positions currently under

investigalion. As a result. no computing is needed to retract moves.

-

4.3.3 Some Studies in Machine Learning Using the Game of Checkers 551

Appendix B: Sample games from the second series with generalization learning

• Typical opel/iI/R.I'

The first eight moves of selected games in which Alpha played Black against Beta, showing the way in which different

types of play were tried.

G-4 G-6 G-11 G-17 G-19 G-21 G-31 G-37 G-39 G-41 G-43
-- -- ,-.- -- -- -- --

10 14 I I 16 11 16 I L 16 Ll 16 I L 16 I 1 16 12 16 11 16 10 14 11 16

14 19 22 1~ 21 17 24 20 24 20 24 20 23 18 24 20 24 20 24 20 23 19

14 18 16 20 16 20 10 14 7 11 8 11 7 11 8 12 10 15 1L 15 16 23

23 L4 18 14 17 13 10 11 21 17 2~ 24 27 23 28 24 20 11 17 24 26 19

9 IS 9 18 9 14 l) 15 10 14 10 14 16 20 10 14 7 16 7 10 8 11

22 15 23 14 13 18 21 17 17 10 23 18 23 19 23 1~ 21 17 13 18 22 17

II 18 10 17 14 23 7 11 6 15 14 23 20 27 14 23 6 10 14 23 10 14

21 17 21 14 27 18 17 10 28 24 27 18 31 24 27 1l) 23 19 26 19 17 10

• Typical games

Sample games in which Alpha played White against forced Beta openings.

G-I G-I8 G-30 G-40
"

G-I G : ~ 8 G-30 G--IU
-- -- -- I' - -- --

12 16 12 16 12 16 10 14 I' 9 13 11 16 9 1.+ .+ 8

24 19 24 20 24 20 24 20 1 6 24 20 1l) 9 1 6

8 12 8 12 8 12 I I IS I: 13 17 16 19 8 [I 10 14

22 18 28 24 28 24 27 24 I' 31 27 19 25 15 8 6 10::

10 14 10 15 10 14 7 10 16 20 13 17 4 I I 14 17

26 22 22 18 22 18 23 18 18 14 LO 7 19 IS LO L5

16 20 15 22 6 10 14 23
j;

11 IS 1 1I IL 18 17 21

30 26 25 18 24 19 26 19
I:

6 10 14 10 23 14 32 28
j:

11 16 7 10 1 6 10 14 15 18 19 13 13 17 5 9

28 24 18 14 32 18 19 10 14 9 2L 14 9 5 27 14

7 I 1 10 17 3 8 6 15 " Terminated 13 26 11 16 20 17..
i,

10 7 28 14 19 1622 17 21 14 26 21 11 17 Manually

3 8 9 18 9 13 2 7 26 30 17 22 12 1~

17 10 23 14 18 9 17 10 25 11 6 10 IS 12 31

6 15 22 6 9 5 L4 7 14 30 16 30 15 9 14

26 17 30 25 22 18 24 19
"

7 3 L 6 31 26
It

9 13 9 18 6 9 15 24 H I 1 '15 25 21 14 18

17 14 26 23 25 22 28 19 I' 14 to 5 I 18 24,
"2 7 3 8 2 6 14 17 :l 5 9 21 17 8 lL

23 18 23 14 30 25 21 14 i' 10 6 24 20 24 19
1:

16 23 1 6 14 17 9 18
J!

15 19 16 19 21 25

14 10 27 23 21 14 5 25 22 II 6 I 20 16 30 21

7 14 6 9 6 9 18 25 Ii 26 12 17 13 Beta Concedes
,I

18 9 14 10 L8 15 29 22 " 1 6 6 2Ii
5 14 9 13 IL 18 5 9 9 13 13 17

27 18 9 25 21 20 IL 2 31 17 20 16 10 6

20 27 11 15 10 14 1 5 19 23 Beta Concedes

31 24 20 11 22 IS 20 16 6 9

12 16 15 18 14 17 3 7 23 27

21 17 23 14 5 1 22 17 16 1I

13 22 8 IS 17 21 8 I I 22 15

25 18 24 19 25 22 17 13 i I I 7.,

1 5 IS 24 21 15 lL 20
jI

25 30

9 6 32 28 21 18 13 6 7 2

5 9 24 27 25 30 7 10 27 32

6 1 3 I 24 2 6 6 1 70 Move Termination

552 Improving the Efficiency of a Problem Solver

WHITE

)(

•

•• •
•••
•••

•
••••

• •
•

BLACK

FiC:/Ir,. B-1 Square designations used in reporting games.

Appendix C: Evaluation polynomial details for second series

• ,\fethod of C()II/pllling terll/S

The 16 terms called for in the evaluation polynomial are computed, individually, by taking the value of the appropriate

parameter, as L1etined below, for the board position under consideration and subtracting the value of this same

parameter computeLl for the board position just prior to the last move (with the necessary reversal in the definitions

lIf active and passive sides). This difference is then multiplied by the corresponding program-computed coefficient.

which can vary between - 2 1" and +2 1x• and credited to the side which was passive on the board position under
cllnsiLleration.

-

4.3.3 Some Studies in Machine Learning Using the Game of Checkers

• Dcjinitinns O!I'(/rtllIll'tl'rS

553

ADV (Advancemcnt)

The paramcter is crcdited with I for each passive man in

thc 5th and 6th rows (counting in passivc's direction)

and debited with 1 for each passive man in thc 3rd and

4th rows.

APEX (Apcx)

The parameter is dcbited with I if there are no kings on

the board. if either square 7 or 26 is occupied by an ac

tive man. and if neither of these squares is occupied by a

passive man.

BACK (Back Row Bridge)

The parameter is credited with 1 if there are no active

kings on the board and if the two bridge squares (I and

3, or 30 and 32) in the back row are occupied by passive

pieces.

CENT (Center Control I)

The parameter is credited with I for each of the follow

ing squares: 11,12,15,16,20,21,24 and 25 which is

occupied by a passive man.

CNTR (Center Control II)

The parameter is credited with I for each of the follow

ing squares: 11,12,15,16,20,21,24 and 25 that is

either currently occupied by an active piece or to which

an active piece can move.

CORN (Double-Corner Credit)

The parameter is credited with 1 if the material credit

value for the active side is 6 or less, if the passive side is

ahead in material credit, and if the active side can move

into one of the double-corner squares.

CRAMP (Cramp)

The paranleter is credited with 2 if the passive side occu

pies the cramping square (13 for Black, and 20 for

White) and at least one other nearby square (9 or 14 for

Black, and 19 or 20 for White), while certain squares

(17,21,22 and 25 for Black, and 8,11,12 and 16 for

White) are all occupied by the active side.

DENY (Denial of Occupancy)

The parameter is credited with I for each square defined

in MOB if on the next move a piece occupying this

square could he captured without an exchange.

orA (Double Diagonal File)

The parameter is credited with I for each passive piece

located in the diagonal tiles terminating in the double

corner squares.

OlAV (Diagonal Moment Value)

The parameter is credited with 1/2 for each passive

piece located on squarcs 2 removed from the double

corner diagonal files. with l for each passive piece lo

cated on squarcs I removed from the douhle-corner files

and with 3! 2 for each passive piece in the double-corner

Illes.

DYKE (Dyke)

The parameter is credited with I for each string of pas

sive pieces that occupy three adjacent diagonal squares.

EXCH (E x e h a n g ~)

The parameter is credited with 1 for each square to

which the active side may advance a piece and. in so

doing, force an exchange.

EXPOS (Exposure)

The parameter is credited with I for each passive piece

that is flanked along one or the other diagonal by two

empty squares.

FORK (Threat of Fork)

The parameter is credited with 1 for each situation in .

which passive pieces occupy two adjacent squares in one

row and in which there are three empty squares so dis

posed that the active side could, by occupying one of

them, threaten a. ~ure capture of one or the other of the

two pieces.

GAP (Gap)

The parameter is credited with 1 for each single empty

square that separates two passive pieces along a diagonal,

or that separates a passive piece from the edge of the

board.

GUARD (Back Row Control)

The parameter is credited with 1 if there are no active

kings and if either the Bridge or the Triangle of Oreo is

occupied by passive pieces.

HOLE (Hole)

The parameter is credited with 1 for each empty square

that is surrounded by three or more passive pieces.

KCENT (King Center Control)

The parameter is credited with 1 for each of the follow

ing squares: 11, 12, 15, 16, 20,21,24 and 25 which is

occupied by a passive king.

MOB (Total Mobility)

The parameter is credited with 1 for each square to

which the active side could move one or more pieces in

the normal fashion, disregarding the fact that jump

moves mayor may not be available.

MOBIL (Undenied Mobility)

The parameter is credited with the difference between

MOB and DENY.

MOVE (I\Iove)

The parameter is credited with I if pieces are even with

a total piece count (2 for men. and 3 for kings) of less

than 24, and if an odd number of pieces are in the move

system. defined as those vertical files starting with

squares 1, 2, 3 and 4.

NODE (Node)

The parameter is credited with 1 for each passive piece

that is surrounded by at least three empty squares.

554 Improving the Efficiency of a Problem Solver

OREO (Triangle of Orca)

The parameter is credited with I if there are no passive

kings and if the Triangle of Oreo (squares 2, 3 and 7 for

Black. and squares 26. 3D and 3 I for White) is occupied

hy passive pieces.

POLE (Pole)

The parameter is credited with I for each passive man

that is completely surrounded hy empty squares.

RECAP (Recapture)

This parameter is identical with Exchange. as defined

ahove. (It was introduced to test the elfects produced by

the random times at which parameters are introduced

and deleted from the evaluation polynomial.)

THRET (Threat)

The parameter is credited with I fo'r each square to

which an active piece may he moved and in so doing

threaten the capture of a passive piece on a subsequent

move.

--- -'-------_._--------------

Undenied Mobility-Denial 01 OccupancyDenial 01 Occllpancy-Total Mohility

• Binary connectil'e terms

The abbreviations used for the terms of this type which have been employed are listed below, in the order of

AoB. r/oB AoB, and AoB. where A and B are the two respective parameters heading the sublists of abbreviations.

Undenied Mobility-

Center Control I

DEMO

DEMMa

DDEMO

DDMM

MODE 1

MODE 2

MODE 3

MODE 4

MOC 1

MOC 3

MOC 2

MOC 4

• !:'I'all/ation polynomial (first /2 terms only) alter 42 !?Clines, dllring which a total 011039 different sets 01 adjllstments

11'['1'1' !!lade ro (he terms and their coefficients. ':'

... ,.-----._- --'_._----------------------------------

Power 012 Times

Used as Coefficient A dillsted

18 84

16 127

14 95

13 210

11 1~') .J_

8 91

8 739

8 55

6 6

5 12

5 442

4 89

+

+

+
+
+

Sign 01

Coefficient

0.45

0.40

0.35

0.33

0.27

0.19

0.19

0.19

0.14

0.13

0.13

0.10

Correlation

Coefficient

\IOC 2

J..:CENT

\IOC -+
\IOD~ .1

DE\I\IO

\IOVE

.-\DV

\IODE 2

Il.-\CK

C:\TR

THRET

\IOC 3

Times A djlls/ed

fIelore Discard Term

Times Adjusted

Belore Discard

COR:\

CR.-\\1 P

(iL'.\RD

F\:I'OS
DD\I\1

[)YJ..:E

\IOC 1

I:\:CH

[)DDIO

--'i-' ------- ----

o
o
o

162

19

115
I

445

53

"

""

MODE
CENT

MODE 4
FORK
MOBIL

POLE

HOLE
GAP

MOB

1

386

o
400

707

11

598

792

608

.\'"r,· od",.',! ill f'l'oof: An additional 211 games have recently been played, Although
"'111<: 't);l1i1t'an.1 changes w<:re notell. the general stabilization of the learning process
,tt););c,lcll hy h~ure -l has heen contirmeJ. During this play. 412 more adjustments
IInc ll1ad, Itl the terms ;tnd their coellicients anJ 12 allllitions were made to the
Ihl uf di-carded tnms. Receil'ed ivlarch 3,)1)59

