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SOME SUFFICIENT CONDITIONS FOR UNIVALENCE OF CERTAIN
FAMILIES OF INTEGRAL OPERATORS INVOLVING GENERALIZED

BESSEL FUNCTIONS

Erhan Deniz, Halit Orhan and H. M. Srivastava*

Abstract. The main object of this paper is to give sufficient conditions for
certain families of integral operators, which are defined here by means of
the normalized form of the generalized Bessel functions, to be univalent in
the open unit disk. In particular cases, we find the corresponding simpler
conditions for integral operators involving the Bessel function, the modified
Bessel function and the spherical Bessel function.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A be the class of functions of the form:

f(z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}
and satisfy the usual normalization condition:

f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of functions f(z) ∈ A which are
univalent in U. In the past two decades, many authors have determined various
sufficient conditions for the univalence of various general families of integral
operators as follows.
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The first family of integral operators, studied by Seenivasagan and Breaz (see
[26]), is defined as follows (see also the recent investigations on this subject by
Baricz and Frasin [7] and Srivastava et al. [27]):

(1.1) Fα1,··· ,αn,β(z) =

β

∫ z

0
tβ−1

n∏
j=1

(
fj(t)

t

)1/αj

dt

1/β

,

where each of the functions fj (j = 1, · · · , n) belongs to the class A and the
parameters αj ∈ C \ {0} (j = 1, · · · , n) and β ∈ C are so constrained that the
integral operators in (1.1) exist.

Remark 1. We note that, if αj = α (j = 1, · · · , n), then the integral operator
Fα1,··· ,αn,β(z) reduces to the operator Fα,β(z) which is related closely to some
known integral operators investigated earlier in Geometric Functions Theory (see,
for details, [28]). The operators Fα,β(z) and Fα,α(z) were studied by Breaz and
Breaz (see [12]) and Pescar (see [23]), respectively. Upon setting β = 1 and
α = β = 1 in Fα,β(z), we can obtain the operators Fα,1(z) and F1,1(z) which
were studied by Breaz and Breaz (see [11]) and Alexander (see [2]), respectively.
Furthermore, in their special cases when

n = β = 1 and αj =
1
α

(j = 1, · · · , n),

the integral operators in (1.1) would obviously reduce to the operator F1/α,1(z)
which was studied by Pescar and Owa (see [24]). In particular, for α ∈ [0, 1], a
special case of the operator F1/α,1(z) was studied by Miller et al. (see [18]).

Remark 2. The second family of integral operators was introduced by Breaz
and Breaz (see [13]) and it has the following form (see also a recent investigation
on this subject by Breaz et al. [15]):

(1.2) Gn,γ(z) =

(nγ + 1)
∫ z

0

n∏
j=1

[gj(t)]
γ dt

1/(nγ+1)

,

where the functions gj ∈ A (j = 1, · · · , n) and the parameter γ ∈ C is so
constrained that the integral operators in (1.2) exist. In particular, for n = 1, the
integral operator G1,γ(z) was studied by Moldoveanu and Pascu (see [19]).

Remark 3. The third family of integral operators was introduced by Breaz and
Breaz (see [14]) and it has the following form:

(1.3) Hδ1,··· ,δn,µ(z) =

µ

∫ z

0

tµ−1
n∏

j=1

[
h′

j(t)
]δj dt

1/µ

,
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where the functions hj ∈ A (j = 1, · · · , n) and the parameters µ ∈ C and
δj ∈ C (j = 1, · · · , n) are so constrained that the integral operators in (1.3) exist.
In particular, for µ = 1 in (1.3), the integral operator Hδ1,··· ,δn,µ(z) reduces to the
operator Hδ1,··· ,δn(z) which was studied by Breaz et al. (see [16]). We observe
also that, for n = µ = 1, the integral operator H(z) was introduced and studied by
Pfaltzgraff (see [25]) and Kim and Merkes (see [17]).

Remark 4. The fourth family of integral operators was introduced by Pescar
[22] as follows:

(1.4) Qλ(z) =
[
λ

∫ z

0
tλ−1

(
eq(t)

)λ
dt

]1/λ

,

where the function q ∈ A and the parameter λ ∈ C is so constrained that the integral
operators in (1.4) exist.

Two of the most important and known univalence criteria for analytic functions
defined in the open unit disk U were obtained by Ahlfors [1] and Becker [10]
and by Becker (see [9]). Some extensions of these two univalence criteria were
given by Pescar (see [21]) involving a parameter β (which, for β = 1, yields the
Ahlfors-Becker univalence criterion) and by Pascu (see [20]) involving two
parameters α and β (which, for β = α = 1, yields Becker’s univalence criterion).
In our present investigation, we need these two univalence criteria which we recall
here as Lemmas 1 and 2 below.

Lemma 1. (see [21]). Let β and c be complex numbers such that

�(β) > 0 and |c| � 1 (c �= −1).

If the function f ∈ A satisfies the following inequality:∣∣∣∣c |z|2β +
(
1− |z|2β

) zf ′′(z)
βf ′(z)

∣∣∣∣ � 1 (z ∈ U),

then the function Fβ defined by

(1.5) Fβ(z) =
(

β

∫ z

0
tβ−1 f ′(t)dt

)1/β

is in the class S of normalized univalent functions in U.

Lemma 2. (see [20]). If f ∈ A satisfies the following inequality:(
1 − |z|2�(α)

�(α)

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ � 1
(
z ∈ U; �(α) > 0

)
,

then, for all β ∈ C such that �(β) � �(α), the function F β defined by (1.5) is in
the class S of normalized univalent functions in U.



886 Erhan Deniz, Halit Orhan and H. M. Srivastava

Lemma 3 below is a consequence of the above-mentioned Becker’s univalence
criterion (see [9]) and the well-known Schwarz lemma.

Lemma 3. (see [22]). Let the parameters λ ∈ C and θ ∈ R be so constrained
that

�(λ) � 1, θ > 1 and 2θ |λ| � 3
√

3.

If the function q ∈ A satisfies the following inequality:∣∣zq′(z)
∣∣ � θ (z ∈ U),

then the function Qλ : U → C, defined by

Qλ(z) =
[
λ

∫ z

0
tλ−1

(
eq(t)

)λ
dt

]1/λ

,

is in the class S of normalized univalent functions in U.

We next consider the following second-order linear homogeneous differential
equation (see, for details, [30]):

(1.6) z2ω′′(z) + bzω′(z) +
[
dz2 − ν2 + (1− b)ν

]
ω(z) = 0 (b, d, ν ∈ C).

A particular solution of the differential equation (1.6), which is denoted by ων,b,d(z),
is called the generalized Bessel function of the first kind of order ν. In fact, we
have the following familiar series representation for the function ων,b,d(z):

(1.7) ων,b,d(z) =
∞∑

n=0

(−d)n

n!Γ
(
ν + n + b+1

2

) (z

2

)2n+ν
(z ∈ C),

where Γ(z) stands for the Euler gamma function. The series in (1.7) permits us
to study the Bessel, the modified Bessel and the spherical Bessel functions in a
unified manner. Each of these particular cases of the function ων,b,d(z) is worthy
of mention here.

• For b = d = 1 in (1.7), we obtain the familiar Bessel function Jν(z) defined by
(see [30]; see also [3])

(1.8) Jν(z) =
∞∑

n=0

(−1)n

n!Γ (ν + n + 1)

(z

2

)2n+ν
(z ∈ C).

• For b = −d = 1 in (1.7), we obtain the modified Bessel function Iν(z) defined
by (see [30]; see also [3])

(1.9) Iν(z) =
∞∑

n=0

1
n!Γ (ν + n + 1)

(z

2

)2n+ν
(z ∈ C).
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• For b − 1 = d = 1 in (1.7), we obtain the spherical Bessel function, which we
choose to denote here by Kν(z), defined by (see [3]; see also Remark 5 below)

(1.10) Kν(z) :=

√
2
z

Jν+ 1
2
(z) =

∞∑
n=0

(−1)n

n!Γ
(
ν + n + 3

2

) (z

2

)2n+ν
(z ∈ C).

Remark 5. The spherical Bessel function jn(z) of the first kind is usually
defined by (see, for details, [30])

jn(z) :=
√

π

2z
Jn+ 1

2
(z) (n ∈ Z := {0,±1,±2, · · ·}).

On the other hand, in the theory of Bessel functions (see, for example, [30]), the
notation Kν(z) is usually meant for the modified Bessel function of the third kind
(or the Macdonald function). Here, in our present investigation, we have found it
to be convenient to use the same notation Kν(z) which is defined here markedly
differently by (1.10).

We now introduce the function ϕν,b,d(z) defined, in terms of the generalized
Bessel function ων,b,d(z), by

(1.11) ϕν,b,d(z) = 2νΓ
(

ν +
b + 1

2

)
z1−ν

2 ων,b,d(
√

z).

By using the well-known Pochhammer symbol (or the shifted factorial) (λ)µ defined,
for λ, µ ∈ C and in terms of the Euler Γ-function, by

(λ)µ :=
Γ(λ + µ)

Γ(λ)
=

{
1 (µ = 0; λ ∈ C \ {0})
λ(λ + 1) · · ·(λ + n − 1) (µ = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1, we obtain the following series
representation for the function ϕν,b,d(z) given by (1.11):

(1.12) ϕν,b,d(z) = z +
∞∑

n=1

(−d)n

4n (κ)n

zn+1

n!

(
κ := ν +

b + 1
2

/∈ Z0

)
where

N := {1, 2, 3, · · ·} and Z0 := {0,−1,−2, · · ·}.
For further results on this relative ϕν,b,d(z) of the generalized Bessel function

ων,b,d(z), we refer the reader to the recent papers (see, for example, [3-6, 8,
29]), where (among other things) some interesting functional inequalities, integral
representations, extensions of some known trigonometric inequalities, and
starlikeness, convexity and univalence of normalized analytic functions were
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established. In particular, Baricz and Frasin [7] investigated the univalence of some
integral operators of the types given by (1.1), (1.2) and (1.4), which involve the
normalized form of the ordinary Bessel function of the first kind. The main object
of this paper is to give sufficient conditions for the families of integral operators of
the types (1.1), (1.2), (1.3) and (1.4), which involve the normalized forms of the
generalized Bessel functions of the first kind to be univalent in the open unit disk
U. We also extend and improve the aforementioned results of Baricz and Frasin
[7]. At least in some cases, our main results are stronger than the results obtained
in [7].

Recently, Baricz and Ponnusamy [8] proved the following lemma.

Lemma 4. (see [8]). If the parameters ν, b ∈ R and d ∈ C are so constrained
that

κ > max
{

0,
|d|
4

− 1
}

,

then the function
ϕν,b,d(z)

z
: U → C

given by (1.12) satisfies the following inequality:

(1.13)
4κ(κ+1)−(2κ+1) |d|+ 1

8 |d|2
κ [4(κ+1)−|d|] �

∣∣∣∣ϕν,b,d(z)
z

∣∣∣∣ � 32κ2−|d|
8κ [4κ−|d|] (z∈U).

Lemma 5. If the parameters ν, b ∈ R and d ∈ C are so constrained that

κ > max
{

0,
|d| − 2

4

}
,

then the function
ϕν,b,d : U → C

defined by (1.12) satisfies the following inequalities:

(1.14)
∣∣∣∣ϕ′

ν,b,d(z) − ϕν,b,d(z)
z

∣∣∣∣ � (κ+1) |d|
κ [4(κ+1)− |d|] (z ∈ U),

(1.15)

∣∣∣∣∣zϕ′
ν,b,d(z)

ϕν,b,d(z)
− 1

∣∣∣∣∣ � 8(κ+1) |d|
32κ(κ+1)− 8(2κ + 1) |d|+|d|2 (z ∈ U),

(1.16)
4κ(κ+1)−(3κ+2) |d|

κ [4(κ+1)−|d|] �
∣∣zϕ′

ν,b,d(z)
∣∣ � 4κ(κ+1)+(κ+2) |d|

κ [4(κ+1)−|d|] (z ∈ U),

(1.17)
∣∣z2ϕ′′

ν,b,d(z)
∣∣ � |d|

2κ

4(κ + 1) + |d|
4(κ + 1) − |d| (z ∈ U)
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and

(1.18)

∣∣∣∣∣zϕ′′
ν,b,d(z)

ϕ′
ν,b,d(z)

∣∣∣∣∣ � 4(κ + 1) |d|+ |d|2
8κ(κ + 1) − 2(3κ + 2) |d| (z ∈ U).

Proof. We first prove the assertion (1.14) of Lemma 5. Indeed, by using the
well-known triangle inequality:

|z1 + z2| � |z1| + |z2|
and the inequaliy:

(1.19) n!(κ + 1)n−1 � n(κ + 1)n−1 (n ∈ N),

we have∣∣∣∣ϕ′
ν,b,d(z)− ϕν,b,d(z)

z

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

n(−d)n

n!4n(κ)n
zn

∣∣∣∣∣ �
∞∑

n=1

n |d|n
n!4n(κ)n

=
|d|
4κ

∞∑
n=1

n |d|n−1

4n−1n!(κ + 1)n−1
� |d|

4κ

∞∑
n=1

( |d|
4(κ + 1)

)n−1

=
(κ + 1) |d|

κ [4(κ + 1)− |d|]
(

κ >
|d| − 2

4

)
.

Next, by combining the inequalities (1.13) with (1.14), we immediately see that
the second assertion (1.15) of Lemma 5 holds true for all z ∈ U if

32κ(κ + 1) − 8(2κ + 1) |d|+ |d|2 > 0.

In order to prove the assertion (1.16) of Lemma 5, we make use of the
well-known triangle inequality and the following inequaliy:

(1.20) 2 · n!(κ + 1)n−1 � (n + 1)(κ + 1)n−1 (n ∈ N).

We thus find that

∣∣zϕ′
ν,b,d(z)

∣∣ = ∣∣∣∣∣z +
∞∑

n=1

(n + 1)(−d)n

n!4n(κ)n
zn+1

∣∣∣∣∣ � 1 +
∞∑

n=1

(n + 1) |d|n
n!4n(κ)n

= 1 +
|d|
2κ

∞∑
n=1

(n + 1) |d|n−1

4n−12n!(κ + 1)n−1
� 1 +

|d|
2κ

∞∑
n=1

( |d|
4(κ + 1)

)n−1

=
4κ(κ + 1) + (κ + 2) |d|

κ [4(κ + 1)− |d|]
(

κ >
|d| − 2

4

)
,
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which is obviously positive if
4κ(κ + 1) + (κ + 2) |d| > 0.

Similarly, by using the reverse triangle inequality:
|z1 − z2| �

∣∣|z1| − |z2|
∣∣

and the inequality (1.20), we have∣∣zϕ′
ν,b,d(z)

∣∣ = ∣∣∣∣∣z +
∞∑

n=1

(n + 1)(−d)n

n!4n(κ)n
zn+1

∣∣∣∣∣ � 1 −
∞∑

n=1

(n + 1) |d|n
n!4n(κ)n

= 1 − |d|
2κ

∞∑
n=1

(n + 1) |d|n−1

4n−12n!(κ + 1)n−1
� 1 − |d|

2κ

∞∑
n=1

( |d|
4(κ + 1)

)n−1

=
4κ(κ + 1) − (3κ + 2) |d|

κ [4(κ + 1) − |d|]
(

κ >
|d| − 2

4

)
,

which is positive if
4κ(κ + 1)− (3κ + 2) |d| > 0.

We now prove the assertion (1.17) of Lemma 5 by using again the triangle
inequality and the following inequality:

(1.21) 4 · (n − 1)!(κ + 1)n−1 � (n + 1)(κ + 1)n−1 (n ∈ N \ {1}).
We thus have∣∣z2ϕ′′

ν,b,d(z)
∣∣ =

∣∣∣∣∣
∞∑

n=1

(n + 1)n(−d)n

n!4n(κ)n
zn+1

∣∣∣∣∣ �
∞∑

n=1

(n + 1) |d|n
(n − 1)!4n(κ)n

=
|d|
κ

[
1
2

+
∞∑

n=2

(
n + 1

4 · (n − 1)!

)( |d|n−1

4n−1(κ + 1)n−1

)]

� |d|
κ

[
1
2

+
∞∑

n=2

( |d|
4(κ + 1)

)n−1
]

=
|d|
2κ

(
4(κ + 1) + |d|
4(κ + 1)− |d|

) (
κ >

|d| − 2
4

)
.

Finally, by combining the inequalities (1.16) and (1.17), we immediately deduce
that (v) holds true for all z ∈ U. Thus the proof of Lemma 5 is completed.

2. UNIVALENCE OF INTEGRAL OPERATORS INVOLVING THE

GENERALIZED BESSEL FUNCTIONS

Our first main result provides an application of Lemma 5 and contains sufficient
univalence conditions for integral operators of the type (1.1) when the functions
fj (j = 1, · · · , n) are normalized forms of the generalized Bessel functions
involving various parameters.
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Theorem 1. Let the parameters ν1, · · · , νn, b ∈ R and d ∈ C be so constrained
that

κj >
|d| − 2

4

(
κj = νj +

b + 1
2

(j = 1, · · · , n)
)

.

Consider the functions ϕνj ,b,d : U → C defined by

(2.1) ϕνj ,b,d(z) = 2νj Γ
(

νj +
b + 1

2

)
z1−νj/2 ωνj ,b,d(

√
z).

Suppose also that

κ=min{κ1, · · · , κn}, �(β)>0, c ∈ C\{−1} and αj ∈C\{0} (j=1, · · · , n)

and that these numbers satisfy the following inequality:

|c|+ 8(κ + 1) |d|
32κ(κ + 1)− 8(2κ + 1) |d| + |d|2

n∑
j=1

1
|βαj | � 1.

Then the function Fν1,··· ,νn,b,d,α1,··· ,αn,β(z) : U → C, defined by

(2.2) Fν1,··· ,νn,b,d,α1,··· ,αn,β(z) =

β

∫ z

0
tβ−1

n∏
j=1

(
ϕνj ,b,d(t)

t

)1/αj

dt

1/β

,

is in the class S of normalized univalent functions in U.

Proof. We begin by setting β = 1 in (2.2) so that

Fν1,··· ,νn,b,d,α1,··· ,αn,1(z) =
∫ z

0

n∏
j=1

(
ϕνj ,b,d(t)

t

)1/αj

dt.

First of all, we observe that, since ϕνj ,b,d ∈ A (j = 1, · · · , n),

ϕνj ,b,d(0) = ϕ′
νj ,b,d(0) − 1 = 0.

Therefore, clearly, Fν1,··· ,νn,b,d,α1,··· ,αn,1 ∈ A, that is,

Fν1,··· ,νn,b,d,α1,··· ,αn,1(0) = F ′
ν1,··· ,νn,b,d,α1,··· ,αn,1(0)− 1 = 0.

On the other hand, it is easy to see that

(2.3) F ′
ν1,··· ,νn,b,d,α1,··· ,αn,1(z) =

n∏
j=1

(
ϕνj ,b,d(z)

z

)1/αj
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and

F ′′
ν1,··· ,νn,b,d,α1,··· ,αn,1(z) =

n∑
j=1

1
αj

(
ϕνj ,b,d(z)

z

)(1−αj)/αj

·
(

zϕ′
νj ,b,d(z)− ϕνj ,b,d(z)

z2

)
n∏

k=1
(k �=j)

(
ϕνk,b,d(z)

z

)1/αk

.(2.4)

We thus find from (2.3) and (2.4) that
zF ′′

ν1,··· ,νn,b,d,α1,··· ,αn,1(z)
F ′

ν1,··· ,νn,b,d,α1,··· ,αn,1(z)
=

n∑
j=1

1
αj

(
zϕ′

νj ,b,d(z)

ϕνj ,b,d(z)
− 1

)
.

Now, by using the inequality (1.15) in Lemma 5 for each νj (j = 1, · · · , n), we
obtain∣∣∣∣∣zF

′′
ν1,··· ,νn,b,d,α1,··· ,αn,1(z)

F ′
ν1,··· ,νn,b,d,α1,··· ,αn,1(z)

∣∣∣∣∣ �
n∑

j=1

1
|αj|

∣∣∣∣∣zϕ′
νj ,b,d(z)

ϕνj ,b,d(z)
− 1

∣∣∣∣∣
�

n∑
j=1

1
|αj|

8(κj + 1) |d|
32κj(κj + 1)− 8(2κj + 1) |d| + |d|2

�
n∑

j=1

1
|αj|

8(κ + 1) |d|
32κ(κ + 1) − 8(2κ + 1) |d|+ |d|2(

z ∈ U; κ, κj := νj +
b + 1

2
>

|d| − 2
4

(j = 1, · · · , n)
)

,

where we have also used the fact that the function

φ :
( |d| − 2

4
,∞
)

→ R,

defined by
φ(x) =

8(x + 1) |d|
32x(x + 1)− 8(2x + 1) |d|+ |d|2 ,

is decreasing and, consequently, we have
8(κj + 1) |d|

32κj(κj + 1)− 8(2κj + 1) |d| + |d|2 � 8(κ + 1) |d|
32κ(κ + 1) − 8(2κ + 1) |d|+ |d|2 .

Finally, by using the triangle inequality and the assertion of Theorem 1, we get∣∣∣∣∣c |z|2β +
(
1 − |z|2β

) zF ′′
ν1,··· ,νn,b,d,α1,··· ,αn,1(z)

βF ′
ν1,··· ,νn,b,d,α1,··· ,αn,1(z)

∣∣∣∣∣
� |c|+ 8(κ + 1) |d|

32κ(κ + 1)− 8(2κ + 1) |d| + |d|2
n∑

j=1

1
|βαj| � 1,
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which, in view of Lemma 1, implies that Fν1,··· ,νn,b,d,α1,··· ,αn,β ∈ S. This evidently
completes the proof of Theorem 1.

Upon setting
α1 = · · · = αn = α

in Theorem 1, we immediately arrive at the following application of Theorem 1.

Corollary 1. Let the parameters ν1, · · · , νn, b, c, d, β and κj (j = 1, · · · , n)
be as in Theorem 1. Also let the functions ϕ νj ,b,d : U → C be defined by (2.1) .

Suppose that
κ = min{κ1, · · · , κn} and α ∈ C \ {0}

and that the following inequality holds true:

|c|+ n

|βα|
8(κ + 1) |d|

32κ(κ + 1) − 8(2κ + 1) |d|+ |d|2 � 1

Then the function Fν1,··· ,νn,b,d,α,β(z) : U → C, defined by

(2.5) Fν1,··· ,νn,b,d,α,β(z) =

β

∫ z

0

tβ−1
n∏

j=1

(
ϕνj ,b,d(t)

t

)1/α

dt

1/β

,

is in the class S of normalized univalent functions in U.

Our second main result contains sufficient univalence conditions for an integral
operator of the type (1.2) when the functions gj are the normalized forms of the
generalized Bessel functions with various parameters. The key tools in the proof
are Lemma 2 and the inequality (1.15) of Lemma 5.

Theorem 2. Let the parameters ν1, · · · , νn, b ∈ R and d ∈ C be so constrained
that

κj >
|d| − 2

4

(
κj = νj +

b + 1
2

(j = 1, · · · , n)
)

.

Consider the functions ϕνj ,b,d : U → C defined by (2.1) and let

κ = min{κ1, · · · , κn} and �(γ) > 0.

Moreover, suppose that the following inequality holds true:

|γ| � 1
n

32κ(κ + 1)− 8(2κ + 1) |d|+ |d|2
8(κ + 1) |d| �(γ).

Then the function Gν1,··· ,νn,b,d,n,γ(z) : U → C, defined by

(2.6) Gν1,··· ,νn,b,d,n,γ(z) =

(nγ + 1)
∫ z

0

n∏
j=1

(
ϕνj ,b,d(t)

)γ dt

1/(nγ+1)

,

is in the class S of normalized univalent functions in U.
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Proof. Let us consider the function G̃ν1,··· ,νn,b,d,n,γ(z) : U → C defined by

G̃ν1,··· ,νn,b,d,n,γ(z) =
∫ z

0

n∏
j=1

(
ϕνj ,b,d(t)

t

)γ

dt.

Observe that G̃ν1,··· ,νn,b,d,n,γ ∈ A, that is, that

G̃ν1,··· ,νn,b,d,n,γ(0) = G̃ ′
ν1,··· ,νn,b,d,n,γ(0)− 1 = 0.

On the other hand, by using the assertion (1.15) of Lemma 5, the assertion of
Theorem 2 and the fact that

8(κj + 1) |d|
32κj(κj + 1) − 8(2κj + 1) |d| + |d|2

� 8(κ + 1) |d|
32κ(κ + 1) − 8(2κ + 1) |d| + |d|2 (j = 1, · · · , n),

we have

1− |z|2�(γ)

�(γ)

∣∣∣∣∣zG̃
′′
ν1,··· ,νn,b,d,n,γ(z)

G̃ ′
ν1,··· ,νn,b,d,n,γ(z)

∣∣∣∣∣
� |γ|

�(γ)

n∑
j=1

∣∣∣∣∣zϕ′
νj ,b,d(z)

ϕνj ,b,d(z)
− 1

∣∣∣∣∣
� n |γ|

�(γ)
8(κ + 1) |d|

32κ(κ + 1)− 8(2κ + 1) |d|+ |d|2 � 1 (z ∈ C).

Now, since �(nγ + 1) > �(γ) and the function Gν1,··· ,νn,b,d,n,γ can be rewritten in
the form:

Gν1,··· ,νn,b,d,n,γ(z) =

(nγ + 1)
∫ z

0
tnγ

n∏
j=1

(
ϕνj ,b,d(t)

t

)γ

dt

1/(nγ+1)

,

Lemma 2 would imply that Gν1,··· ,νn,b,d,n,γ ∈ S. This evidently completes the proof
of Theorem 2.

Choosing n = 1 in Theorem 2, we have the following result.

Corollary 2. Let the parameters ν, b ∈ R and d ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d| − 2
4

.



Some Sufficient Conditions for Univalence 895

Consider the function ϕν,b,d : U → C defined by (1.11). Moreover, suppose that
�(γ) > 0 and

|γ| � 32κ(κ + 1)− 8(2κ + 1) |d| + |d|2
8(κ + 1) |d| �(γ).

Then the function Gν,b,d,γ(z) : U → C, defined by

(2.7) Gν,b,d,γ(z) =
[
(γ + 1)

∫ z

0
(ϕν,b,d(t))

γ dt

]1/(γ+1)

,

is in the class S of normalized univalent functions in U.

The following result contains another set of sufficient univalence conditions for
an integral operator of the type (1.3) when the functions hj are the normalized
forms of the generalized Bessel functions involving various parameters. The key
tools in the proof are Lemma 1 and the inequality (1.18) of Lemma 5.

Theorem 3. Let the parameters ν1, · · · , νn, b ∈ R and d ∈ C be so constrained
that

κj := νj +
b + 1

2
>

|d| − 2
4

(j = 1, · · · , n).

Consider the functions ϕνj ,b,d : U → C defined by (2.1) . Also let

κ = min{κ1, · · · , κn}, �(µ) > 0, c ∈ C \ {−1} and δ1, · · · , δn ∈ C.

Moreover, suppose that the following inequality holds true:

|c|+ 4(κ + 1) |d|+ |d|2
8κ(κ + 1) − 2(3κ + 2) |d|

n∑
j=1

|δj |
|µ| � 1.

Then the function Hν1,··· ,νn,δ1,··· ,δn,b,d,µ(z) : U → C, defined by

(2.8) Hν1,··· ,νn,δ1,··· ,δn,b,d,µ(z) =

µ

∫ z

0

tµ−1
n∏

j=1

(
ϕ′

νj ,b,d(t)
)δj

dt

1/µ

,

is in the class S of normalized univalent functions in U.

Proof. Our demonstration of Theorem 3 is much akin to that of Theorem 1.
Indeed, by considering the function Hν1,··· ,νn,δ1,··· ,δn,b,d(z) : U → C defined by

Hν1,··· ,νn,δ1,··· ,δn,b,d(z) =
∫ z

0

n∏
j=1

(
ϕ′

νj ,b,d(t)
)δj

dt,
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and using the inequality (1.18) of Lemma 5 for each νj (j=1, · · · , n) in conjunction
with the following easily derivable inequality:

4(κj + 1) |d|+ |d|2
8κj(κj + 1)− 2(3κj + 2) |d| � 4(κ + 1) |d| + |d|2

8κ(κ + 1)− 2(3κ + 2) |d| ,

we are led eventually to the sufficient univalence conditions asserted by Theorem 3
by means of the triangle inequality and the assertion of Theorem 3.

Setting n = 1 in Theorem 3, we immediately obtain the following result.

Corollary 3. Let ν, b ∈ R and d ∈ C such that

κ := ν +
b + 1

2
>

|d| − 2
4

.

Consider the function ϕν,b,d : U → C defined by (1.11). Also let �(µ) > 0,

c∈C\{−1} and δ∈C. Moreover, suppose that the following inequality holds true:

|c|+
∣∣∣∣ δµ
∣∣∣∣ 4(κ + 1) |d|+ |d|2
8κ(κ + 1) − 2(3κ + 2) |d| � 1.

Then the function Hν,δ,b,d,µ(z) : U → C, defined by

(2.9) Hν,δ,b,d,µ(z) =
[
µ

∫ z

0
tµ−1

(
ϕ′

ν,b,d(t)
)δ dt

]1/µ

,

is in the class S of normalized univalent functions in U.

Next, by applying Lemma 3 and the inequality (1.16) asserted by Lemma 5, we
easily get the following result.

Theorem 4. Let the parameters ν, b ∈ R and d, λ ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d| − 2
4

.

Consider the generalized Bessel function ϕ ν,b,d defined by (1.11) . If �(λ) � 1 and

|λ| � 3
√

3κ [4(κ + 1)− |d|]
8κ(κ + 1) + 2(κ + 2) |d| ,

then the function Qν,b,d,λ : U → C, defined by

(2.10) Qν,b,d,λ(z) =
[
λ

∫ z

0
tλ−1

(
eϕν,b,d(t)

)λ
dt

]1/λ

,

is univalent in U.
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Taking into account the above results, we have the following particular cases.

2.1. Bessel Functions

Choosing b = d = 1, in (1.6) or (1.7), we obtain the Bessel function Jν(z) of
the first kind of order ν defined by (1.8). We observe also that

J3/2(z)=
3 sin

√
z√

z
−3 cos

√
z, J1/2(z)=

√
z sin

√
z and J−1/2(z)=z cos

√
z.

Corollary 4. Let the function Jν : U → C be defined by

Jν(z) = 2νΓ (ν + 1) z1−ν/2Jν(
√

z).

Also let the following assertions hold true:

1. Let ν1, · · · , νn > −1.25 (n ∈ N). Consider the functions Jνj : U → C defined
by

(2.11) Jνj(z) = 2νjΓ (νj + 1) z1−νj/2Jνj (
√

z) (j = 1, · · · , n).

Let ν = min{ν1, · · · , νn} and let the parameters β, c, α1, · · · , αn be as in Theorem
1. Moreover, suppose that these numbers satisfy the following inequality:

|c| + ν + 2
4ν2 + 10ν + 41/8

n∑
j=1

1
|βαj | � 1.

Then the function Fν1,··· ,νn,α1,··· ,αn,β(z) : U → C, defined by

(2.12) Fν1,··· ,νn,α1,··· ,αn,β(z) =

β

∫ z

0
tβ−1

n∏
j=1

(Jνj (t)
t

)1/αj

dt

1/β

,

is in the class S of normalized univalent functions in U. In the particular case when

|c|+ 28
233

1
|βα| � 1,

the function F3/2,α,β(z) : U → C, defined by

F3/2,α,β(z) =

[
β

∫ z

0

tβ−1

(
3 sin

√
t

t
√

t
− 3 cos

√
t

t

)1/α

dt

]1/β

,

is in the class S of normalized univalent functions in U.
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2. Let ν1, · · · , νn > −1.25 (n ∈ N) and consider the normalized Bessel functions
Jνj : U → C defined by (2.11). Also let ν = min{ν1, · · · , νn} and �(γ) > 0 and
suppose that these numbers satisfy the following inequality:

|γ| � 1
n

4ν2 + 10ν + 41/8
ν + 2

�(γ).

Then the function Gν1,··· ,νn,n,γ(z) : U → C, defined by

(2.13) Gν1,··· ,νn,n,γ(z) =

(nγ + 1)
∫ z

0

n∏
j=1

(Jνj(t)
)γ dt

1/(nγ+1)

,

is in the class S of normalized univalent functions in U. In the particular case when

|γ| � 89
20

�(γ),

the function G1/2,γ(z) : U → C, defined by

G1/2,γ(z) =
[
(γ + 1)

∫ z

0

(√
t sin

√
t
)γ

dt

]1/(γ+1)

,

is in the class S of normalized univalent functions in U.

3. Let ν1, · · · , νn > −1.25 (n ∈ N) and consider the normalized Bessel functions
Jνj : U → C defined by (2.11). Let ν = min{ν1, · · · , νn} and let the parameters
µ, c, δ1, · · · , δn be as in Theorem 3. Moreover, suppose that these numbers satisfy
the following inequality:

|c| + 4ν + 9
8ν2 + 18ν + 6

n∑
j=1

|δj|
|µ| � 1

Then the function Hν1,··· ,νn,δ1,··· ,δn,µ(z) : U → C, defined by

(2.14) Hν1,··· ,νn,δ1,··· ,δn,µ(z) =

µ

∫ z

0
tµ−1

n∏
j=1

(
J ′

νj
(t)
)δj

dt

1/µ

,

is in the class S of normalized univalent functions in U. In particular, the function
H−1/2,δ,µ(z) : U → C, defined by

H−1/2,δ,µ(z) =

[
µ

∫ z

0
tµ−1

(
cos

√
t −

√
t sin

√
t

2

)δ

dt

]1/µ

,

is in the class S of normalized univalent functions in U.



Some Sufficient Conditions for Univalence 899

4. Let λ ∈ C and ν > −1.25 and consider the normalized Bessel function J ν(z)
given by (1.8). If �(λ) � 1 and

|λ| � 3
√

3(ν + 1)(4ν + 7)
8ν2 + 26ν + 22

,

then the function Qν,λ : U → C, defined by

(2.15) Qν,λ(z) =
[
λ

∫ z

0
tλ−1

(
eJν(t)

)λ
dt

]1/λ

,

is in the class S of normalized univalent functions in U. In the particular case when
|λ| � 1.8959 · · · , the function Q1/2,λ(z) : U → C, defined by

Q1/2,λ(z) =
[
λ

∫ z

0
tλ−1

(
e
√

t sin
√

t
)λ

dt

]1/λ

,

is in the class S of normalized univalent functions in U.

Remark 6. Baricz and Frasin [7] proved that the following general integral
operators:

Fν1,··· ,νn,α1,··· ,αn,β(z), Gν1,··· ,νn,n,γ(z) and Qν,λ(z)

defined by (2.12), (2.13) and (2.15), respectively, are actually univalent for all

ν, ν1, · · · , νn > −0.690 98 · · · .

From Corollary 4, we see that our results (with ν, ν1, · · · , νn > −1.25) are stronger
than the Baricz-Frasin results for the same integral operators (see, for details, [7]).

2.2. Modified Bessel Functions

Taking b = 1 and d = −1 in (1.6) or (1.7), we obtain the modified Bessel
function Iν(z) of the first kind of order ν defined by (1.9). We observe also that

I3/2(z) = 3 cosh
√

z − 3 sinh
√

z√
z

,

I1/2(z) =
√

z sinh
√

z and I−1/2(z) = z cosh
√

z.

Corollary 5. Let the function Iν : U → C be defined by

Iν(z) = 2νΓ (ν + 1) z1−ν/2Iν(
√

z).

Also let the following assertions hold true:

1. Let ν1, · · · , νn >−1.25 (n∈N). Consider the functions Iνj : U→C defined by
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(2.16) Iνj(z) = 2νjΓ (νj + 1) z1−νj/2Iνj(
√

z) (j = 1, · · · , n).

Let ν = min{ν1, · · · , νn} and let the parameters β, c, α1, · · · , αn be as in
Theorem 1. Moreover, suppose that these numbers satisfy the following inequality:

|c| + ν + 2
4ν2 + 10ν + 41/8

n∑
j=1

1
|βαj | � 1.

Then the function Fν1,··· ,νn,α1,··· ,αn,β(z) : U → C, defined by

(2.17) Fν1,··· ,νn,α1,··· ,αn,β(z) =

β

∫ z

0
tβ−1

n∏
j=1

(Iνj(t)
t

)1/αj

dt

1/β

,

is in the class S of normalized univalent functions in U. In the particular case when

|c|+ 28
233

1
|βα| � 1,

the function F3/2,α,β(z) : U → C, defined by

F3/2,α,β(z) =

[
β

∫ z

0
tβ−1

(
3 cosh

√
t

t
− 3 sinh

√
t

t
√

t

)1/α

dt

]1/β

,

is in the class S of normalized univalent functions in U.

2. Let ν1, · · · , νn > −1.25 (n ∈ N) and consider the normalized modified Bessel
functions Iνj : U → C defined by (2.16) . Let ν = min{ν1, · · · , νn} and �(γ) > 0
and suppose that these numbers satisfy the following inequality:

|γ| � 1
n

(
4ν2 + 10ν + 41/8

ν + 2

)
�(γ).

Then the function Gν1,··· ,νn,n,γ(z) : U → C, defined by

(2.18) Gν1,··· ,νn,n,γ(z) =

(nγ + 1)
∫ z

0

n∏
j=1

(Iνj(t)
)γ dt

1/(nγ+1)

,

is in the class S of normalized univalent functions in U. In the particular case when

|γ| � 89
20

�(γ),
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the function G1/2,γ(z) : U → C, defined by

G1/2,γ(z) =
[
(γ + 1)

∫ z

0

(√
t sinh

√
t
)γ

dt

]1/(γ+1)

,

is in the class S of normalized univalent functions in U.

3. Let ν1, · · · , νn > −1.25 (n ∈ N) and consider the normalized modified Bessel
functions Iνj : U → C defined by (2.16) . Also let ν = min{ν1, · · · , νn} and let
the parameters µ, c, δ1, · · · , δn be as in Theorem 3. Suppose that these numbers
satisfy the following inequality:

|c|+ 4ν + 9
8ν2 + 18ν + 6

n∑
j=1

|δj|
|µ| � 1.

Then the function Hν1,··· ,νn,δ1,··· ,δn,µ(z) : U → C, defined by

Hν1,··· ,νn,δ1,··· ,δn,µ(z) =

µ

∫ z

0
tµ−1

n∏
j=1

(
I ′

νj
(t)
)δj

dt

1/µ

,

is in the class S of normalized univalent functions in U. In particular, the function
H−1/2,δ,µ(z) : U → C, defined by

H−1/2,δ,µ(z) =

[
µ

∫ z

0
tµ−1

(
cosh

√
t +

√
t sinh

√
t

2

)δ

dt

]1/(γ+1)

,

is in the class S of normalized univalent functions in U.

4. Let λ ∈ C and ν > −1.25 and consider the normalized modified Bessel function
Iν(t) given by (1.9). If �(λ) � 1 and

|λ| � 3
√

3(ν + 1)(4ν + 7)
8ν2 + 26ν + 22

,

then the function Qν,λ : U → C, defined by

Qν,λ(z) =
[
λ

∫ z

0
tλ−1

(
eIν (t)

)λ
dt

]1/λ

,

is in the class S of normalized univalent functions in U. In the particular case when
|λ| � 1.1809 · · · , the function Q−1/2,λ(z) : U → C, defined by

Q−1/2,λ(z) =
[
λ

∫ z

0

tλ−1
(
et cosh

√
t
)λ

dt

]1/λ

,

is in the class S of normalized univalent functions in U.
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2.3. Spherical Bessel Functions

Upon setting b = 2 and d = 1 in (1.6) or (1.7), we obtain the spherical Bessel
function Kν(z) of the first kind of order ν defined here by (1.10).

Corollary 6. Let Kν : U → C be defined by

Kν(z) = 2νΓ (ν + 1) z1−ν/2Kν(
√

z).

Also let the following assertions hold true:

1. Let ν1, · · · , νn > −2.25 (n ∈ N). Consider the functions Kνj : U → C defined
by

(2.19) Kνj (z) = 2νjΓ (νj + 1) z1−νj/2Kνj (
√

z) (j = 1, · · · , n).

Let ν = min{ν1, · · · , νn} and let the parameters β, c, α1, · · · , αn be as in
Theorem 1. Moreover, suppose that these numbers satisfy the following inequality:

|c| + 2ν + 5
8ν2 + 28ν + 89/4

n∑
j=1

1
|βαj | � 1.

Then the function Fν1,··· ,νn,α1,··· ,αn,β(z) : U → C, defined by

(2.20) Fν1,··· ,νn,α1,··· ,αn,β(z) =

β

∫ z

0
tβ−1

n∏
j=1

(Kνj(t)
t

)1/αj

dt

1/β

,

is in the class S of normalized univalent functions in U.

2. Let ν1, · · · , νn > −2.25 (n ∈ N) and consider the normalized spherical Bessel
functions Kνj : U → C defined by (2.19). Let ν = min{ν1, · · · , νn} and �(γ) > 0
and suppose that these numbers satisfy the following inequality:

|γ| � 1
n

(
8ν2 + 28ν + 89/48

ν + 5

)
�(γ).

Then the function Gν1,··· ,νn,n,γ(z) : U → C, defined by

(2.21) Gν1,··· ,νn,n,γ(z) =

(nγ + 1)
∫ z

0

n∏
j=1

(Kνj(t)
)γ dt

1/(nγ+1)

,

is in the class S of normalized univalent functions in U.

3. Let ν1, · · · , νn > −2.25 (n ∈ N) and consider the normalized spherical Bessel
functions Kνj : U → C defined by (2.19). Also let ν = min{ν1, · · · , νn} and let



Some Sufficient Conditions for Univalence 903

the parameters µ, c, δ1, · · · , δn be as in Theorem 3. Suppose that these numbers
satisfy the following inequality:

|c|+ 4ν + 11
8ν2 + 26ν + 17

n∑
j=1

|δj |
|µ| � 1

Then the function Hν1,··· ,νn,δ1,··· ,δn,µ(z) : U → C, defined by

(2.22) Hν1,··· ,νn,δ1,··· ,δn,µ(z) =

µ

∫ z

0
tµ−1

n∏
j=1

(
K′

νj
(t)
)δj

dt

1/µ

,

is in the class S of normalized univalent functions in U.

4. Let λ ∈ C and ν > −2.25 and consider the normalized spherical Bessel function
Kν(t) given by (1.10). If �(λ) � 1 and

|λ| � 3
√

3(2ν + 3)(4ν + 9)
16ν2 + 68ν + 74

,

then the function Qν,λ : U → C, defined by

(2.23) Qν,λ(z) =
[
λ

∫ z

0
tλ−1

(
eKν (t)

)λ
dt

]1/λ

,

is in the class S of normalized univalent functions in U.

3. UNIVALENCE OF INTEGRAL OPERATORS FOR SHARP BOUNDS OF THE

GENERALIZED BESSEL FUNCTIONS

In our proof of Lemma 5, the key tools were the following inequalities [see also
(1.19), (1.20) and (1.21)]:

n!(κ + 1)n−1 � n(κ + 1)n−1 (κ > −1; n ∈ N),

2 · n!(κ + 1)n−1 � (n + 1)(κ + 1)n−1 (κ > −1; n ∈ N)
and

4 · (n − 1)!(κ + 1)n−1 � (n + 1)(κ + 1)n−1 (κ > −1; n ∈ N \ {1}).
Clearly, the above inequalities can be improved easily by using the following
well-known inequality:

n! � 2n−1 (κ > −1; n ∈ N).

More precisely, we have

(3.1) n!(κ + 1)n−1 � [2(κ + 1)]n−1 (κ > −1; n ∈ N)
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and

(3.2) 2 · (n − 1)!(κ + 1)n−1 � [2(κ + 1)]n−1 (κ > −1; n ∈ N \ {1}).
The following lemma was proven by Baricz and Ponnusamy [8].

Lemma 6. (see [8]). If the parameters ν, b ∈ R and d ∈ C are so constrained
that

κ > max
{

0,
|d|
8

− 1
}

,

then the function
ϕν,b,d(z)

z
: U → C defined by (1.12) satisfies the following

inequalities:

(3.3)
8κ(κ + 1) − (2κ + 3) |d|

κ [8(κ + 1) − |d|] �
∣∣∣∣ϕν,b,d(z)

z

∣∣∣∣ � 8κ + |d|
8κ − |d| (z ∈ U)

and

(3.4)
∣∣∣∣(ϕν,b,d(z)

z

)′∣∣∣∣ � |d|
4κ

(
8(κ + 1) + |d|
8(κ + 1)− |d|

)
(z ∈ U).

Lemma 7. If the parameters ν, b ∈ R and d ∈ C are so constrained that

κ > max
{

0,
|d|
8

− 1
}

,

then the function ϕν,b,d : U→C defined by (1.12) satisfies the following inequalities:

(3.5)
∣∣∣∣ϕ′

ν,b,d(z)− ϕν,b,d(z)
z

∣∣∣∣ � |d|
4κ

(
8(κ + 1) + |d|
8(κ + 1) − |d|

)
(z ∈ U),

(3.6)

∣∣∣∣∣zϕ′
ν,b,d(z)

ϕν,b,d(z)
− 1

∣∣∣∣∣ � 8(κ + 1) |d|+ |d|2
32κ(κ + 1)− 4(2κ + 3) |d| (z ∈ U),

(3.7)

32κ(κ + 1)− 8(3κ + 2) |d| − |d|2
4κ [8(κ + 1)− |d|]

�
∣∣zϕ′

ν,b,d(z)
∣∣

� 32κ(κ + 1) + 4(3κ + 4) |d| + |d|2
4κ [8(κ + 1) − |d|] (z ∈ U),

(3.8)
∣∣z2ϕ′′

ν,b,d(z)
∣∣ � |d|

2κ

(
|d|2

8(κ+1)
8(κ+2)+|d|
8(κ+2)−|d|+

8(κ+1)+|d|
8(κ+1)−|d|

)
(z ∈ U)
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and

(3.9)

∣∣∣∣∣zϕ′′
ν,b,d(z)

ϕ′
ν,b,d(z)

∣∣∣∣∣ � |d|
2

·
(

64(κ+1)2 [8(κ+2)−|d|]+128(κ+1)(κ+2)−[8(κ+2) + |d|] |d|2
2(κ+1) [8(κ+1)−|d|] {16(κ+1)(2κ−|d|)−|d| (4κ+|d|)}

)
(z∈U).

Proof. By using the inequality (3.4) in Lemma 6, we obtain∣∣∣∣ϕ′
ν,b,d(z) − ϕν,b,d(z)

z

∣∣∣∣ =
∣∣∣∣z(ϕν,b,d(z)

z

)′∣∣∣∣ �
∣∣∣∣(ϕν,b,d(z)

z

)′∣∣∣∣
� |d|

4κ

(
8(κ + 1) + |d|
8(κ + 1)− |d|

) (
z ∈ U; κ >

|d|
8

− 1
)

,

which proves the inequality (3.5).
Combining the inequality (3.5) of Lemma 7 with the inequality (3.3) of

Lemma 6, we immediately arrive at the assertion (3.6) of Lemma 7.
By using the triangle inequality and the inequalies (3.1) and (3.2) above, we

obtain∣∣zϕ′
ν,b,d(z)

∣∣
=

∣∣∣∣∣z +
∞∑

n=1

(n + 1)(−d)n

n!4n(κ)n
zn+1

∣∣∣∣∣ � 1 +
∞∑

n=1

(n + 1) |d|n
n!4n(κ)n

= 1 +
|d|
4κ

(
1 + 2

∞∑
n=2

|d|n−1

4n−12(n − 1)!(κ + 1)n−1
+

∞∑
n=1

|d|n−1

4n−1n!(κ + 1)n−1

)

� 1 +
|d|
4κ

[
1 + 2

∞∑
n=2

( |d|
8(κ + 1)

)n−1

+
∞∑

n=1

( |d|
8(κ + 1)

)n−1
]

=
32κ(κ + 1) + 4(3κ + 4) |d|+ |d|2

4κ [8(κ + 1)− |d|]
(

z ∈ U; κ >
|d|
8

− 1
)

,

which yields the inequality (3.6). Similarly, by using the reverse triangle inequality
in conjunction with the inequalities (3.1) and (3.2) above, we find that∣∣zϕ′

ν,b,d(z)
∣∣

=

∣∣∣∣∣z +
∞∑

n=1

(n + 1)(−d)n

n!4n(κ)n
zn+1

∣∣∣∣∣ � 1 −
∞∑

n=1

(n + 1) |d|n
n!4n(κ)n

= 1 − |d|
4κ

[
1 + 2

∞∑
n=2

|d|n−1

4n−1(n − 1)!(κ + 1)n−1
+

∞∑
n=1

|d|n−1

4n−1n!(κ + 1)n−1

]
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� 1 − |d|
4κ

[
1 + 2

∞∑
n=2

( |d|
8(κ + 1)

)n−1

+
∞∑

n=1

( |d|
8(κ + 1)

)n−1
]

=
32κ(κ + 1)− 8(3κ + 2) |d| − |d|2

4κ [8(κ + 1) − |d|] > 0
(

z ∈ U; κ >
|d|
8

− 1
)

,

provided that
32κ(κ + 1) − 8(3κ + 2) |d| − |d|2 > 0.

This proves the inequality (3.7).
From (1.12) , we obtain the following derivative formulas (see [3, p. 161]):(

ϕν,b,d(z)
z

)′
= − d

4κ

ϕν+1,b,d(z)
z

and (
ϕν,b,d(z)

z

)′′
=

d2

16κ(κ + 1)
ϕν+2,b,d(z)

z
.

Moreover, we can write(
ϕν,b,d(z)

z

)′′
=

ϕ′′
ν,b,d(z)

z
− 2

z

(
ϕν,b,d(z)

z

)′

or, equivalently,

z2ϕ′′
ν,b,d(z) = z3

(
ϕν,b,d(z)

z

)′′
+ 2z2

(
ϕν,b,d(z)

z

)′
.

Now, from the last relation, (3.3) and (3.4), we find that∣∣z2ϕ′′
ν,b,d(z)

∣∣ = |z|3
∣∣∣∣(ϕν,b,d(z)

z

)′′∣∣∣∣ + 2 |z|2
∣∣∣∣(ϕν,b,d(z)

z

)′∣∣∣∣
� |d|2

16κ(κ + 1)

∣∣∣∣ϕν+2,b,d(z)
z

∣∣∣∣+ 2
∣∣∣∣(ϕν,b,d(z)

z

)′∣∣∣∣
� |d|2

16κ(κ + 1)

(
8(κ + 2) + |d|
8(κ + 2) − |d|

)
+

|d|
2κ

(
8(κ + 1) + |d|
8(κ + 1) − |d|

)
=

|d|
2κ

(
|d|2

8(κ + 1)
8(κ + 2) + |d|
8(κ + 2)− |d| +

8(κ + 1) + |d|
8(κ + 1) − |d|

)
,

which proves the inequality (3.8).
Finally, by combining the inequalities (3.7) and (3.8) of Lemma 7, we

immediately obtain the assertion (3.9) of Lemma 7. Our proof of Lemma 7 is
thus completed.

Our first main result in this section is an application of Lemma 7 and contains
sufficient conditions for integral operators of the type (2.2).
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Theorem 5. Let the parameters ν1, · · · , νn, b ∈ R and d ∈ C be so constrained
that

κj := νj +
b + 1

2
>

|d|
8

− 1 (j = 1, · · · , n).

Consider the functions ϕνj ,b,d : U → C defined by (2.1) . Also let

κ=min{κ1, · · · , κn}, �(β)>0, c∈C\{−1} and αj ∈C\{0} (j = 1, · · · , n).

Moreover, suppose that these numbers satisfy the following inequality:

|c| + 8(κ + 1) |d|+ |d|2
32κ(κ + 1) − 4(2κ + 3) |d|

n∑
j=1

1
|βαj | � 1.

Then the function Fν1,··· ,νn,b,d,α1,··· ,αn,β(z) : U → C, defined by (2.2), is in the
class S of normalized univalent functions in U.

Proof. We begin by expressing the function Fν1,··· ,νn,b,d,α1,··· ,αn(z) : U → C

as follows:

Fν1,··· ,νn,b,d,α1,··· ,αn(z) =
∫ z

0

n∏
j=1

(
ϕνj ,b,d(t)

t

)1/αj

dt.

First of all, we observe that, since ϕνj ,b,d ∈ A, that is,

ϕνj ,b,d(0) = ϕ′
νj ,b,d(0) − 1 = 0,

we have
Fν1,··· ,νn,b,d,α1,··· ,αn ∈ A,

that is,
Fν1,··· ,νn,b,d,α1,··· ,αn(0) = F ′

ν1,··· ,νn,b,d,α1,··· ,αn
(0) − 1 = 0.

On the other hand, it is easy to see that

zF ′′
ν1,··· ,νn,b,d,α1,··· ,αn

(z)
F ′

ν1,··· ,νn,b,d,α1,··· ,αn
(z)

=
n∑

j=1

1
αj

(
zϕ′

νj ,b,d(z)

ϕνj ,b,d(z)
− 1

)
.

Thus, by using the inequality (3.6) of Lemma 7 for each νj (j = 1, · · · , n), we
obtain∣∣∣∣∣zF

′′
ν1,··· ,νn,b,d,α1,··· ,αn

(z)
F ′

ν1,··· ,νn,b,d,α1,··· ,αn
(z)

∣∣∣∣∣ �
n∑

j=1

1
|αj|

∣∣∣∣∣zϕ′
νj ,b,d(z)

ϕνj ,b,d(z)
− 1

∣∣∣∣∣
�

n∑
j=1

1
|αj|

(
8(κj + 1) |d| + |d|2

32κj(κj + 1)− 4(2κj + 3) |d|

)

�
n∑

j=1

1
|αj|

(
8(κ + 1) |d|+ |d|2

32κ(κ + 1) − 4(2κ + 3) |d|

)
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(
z ∈ U; κ = min{κ1, · · · , κn}; κj := νj +

b + 1
2

>
|d|
8

− 1 (j = 1, · · · , n)
)

.

Here we have used the fact that the function φ :
( |d|

8 − 1,∞
)
→ R, defined by

φ(x) =
8(x + 1) |d| + |d|2

32x(x + 1)− 4(2x + 3) |d| ,

is decreasing and, consequently, that

8(κj + 1) |d|+ |d|2
32κj(κj + 1) − 4(2κj + 3) |d| � 8(κ + 1) |d| + |d|2

32κ(κ + 1)− 4(2κ + 3) |d| (j = 1, · · · , n).

Finally, by using the triangle inequality and the assertion of Theorem 5, we
obtain ∣∣∣∣∣c |z|2β +

(
1 − |z|2β

) zF ′′
ν1,··· ,νn,b,d,α1,··· ,αn

(z)
βF ′

ν1,··· ,νn,b,d,α1,··· ,αn
(z)

∣∣∣∣∣
� |c|+ 8(κ + 1) |d|+ |d|2

32κ(κ + 1)− 4(2κ + 3) |d|
n∑

j=1

1
|βαj| � 1,

which, in view of Lemma 1, implies that Fν1,··· ,νn,b,d,α1,··· ,αn,β ∈ S. This evidently
completes the proof of Theorem 5.

Upon setting
α1 = · · · = αn = α

in Theorem 5, we immediately arrive at the following application of Theorem 5.

Corollary 7. Let the parameters ν1, · · · , νn, b, c, d, β and κj (j = 1, · · · , n)
be prescribed as in Theorem 5. Also let

κ = min{κ1, · · · , κn} and α ∈ C \ {0}.
Moreover, suppose that the functions ϕ νj ,b,d ∈ A are defined by (2.1) and the
following inequality:

|c| + n

|αβ|

(
8(κ + 1) |d|+ |d|2

32κ(κ + 1) − 4(2κ + 3) |d|

)
� 1

holds true. Then the function Fν1,··· ,νn,b,d,α,β(z) : U → C, defined by (2.5), is in
the class S of normalized univalent functions in U.

Our second result in this section provides sufficient conditions for the integral
operator in (2.6) . The key tools in the proof are Lemma 2 and the inequality (3.6)
of Lemma 7.



Some Sufficient Conditions for Univalence 909

Theorem 6. Let the parameters ν1, · · · , νn, b ∈ R and d ∈ C be so constrained
that

κj := νj +
b + 1

2
>

|d|
8

− 1 (j = 1, · · · , n).

Consider the functions ϕνj ,b,d : U → C defined by (2.1) . Also let

κ = min{κ1, · · · , κn} and �(γ) > 0.

Moreover, suppose that these numbers satisfy the following inequality:

|γ| � 1
n

(
32κ(κ + 1)− 4(2κ + 3) |d|

8(κ + 1) |d| + |d|2
)
�(γ).

Then the function Gν1,··· ,νn,b,d,n,γ(z) : U → C, defined by (2.6) , is in the class S
of normalized univalent functions in U.

Proof. Let us consider the function G̃ν1,··· ,νn,b,d,n,γ(z) : U → C defined by

G̃ν1,··· ,νn,b,d,n,γ(z) =
∫ z

0

n∏
j=1

(
ϕνj ,b,d(t)

t

)γ

dt.

Observe that G̃ν1,··· ,νn,b,d,n,γ ∈ A, that is, that

G̃ν1,··· ,νn,b,d,n,γ(0) = G̃ ′
ν1,··· ,νn,b,d,n,γ(0)− 1 = 0.

On the other hand, by using the inequality (3.6) of Lemma 7, the assertion of
Theorem 6 and the fact that

8(κj + 1) |d| + |d|2
32κj(κj + 1)− 4(2κj + 3) |d| � 8(κ + 1) |d| + |d|2

8κ(κ + 1)− 4(2κ + 3) |d| (j = 1, · · · , n),

we obtain

1 − |z|2�(γ)

�(γ)

∣∣∣∣∣zG̃
′′
ν1,··· ,νn,b,d,n,γ(z)

G̃ ′
ν1,··· ,νn,b,d,n,γ(z)

∣∣∣∣∣
� |γ|

�(γ)

n∑
j=1

∣∣∣∣∣zϕ′
νj ,b,d(z)

ϕνj ,b,d(z)
− 1

∣∣∣∣∣
� n |γ|

�(γ)

(
8(κ + 1) |d|+ |d|2

32κ(κ + 1) − 4(2κ + 3) |d|

)
� 1 (z ∈ U).

Now, since
�(nγ + 1) > �(γ) (n ∈ N),
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the function Gν1,··· ,νn,b,d,n,γ can be rewritten in the form:

Gν1,··· ,νn,b,d,n,γ(z) =

(nγ + 1)
∫ z

0

tnγ
n∏

j=1

(
ϕνj ,b,d(t)

t

)γ

dt

1/(nγ+1)

which, in view of Lemma 2, implies that Gν1,··· ,νn,b,d,n,γ ∈ S. This evidently
completes the proof of Theorem 6.

Choosing n = 1 in Theorem 6, we have the following result.

Corollary 8. Let the parameters ν, b ∈ R and d ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d|
8

− 1.

Consider the function ϕν,b,d : U → C defined by (1.11). Moreover, suppose that
�(γ) > 0 and

|γ| �
(

32κ(κ + 1) − 4(2κ + 3) |d|
8(κ + 1) |d|+ |d|2

)
�(γ).

Then the function Gν,b,d,γ(z) : U → C, defined by

Gν,b,d,n,γ(z) =
[
(γ + 1)

∫ z

0
(ϕν,b,d(t))

γ dt

]1/(γ+1)

,

is in the class S of normalized univalent functions in U.

The following result contains another set of sufficient conditions for integral
operators of the type (2.8). The key tools in the proof are Lemma 1 and the inequality
(3.9) of Lemma 7.

Theorem 7. Let the parameters ν1, · · · , νn, b ∈ R and d ∈ C be so constrained
that

κj := νj +
b + 1

2
>

|d|
8

− 1 (j = 1, · · · , n).

Consider the functions ϕνj ,b,d : U → C defined by (2.1) . Also let

κ = min{κ1, · · · , κn}, �(µ) > 0, c ∈ C\{−1} and δj ∈ C (j = 1, · · · , n).

Moreover, suppose that these numbers satisfy the following inequality:

|d|
2

(
64(κ + 1)2 [8(κ + 2) − |d|] + 128(κ + 1)(κ + 2) − [8(κ + 2) + |d|] |d|2

2(κ + 1) [8(κ + 1) − |d|] {16(κ + 1)(2κ − |d|) − |d| (4κ + |d|)}

)
n∑

j=1

|δj |
µ

� 1 − |c| .
Then the function Hν1,··· ,νn,δ1,··· ,δn,b,d,µ(z) : U → C, defined by (2.8), is in the
class S of normalized univalent functions in U.
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Proof. The proof of Theorem 7 is much akin to that of Theorem 3, so we
omit the details involved in this case.

By setting n = 1 in Theorem 7, we immediately obtain the following result.

Corollary 9. Let the parameters ν, b ∈ R and d ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d|
8

− 1.

Consider the function ϕν,b,d : U → C defined by (1.11). Also let

�(µ) > 0, c ∈ C \ {−1} and δ ∈ C.

Moreover, suppose that these numbers satisfy the following inequality:

|δd|
2 |µ|

(
64(κ + 1)2 [8(κ + 2) − |d|] + 128(κ + 1)(κ + 2)− [8(κ + 2) + |d|] |d|2

2(κ + 1) [8(κ + 1)− |d|] {16(κ + 1)(2κ− |d|) − |d| (4κ + |d|)}

)
� 1 − |c| .

Then the function Hν,δ,b,d,µ(z) : U → C, defined by (2.9) , is in the class S of
normalized univalent functions in U.

By applying Lemma 3 and the inequality (3.7) of Lemma 7, we easily get the
following result.

Theorem 8. Let the parameters ν, b ∈ R and d, λ ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d|
8

− 1.

Consider the generalized Bessel function ϕ ν,b,d defined by (1.11) . If �(λ) � 1 and

|λ| � 6
√

3κ [8(κ + 1)− |d|]
32κ(κ + 1) + 4(3κ + 4) |d|+ |d|2 ,

then the function Qν,b,d,λ : U → C, defined by (2.10) , is in the class S of
normalized univalent functions in U.

Remark 7. In their special cases, Theorems 5 to 8 would readily yield the
the corresonding results for the Bessel function (b = d = 1) , the modified Bessel
function (b = −d = 1) and the spherical Bessel function (b−1=d=1) as asserted
by Corollary 4, Corollary 5 and Corollary 6, respectively.

We now consider another set of inequalities (see [8, p. 12]):

(3.10) (κ)n > κ(κ+α0)n−1 and n! > (1+α0)n−1 (κ > 0; n ∈ N \ {1, 2}),
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where

(3.11) α0
∼= 1.302775637 · · ·

is the greatest root of the following quadratic equation:

(3.12) α2 + α − 3 = 0.

Thus, by using the inequalities in (3.10) and the same steps as in the proofs of
Lemma 5 and Lemma 7, we obtain some improved versions of Lemma 5 and
Theorems 1 to 4.

Lemma 8. (see [8]). If the parameters ν, b ∈ R and d ∈ C are so constrained
that

κ > max
{

0,
|d|

4(1 + α0)
− α0

}
,

where α0 is given by (3.11) and (3.12), then the function

ϕν,b,d(z)
z

: U → C

defined by (1.12) satisfies the following inequalities:

(3.13) 1 − Φ(κ) <

∣∣∣∣ϕν,b,d(z)
z

∣∣∣∣ (z ∈ U)

and

(3.14)
∣∣∣∣(ϕν,b,d(z)

z

)′∣∣∣∣ <
|d|
4κ

[1 + Φ(κ + 1)] z ∈ U,

where Φ(κ) is defined by

(3.15) Φ(κ)=− |d|2
16(1 + α0)κ(κ+α0)

+
|d|2

32κ(κ+1)
+
|d|
κ

(
(1+α0)(κ+α0)

4(1+α0)(κ+α0)−|d|
)

.

Lemma 9. If the parameters ν, b ∈ R and d ∈ C are so constrained that

κ > max
{

0,
|d|

4(1 + α0)
− α0

}
,

then the function ϕν,b,d : U → C defined by (1.12) satisfies the following inequalities:

(3.16)
∣∣∣∣ϕ′

ν,b,d(z)− ϕν,b,d(z)
z

∣∣∣∣ <
|d|
4κ

[1 + Φ(κ + 1)] (z ∈ U),

(3.17)

∣∣∣∣∣zϕ′
ν,b,d(z)

ϕν,b,d(z)
− 1

∣∣∣∣∣ <
|d|
4κ

(
1 + Φ(κ + 1)

1 − Φ(κ)

)
(z ∈ U),



Some Sufficient Conditions for Univalence 913

|d|
4κ

[1− Φ(κ + 1)] + 1− Φ(κ) �
∣∣zϕ′

ν,b,d(z)
∣∣(3.18)

� |d|
4κ

[1+Φ(κ+1)]+1+Φ(κ) (z ∈ U),(3.19)

(3.20)
∣∣z2ϕ′′

ν,b,d(z)
∣∣ � |d|

2κ

( |d|
8(κ+1)

[1+Φ(κ+2)]+1+Φ(κ+1)
)

(z ∈ U)

and

(3.21)

∣∣∣∣∣zϕ′′
ν,b,d(z)

ϕ′
ν,b,d(z)

∣∣∣∣∣ �
|d|
2κ

( |d|
8(κ+1) [1 + Φ(κ + 2)] + 1 + Φ(κ + 1)

)
|d|
4κ [1 − Φ(κ + 1)] + 1 − Φ(κ)

(z ∈ U),

where Φ(κ) defined by (3.15) .

Proof. Our proof of Lemma 9 is very similar to that of Lemma 7. It is based
upon the known inequalities in (3.10) and Lemma 8. We choose to omit the details
involved.

By the aid of Lemmas 1 to 3 and Lemma 9, we prove the following resuts
(Theorem 9 to 12). The proofs of Theorems 9 to 12 are very similar to the proofs
of Theorems 1 to 4, respectively, so we omit the details involved in these cases.

Theorem 9. Let the parameters ν, b ∈ R and d ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d|
4(1 + α0)

− α0,

where α0 is given by (3.11) and (3.12).
Consider the function ϕν,b,d : U → C defined by (1.11). Also let

�(β) > 0, c ∈ C \ {−1} and α ∈ C \ {0}.

Moreover, suppose that these numbers satisfy the following inequality:

|c|+ |d|
4κ |βα|

(
1 + Φ(κ + 1)

1 − Φ(κ)

)
� 1.

where Φ(κ) is defined by (3.15). Then the function Fν,b,d,α,β(z) : U → C, defined
by

Fν,b,d,α,β(z) =

[
β

∫ z

0
tβ−1

(
ϕν,b,d(t)

t

)1/α

dt

]1/β

,

is in the class S of normalized univalent functions in U.
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Theorem 10. Let the parameters ν, b ∈ R and d ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d|
4(1 + α0)

− α0,

where α0 is given by (3.11) and (3.12). Consider the function ϕ ν,b,d : U → C

defined by (1.11). Also let �(γ) > 0. Moreover, suppose that these numbers satisfy
the following inequality:

|γd| �
(

4κ [1 − Φ(κ)]
1 + Φ(κ + 1)

)
�(γ).

where Φ(κ) is defined by (3.15). Then the function Gν,b,d,γ(z) : U → C, defined by
(2.7), is in the class S of normalized univalent functions in U.

Theorem 11. Let the parameters ν, b ∈ R and d ∈ C are so constrained that

κ := ν +
b + 1

2
>

|d|
4(1 + α0)

− α0,

where α0 is given by (3.11) and (3.12). Consider the function ϕ ν,b,d : U → C

defined by (1.11). Also let

�(µ) > 0, c ∈ C \ {−1} and δ ∈ C.

Moreover, suppose that these numbers are satisfy the following inequality:

|c| +
∣∣∣∣ δµ
∣∣∣∣
|d|
2κ

( |d|
8(κ+1) [1 + Φ(κ + 2)] + 1 + Φ(κ + 1)

)
|d|
4κ [1 − Φ(κ + 1)] + 1 − Φ(κ)

� 1,

where Φ(κ) is defined by (3.15). Then the function Hν,δ,b,d,µ(z) : U → C, defined
by (2.9), is in the class S of normalized univalent functions in U.

By applying Lemma 3 and the inequality (3.18) of Lemma 9, we arrive at the
following result.

Theorem 12. Let the parameters ν, b ∈ R and d, λ ∈ C be so constrained that

κ := ν +
b + 1

2
>

|d|
4(1 + α0)

− α0,

where α0 is given by (3.11) and (3.12). Consider the generalized Bessel function
ϕν,b,d defined by (1.11) . If �(λ) � 1 and

|λ| � 6
√

3κ
|d| [1 + Φ(κ + 1)] + 4κ [1 + Φ(κ)]

,

then the function Qν,b,d,λ : U → C, defined by (2.10) , is in the class S of
normalized univalent functions in U.
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Remark 8. By suitably specializing Theorems 9 to 12, we can obtain the
corresponding results for the Bessel function (b = d = 1) , for the modified Bessel
function (b = −d = 1) and for the spherical Bessel function (b − 1 = d = 1) as
asserted by Corollary 4, Corollary 5 and Corollary 6, respectively.
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