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0. Introduction

In real Riemannian geometry, the space of all Riemannian metrics of a
given compact differentiate manifold admits a Riemannian structure*) to
provide us with several nice theories. In this paper, we shall seek its complex
analogue. Namely, in view of the fact that all Ka'hler manifolds are symplectic,
we shall define a very natural Riemannian structure (slightly different from
classical ones) on the space of all Ka'hler metrics in a fixed cohomology class
of a given compact Ka'hler manifold (see also [10] for more algebraic geometric
treatments).

Throughout this paper, we fix an w-dimensional compact complex con-
nected manifold X with a cohomology class hEzHlt\X)R such that

JC: = {co\co is a Kahler form on X in the class h}

is nonempty. Let o)0GcX and consider the cX-energy map /z,: JC-+R of the
Kahler manifold (Xy co0) introduced in [9]. Now the main purpose of this
paper is to define a natural Riemannian structure on JC such that

(0.1) jM is a convex function on JC, i.e., Hess p is positive semidejinite everywhere

onJC(cf. §5);

(0.2) sectional curvature of JC is explicitly written in terms of Poisson brackets

of functions and moreover it is always nonpositive (cf. §4).

We next assume that

8: — {<ae JC\co has a constant scalar curvature}

is nonempty. Recall that the Albanese map a: -XT->Alb(X) of X naturally
induces the Lie group homomorphism ct: Aut°(X)-»Aut°(Alb(X)) (^Alb(JY)),
where Aut°(X) (resp. Aut°(Alb(JY'))) denotes the identity component of the

*5 See, for instance, Ebin's article "The manifold of Riemannian metrics" in Global Analysis
(Proc. Symp. Pure Math.) 15 (1968), 11-40.
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group of holomorphic automorphisms of X (resp. Mb(X)). Then by a theo-
rem of Fujiki [5], the identity component G of Ker ct has a natural structure
of a linear algebraic group. Let K be a maximal compact subgroup of G, and
we decompose 8 into G-orbits:

8 = U ,-e/ <?» (disjoint union) .

In view of a theorem of Lichnerowicz [8], one sees that:

i) G is a reductive algebraic group,

ii) each Si is an Aut°(X)-orbit, and

iii) there exist 0,-e<?,-, z'e/, swc/i £/*#£ the isotropy subgroup of G at each Q{ co-

incides with K.

Then a combination of ii) with a result of Calabi [4] shows that each Si is a
connected component of 8 in terms of a suitable topology of <?. Furthermore
by iii), such a connected component Si of 8 is G-equivariantly diffeomorphic
to the Riemannian symmetric space GjK. Now, restricting our Riemannian
structure of JC to <?, we obtain:

(0.3) each St is isometric to the Riemannian symmetric space G\K endowed with

a suitable metricy and furthermore, Aut°(X) acts isometrically on Si (cf. §6).

In acknowledgement, I wish to express my sincere gratitude to Dr. S.
Bando (see [1]), to whom I owe much for key simplifications of this paper.
My special thanks are due also to Prof. S. Kobayashi and Dr. N. Koiso for
their valuable suggestions and encouragements. Finally, I wish to thank the
Max-Planck-Institut ftir Mathematik for the hospitality and constant assistance
all through my stay in Bonn.

1. Notation, convention and preliminaries

(1.1) Fix an element co0 of JC once for all and express it as

in terms of holomorphic local coordinates (#\ •••, zn) of X. For each real-
valued C°° function cp^C°°{X)R on Xy we put co0((p):=co0+ V— 1 dd<p, and write
it in the form

coB(<p) = V^-Sg^UthfAd^,

where g<tp(9>)=gltp+<pap, <p^ being djd?<p{=^(pldzadz^). We furthermore
denote by S Ric(9>)«g dz"®dzp the Ricci tensor of the Kahler form cao(<p). Put
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Then Ric(<p)l27c represents c1(X)R and we have Ric(^)=\/— 1 931og det(£-5(0>)).
Let <r(<p) (resp. Q?) be the corresponding scalar curvature (resp. Laplacian on
functions):

where {g(<pY*) is the inverse matrix of (£(<p)*g). We now put

Note that the natural map

Si -> JC , >̂ !—> Ce>0 (<p)

is surjective.

(1.2) (i) A mapping <l>: t^[ay b]^-^cpi^Coo(X)R (often denoted by &={<pt\

a^-t^b}) is said to be smooth (or a smooth path) if the mapping <p.\ \ay 6]X-XT

H->/£ defined by

<p(ty x): = <pt{x), (t, x)E[fl,i]xl,

is a C°° map. For such a smooth path O ^ - ^ l t f ^ ^ } , we put <pt:=d<ptldt

and 9^: = d2<ptjdt2. Then the corresponding paths {cpt\a^t^b}, {cpt\a^t^b}

in C°°{X)R are again smooth. We furthermore define <^eC°°([a, JJX-X")̂  by

cp(t, x): = <pt(x) = (dcp/dt) (t, x), {t, x)EL[a,b]xX.

If there is no fear of confusion, cp and cpt (resp. >̂ and <pt) are used interchangeably.
(To be precise, <Pt=(P\U)xx^C°°{X)R and 4)t=cP\U}^x^Coo{X)R via the identifi-
cation of {t} xX with X.)

(ii) A mapping (9: t^[ay b]\->0t^JC (often denoted by ®={0i\a^t^b}) is

said to be smooth (or a smooth path) if there exists a smooth path &={(pt\
a = t

^b} in Jl such that Ot=co0(<pt). Note that the concept of smoothness of paths

in JC doesn't depend on the choice of o>0. To each such smooth path © = {6t

\a^t^b}, we associate a C°° (l,l)-form 6 on [a, bjxXby

d(t,x) = 0t(x), (t,x)(E[a9b]xX.

We put 0t=d0tldty and let 0 be the C°° (l,l)-form on [a, b]xX defined by

0(ty x): = 0t(x)y (tyx)tE[ayb]xX.

(1.3) (cf. [9]). For each cp^Si, we set n0((p): = co0(<p)nlnl We then define
the real constants Vol(X) and a0 (which depend only on the class h) as follows:
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tr0 : - 2TT( c
Jx

To each pair {cp\ cp")^SixM (resp. {cp\ cp")^C00{X)RxC00{X)R), we associate

a real number M{cp\ cp") (resp. L(<p\ <p")) by

(1.3.1)
a J X

(1.3.2) (resp. L{<p>, cp"): = ('{( cpt<\{cpt)INo\{X)}dt),
J a JX

where {cpt\a^t^b} is an arbitrary piecewise smooth path in M (resp. C°°(X)R)

such that <Pa=<p' and <pb=<p". Then L(9>', 9>r/) (resp. M(<py <p")) is independent

of the choice of the path {<pt\a^t^b} and therefore well-defined. Recall

that M*(resp. L) satisfies the 1-cocycle condition. Furthermore,

(1.3.3) Mfa+C* <p2+C2) = M(<ply <p2),

(1.3.4) (resp. Lfo, ̂ >2+C) - Lfa-C, cp2) = L{cpu <p2)+C),

for all <ply cp2^Si (resp. <pu cp2<=C°°{X)R) and all Cu C2^R (resp. Ce /2 ) . In

view of (1.3.3) above, M: MxM^-R factors through JCxJC. Hence we can

define the mapping M: JCxJC->R (denoted by the same M) by

M(co\ co"): = M{cp\ cp") (co\ co/f^JC),

where cp\ cp" are elements of M such that coQ(<p') = co' and coQ(<p")=c0". Then

the mapping

/J,: JC —> R , co 1—> A6(co): = M(co0y co)

is called the JC-energy map of the Kahler manifold (X, a>0). Moreover we

put

Jl:= {^Gc^|L(0, ?>) = 0} .

We now have the following identifications:

(1.3.5) Jl^JC

<P <"• G>o(<P) ,

(1.3.6) M^ JCx R « c ^ X / 2

>)) ̂  (<p-L(0, cp), L(0, 91)).

(1.4) At each point £ of Si, we can identify C°°(X)R with the tangent space

o£ M 2£% via the isomorphism
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(1.4.1) C-(X)acx TMs

ds

where sE=[—£, £](—>%-\-sr]EzM is a smooth path in M with a sufficiently small
£>0. In terms of this identification, and also by (1.3.5), we have

(1.4.2) rjCrffi « TM* = iv*=c-(X)B\5^no(?) = 0}

whenever %€=.M. Note here that

Let <£= {?>, I a^t^b} be a smooth path in M. We denote by rdiff([a, b],

the space of (real) C°° sections of the induced bundle §*T3l of the tangent bundle
TSi of <#. Then rdiff([a, b], ®*TM) is naturally identified with C°°([ay b]xX)R

via the isomorphism

(1.4.3) C-([a, b]xX)R^ rd;ff([«, *

where i/r, denotes, for each t, the function in C°°(X)B defined by

y}rt(x): = ^(t, X) ( * £ l ) ,

and is regarded as an element of TMVt in terms of the isomorphism of (1.4.1).

(1.5) Let l^Si. We then define the linear maps V%: C°°(X)c^Tdiii(X, TX)C

and Wt: C(X)B-*TAUt(^ TX)Rby

Vfa): = (1/2) 23 gi^Vf 3/9^ (v e C'(X)C),

in terms of holomorphic local coordinates (s:1, •••, zn) on X, where ^ : = 9 ^
= dr]ldz* and ^1=8^77=877/9^. To each pair (77', r7//)^Coo(X)/2xC°o(Z)i2, we
associate a function [77', rj'r[^Coo(X)R by

(1.5.1) [ V , ^ : = W ( V ) ) ( O -

Recall that [ , ]§ is nothing but the Poisson bracket of C°° functions on the
symplectic manifold (X, o)0(?)), and the mapping W$\ C°°(-X)i8->rdiff(-y, TX)R

is a Lie algebra homomorphism. Hence for all 77, 77', r}"^Coo(X)R, we have:

(1.5.2) WtiW, ,"]*) = [W,W), W,(v")],

(1.5.3)
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(1.6) (See Calabi [4] and also Bando [1]), For each J G ^ , let < , >^: {p-

forms on X} X {p-forms on X}->C°°(X)X9 p=ly2, ~-,n, be the natural Hermitian
pairings induced from the Kahler metric co0(?)- We now consider the operator
L^\ C~(X)R-*C°°(X)R of Lichnerowicz [8] defined by

(1.6.1) Lplr: = (a^+W^l 99^, Ric(f)>

with ifrGC°°(I)B, Recall that, in view of Calabi [4; p. 100],

= \
J X

Then, taking the real parts of both sides, we obtain

(1.6.2) 4||3rt(^)||i«(x.-0(e))

for all ^^C°°{X)R and ? G i , where

(1.6.3) R e £ ^ = —

(1.7) A Euclidean lattice is, by abuse of terminology, a triple (t, A, (( , )) ) of
an U-vector space t, its lattice A (so that t=A(g)zR), and a positive definite
symmetric /^-bilinear form (( , )) on t. Two Euclidean lattices (f, A', (( , ))'),
(t", A", (( , ))" ) are called isometric if there exists a bijective -R-linear map

j : t ' ^ t " such that

i) y(A') = A / r, and

ii) (U(<x)>j(fi)))" = ((oc, /3)Y for all a, /3, €Et ' .

For Euclidean lattices (tv, Av, (( , ))v), v=l, 2, •••, r, we have their direct sum

©I-o(*v> Av, (( , ))v) which is just the Euclidean lattice (0£=otv, ©v=oAv,

2. Natural Riemannian structure of 31 and JC

This section is crucial in our later study of the geometry of Si and JC. Es-
pecially, a natural Riemannian "metric" on Si (and also on JQ together with
the compatible connection will be defined.

(2.1) We regard c^asa "Riemannian manifold" by defining the bilinear form
(( , »e: TSi^TSi% (=C°°(X)RxC-(X)R)->R for each ^Si as follows:

(2.1.1) (Vly

(see (1.4.1) for the identification of TSi$ with C°°(X)R). The restriction of this
pairing « , ))$ (where g^Ji) to TSL^ (cf. (1.4.2)) is again denoted by the same
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(( , ))$, and in terms of this, M is also a "Riemannian manifold". We further-
more endow R with the Euclidean metric « , )) by the formula

({a, b)) = ab for all ay b<=R .

Then the isomorphism (cf. (1.3.6))

M^ MX R

<p^(<p-L(0y<p)yL(0y<p))

is an "isometry of Riemannian manifolds". Now, in view of (1.3.5), JC is also
a "Riemannian manifold". Namely, for each co^JC, we define the bilinear
pairing (( , »„: TJCUX TJC.-+R by

(2.1.2) «x/=T ddVl, ̂ "=

where Vly V2tE{v<EEC~(X)R\\ Vcon = 0} ( ^ T J f J (cf. (1.4.2)). (Note that this

pairing is independent of the choice of a>0).

(2.2) Let i<pt\a^t^b} be a smooth path in M. Recall that we have the func-
tion <p^C°°([ay b]xX)R defined by

(2.2.1) <p(t, x) = cpt(x), (t, x)G[ay b]xX.

To elements ty=ty(t, x), rj=rj{ty x) in C°°([a, b]xX)Ry we associate ((^, ^))v

<zC~([a,b])Bby

(2.2.2) iir, vUt): = ( ^AM)/Vol(X) = {<pt, Vt\,,
v X

where for each t^[a, b]y y]rt and rjt are the functions in C°°{X)R defined by

(2.2.3) tyi' = ty\{t)xx a n d yt- = v \ u ) x x

via the identification of {t} X X with X.

(2.3) (i) For a piecewise smooth path <&= {<pt\a^it^ib} in Siy we define its
arclength Lgth(O) and energy Engy(<E>) as follows:

(2.3.1) Lgth(<D): = f ( [ (<ptyci0(<pt)IVol(X)yf2dt = \\{<p, 4>))v)
y2dt,

Ja JX Ja

(2.3.2) Engy(<I»):=('([ (<ptyn0(<pt)IVol(X))dt = [\<p, <p))*dt.
Ja JX Ja

[ (
X

(ii) Let ®={dt\a^t^b} be a piecewise smooth path in JC. We then define
the real numbers Lgth(O), Engy(O) by

(2.3.3) Lgth(©): = Lgth(O) and Engy(0): = Engy(O),
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where <&={<pt\a^:t^b} is the unique piecewise smooth path in M such that
coo(<pt)=0t for all t.

(2.4) We shall next define the corresponding "Riemannian connection'' of M.

Fix an arbitrary smooth path &={<pt\a^t^b} in M. Using the notation of

(i) of (1.2), we define the real vector field — on [a, b] XX by
dt

(2.4.1) £ : = djdt-\ 23 gfrf'&JIdzt+cpzdidz").
01 Z

Note here that, though <p is in C°°([a, b]xX)R (instead of C°°(X)R), we can still
define (g(<pY*) as the inverse matrix of (gap+p^p). Now via the identification
of C°°([a, b]xX)R with rdif£([fl, ft], <$>*TM) (cf. (1.4.3)), we define

(2.4.2) V;: Tdiff(h ft], ®*TM) -> rdlff(|>, ft], <S>*TM)

as the operator induced by — from the following commutative diagram:
dt

rdlff([«, ft], ®*TM) « C-([a, b\xX)R

D
(2.4.3) . . , [m

rdiff([^, ft], &*TM) ^ C°°([a, b]xX)R.

The operator V<£ (resp. —) is called the covariant differentiation on rdiff([#, ft],

(resp. C°°([>, b\xX)R) along the path O = - { ^ |

DEFINITION 2.4.4. ty^C°°([a, b]xX)R is said to be parallel along <!>=

DEFINITION 2.4.5. Let %<=C°°(X)R(^ TM^). Then ^=^{t, x) <E C°°{[a, ft]
X l ) f i is said to be a parallel translation of f along <3>={<P/|tf^£^ft} if the
following conditions are satisfied:

i) * l , -= f ;

ii) i|r is parallel along O.

Note that, for each jGC°°(I)f i, there exists a unique parallel translation of £

along <E>. In fact, denoting by £s:=exp(s—) (a—t^s^b—i) the local 1-param-
D dt

eter group of [ay ft] X X generated by —, one can easily see that
dt

, x): = %{pr2{ga-t-(t, *))), (*, *)e[a,b]xX,

is the unique parallel translation of £ along <!> (where pr2: [a, b] XX-*X denotes
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the projection to the second factor).
We shall now show that our connection is compatible with the "Rie-

mannian metric" defined in (2.1) and (2.2).

Theorem 2.5. Let ^={<pt\a^t^b} be a smooth path in M. Then in

terms of the notation in (2.2) and (2.4), we have

j t «*, vh = «§ *, vh+l+, § vh

for all ^, rj(=C-{[a, b] XX)R.

Proof. We first observe that, though cp is in C°°([a, b]xX)R (instead of
C°°(X)B), we still have the following notational analogue of (1.1):

= coo(<P)"ln\ : = fa+^-l 99 <pf\n\,

, (cf. (2.4)),

where £lo(<p) (resp. D«>) is regarded as a C~ 2n-form on [a, b] xX (resp. an opera-
tor on C-([«, b] X X)R). Then

ot at

= j-{ \ ^va»{<p)iVo\{X)) = ± Ur, nX. Q.E.D.
at Jx at

(2.6) In concluding this section, we define the natural "Riemannian con-
nection" of cK. First consider a smooth path ^={(pt\a^t^b} in M. Note
that, for an element ^={y]rt\a^t^b} of Tdifi([a, b]y ®*TM), the following are
equivalent:

ii) the corresponding ^GC°°([a, b]xX)R (cf. (1.4.3)) satisfies
in C°°([a, b])R (see (2.2.1) for the definition of q>)\

iii) yjrt e Tc^^, for all t e [«, 6].
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Now, the next observation is crucial to our definition of the connection on JC.

Proposition 2.6.1. Let <£ be as above, and suppose that ^f={-\}rt\

erdif£([a, 6], <b*TM). Then V ^ e r d i f f ( [ a , ft], <$>*TM).

Proof. In view of the commutative diagram (2.4.3), it suffices to show

Theorem 2.5,

D-ty, l)),=0 in C°°([a, b])R. Obviously, —1=0 and {yfr, l))*=0. Then by

D d

dt ' * dt ' *

as required. Q.E.D.

Fix an arbitrary smooth path @={Ot\a^t^b} in JC. Recall that there exists
a unique smooth path &=i<pt\a^t^b} in M such that Ot=co0(<pt) for all t.

Now, via the identification of M with JC (cf. (1.3.5)), we have the operator

V«: rdiff([«, A], ®*TJC) -* Tdift([a, b], &*TJC)

induced by V£ from the following commutative diagram:

rdl«([«. b], ®*TJi) a rdi(f([a,

(2.6.2) Vi

rdl»([o, 6], 0 * r j c ) « rdif£([«, b],

Then one immediately sees that this operator Ve does not depend on the choice
of o)0 (and depends only on i

3. Geodesies in Si and JC

In this section, we shall define the concept of geodesies in Si (and also
in JC) in terms of the "Riemannian connection" of §2, and then prove Theorem
3.5 which provides us with a typical example of an infinitely extensible geodesic
in JC.

(3.1) (i) Let ®={<pt\a^t<:b} be a smooth path in 3i. We denote by <b
the element of rdiff([a, ft], ®*TM) which sends each t^[a, b] to <pt. Then
<3> is called a geodesic in M if one of the following equivalent conditions is satis-
fied:

(i-2) — ^.=0 in C°([a, b] X X)fi (i.e., <p is parallel along «>);
at

(i-3) $=^g{<pf<p«<Pp on [a, A] X X
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(ii) Let ®={Ot\a^t^b} be a smooth path in JC. We denote by © the ele-
ment of rdiff([tf, b]f ®*TJC) which sends each t^[a, b] to 0t. Recall that there
exists a unique smooth path <!>= {<pt\a^*tzib} in Si such that Ot=co0(<pt) for
all t. Now, © is called a geodesic in JC if one of the following equivalent con-
ditions is satisfied:

(ii—l) Vee=oinrd l££([fl,ft],e*rjc);
(ii—2) O is a geodesic in Si.

(3.2) Fix an arbitrary subset 32 of Si. Let v^32. Then a function 97 in
C°°(X)R is said to be tangent to 37 at z> if there exists a smooth path {<pt \ —£
^t^8} in SI, for some £>0, with the following properties:

iii) ?>, <E 32 for all * G [—5, 6].

As a generalization of 7\#£ and TM% in (1.4), we now put

T3lv: = ivtEC°°(X)R\v is tangent to 37 at v} .

Let <!>= {9?/ |«^^6} be a smooth path in Si satisfying cpt^.32 for all £. Then
rdiff(I>, 6], ®*TJl) denotes the set of all

f([fl, 6],

such that ^ e 737^, for all *.

(3.2.1) Ẑ is said to be totally convex in SI if every geodesic {(pt\a^t^b\ in
Si with £>a, <pb^7l always lies in 57.

(3.2.2) 32 is said to be totally geodesic in Si if for every smooth path {<

^b} in Si sitting in 32, the operator V^ preserves the subset Tdiff([a9 b], <$>*T32)

of rdiff([tf, 6], Q?*TSi). If 37 is a finite-dimensional Riemannian C°° manifold
(in terms of the metric and the smooth structure induced from those of Si),

then one can easily show that 37 is totally geodesic in Si if and only if every
geodesic of the Riemannian manifold 32 is at the same time a geodesic of Si.

REMARK 3.3. (i) By Proposition 2.6.1, M is totally geodesic. We shall
now show that M is totally convex: Let {<pt\a^t^b} be a geodesic in Si such
that cpa, cph^SL. Then for every t^[a> b]>

Furthermore L(0, <pa)=L(0, <pb)=0. Hence 1,(0, <pt)=Q (i.e., <pt^M) for all
te[a, b].
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(ii) Let ^ G l Suppose that both co0 (cf. § 1) and £ are C" in terms of the natural

real analytic structure of X. Then for every -q e C"(X)R> there exists a real analytic

function <p=<p(ty *)eC"([-6, S]xX)Ry with £>0 sufficiently small, such that

a) 9>l*-o=?>

c) {cpt I — G^t^S} is a geodesic in Siy

where <pt:=cp\UUx^C\X)R (te-[-€, 6]).

This is actually an immediate consequence of the fact that by Cauchy-
Kovalevskaja existence theorem, the equation

with the initial conditions <p \ t=0=f; and cp \ t=0=-q has a unique solution cp=cp(ty x)

in Cw([-£, S]XX)R for some £>0.

NOTATION 3.4. To each holomorphic vector field Y(=T(Xy O(TX)) on
Xy we associate a real vector field YR\= Y+Y. Recall that (v^-T Y)R=J* YRy

where / is the complex structure of X. Let g be the Lie subalgebra of T(Xy

O(TX)) corresponding to the Lie subgroup G of Aut°(X) (see Introduction
for the definition of G). For each coG JC, we put

where LYR(CO) denotes the Lie derivative of co with respect to the vector field
YR. By writing co as o)0(?) (for some %^M)y we have

K = r(x,

pm = T(X, 0{TX))r\iVt(f)\feC-(X)J (cf. (1.5)),

(see for instance, Kobayashi [7; p. 94]).
Theorem 3.5. Let co^JC and O+Y^pa. Put gt:=exp(tYR) (teR).

Then {gfco \ t^R} is a geodesic in JC.

Proof. Fix %eJH. Note that there exists a unique smooth path {<pt\
^b} in M such that gfa>=a>0(<pt) for all t. By setting Zt:=VVl(<pt), we have

(3.5.1)

In particular, Zt-Y<=T(X, O(TX)) (cf. Kobayashi [7; p. 93]). Note that

P.0(ft)=Pg^=^d(gT1)pll,. Hence for all t,
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Y = (Adfer^Fefc^ciV,,{f)\feC-(X)J ,

and in particular

Zt-Fe{V,,(f)\feC-(X)J nT(X, 0{TX)) = fc^.

In view of (3.5.1), it follows that

(3.5.2) Zt-Y^lmoWnp^t) = {0}, (*€=[*, b]).

We now obtain

I = T ^ f. (3.5.1))

^)(cf. (3.5.2)).

Hence (— <p)(t)=$t-(Zt)R<pt=C(t) for some function C(0eC"([«,%. Then

by cp^M, we finally obtain

= ( « ^ 1)),) (0 = C(0, (*e«). Q.E.D.

Theorem 3.6. Let YeH°(X, 0{TXj) be such that LYR(CO0)=0. Further-

more suppose that <3>= {<pt\a^t^b} is a smooth path in M such that YR<pt=0

in C°°(X)Rfor all t. Then

for all ̂  e C°°([a, b] X X)R.

Proof. We here use the notation of (1.2), (2.4) and (2.5). On [a, b]xX9

we put

and by {d<p, cov) (resp. (5^, cav)), we mean the contraction of d<p (resp. 0̂99) with

cov. Then the covariant differentiation — along the path {<pt \ a^t^b} is written
dt

as

Since YR, — ~ 0 , the proof is reduced to showing
l _ CfZ —J
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Note here that

Lys(co0(<p)) = LyR(<o0)+V-i dd(YR<p) = 0 .

Hence LYjt(a>w)=0. Therefore

[YB, (B<p, «v)] = L

Similarly, we have [YR, (3^, cov)]-0. Q.E.D.

REMARK 3.6.1. Let K(dG) be the same as in Introduction, and assume
that we have chosen a if-invariant co0. Let MK, MK, JCK be respectively the
set of all if-invariant elements of M, M> JC. Then almost all results in this
paper are reformulated in terms of these if-invariant objects. Theorem 3.6
above assures the validity of such if-invariant versions of our results.

4. Torsion and curvature of the natural connection

The main purpose of this section is to prove (0.2) of Introduction. We
shall also show that the torsion of our connection is zero.

(4.1) Fix an arbitrary point g of M. Let Vl, V2 e C°°(X)R (sa TM$). Consider
a function

<p = <p(s, t, *)eC"°([-£, S]X [-£, S]XX)B

such that the following conditions are satisfied:

i ) 9>«i.*i:=0> I («.rt-(*i,#i) belongs to Si whenever sly t^ [—6, €].

ii) 9̂ 0,0=f-
9 ^ 9<25 i

- ^ - 1 (5,/)=(o,o)z='»72 •
m ) r 1 (5,/)=(o,o)

(Such a £> always exists, because we can choose cp(s, t, x)=
(s9 ty x) e [—6, €] X [—6, S] X X, with 0 < £ < 1.) Note that, by formal definitions,
the torsion

r :

and the curvature

1 i?: TM®TM -+ Horn

of our connection on c^ are given by

fD/d<p\ D/d<p\\{
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D D D D

)

at the point f. Since JC is identified with the totally geodesic "submanifold"
SL in Si (cf. (i) of (3.3)), the torsion and the curvature of our connection on JC

is just the restriction of T and R above to TJC®TJC(=TM®TM). We now
have:

Theorem 4.2. T = 0 , i.e., rfa, r}^=® for all Vl, ri2^Coo(X)R and

(Thus our connection on M is the unique one satisfying both r=0 and (2.5).)

Theorem 4.3. R(Vu ^2)^(%)=[[^i> %]f, Vz]t for al1 V» Vz> V3^C°°(X)R and

Proof of (4.2). We denote by (•••) |0 the restriction of (•••) to (s, t)=(0, 0).

Then

^ 1 0

-1- {d/dt-2-1 S^)^((3W3^3/9^+(9W90^/9^)}(9W8^) lo
= 0. Q.E.D.

Proof of (4.3). Fix f G ^ and xo^X arbitrarily. We then choose holo-
morphic local coordinates (z1, •••, ztt) centered at x0 such that

= S^p and d(g(^)c6^) (x0) — 0

for all a, j3^ {1, 2, •••, n}. Note that, when evaluated at x0)

. , = — (?7i)«7 yds l(s,«)=(o,o) \ds

Hence, at the point x0,

DD DD

f- (1.5)) •
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Thus we have

(cf- (1.5.1)). Q.E.D.

DEFINITION 4.4. Fix an arbitrary point £ of c#. Let 77̂  972 be jR-linearly
independent elements of C°°(X)R{^TM^. Regard P:=R^1+Rylr2 as a 2-plane
in Tc^^. We then define the sectional curvature K(P)% of M at £ along the
plane section P by

(4.4.1)

Theorem 4.5. -4̂  £#cA _pom̂  f 0/ f̂,

/or gt;«ry 2-plane P=R^l+Rr]2 in TM$ {where TJU 7]2^C°°(X)R are R-linearly

independent). Furthermore, K(P)%=0 if and only if \rjly 772]£=0.

Proof. In view of (4.3) and (4.4.1),

—(foi>

—(foi>

Since the denominator is always positive, we have K(P)^0. Clearly, K(P)%

=0 if and only if [Vl, %]^=0. Q.E.D.

REMARK 4.5.1. Recall that JC is identified with the totally geodesic "sub-
manifold" M of M. Hence by (4.5) above, the nonpositivity of sectional cur-
vature is true also for <JC.

5. Convexity of the JC-energy map ft

In this section, several facts related to the convexity of fi will be given.
We begin by showing:

Lemma 5.1. For every smooth path {(pt\a^t^b} in Sly we have, for all

ty the following:

(5.1.1) i<pt, I
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where ̂ <pt:=(~ <p) (*)=£, -

Proof. From a straightforward computation, one obtains

ot

in terms of the notation of (1.6). Hence

ot

Now by (1.6.2) applied to f=cpt and ty=<pu the required identity (5.1.1) im-
mediately follows. For (5.1.2), recall that

ii((Qo{<Pt)) l<Pu <r(9>t) — <roXt (cf. (1.3.1)) .
at

Then by Theorem 2.5,

-r;2 M«><M)) = —((—<Pt, <r(<Pt) — <roht—i<Pt> w,: r&t)}*, •
or Ot ô

Together with (5.1.1), we finally obtain (5.1.2). Q.E.D.

In view of [9; (3.2)], the following is an immediate consequence of (5.1.2):

Corollary 5.1.3 (cf. [9; (6.3)]). / / co is a critical point of p: JC->R, then

the inequality

holds for every smooth path {Ot\—StS-t^£} in JC such that 0Q=co.

We shall now show that 6 is totally convex in <K (see Introduction for the
definition of S):

Corollary 5.1.4. Let {dt\a^t^b} be a geodesic in JC such that both 6a

and 6b belong to 6. Then there exists a C°° map

[a, b]^th->gt<=Aut\X)

such that Ot=g*da for all t, and hence all 6t belong to S. In particular, 8 is

totally convex in JC.

Proof. For each tEz[a> b], we write 9t as co0(<pt) for some unique
Then by (5.1.3),

g M ^ O (tez[a,b]).
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On the other hand, by 6a, 0b^£> we have

Hence fi,(0t)=C for some C^R independent of t. In particular, in view of
(5.1.2),

0 = j f /*(*«) = y ^ l l S ^ H i ^ . ^ , , (where V,: = V,,(4>,))

and therefore V,eT(X, O(TX)) for all *e[«, J]. Note that we have the unique
smooth solution {yt^Aut?(X)\a^t^b} of the equation

with the initial condition ya=idx. Now, for all t,

(} = 0 .

HenceytO,=y*0.=$. (t<=[a, b]). Q.E.D.

REMARK 5.2 (see also Calabi [4] and Bourguignon [3]): Suppose that
there exists a critical point %eJ{ of the functional

(5.2.1) C-.M-+R, *^ C(+): =

We now put 9»,:=?+M?) (—£^^£). Then by (5.1.1),

9»*» ^ 7 o"(9>«)»*/l/-o = ««^(9>/), T7
or or

Thus F"f(cr(f))er(J5r, O(TX)). Hence we obtain the following well-known
fact: either o-(?) is constant on X or 0+V^(T(^))^T(X, O(TX)).

Until the end of this section for simplicity, we write fj>(co0(<p)) as [i{(p) for
all <p^Jl. Note that /^(93)=M(0, <p) in terms of the notation of (1.3). Let
dfi be the "1-form" on M defined by

dfj,(<pt) = —
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where {^t\a^t^b} is an arbitrary smooth path in Si. We shall now show
the convexity of p.

Theorem 5.3. fz: Si-*R is a convex functiony i.e., Hess /J, is positive semi-

definite everywhere on Si.

Proof. Fix an arbitrary point f of Si. Let 97eC°°(X)R(^ TSi^j. Choose
a smooth path {<pt\—S^t^S} in Si such that <pt\t=o=V (say> let ^ = | + ^ ) .
Then in view of (5.1.2), we obtain

(5.3.1) (Hess fi)t(v, rj) = — ii{q>t)\t^—{dfi)t{{— <Pt)u-o)
at ot

= (4IVol{X))\m(v)l\lHx.^»^0. Q.E.D.

REMARK 5.3.2. Since JC is identified with the totally geodesic "submani-
fold" SL of Si (cf. (3.3)), the above theorem shows that fi:JC->R is also a convex
function.

REMARK 5.3.3. Fix an arbitrary point f of Si. Let Vly 7]2^C°°{X)R{^ TSi%).

Then from (5.3.1), one easily obtains

(Hess ritfa, V2) = (4/Vo

REMARK 5.3.4. (cf. Bando [1]): Let idt\—S1^t^S2} be an arbitrary
smooth path in JC such that 0 o e£ . Then (5.3.1) shows that (d2/dt2) (/*(0,))i*-o
^ 0 and is > 0 whenever the path {6t} is transversal to the orbit {g*60 \ g e G}

(={a*60\a^Aut°(X)}) at ^=0 (see Introduction for the definition of G).

Therefore each connected component of 6 forms a single G-orbit in Q. (This fact
was first obtained by Calabi [4] with an effective use of the functional C: <K->R

instead of that of fi).

6. Natural Riemannian structure of 6

Throughout this section, we assume <?4=<£ and fix an arbitrary component
e0 of 6. Recall that eo={g*6\g<^G} for all 0€E<?O (cf. (5.3.4)). We now
endow 8 (and hence <50) with the natural Riemannian metric induced from
the one on JC (cf. (2.1)). <S0 is then a finite-dimensional Riemannian manifold
diffeomorphic to G/K, and for every smooth path ®={dt\a^t^b} in £0, its
arclength Lgth(O) (both in terms of the metric of 8Q and of <%) is given by

= (*{ ( (<ptyn0(<p,)iYoi{X)y'2dt,
Ja J X

where each <pt is the unique element of SL such that 0t—G)0(<pt). Note that
Lgth(Q) does not depend on the choice of co0 (and depends only on ©).
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DEFINITION 6.1. Abijection X: JC-^JCis called an isometry of JC if for
every smooth path ®=-{6t\a<^t^b} in JC, \(&):={\(6t)\a^t^b} is again
a smooth path in JC with Lgth(X(O))=Lgth(©).

Theorem 6.2. For each ^eAut°(Z), the mapping JC:Bco\->g*co^JC is
an isometry of JC.

Proof. Let ®={Ot\a^t^b} be a smooth path in JC and we write 0t as
coQ(<pt)(<pt^Jl) for all t. Consider the function rjg in Si uniquely determined
by the properties g*coQ=co0(Vg) and 7]g+g*cpa<=Ji. We put ^t:==

(atit^b). Then g*Ot=co0(tyt). Furthermore

L(0, *,) = f*{ ( $t
Ja JX

= t* ( {£A(9>»)/VoP0><fc = L(0, 9>,) = 0

Hence yjrt^Jl. We finally obtain

Lgth(**e) =

Q.E.D.

Corollary 6.2.1. The Riemannian manifold <S0 is G-equivariantly iso-

metric to the Riemannian symmetric space G\K endowed with a suitable metric, and

furthermore, Aut°(X) acts isometrically on £0.

Proof. Since K is a maximal compact subgroup of the reductive alge-
braic group G (cf. Introduction), it follows that (G, K) is a Riemannian sym-
metric pair (cf. Helgason [6; p. 209]). Then in view of (6.2), the homogeneous
space 6Q has a natural structure of a Riemannian symmetric space (cf. Helgason
[6; Proposition 3.4, p. 209]). Q.E.D.

Theorem 6.3. <S0 (and hence 8) is totally geodesic in JC.

Proof. Fix an arbitrary element co of £Q, and let J)w be as in (3.4). Since
So is Riemannian symmetric, every geodesic y(t) in So through co ( = 7(0)) is
written in the form

7(*) = (exp(«yil))*«, (tf=K)

for some 04= Yepw . This is at the same time a geodesic in JC by Theorem
(3.5). Q.E.D.

(6.4) Recall the decomposition of S into connected components:
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6 = U ,-e/ Si (disjoint union).

We shall now associate, to each <?,-, a Euclidean lattice (t, A, (( , )),-) (which is
uniquely determined by <?,• up to isometry) as follows:

Let co be a point of £iy and T an arbitrary maximal torus in the isotropy
subgroup Ka of G at co. Put t: = Lie T. We then have the exponential map

exp: t-> T(=t/A)

where T is written as t/A for some lattice A in t. In view of the natural inclu-
sions

the pairing (( , )}w: TJC^xTJC^-^R (cf. (2.1.2)) induces the positive definite
bilinear form (( , )),-: txt-*R by

(fa, T2)),: = ( ( N / ^ I T ! , > / 3 1 T 2 L (T!, T 2et) .

We shall now show that, up to isometry, our Euclidean lattice (t, A, (( , )),-)
does not depend on the choice of co and T. Let cof^Siy and T' be a maximal
torus in K^. Put t ' :=Lie T'. Then there exists an element g of G such that

i) £*co = co' (i.e., ^(©)=co /), and
ii) T'=g-lTg,

where Rg denotes the isometry of JC sending each O^JC to Rg(0):=g*6e:JC.

In view of the commutative diagram

exp
3 \ZHTt « t — ^ 21 (=t/A)

we easily conclude that Ad(g~x) induces an isometry of the Euclidean lattices
(t, A, (( , )),•), (t, A', (( , )){) considered.

REMARK 6.4.1. Let K be the same as in Introduction, and choose a w
such that Kn=K. Recall that G/K is diffeomorphic to RN (for some N) and
hence simply connected. Consequently, Si(=GjK) is written as a product

of Riemannian symmetric spaces, where M^ is of Euclidean type, and Mv (l^

fgr) are irreducible and of noncompact type. Now the inactions on Mv'
induce the natural group homomorphism

7- K -» n i - i Isometry(Afv).
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Note that the identity component of Ker 7 is the compact torus which is maxi-
mal in the center Z(G) of G. Using the notation of (6.4), we consider

7, r : T-> To (:=y(T))dUU Isometry(Mv).

Then for each z>^l, there exists a toral subgroup Tv of Isometry(Mv)
such that r o = T 1 x r 2 x — xT rcni-iIsometry(Afv). Put tv: = Lie Tv and
(( J ))*,v:=(( > ))*itv (O^v^r), where we regard each tv as a Lie subalgebra of
t via the natural isomorphism

t^(Lie(Ker 7))0to = (Lie(Ker

Let A be the lattice of t0 obtained as the image of A under the natural linear
map t->t0 (=t/Lie(Ker 7)). For each v^O, corresponding to the exponential
map

exp: t v ->T v (=t v /A v ) ,

we obtain the lattice Av in tv as its kernel. It then follows that
i) A is a sublattice of Ao of finite index, and
ii) (t0, Ac, (( , )U=ff iU(tv , Av, (( , )),>)•

REMARK 6.4.2. In a forthcoming paper [10], we shall make some studies
and computations of these Euclidean lattices.

7. Appendix

As in the case of "finite-dimensional Riemannian geometry", Theorems
(2.5) and (4.2) allow us to obtain variational formulas for energies of paths in
Si (cf. (7.2), (7.3)). We shall also show that there are no conjugate points on
any geodesic of Si. (In this appendix, we restrict ourselves to a very simple
situation in order to avoid tedious routine works caused by going too much
general.)

DEFINITION 7.1. Let ^={<pt\a^t^b} be a smooth path in Si.

(i) ty=^(u; t, x)^C°°([—S, 6]x[a, b]xX)R is called a 1-paratneter variation

of <& if the following conditions are satisfied:

(i-2) y]ru>a=<pa and ty»%h=cph for all u e [ - £ , £],

where tyut€=C00(X)R denotes the function defined by

(ii) -v/r == yjr(u, v; t, x)GC°°([-f, S] X [—8, £] X [a, b] XX) R is called a 2-param-

eter variation of <I> if the following conditions are satisfied:

(ii—1) ^o,o,t=<Pt for all t^[a, 6],
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(ii-2) <yIrUtVta=<pa and ^uvb=<pb for all u, v(=[-Sy 6],

where -\h,,Me C°°(X)R denotes the function defined by

irUt1,tt(x)=yJt(u9 v; t, x) (x^X) .

Theorem 7.2 (First variational formula). Let <&= {<pf \ a^t^b} be a smooth

path in M, and let ^ = ^(w; t, x) GC W ( [ -£> €]x[a9 b]xX)R be a 1-parameter

variation of <I>. Then

(7.2.1) \j- (Engy({^il|fl^^i»)l..o = - f < ? , ^ > dt'
2 du Ja^du i«=o> dt r<p

Proof. In view of Theorems (2.5) and (4.2), it follows that

(7.2.2) - ( '<?* A * K dt

dt \^^M. dt A..,/ ^dt\du/> dt

\dt A 9« A.,* 2 < ,

Evaluating this at u=0, we obtain (7.2.1). Q.E.D.

Theorem 7.3 (Second variational formula). Let $={<p(\a^,t^b} be a

geodesic in M, and let

yjr = ^(u, v; t, x)eC-([-6, 6]x[-£, S]x[a, b]xX)R

be a 2-parameter variation of <S>. Then

(7.3.1) \ ^

:=V

df dt\dt V

Proof. Since ^ ( § * ) = A ^ . ?* (cf. (4.2)), and since ^ ( ^ ? * ) -
9 / 2 \ 9 M / dt dudt K K " \dt du)
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D-D—D.]>.tit follows that
dt du 9M dt

§±\(§±)\ dt

dt. du/\dt)'

) dt.
dll dt dt '

Evaluating this at (u, v)=(0, 0), we obtain

(7.3.2) -$*<**"» S Wx-R{4>, WM4>S
01

dt dt

On the other hand, in view of (7.2.2),

1 9

2 dv

and therefore, by (2.5),

1 92

= -VUR^t A9t\ +/9± AA9±\ )dt
h\^du dv dt dt M-,,,,, A9©> 9M 9f 9f **.,.,,/

We evaluate this at (M, f)=(0, 0). Note that <& is a geodesic. Then

(733) _

Comparing (7.3.2) and (7.3.3), we obtain (7.3.1). Q.E.D.

DEFINITION 7.4. Let <I> = \<pt\a^t^b} be a geodesic in Si and let
a/, b'&R be such that a^a'<b'^b. Then ^ = ^ , *)eC"([fl', 6 ' ] X J 0 J I

is called a Jacobi field along <E> if

2)2

Two elements 9?fl/, ^ / of c^ are called conjugate along O if there exists a non-
trivial Jacobi field yjr=y]r(ty x)^C°°([a\ b']xX)R along O such that ^u - a /=0
and ^u=^=0 in C
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Theorem 7.5. Let 0>={<pt\a^Lt^Lb} be an arbitrary geodesic in Si. For

any a\ b' with a^a'<ibf^b, cpa' and <pb' cannot be conjugate along <1>.

Proof. Suppose that ty=yjr(t, x)^C°°{\a\ b']xX)R satisfies the equation

or

with the boundary condition

^i#-' = 0 and 1?it-v = 0 inC~(X)R.

Then \—i/r, ty\ G C°°([a', b'])R is a monotone increasing function in t> because

d y D . . ^ yD2 . , v , s D . D

^ \ — * , — * > ^ 0 (cf. (4.5)).
N C$4 C$4 V tn

Ot Ot *P

Note that

Now, on the whole [a', b']f

Thus we conclude that

i.e., i|r=0 in C°°([a, b]xX)R. Q.E.D.

8. Conclusion

As a final remark to the whole paper, we should say that some of the ideas
given above are valid also for Riemannian analogues in conformal differential
geometry. In fact, Bourguignon [2] independently studied similar topics
("generalizations of Kazdan-Warner's invariant") from different viewpoints.
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