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0. Introduction

In real Riemannian geometry, the space of all Riemannian metrics of a
given compact differentiable manifold admits a Riemannian structure® to
provide us with several nice theories. In this paper, we shall seek its complex
analogue. Namely, in view of the fact that all Kihler manifolds are symplectic,
we shall define a very natural Riemannian structure (slightly different from
classical ones) on the space of all Kihler metrics in a fixed cohomology class
of a given compact Kahler manifold (see also [10] for more algebraic geometric
treatments).

Throughout this paper, we fix an n-dimensional compact complex con-
nected manifold X with a cohomology class A€ HY(X)g such that

K: = {w]w is a Kihler form on X in the class A}

is nonempty. Let w,= K and consider the K-energy map u: KX—>R of the
Kihler manifold (X, w,) introduced in [9]. Now the main purpose of this
paper is to define a natural Riemannian structure on X such that

0.1) pu s a convex function on K, i.e., Hess u is positive semidefinite everywhere
1 Y

on K (cf. §5);

(0.2) sectional curvature of K is explicitly written in terms of Poisson brackets
of functions and moreover it is always nonpositive (cf. §4).

We next assume that
E: = {wEK|w has a constant scalar curvature}

is nonempty. Recall that the Albanese map «: X-—>Alb(X) of X naturally
induces the Lie group homomorphism @&: Aut’(X)— Aut’(Alb(X)) (==Alb(X)),
where Aut’(X) (resp. Aut’(Alb(X))) denotes the identity component of the

*) See, for instance, Ebin’s article ‘“The manifold of Riemannian metrics”’ in Global Analysis
(Proc. Symp. Pure Math.) 15 (1968), 11-40.



228 T. MABUCHI

group of holomorphic automorphisms of X (resp. Alb(X)). Then by a theo-
rem of Fujiki [5], the identity component G of Ker & has a natural structure
of a linear algebraic group. Let K be a maximal compact subgroup of G, and
we decompose & into G-orbits:

€ = U;e & (disjoint union) .
In view of a theorem of Lichnerowicz [8], one sees that:

1) G is a reductive algebraic group,

i) each &; is an Aut®(X)-orbit, and

ili) there exist 0,€&;, i€ 1, such that the isotropy subgroup of G at each @; co-
incides with K.

Then a combination of ii) with a result of Calabi [4] shows that each &; is a
connected component of £ in terms of a suitable topology of £&. Furthermore
by iii), such a connected component &; of & is G-equivariantly diffeomorphic
to the Riemannian symmetric space G/K. Now, restricting our Riemannian
structure of K to &, we obtain:

(0.3) each &; is isometric to the Riemannian symmetric space G|K endowed with
a suitable metric, and furthermore, Aut®(X) acts isometrically on &; (cf. §6).

In acknowledgement, I wish to express my sincere gratitude to Dr. S.
Bando (see [1]), to whom I owe much for key simplifications of this paper.
My special thanks are due also to Prof. S. Kobayashi and Dr. N. Koiso for
their valuable suggestions and encouragements. Finally, I wish to thank the
Max-Planck-Institut fiur Mathematik for the hospitality and constant assistance
all through my stay in Bonn.

1. Notation, convention and preliminaries
(1.1) Fix an element w, of K once for all and express it as
wo= v —1 I dz" AdzP

in terms of holomorphic local coordinates (2, :-+, 2") of X. For each real-
valued C* function pEC=(X)g on X, we put wy(@):=w,+V —1 80, and write
it in the form

ol(@) = V—1 2 g(P)ap d2° Nd2*,

where g45(P)=guzt Pup) Pus being 0,05 @ (=8p[0z"02F). We furthermore
denote by >3 Ric(p),; d=*@dz" the Ricci tensor of the Kahler form wy(@). Put

Ric(p): = v/—1 33 Ric(p), 5 dz° Adz? .
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Then Ric(p)/27 represents ¢,(X)z and we have Ric(p)=+/—1 8dlog det(g,s(®)).
Let o(@) (resp. [Jy) be the corresponding scalar curvature (resp. Laplacian on
functions):

o(@): = 2 &(®)* Ric(@)uz »
(0, : = S g(9)? 8%/62%827

where (g(@)?®) is the inverse matrix of (g(@),s). We now put
H: = {pEC(X)z| (@) EK} .
Note that the natural map
H—> K, ¢ w(p)
is surjective.

(1.2) (i) A mapping ®: tE]aq, b]— @, =C=(X)y (often denoted by ®= {p;|
a=<t=b}) is said to be smooth (or a smooth path) if the mapping @: [a, 5] X X
R defined by

o(t, x): = @ (x), (&, x)EJa, b]x X,

is a C~ map. For such a smooth path ®={p,|a<t=<b}, we put @,:=0¢,/0t
and @,:=0%p,/0f”. Then the corresponding paths {p,|a=<t=<b}, {p,|a=t=<b}
in C*(X)g are again smooth. We furthermore define o =C([a, b]X X)g by

P(t, x): = é’t(x) = (0p/0t) (¢, x), (t, x)E][a, bIxX.

If there is no fear of confusion, @ and @, (resp. @ and ¢,) are used interchangeably.
(To be precise, @;=@|yxxEC(X)g and @,=@yxx EC=(X)gy via the identifi-
cation of {t} x X with X.)

(i) A mapping 0: t<[a, b]—0,€ K (often denoted by ©={0,|a=<t=b}) is
said to be smooth (or a smooth path) if there exists a smooth path ®={p,;|a=<t
=<b} in I such that §,=w(®,;). Note that the concept of smoothness of paths
in K doesn’t depend on the choice of w,. To each such smooth path ©={6,
|a<t=<b}, we associate a C~ (1,1)-form € on [a, b] X X by

0(t, x) = 0,(x), (¢ x)E][a, b]xX.
We put §,=96,/0¢, and let § be the C* (1,1)-form on [a, b]x X defined by
6(t, ): = 6,(x), (t, x)E[a, B]xX.

(1.3) (cf. [9]). For each o, we set Qy(p):=wy(®)"/n!. We then define
the real constants Vol(X) and o, (which depend only on the class %) as follows:
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Vol(X): = SXQD(O) ,

o 1= ZnSXcl(X)mG”l/((n——1)!V01(X)) :

To each pair (@', ") eI X H (resp. (p', ") EC=(X)g X C~(X)g), We associate
a real number M(@’, ¢”) (resp. L(@’, ¢”)) by

b
(13.1)  M(e', ¢"): = —Sa{SX93:(6(*7’:)-Go)ﬂo(%)/VOl(X)}dt’
5
(13.2) (resp. Lig', #): = | 4] ptpaVolxpa,
where {@,|a=<t=<b} is an arbitrary piecewise smooth path in 4 (resp. C*(X)p)
such that p,=¢" and @,=¢"”. Then L(¢p’, ") (resp. M(p, ¢")) is independent

of the choice of the path {p,|a<#=<b} and therefore well-defined. Recall
that M (resp. L) satisfies the 1-cocycle condition. Furihermore,

(1.3.3) M(p,+Cy, @+ Cy) = M(py, @),
(1.34) (resp. L(p,, @, +C) = L(p,—C, @,) = L(py, $2)+C),

for all @,, p,eH (resp. @, p,&C~(X)g) and all C,, C,ER (resp. CER). In
view of (1.3.3) above, M: H X H—R factors through KX K. Hence we can
define the mapping M: K X K—R (denoted by the same M) by

Mo, o"): = M(@', ") (0, o”"€X),

where @', @ are elements of J such that wy@')=0" and wp”)=0"”. Then
the mapping
pK—-R, o w(w): = M(ew,, o)

is called the K-energy map of the Kihler manifold (X, w,). Moreover we
put
= {pe=H| L0, @) = 0} .

We now have the following identifications:

~

(1.3.5) =K
P > w(P)
(1.3.6) A= HXR = H X R

@ < (o), L(0, ) « (¢—L(0, 9), L(0, @)) .

(14) At each point & of H, we can identify C~(X)g with the tangent space
TH of 9 at £ via the isomorphism
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(14.1) C™(X)gp == TYl;
0 Do (Etem)
os

where s&[—¢, &l E4-smEF is a smooth path in 4 with a sufficiently small
&€>0. In terms of this identification, and also by (1.3.5), we have
(142) THusy = T = {n=C(X)al | 2046 = 0}

V—188 o9,
whenever £€.9[. Note here that

V=100 = 2 gwtin).

Let &= {p,|a<t=<b} be a smooth path in H. We denote by I'y([a, b], D*TH)
the space of (real) C= sections of the induced bundle ¢p* T4 of the tangent bundle
TI of 9. Then Ty([a, b], D*¥*THH) is naturally identified with C=([a, 5] X X)p
via the isomorphism
(14.3) C=(la, b} X X)p == Tsiee([a, b], D*¥*TH)
Vo U= {|lalt<b},

where +r, denotes, for each ¢, the function in C~(X); defined by

Yix): = (s, ) (x€X),
and is regarded as an element of T, in terms of the isomorphism of (1.4.1).

(1.5) Let £=J9{. We then define the linear maps Vi: C=(X)e—=>Taie(X, TX)¢
and W: C*(X)r—>Taee( X, TX)g by

Vi(n): = (1/2) 3 g(£)"“n; 0/02" (nEC(X)c)
We(n): = (V' —1/2) 3 g(8)P*(240/02° —150/02%)  (n€C"(X)) »
in terms of holomorphic local coordinates (2%, -+, 2") on X, where 7,:=0,7

=0n/0z" and n5:=65n=an/az5. To each pair (', ") EC™(X)pgX C=(X)g, we
associate a function [7’, »""Js&C~(X)g by
(1.5.1) [7, 7"]e: = (Wi(n')) (") -

Recall that [ , ]¢ is nothing but the Poisson bracket of C* functions on the
symplectic manifold (X, wy(€)), and the mapping Wi: C=(X)zg—>T (X, TX)p
is a Lie algebra homomorphism. Hence for all 5, %", n” €C~(X)g, we have:

(152) Well's o)) = [Wela), Wi},
(15.3) [ b 7w 0u® = | al', 71e0(®) -
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(1.6) (See Calabi [4] and also Bando [1]), For each €4, let {, D¢t {p-
forms on X} X {p-forms on X} »C=(X)z, p=1,2,--+,n, be the natural Hermitian
pairings induced from the Kihler metric wy(€). We now consider the operator

L;: C~(X)g—>C=(X)g of Lichnerowicz [8] defined by

(1.6.1) Ly = (Ogf+<V/—1 80y, Ric(§)>e+<Bv, Ba(E)e
with J»€C~(X)g. Recall that, in view of Calabi [4; p. 100],

HBV ([ Ecx ety = | SLIO(E)

Then, taking the real parts of both sides, we obtain

(1.6.2) HOV ez, enen = | (Re L) ()

for all Y &C=(X)p and €Y, where
(1.6.3) Re Ly = - (Lep+-Le)

(1.7) A Euclidean lattice is, by abuse of terminology, a triple (f, A, ((, )) ) of
an R-vector space t, its lattice A (so that t=AQ;R), and a positive definite
symmetric R-bilinear form (( , )) ont. Two Euclidean lattices (t’, A’, ((, ))"),
{”, A7, (, )" ) are called isometric if there exists a bijective R-linear map
j: t'=t" such that

i) j(A)Y=A", and

i) (), 5(8) ) = (o, B)" forall &, B, Et’.

For Euclidean lattices (t,, Ay, (( , ))), v=1, 2, +-+, r, we have their direct sum
Doty Ay, ((, )h) which is just the Euclidean lattice (@j_oty, Pl_A,,

Di=d( 5 M)

2. Natural Riemannian structure of H and X

This section is crucial in our later study of the geometry of 4 and K. Es-
pecially, a natural Riemannian “metric” on K (and also on X) together with
the compatible connection will be defined.

(2.1) We regard A as a “Riemannian manifold” by defining the bilinear form
s Vet THe X TH (=C~(X)pX C™(X)g)—R for each E€ 4 as follows:

(2.1.1) Cmy made: = anmzﬂo(f)/VOI(X) y 1 REC(X)r,

(see (1.4.1) for the identification of T4y with C~(X)g). The restriction of this
pairing { , )¢ (where £€4) to T H; (cf. (1.4.2)) is again denoted by the same
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¢, Y& and in terms of this, J is also a “Riemannian manifold”. We further-
more endow R with the Euclidean metric { , )) by the formula

{a, b) = ab for all a, bER .
Then the isomorphism (cf. (1.3.6))

H= JXR
P (¢—L(0: ¢): L(O) ¢))

is an “isometry of Riemannian manifolds”. Now, in view of (1.3.5), X is also
a “Riemannian manifold”. Namely, for each w=X, we define the bilinear
pairing { , Do: TH, X TK,—~R by

2.12) (/=T 88, /=1 0Bpy).: — SX:ymzm”/(n!Vol(X)),

where 7, nze{neC”(X)RlS 0" = O} (==TK,) (cf. (14.2)) . (Note that this
X

pairing is independent of the choice of ).

(2.2) Let {p,|a<t=<b} be a smooth path in H. Recall that we have the func-
tion p €C*([a, b] X X)p defined by

(2.2.1) o(t, x) = px), (¢, x)Ea, )X X .

To elements Yr=vyr(2, x), p=2x(¢, x) in C=([a, b} X X)g, we associate {yr, 7))y
&C*([a, b))r by

(2.2.2) Cdry () = SX‘lf‘thu(%)/VOl(X) = (@1, 7eNe: »
where for each tE[a, b}, Y, and %, are the functions in C=(X)g defined by
(2.2.3) Vi =Pl xx and 9 = 9| pxx

via the identification of {t} X X with X,

(2.3) (i) For a piecewise smooth path ®&={p;|a<t=<bh} in H, we define its
arclength Lgth(®) and energy Engy(®P) as follows:
b

@31 Leth@): = (| Grogpavolyra = |, prorat,

(232)  Engy(@):={ (| @IVl = |, Ghedt

(i) Let ®={0,|a<t=<b} be a piecewise smooth path in K. We then define
the real numbers Lgth(®), Engy(8) by

(2.3.3) Lgth(8): = Lgth(®) and Engy(8): = Engy(®),
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where ®= {p,|a<¢<b} is the unique piecewise smooth path in 4 such that
0)0(¢g):0[ for all 2.

(24) We shall next define the corresponding ‘“Riemannian connection” of 4.
Fix an arbitrary smooth path ®={p,|a<¢<b} in 4. Using the notation of

(1) of (1.2), we define the real vector field 5D; on [a, b] X X by

(2.4.1) %: — 6/61‘—% 5 8(@)*($,0/02F+ 50/02") .

Note here that, though @ is in C*({a, b] X X)p, (instead of C=(X)g), we can still
define (g(®)P*) as the inverse matrix of (8a5+Pa5)- Now via the identification
of C=([a, b] x X)g with Tg([a, b], D*TH) (cf. (1.4.3)), we define

(2.4.2) Vo: Taise([a, 8], D¥*TH) — Tyix([a, 8], D*TH)
as the operator induced by g from the following commutative diagram:

Faire([a, 8], D*T ) = C=([a, B] X X)r

(2.4.3) wl 150;
Tu([a, b], ®*TH) = C=([a, b] X X) .

The operator V, (resp. g) is called the covariant differentiation on Ty ([a, b],
D*T ) (resp. C=([a, b] X X)g) along the path &= {p,|a<t=<b}.

DrrINITION 2.4.4. eC™([a, b]xX X)g is said to be parallel along =
{o,|a<t<b} if % ¥=0 in C=([a, 5] X X)z.

DerINITION 2.4.5. Let §€C=(X)g(==TIH,,). Then r=+(t, x)=C>([a, b]

X X)g is said to be a parallel translation of £ along ®={p,|a=<t=<b} if the
following conditions are satisfied:

1) "zb' ] t=a:§;
ii) A is parallel along ®.

Note that, for each £€C*(X)g, there exists a unique parallel translation of £
along @. In fact, denoting by g,:=exp(s g) (a—t=s=b—1) the local 1-param-
eter group of [a, 5] X X generated by Sgt’ one can easily see that

Y(t, x): = E(pry(ge-+ (8 %)), (3 %) E[a, B]X X,

is the unique parallel translation of £ along ® (where pr,: [a, 5] X X — X denotes
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the projection to the second factor).
We shall now show that our connection is compatible with the “Rie-
mannian metric” defined in (2.1) and (2.2).

Theorem 2.5. Let ®={p,|a=<t=<b} be a smooth path in Y. Then in
terms of the notation in (2.2) and (2.4), we have

& mde = (2 Ay D2l
for all yr, n€ C=([a, b] X X)g.

Proof. We first observe that, though @ is in C*([a, 8] X X) (instead of
C=(X)g), we still have the following notational analogue of (1.1):

Q@) = o p)"[n! : = (o++/—1 63 P)’[n!,
(et = 32 g(@)P*0%/02%02F, (cf. (2.4)),

where Q) (resp. [,) is regarded as a C* 2n-form on [a, ] X X (resp. an opera-
tor on C=([a, b] X X)g). 'Then

<< AL 77>>«»+((\Ir, "7>>w

2 ' 32 6(@)P (Patrst Para)t 1%( @)/ Vol (X)

4+ {5272 g(@)P (Panpt+ Bana)t ¥ Qe(@)/Vol(X)

X

S
|
| =270~ (OB — (O Vol(X)
|
I

+\ =27 (0u(Pn)—(Oe@)n—(Len)@)} 4 Q4( )/ Vol(X)

X

I

12 )+ Qe nnr ) Vol(X)
— ([ (@) Vol(X) = £ (g, 2, QED.

(2.6) In concluding this section, we define the natural “Riemannian con-
nection” of K. First consider a smooth path &= {p,|a<t<b} in H. Note
that, for an element W= {yr,|a <t =b} of Ty([a, b], ®*TH), the following are
equivalent:

i) ¥eTux(la, b], D*TH);

ii) the corresponding Y& C*([a, b] X X)g (cf. (1.4.3)) satisfies {yr, 1),=0
in C=([a, b])g (see (2.2.1) for the definition of @);

i) & T, for all t=[a, b].



236 T. MABUCHI

Now, the next observation is crucial to our definition of the connection on X.

Proposition 2.6.1. Let & be as above, and suppose that V= {Jr,| a <t <b}
ET([a, b, D*TH). Then V¥ €T ye([a, b], O*¥TH).

Proof. In view of the commutative diagram (2.4.3), it suffices to show
<<62t ¥, 13,=0 in C=([a, b])z. Obviously, 51%120 and {4, 1),=0. Then by
Theorem 2.5,

D d
( o o e = (b, 1)y =0,
as required. Q.E.D.

Fix an arbitrary smooth path ©@={0,|a<:=<b} in K. Recall that there exists
a unique smooth path ®={p,|a<t<b} in H such that §,=awp,) for all z.
Now, via the identification of H with X (cf. (1.3.5)), we have the operator

Vi: Taie([a, b], @*TJC) — Taie([a, b], @*TJC)
induced by V; from the following commutative diagram:

Taiee([a, 8], ©*TK) == Tyie([a, b], *TI)

(2.6.2) Val lV;a
Tueel[a, B], O¥TK) = Tyr([a, b], D¥T ).

Then one immediately sees that this operator V; does not depend on the choice
of w, (and depends only on {8,|a=<t=<b}).

3. Geodesics in H and K

In this section, we shall define the concept of geodesics in K (and also
in K) in terms of the “Riemannian connection” of §2, and then prove Theorem
3.5 which provides us with a typical example of an infinitely extensible geodesic
in K.

(3.1) (i) Let ®={p,|a<t<b} be a smooth path in . We denote by &
the element of Ty([a, b], ®*TH) which sends each t&[a, b] to @,. Then
@ is called a geodesic in 4 if one of the following equivalent conditions is satis-
fied:

(i-1) V;®=0 in Ty([a, b], D*TH);
(-2) g $=0in C*([a, b] x X) (i.c., ¢ is parallel along ®);

(-3) $=3 (@) Pups on [, B X X.
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(i) Let ®={f,|a<t<b} be a smooth path in K. We denote by © the ele-
ment of T'yi([a, 8], ©*TK) which sends each t€]a, 4] to é,. Recall that there
exists a unique smooth path ®={p,|a<t<b} in J{ such that ,=wp,) for
all . Now, O is called a geodesic in K if one of the following equivalent con-
ditions is satisfied:

(ii-1) Vi®=0 in Ty([a, b], O*TK);

(ii-2) @ is a geodesic in .

(3.2) Fix an arbitrary subset JI of H. Let v&Jl. Then a function 7 in
C=(X)g is said to be fangent to JI at v if there exists a smooth path {p,|—¢&
<t=¢&} in 4, for some >0, with the following properties:

i) @=v;

i) @l=0=n;

iii) @,J1 forall t&[—¢, €].
As a generalization of T and T.H; in (1.4), we now put

TIl,: = {p€C=(X)g|y is tangent to J7 at v} .

Let &= {p,|a=<t=b} be a smooth path in H satisfying @, 7] for all £. Then
Taiee([a, b], @*TJI) denotes the set of all

V(= {Yla=<t=b})ETuul([a, b], D*TH)
such that Jr,& T'Jl,, for all 2.

(3.2.1) J1 is said to be totally convex in 9 if every geodesic {p;|a<t=<b} in
H with @,, @, Tl always lies in Tl.

(3.2.2) J1 is said to be totally geodesic in H if for every smooth path {p,|a<t
<b} in M sitting in J, the operator V; preserves the subset T'yi([a, b], D*TJ1)
of Taise([a, 8], D*TH). If Tl is a finite-dimensional Riemannian C* manifold
(in terms of the metric and the smooth structure induced from those of %),
then one can easily show that JI is totally geodesic in 4 if and only if every
geodesic of the Riemannian manifold J7 is at the same time a geodesic of 4.

ReMArk 3.3. (i) By Proposition 2.6.1, J{ is totally geodesic. We shall
now show that 4 is totally convex: Let {p,|a<t=<b} be a geodesic in 4 such
that @,, p,EH. Then for every tE[a, b],

L 10,9) = (L6 10) 0 = (2 g, 1) 0 = 0.

Furthermore L(0, ¢,)=L(0, ¢,)=0. Hence L(0, ,)=0 (i.e., p,=H) for all
t<]a, 8.
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(ii) Let € 9. Suppose that both w, (cf. §1) and & are C* in terms of the natural
real analytic structure of X. Then for every n& C*(X)g, there exists a real analytic
function p=g(t, x) S C°([—€, E1X X)g, with £>0 sufficiently small, such that

a) plim=§,

b) @li-o=n, and

c) {p;| —EZt=E} is a geodesic in H,
where pr:=p|11xx ECY(X)r CE[—6, €]).

This is actually an immediate consequence of the fact that by Cauchy-
Kovalevskaja existence theorem, the equation

¢'; = 2] 8 ((P)gwd’wé)ﬁ

with the initial conditions @|,.,=& and ¢|,_,=7 has a unique solution p=g(#, x)
in C*([—¢&, €] X X)p for some £>0.

NorarioN 3.4. To each holomorphic vector field Y &T'(X, O(TX)) on
X, we associate a real vector field Yg:=Y-+Y. Recall that (V' —1 Y)g=]- Vg,
where ] is the complex structure of X. Let g be the Lie subalgebra of I'(X,
O(TX)) corresponding to the Lie subgroup G of Aut’(X) (see Introduction
for the definition of G). For each wE X, we put
L= {YEg|Lyg(0) =0},
po:=+v—1%,={V—-1Y|YEL},
where Ly (w) denotes the Lie derivative of w with respect to the vector field
Yz By writing o as oy(§) (for some £&.H), we have

L, =T(X, (TX)N V)l fev—1C(X)z},
b, = T(X, O(TX) N V()| fE€C(X)r} (cf. (1.5)),

(see for instance, Kobayashi [7; p. 94]).

Theorem 3.5. Let oKX and 0+=YeEp,. Put g,:=exp(tYyp (t€R).
Then {gfw|t<R} is a geodesic in K.

Proof. Fix 4. Note that there exists a unique smooth path {gp,|
a=<t=<b} in Sl such that gfo=wy(p,) for all t. By setting Z,:="V,,(®,), we have

(351) Lizoalod @) = doican o)) = V=108,
= 2 () (= 2 gr0)) = Lyl -

In particular, Z,—YeI(X, O(TX)) (cf. Kobayashi [7; p. 93]). Note that
pwo(%'):pg’fm:Ad(gt—l)pw- Hence for all t,
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Y = (Ad(gr") Y EPuyon T Vo ()| fECT(X)z} »
and in particular
Z—Ye{V,(f)| feC(X)rt NT(X, O(TX)) = Puyen -

In view of (3.5.1), it follows that
(35.2) Z,— Y €, 4oy NPuyion = {0}, (1E[a, b]) .
We now obtain

V=T 805,(= (/=1 009)) = 2 (Lyglonlp) (c£. (3:5.1)

= Ly p(v/—1039,) = /—100(Yrp,)

— V=1 00(Z) ey (cf. (3.5.2)) .
Hence (Q ¢) ()= 3 —(Z)) npr—C(#) for some function ()€ C([a,6]). Then

ot
by ¢,& 4, we finally obtain

d d .
0=210,9) = (4 (5, )
— (<<§¢, 1>>¢) (1) = C(2), (=R). QE.D.

Theorem 3.6. Let YeHYX, O(TX)) be such that Lyg(w)=0. Further-
more suppose that ®={p,|a<t=b} is a smooth path in Y such that Y pp,=0
in C*(X)g for all t. Then

D D
Y (_ ~ Dy
w5 ¥) = 5 (Yut)
for all yp=C>([a, b] X X)g.

Proof. We here use the notation of (1.2), (2.4) and (2.5). On [a, b)) X X,
we put

o't = (1/v/—1) 3 g(9)?*(8/02") A (8/0F)
and by (8¢, »”) (resp. (09, ")), we mean the contraction of 8¢ (resp. 9p) with
w"’. Then the covariant differentiation %)E along the path {p,|a<t=<b} is written

as

D_ 8., vV—1i5: 030 o
§_§+—T((6¢,m) (0p, ")) .

Since [:YR, a%:l:O, the proof is reduced to showing
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[Yr, (06, 0")] = 0 = [Y, (3¢, ")] -
Note here that
Ly o)) = Ly gloo+v/ "1 90(Yap) = 0.
Hence Ly (0")=0. Therefore
[YR’ (57’: “’v)] = LYR((6¢) wv)) = (LYR(5¢)’ mv)
~ 2 B(Yap)h, 0*) = 0.
ot
Similarly, we have [Yg, (0@, »")]=0. Q.E.D.

RemaRk 3.6.1. Let K(CG) be the same as in Introduction, and assume
that we have chosen a K-invariant w, Let %, J%, K¥ be respectively the
set of all K-invariant elements of %, #, K. Then almost all results in this
paper are reformulated in terms of these K-invariant objects. Theorem 3.6
above assures the validity of such K-invariant versions of our results.

4, Torsion and curvature of the natural connection

The main purpose of this section is to prove (0.2) of Introduction. We
shall also show that the torsion of our connection is zero.

(4.1) Fix an arbitrary point £ of . Let z;, ,€C(X)g (==TH;). Consider
a function
@ = @(s, t, x)&C=([—¢&, E]X[—¢, E]X X)r
such that the following conditions are satisfied:
1) @yt : =P (s,0=(s,,1p belongs to H whenever s,, [, €].
i) @ge=E.
dp

1ii) a—f (s, 0~0,0=m1 and s | s,0=t0,0 =2 -

(Such a @ always exists, because we can choose @(s, #, &)=E&(x)-+sn;(x)+tn,(x),
(s, t, x)[—§, E] X [—€, E] X X, with 0<€«1.) Note that, by formal definitions,
the torsion

 THRQTH —- T H
and the curvature

" R: THQRTIH — Hom (T, TH)

of our connection on .4 are given by

D (3 D
7(771, 772)5 = {g <£> - 5; <%%>} | (s,0)=(0,0) »
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DD_DD

R(’h, 7]2)5 = (68 ot E 6s> ,(s,t)=(0,0) ’

at the point £ Since K is identified with the totally geodesic “submanifold”
A in H (cf. (i) of (3.3)), the torsion and the curvature of our connection on K
is just the restriction of = and R above to THKQTK(= THR TJiZ). We now

have:

Theorem 4.2. 7=0, i.e., 7(n, 7,)s=0 for all n, 7, €C*(X)g and EE Y.
(Thus our connection on 9l is the unique one satisfying both v=0 and (2.5).)

Theorem 4.3. R(n;, 7:)¢(ns)=[[m1s m2ls> nsle for all my, 92y 9 EC™(X)g and
all Ee 4.

Proof of (4.2). We denote by (++)], the restriction of (-++) to (s, £)=(0, 0).
Then

= (2(32)-2(2)

= {8/05—27" 3 g(0)P*((0/05)a0/0=" - (85p/05)50/2")} (Bp /1) |
— {0/01—2" 32 g()P*((050/01),0/02"-+(840/0)0/02)} (550/05) L
=0. Q.E.D.

Proof of (4.3). Fix €4 and x,&X arbitrarily. We then choose holo-

morphic local coordinates (2!, -+-, 2") centered at x, such that

8(E)ap(x0) = 8,5 and d(g(£),5) (%) =0

for all ¢, B {1, 2, -+-, n}. Note that, when evaluated at x,,

wel (e

= T\m)s
os leo-wo ds >s~71(s,t)=(o,o) (7)o 5

ool _
ot len=-t0 (m2)es -

Hence, at the point x,,

DD DD
R(’?n 7]2)& = (E ’a—t_gt*g
= 471 30 1 {(02)9(711)70/05" 4 () 5(1)450/02"}
— 471 33 3 {(711)a(72)920/027 4 (7,) ()7 0/02"}
+[271 3 g(5)P*(1,).0/02F, 271 33 g(E)™(2)50/027]
+[271 3 g(8)P(11)50/02", 27 33 g(E)™(02)40/027]
= [Wi(n), We(n)] = We([m, 7ale) (cf. (1.5)) .

) | s.0=0,00
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Thus we have

R(n1, 2)e(n3) = {AWe[n1, 72]e)} ()
= [l mle> 7ale  (cf. (1.5.1)) . Q.E.D.
DErINITION 4.4. Fix an arbitrary point £ of 4. Let 7, », be R-linearly
independent elements of C=(X)g(==TH:). Regard P:=Rvr;-+Rn)r, as a 2-plane

in T We then define the sectional curvature K(P); of 4 at & along the
plane section P by

. '—<<R(’71’ "]2)&(771)> "72>>£
4.4.1 K(P):: = .
(h41) e = s s mad— (s ma))?

Theorem 4.5. At each point £ of H,

K(P)e=0

for every 2-plane P=Ry+ Ry, in T (where »y, 7, C(X)g are R-linearly
independent). Furthermore, K(P)¢=0 if and only if [7,, 7,]¢e=0.

Proof. In view of (4.3) and (4.4.1),

_ KD el males made
K(P): = -
( )5 <<77b ”]1>>E<<772’ 7]2»5"'(«771, 772>>£)2

— — D> meles [0 ol de (cf. (1.5.3)).
Coms 200 6Com2s m2de— ({1 72De)?

Since the denominator is always positive, we have K(P)¢=0. Clearly, K(P);
=0 if and only if [%,, %,]e=0. Q.E.D.

RemMARk 4.5.1. Recall that X is identified with the totally geodesic “sub-
manifold” & of J{. Hence by (4.5) above, the nonpositivity of sectional cur-
vature is true also for XK.

5. Convexity of the K-energy map ¢

In this section, several facts related to the convexity of p will be given.
We begin by showing:

Lemma 5.1. For every smooth path {p;|a<t=<b} in H, we have, for all
t, the following:

(5.1.1) (Pa % o (@))e, = — (A VOlX)IBV (St wntony

L wenlo) = ~(2 3, olp) =0l

+(4/ VU X))V ()| 220x oo »

(5.1.2)
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D . D . w“ S, .
where = 1 =(67 ¢>> O =9, — 2 g(P) " (P)a(P)s -

Proof. From a straightforward computation, one obtains
0 . e I
5"(?’:) = —(e)’p—<V/ —1 809y, Ric(p,)Dy,
in terms of the notation of (1.6). Hence
D .
&‘7(@) = —ReL,p, .

Now by (1.6.2) applied to £=¢, and {r=g,, the required identity (5.1.1) im-
mediately follows. For (5.1.2), recall that

4 wodo) = —(81 ol@)—aihus (ck (13.1).

Then by Theorem 2.5,

gz ploo@2) = —( é’% T O e 5’% (@) e -

Together with (5.1.1), we finally obtain (5.1.2). Q.E.D.

In view of [9; (3.2)], the following is an immediate consequence of (5.1.2):

Corollary 5.1.3 (cf. [9; (6.3)]). If w is a critical point of u: K—R, then
the inequality

42
Ez u(ﬁ,)l,,ogo

holds for every smooth path {0,| —E<t=<&} in K such that 6=o.

We shall now show that £ is totally convex in X (see Introduction for the
definition of &):

Corollary 5.1.4. Let {0,la<t=b} be a geodesic in K such that both 0,
and 0, belong to &. Then there exists a C™ map

[a, 8] =2t - g, Aut’(X)

such that 0,=g¥0, for all t, and hence all 0, belong to £. In particular, £ is
totally convex in K.

Proof. For each t&[a, b], we write 8, as w(®;) for some unique @,& 4.
Then by (5.1.3),

:11722 w020 (tela, b]).
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On the other hand, by 4,, 6,€E€, we have

dit 1(8)11me = ,% w(8es = 0.

Hence u(8,)=C for some CER independent of ¢. In particular, in view of
(5.1.2),

d* .
= a2 () = Vol(X) I(X) 1BV %2x woleny  (Where Vy: = o(P1))

and therefore V,&T(X, O(TX)) for all t€[a, b]. Note that we have the unique
smooth solution {y,&Aut’(X)|a=<t=<b} of the equation

Syit= -2V, (a=t=b)

with the initial condition y,=idy. Now, for all ¢,

‘(y 0,) = y¥(yr 1)*hmw+hmy (6t+e('9—0t)

— YH(—2Ly (0)+¥H(6) = yH(—2Ly (0)+/ —1 5Bp;)
= y¥{—2d(iy,0)++/—1 809} = 0.
Hence y¥0,=y%0,=0, (t<]a, b)). Q.E.D.

REMARK 5.2 (see also Calabi [4] and Bourguignon [3]): Suppose that
there exists a critical point £& 4 of the functional

(5.2.1) C: 94— R, ¥ C): = {a(¥), o(¥)Dy .
We now put @;:=E+to(£) (—EXt=¢€). Then by (5.1.1),
(4/Vol(X))IIBV (e (ENI22x, mo(E))

- <<<p,,;’ (@) e = (o (), a(¢,)>>¢,.,_o

2 it |t oo (@), o(@)de, = 0.

Thus V(o (§))eT(X, O(TX)). Hence we obtain the following well-known
fact: either o(£) is constant on X or 0V(a(§))e(X, O(TX)).

Until the end of this section for simplicity, we write u(wy(®)) as u(p) for
all pedl. Note that u(p)=M(0, ) in terms of the notation of (1.3). Let
dp be the “1-form” on H defined by

() = d% w(#) »
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where {@,|a<t=<b} is an arbitrary smooth path in 4{. We shall now show
the convexity of u.

Theorem 5.3. u: H—R is a convex function, i.e., Hess p is positive semi-
definite everywhere on 4.

Proof. Fix an arbitrary point £ of H. Let n&€C~(X)g(==TH). Choose
a smooth path {p,| ~€6<¢<&} in H such that @,|,.,=7 (say, let p,=E+17).
Then in view of (5.1.2), we obtain
d? D .
(3.3.1) (Hess p)(n, 7) = pr P(P)ig=0— (dll')i((g Pi)1i=0)

= (4/Vol(X)|I0Ve(n)llZ2¢x ag(en =0 - Q.E.D.

RemMARK 5.3.2. Since X is identified with the totally geodesic ‘‘submani-
fold” 9 of J (cf.(3.3)), the above theorem shows that u: K—R is also a convex
function,

RemARk 5.3.3. Fix an arbitrary point & of 4. Let 5, 9, C*(X)p(==2T Hs).
Then from (5.3.1), one easily obtains

(Hess p)e(m1, 7,) = (4/Vol(X)) Re(aVE(’h), 5V§(’72))L2(X,wo(5)) .

Remark 5.3.4. (cf. Bando [1]): Let {0,|—&=t<&} be an arbitrary
smooth path in X such that §,&&. Then (5.3.1) shows that (d%/d#?) (u(6,))11=0
=0 and is >0 whenever the path {6,} is transversal to the orbit {g*¢,|g=G}
(={a*0,}acAut’(X)}) at t=0 (see Introduction for the definition of G).
Therefore each connected component of & forms a single G-orbit in £. (This fact
was first obtained by Calabi [4] with an effective use of the functional C: X—R
instead of that of u).

6. Natural Riemannian structure of &

Throughout this section, we assume £=¢ and fix an arbitrary component
&, of £ Recall that &={g*0[g&G} for all 88, (cf. (5.3.4)). We now
endow & (and hence &) with the natural Riemannian metric induced from
the one on K (cf. (2.1)). &, is then a finite-dimensional Riemannian manifold
diffeomorphic to G/K, and for every smooth path ®={f;|a=<t=<b} in &,, its
arclength Lgth(®) (both in terms of the metric of &, and of X) is given by

Leth(0) = [ 1| (Boraupivol(xyd,

where each @, is the unique element of . such that f,=wy(p,). Note that
Lgth(®) does not depend on the choice of w, (and depends only on 8).
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DeriNtTION 6.1, A bijection A: K — K is called an isometry of K if for
every smooth path @={f,|a=<t=b} in K, MO):={r(0,)]a=t=b} is again
a smooth path in K with Lgth(\(®))=Lgth(8).

Theorem 6.2. For each geAut™(X), the mapping KDw—g*wEK is
an isometry of K.

Proof. Let ®={0,]a<t<b} be a smooth path in KX and we write 8, as
o @) (@, EH) for all £. Consider the function 7, in % uniquely determined
by the properties g¥*w,=w,(y,) and ng—l—g*%eé’?. We put r:=75,+g%,
(a=t=<b). 'Then g*0,=awy(y,). Furthermore

L0 4 = g ab{ S () Vol (X)} dt = Sb SX{(g*¢:)g*(ﬂo(¢’:))/Vol(X)}dt
- gb L {0 ()| Vol(X)}dt = L(0, @) = 0.

Hence ¥, . We finally obtain
b
Lgth(g*@) — | 1 (r0ur Vol (X0y#as

=[] (e pre @ volXr e dt = Lgth(®)
Q.E.D.

Corollary 6.2.1. The Riemannian manifold E, is G-equivariantly iso-
metric to the Riemannian symmetric space G|K endowed with a suitable metric, and
furthermore, Aut®(X) acts isometrically on &,

Proof. Since K is a maximal compact subgroup of the reductive alge-
braic group G (cf. Introducion), it follows that (G, K) is a Riemannian sym-
metric pair (cf. Helgason [6; p. 209]). 'Then in view of (6.2), the homogeneous
space &, has a natural structure of a Riemannian symmetric space (cf. Helgason
[6; Proposition 3.4, p. 209]). Q.E.D.

Theorem 6.3. &, (and hence &) is totally geodesic in K.

Proof. Fix an arbitrary element o of &, and let b, be as in (3.4). Since
&, is Riemannian symmetric, every geodesic ¥(#) in &, through o (=v(0)) is
written in the form

v(t) = (exp (tYR))*o  (tER)

for some 0=+Y &p,. This is at the same time a geodesic in JK by Theorem
(3.5). Q.E.D.

(6.4) Recall the decomposition of & into connected components:
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&€ = U ;e; &; (disjoint union) .

We shall now associate, to each &;, a Euclidean lattice (f, A, (( , ));) (which is
uniquely determined by &; up to isometry) as follows:

Let  be a point of &;, and T an arbitrary maximal torus in the isotropy
subgroup K, of G at w. Put {:=Lie 7. We then have the exponential map

exp: t - T(=t/A)

where T is written as t/A for some lattice A in t. In view of the natural inclu-
sions

V-1tV —1t, = p, = T(G/K)a = (T€).CTK,,

the pairing {, ),: THXTH,—R (cf. (2.1.2)) induces the positive definite
bilinear form (( , ));: txXt—R by

(o it =4V —11, V—11)s (1, EY).

We shall now show that, up to isometry, our Euclidean lattice (t, A, ((, )))
does not depend on the choice of w and 7. Let o' €&;, and T be a maximal
torus in K,». Putt':=Lie T'. Then there exists an element g of G such that
i) g*o=0" (ie, R(w)=0"), and
i) T'—g Ty,
where R, denotes the isometry of K sending each =K to R (0):=g*0c K.
In view of the commutative diagram

S exp
TK, DV -1t =t— T (=t/A)

(R‘)*l Ad(g-‘)l lAd(g-l)

THyov Tt =t 25 T (=1,

we easily conclude that Ad(g™!) induces an isometry of the Euclidean lattices
A (5 D)y (4 A (5 ))F) considered.

RemaRrk 6.4.1. Let K be the same as in Introduction, and choose 2 0 EE;
such that K,=K. Recall that G/K is diffeomorphic to RY (for some N) and
hence simply connected. Consequently, &;(=G/K) is written as a product

Mo XM X+ XM,

of Riemannian symmetric spaces, where M., is of Euclidean type, and M, (1=v
<r) are irreducible and of noncompact type. Now the K-actions on M,’s
induce the natural group homomorphism

v: K — I}, Isometry (M,) .
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Note that the identity component of Ker 7 is the compact torus which is maxi-
mal in the center Z(G) of G. Using the notation of (6.4), we consider

Yip: T — Ty (:=%(T))CII;-, Isometry (M,) .

Then for each »=1, there exists a toral subgroup 7T, of Isometry(J,)
such that To=TyXTyX «+ X T,CTII;-, Isometry(M,). Put t,:=Lie T, and
(5 Nivi=(>» ity (0=v=r), where we regard each t, as a Lie subalgebra of
t via the natural isomorphism

tex(Lie(Ker v))®Pt, = (Lie(Ker v))Pt,Pt,B--- B, .

Let A be the lattice of 1, obtained as the image of A under the natural linear
map t—1t, (=t/Lie(Ker v)). For each »=0, corresponding to the exponential
map

exp: i, — T, (=1,/A,),

we obtain the lattice A, in t, as its kernel. It then follows that
i) A is a sublattice of A, of finite index, and

11) (tO’ AO’ (( ’ ))i,O)zea;:l (tv: A\n (( ’ ))i,v)-

ReMARK 6.4.2. In a forthcoming paper [10], we shall make some studies
and computations of these Euclidean lattices.

7. Appendix

As in the case of “finite-dimensional Riemannian geometry”, Theorems
(2.5) and (4.2) allow us to obtain variational formulas for energies of paths in
H (cf. (7.2), (7.3)). We shall also show that there are no conjugate points on
any geodesic of #. (In this appendix, we restrict ourselves to a very simple
situation in order to avoid tedious routine works caused by going too much
general.)

DeriniTION 7.1, Let ®={p,|a<t<b} be a smooth path in .
(1) Y=v(u; t, x)C([—¢, €] X[a, b]x X)p is called a 1-parameter variation
of @ if the following conditions are satisfied:

(i-1) A=, for all t=(q, b],

(1_2) Vu,a =P and Yy 5 =Ps for all uE[—E, 8]7
where +r, ,&C=(X)g denotes the function defined by

A, (%) = Yr(u; t, x) (xeX).

(i) Y=(u, v; t, x)C([—¢, E]X[—¢, &]X[a, b] X X)g is called a 2-param-
eter variation of @ if the following conditions are satisfied:
(ii-1) Ay, =g for all t&][a, b],
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(i-2) VYryp.=@, and ¢, , ; =, for all u, vE[—E, €],
where 4, ,,& C~(X)p denotes the function defined by

Vo0, ()="(¥, v} 1, ) (xeX).

Theorem 7.2 (First variational formula). Let &= {p,|a=<t=<b} be a smooth
path in Y, and let " =(u; t, x) €C=([—E, €] X [a, b] X X)p be a 1-parameter
variation of ®. Then

(7.2.1) (Engy({«lmla<t<b} lu=o = — S<au lu=0 6t 7.0

Proof. In view of Theorems (2.5) and (4.2), it follows that

oy Db
(7:22) _S o Y ot a:Ir>¢ y

Ou »

- S:{ ( 2;1, ; g;p>lp ,) <o (%> >~p,, ,}
Gt s VG ), S0
“LGE). D7 (G ).
Evaluating this at =0, we obtain (7.2.1). Q.E.D.

Theorem 7.3 (Second variational formula). Let ®={p,|a<t=<b} be a
geodesic in H, and let

Y = P(u, v; t, x)EC([—E, E] X [—E, E]X[a, b)] X X)p

be a 2-parameter variation of ®. Then

(7.3.1) % 66 (Engy({dryv,: | a=t=8}))it4,0=00,0
~ [ Zw—r@, W) a1,
where Wi: *g%uu 0=(0,0 sC™(a e]x Xz,
=0 €C([a, 51X X)x,

00 (2,0)=(0,0)

D? D/D
d —W:=~—(— )
and  ZaWi=a\er
Proof. Since —(6\9):226—% (cf. (4.2)), and since R(%, %)2
ot* \ou ot ou ot ot Ou
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DD _D P—, it follows that

ot ou Ou Ot
168 wG) -G 22*”)(2%”)%,,,_,&

S<6«[r D D 8\[/‘
Bv+ Ou Of ot ‘I’unl

Evaluating this at (%, v)=(0, 0), we obtain

(732) ~{<w, Zwi—re, W) ar

_ D D 6\#)
- Sa<W <6u ot ot I(u,v)=(0,0)>¢dt.

On the other hand, in view of (7.2.2),

7o LG 520 ) = LG o

and therefore, by (2.5),

Zaal- ot 520, %)

uvt

(R Doy g D Do,

ou 0v> Ot ot 67)7 Ou 0t 6t
We evaluate this at (%, v)=(0, 0). Note that ® is a geodesic. Then

18 (1@ oy )
(733) 2 oudv S <6t » Ot >‘P..u 1Ca,5)=(0,0)
b D D oy
= —\ LW, .
Sa< (au ot 0t )|(u,v)=(0,0) >¢dt
Comparing (7.3.2) and (7.3.3), we obtain (7.3.1). Q.E.D.

DEerFINITION 74. Let @ = {p,|la<t=<b} be a geodesic in 4 and let
a', bR be such that a<a’<<b’<bh. Then =4, x)=C=([a’, b'I1XX)g
is called a Jacobi field along @ if
D? . .
D =R, ¥
t
Two elements @,, @, of H are called conjugate along @ if there exists a non-
trivial Jacobi field r=+(t, x)C>([a’, '] X X)p along @ such that yr,_,=0
and Yr=py=0 in C=(X)g.
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Theorem 7.5. Let &= {p,|a<t=<b} be an arbitrary geodesic in 9. For
any a’, b' with a<a’'<b'<b, ¢, and @y cannot be conjugate along P.

Proof. Suppose that {r=r(¢, x)&C=([a’, '] X X)p satisfies the equation

D, . .
ﬁwlr— R(®, ¥)ep

with the boundary condition

Wipew =0 and Yoy =0  in C~(X)g.
Then <'aD7 ¥, ¥ &C=((@’, ¥\ is a monotone increasing function in £, because
L2 vy, = ) 42w Dy,
= (R, Weps Wo+Lpr s VD,
<—\p, —11»> >0  (cf. (4.5).
Note that
iy, =0=LTw v

Now, on the whole [a’, b'],

elt=y

d _ oo D _
E{«“”" ’\I"»fp - 2<6t "1’: "I’>v =0 .

Thus we conclude that

<<"l’" "l"»v = <<1I"7 ‘l">>¢|t=a’ =0,
ie., w=0 in C~([a, b]X X)p QED.

8. Conclusion

As a final remark to the whole paper, we should say that some of the ideas
given above are valid also for Riemannian analogues in conformal differential
geometry. In fact, Bourguignon [2] independently studied similar topics
(“generalizations of Kazdan-Warner’s invariant”) from different viewpoints.
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