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Introduction. We are concerned with non-negative integers (numbers),
collections of numbers (sets) and collections of sets (classes). The intuitive
idea of an effectively generated set is made more precise by the notion of a
recursively enumerable set. Similarly, one can make the intuitive idea of an
effectively generated class of sets more precise by the notion of a recursively
enumerable class. This was first done in [2] and [16]. The two main objectives
of our paper are:

(1) to extend the results concerning recursively enumerable classes ob-
tained by Rice in [16].

(2) to start a classification of recursively enumerable classes which
parallels the classification of recursively enumerable sets initiated by Post in
[15].

A mapping of numbers (or ordered w-tuples of numbers) onto numbers is
called a function. Numbers and functions are denoted by small Latin letters,
sets by small Greek letters and classes by capital Latin letters. 'a — S' stands
for the set of all numbers which belong to a, but not to ft, while 'A—B'
stands for the class of all sets which belong to A, but not to B. We denote
the range of the function f(x) by 'pf(x)' or 'pf. If a is the range of the every-
where defined function f(x), we say that a can be generated by f(x). Let
g(n, x) be defined for every ordered pair of numbers and let A be the class
of all sets which occur at least once in the sequence pg(0, x), pg(l, x), • • • .
We say that A can be generated by g(n, x).

A set is recursively enumerable (r.e.) if it is empty or it can be generated
by a recursive function of one variable. Similarly, a class of r.e. sets is re-
cursively enumerable, if it is empty or consists only of the empty set, or the
class of its nonempty members can be generated by a recursive function of
two variables. Let 'F' stand for the class of all r.e. sets and 'Q' for the class of
all finite sets. Then Q is a proper subclass of F and it is easily seen that both
F and Q are r.e. classes [2, T2.2].

A set is called decidable or recursive if there exists a recursive procedure
which enables us to test membership in the set, i.e., if its characteristic func-
tion is recursive. A decidable set is said to have a solvable decision problem,
and an undecidable set an unsolvable decision problem. The class of all
recursive sets is denoted by '£'; this class properly includes Q and is properly
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included in F. A set in F — E has therefore an unsolvable decision problem in
spite of the fact that it can be generated by a recursive function. A class of
r.e. sets is called decidable, if there exists a recursive procedure which enables
us to determine for any given r.e. set whether it belongs to the class. To make
the meaning of'given'more precise we use a sequence o>o, Wi, • • • in which all
r.e. sets are effectively generated. We now consider a r.e. set a as given if
we know a number i such that a=co,-. For every subclass 5 of F we define

OS = [n\ un GS}.

The class 5 of r.e. sets is therefore decidable if and only if the set 05 is recur-
sive.

From now on the word "class" will only be used in the restricted sense of
"class of r.e. sets" and capital Latin letters will always denote subclasses of
F. The empty class and the class F itself are called the trivial classes. Rice
proved in [16] that the only decidable classes are the two trivial ones. In
particular there is no recursive procedure for testing whether any given r.e.
set is finite; in other words, the set 6Q is not recursive. In his 1944 paper [15]
Post discussed the notion of the degree of unsolvability of an unsolvable de-
cision problem and he raised the question whether the decision problem of
6Q is of higher degree of unsolvability than that of any set in F—E.

§1 contains a summary of concepts and results which will be used in the
rest of the paper. A short proof of Rice's theorem is given in §11. In §111
we obtain lower bounds for the degrees of unsolvability of 05 for certain
choices of the class S; we also determine the degree of unsolvability of 6Q.
The sets a and /3 are called separable if they can be separated by r.e. sets. The
intuitive meaning of "<x and /3 are separable" is that when restricted to the
union of a and /3, the decision problem of a is solvable. The theorem that
every nontrivial class is undecidable can now be phrased as follows: the sets
8S and 6(F — S) are not separable for any nontrivial class S. In §IV some
conditions are discussed under which the classes S and T are such that OS
and OT are separable. In §V a topology is imposed on the class F by specifying
certain of its subclasses as open; F turns out to be a connected space when
topologized in this manner. Let us call a mapping $> from F into itself an
effective operation on F if $(co„) = w/<„) for some recursive function f(n). It is
shown that every effective operation on F is continuous. This fact enables
us to give one more proof of the theorem that F has no nontrivial decidable
subclasses. The last two sections deal with the classification of classes. A class
A is called productive if given a r.e. subclass 5 of A one can effectively find a
set in A —S, i.e., a witness to the fact that S is properly included in A. Pro-
ductive classes are considered in §VI; as examples of such classes we mention
E — Q, F—Q and F — E. In §VII r.e. classes are classified in terms of the na-
ture of their complements in F.

I. Preliminaries. The sum (i.e., union) of two sets (or classes) is denoted
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by '+' and the product (i.e., intersection) of two sets (or classes) by '■' or
simply juxtaposition. 'C' stands for inclusion and 'C+' for proper inclusion.
In the composition of two or more functions association is to the right unless
otherwise indicated. For example, 'fgh(x, y)' means the same as 'f(g(h(x, y)))'.
The abbreviations 'pf, '£)'. 'E', 'F, 'a-ft', 'A-B' were explained in the
introduction.

Notations.
o = the empty set,
e= the set of all numbers,
(a0, Ci, • • • ) =the set consisting of a0, Oi, • • • ,
[a0, ai, • • • ] = the class consisting of ao, oti, ■ • ■ ,
a''= {x | x (£a},
A'={cr'\aEA},
5/= the domain of/,
j(x, y) =x + (x+y)(x+y + l)/2,
k(n) = (px)(3y) [j(x, y) =»],
l(n) = (/uy) (3x) [j(x, y) = n ].
The functions j, k and / are primitive recursive; j maps the collection of

all ordered pairs of numbers one-to-one onto e, while k and I have the prop-
erty j(k(n), l(n))=n.

We recall that both E and F are closed under union and intersection; E
is closed under complementation, but F is not; EE+F. The most important,
relation between E and F is: aEE<r+aEF&a'EF. It follows that F—E con-
sists of exactly those r.e. sets whose complements are not r.e. This led Post
in [15] to classify the sets in F — E in terms of the manner in which their
complements deviate from recursive enumerability.

Proposition 1.1. There exist primitive recursive functions r(x) and m(n, x, y)
such that the partial recursive function of two variables

?»(*) = r(py)[m(n, x, y) = 0]

has the two properties:
(1) for any partial recursive function f(x) there exist infinitely many num-

bers n such that f(x) =qn(x) and given the recursion equations defining f(x) one
can effectively find an infinite r.e. set of such numbers n,

(2) qo(x) is nowhere defined, i.e., 8q0 = o.

Proof. This is an immediate corollary of a result due to Kleene [7, p. 330,
Theorem XIX].

There are obviously denumerably many pairs of primitive recursive func-
tions r(x) and m(n, x, y) with the properties mentioned above. From now
on, however, we shall use 'r(x)' and 'm(n, x, y)' for one specific pair of such
functions and 'qn(x)' or 'q(n, x)' only for the partial recursive function
r(py)[m(n, x, y)=0].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Notation. u„=pqn.
It follows from Proposition 1.1 that {«»} is a sequence of r.e. sets in which

every r.e. set occurs infinitely many times and in which w0 is the empty set.
Notation, k = \j(x, y) | xGo>y}.
The set k will be referred to as the complete set. It is readily proved [cf.

15, p. 295] that this set belongs to F—E.
Definition. The condition $(x, y) is called recursive (recursively enumer-

able) if the set {j(x, y)\$(x, y)} is recursive (respectively r.e.). The condition
^(x, y, z) is called recursive (recursively enumerable) ii the set

{jii(X; y),z)\ *(x, y, z)}

is recursive (respectively r.e.).

Proposition 1.2. There exists a recursive condition T(x, y, z) and a r.e.
condition A(x, y) such that

x G o>y «-* (3z)T(x, y, z) *-* A(x, y).

Proof. Let k be the range of the one-to-one recursive function h(x). Ab-
breviating ./'(*! y)=h(z) by 'T(x, y, z)' and (3z)T(x, y, z) by 'A(x, y)' we see
that r and A satisfy the requirements.

Let us assume that a one-to-one recursive function h(x) ranging over k
is specified once and for all. We agree to use the letters T' and 'A' only for
the conditions defined in terms of h(x) as in the proof of Proposition 1.2.

Definition. Let f(x) be a partial recursive function, a a r.e. set and
$(x, y) a r.e. condition. The number n is called an index oi

f(x) iif(x)=qn(x),
a ii ct=a„,
$ if \j(x, y)\$(x, y)} =«„.

Proposition 1.3. Given any (index of a) r.e. condition $(x, y) one can ef-
fectively find an infinite r.e. set of numbers k such that

(1) * G «*«-» *(*, *)•
Added in proof. The proof given here is incorrect. However, it is easy to

give a correct proof using (1) of Proposition 1.1 above, and [13, p. 104,
Theorem 15].

Proof. Given an index of the r.e. condition 4> one can effectively find a
number k such that (1) holds, say kQ by [13, p. 101, Theorem 8]. One can
now obtain an index of the r.e. condition $(x, y)&y>k0 and therefore also a
number k such that xGiVk<-&(x, h) & k>ko, say k\. Continuing this procedure
one obtains a strictly increasing recursive function kn such that

i G pkn —* [x G w« +-* Hx, *)]•
Corollary. Given any (index of a) recursive function f(n) one can effec-

tively find an infinite r.e. set of numbers k such that «*=w/(4).
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Proof. Take $(x, y) =A(x, f(y)).

Proposition 1.4. There exists a partial recursive function p(n) such that

(1) p(n) is defined,
8qn ?* o—> ■ (2) qPw(x) is a recursive function,

(3) pqPtn) = P?».

Proof. For any partial recursive function f(x) defined for at least one value
of x one can effectively find a recursive function with the same range as/(x)
by [4, p. 136, Proposition A]. The desired result follows by Proposition 1.1.

Definition. The sequence {«„} of r.e. sets is recursively enumerable ii
an=ft)/[„) for some recursive function/(rc). A weak array is a r.e. sequence of
nonempty finite sets; the sets a0, tti, • • • are the rows of the array. The
weak array {«„} is discrete if am and <xn are disjoint for mp^n. A weak array
{an} is an array, if the cardinality of an is a recursive function of n.

It is readily seen that the weak array [a„ \ is an array if and only if there
are recursive functions a(n, x) and bn such that for every n, a(n, 0), • ■ ■ ,
a(n, bn — l) is the enumeration according to size of \an}■ A simple example
of a weak array which is not an array is as follows. Let OEctEF — E and
an — {x\xE<x&x^n}. Then {«„} is a weak array and y belongs to a ii and
only if y belongs to oty. Since a is not recursive, {«„} cannot be an array.

Notation. 0 = empty class of sets.
Definition I. The class A is recursively enumerable ii either 4=0 or

A = [o] or there is a recursive function fn(x) of n and * such that

a E A - [o] <-> (3n)[a = pf„].

Definition II. The class A is recursively enumerable if there is a r.e. set
a such that A = {tox\xEa}.

Proposition 1.5. The two definitions of a r.e. class are equivalent.

Proof. Note that
O = {ux\xEo}, [o] = {o,x\xE (0)}.

Thus 0 and [o] are r.e. according to both definitions. Henceforth we assume
that A — [o] is nonempty. Let A be r.e. in the sense of Definition I, say
A — [o] = [pf0, pfi, • • • ] for some recursive function f„(x). By Proposition 1.1
there is a recursive function g(n) such that fn(x) =qg(n)(x). Hence A — [o]
= {«z| xEpg} and A is r.e. in the sense of Definition II. To establish the con-
verse we assume A = {c0x|xEct} for some r.e. set a. The set

P = [n\ccn r=o}  = [n\ (3x)(3y)[qn(x) = y]}

is clearly r.e. Thus A — [o] = [ccx\ xEotft), where aft is nonempty and r.e. Let
h(n) be a recursive function ranging over aft and p(n) a partial recursive
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function with the properties listed in Proposition 1.4. Then

a G A - [o]<^ (3n)[(7 = w4(B)]

<-> (3n)[o- = pqh(n)(x)]

<-> (3n)[<r = pqPHn)(x)],

where qpht,n)(x) is a recursive function of n and x. Thus A is r.e. in the sense
of Definition I.

Notations. P= {a\a'GQ},
L(n) = f cr| nGaGF},
L(a) = \o\ctGoGF},
K(a)={a\crGa&aGF}.

Proposition 1.6. The following classes are r.e.
(1) 0, F, E,
(2) every finite class,
(3) L(a) and K(a) for any aGF.

Proof. (1) 0 is r.e. by Definition I, F is r.e., since F= {o)x\xGe} and E is
r.e. by [2, p. 82, T 2.2].

(2) Left to the reader.
(3) There exist recursive functions/(n) and g(n) such that <*>/(„) = a+&>„

and w0(n) =«•«„. Hence

L(oi) = {cix | x G pf},       K(a) = [ux | x G pg[ ■

Proposition 1.7. (1) There exists an array {p„} in which all finite sets
are enumerated without repetitions.

(2) There exists a recursive function fn(x) which is strictly increasing for
every n such that P is enumerated without repetitions in the sequence [ p/„}.

Proof. (1) See [2, p. 82, T 2.2] and [17, p. 304].
(2) From (1).
Henceforth we shall use '{pn}' for a specific array which enumerates Q

without repetitions such that po — o.
Definition. The sequence \A„} of classes is recursively enumerable if

there is a recursive function/(n) such that-i4n= {cox\ xG^fm)} ■
It is readily seen that the sum of all classes occurring in a r.e. sequence of

r.e. classes is also a r.e. class. Thus the sum of finitely many r.e. classes is
again a r.e. class. We shall see in §VII that the product of two r.e. classes is
not necessarily a r.e. class.

Notations. 0(a) = {n|co„ = a}, for aGF, BA = \n\u>nGA }.
Definition. The class A is completely recursively enumerable (c.r.e.) if 0^4

is r.e.; A is decidable if 0^4 is recursive.
The following statements are immediately verified. 0 and F are decidable;

A is decidable if and only if both A and F — A are c.r.e.; the sum of all classes
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occurring in a r.e. sequence of c.r.e. classes is again c.r.e.; the sum or product
of finitely many c.r.e. classes is again a c.r.e. class.

We have used the symbol 'L(a)' for the class of all r.e. sets which include
a. We introduce a different notation in the special case that a is finite.

Notation. Let aEQ- Then T(a) = {<r|aC<rGF}.
Definition. A is called a~ST-class if A = 0 or A = zZo T(an) for some (not

necessarily r.e.) sequence \an\ of finite sets.
It follows that F=T(o) is a ST-class and that e belongs to every non-

empty ST-class.

Proposition 1.8. // {«„} is an array, zZo Ffan) is a c.r.e. class.

Proof. See Rice [16, pp. 360, 361].
Let a be any set and Sa the class of all r.e. sets which are not disjoint

from a. Then Sa is a ST-class and different choices of a yield different classes
Sa. Since a can be chosen in c different ways and F has only c subclasses it
follows that there are exactly c SF-classes. Only denumerably many of these
have the property that their finite sets can be arranged in an array. For we
know that L(0), L(l), • • - have this property and that there are only de-
numerably many arrays.

Notations. aE 3 if et = {n\ (3x)|d>(«, x)} for some recursive condition
*(«, *).

a£V if a= \n\ (Vx)d>(«, x)} tor some recursive condition <£>(«, x),
a£3V  if  a—{n\(3x)(}/y)\('(n,  x,  y)}   for  some  recursive  condition

i>(n, x, y),
aGV3  if  a= \n\ (\/x)(3y)\p(n,  x,  y)}   for  some  recursive  condition

\K«, *i y)-
We shall refer to the members of 3V and V 3 as 3V-sets and V 3-sets re-

spectively. We recall that A' denotes the class of all sets which are comple-
ments of sets in A. Thus

A" = A, 3 = F,V = F',(3\/)' = V3, (V3)' = 3V.
Proposition 1.9. FC+V3- 3V, F'C+V3- 3V.
Proof. See Mostowski [10; 11 ].
For the notion "f(x) is recursive in g(x)" we refer to [7, p. 295].
Definition, a is (Turing) reducible to ft (written 'a(Rft'), if the character-

istic function of a is recursive in the characteristic function of 8.
a is (Turing) equivalent to 8 ii a and 8 are reducible to each other.
Post introduced several special types of reducibility in [15]. Of these we

need only two.
Definition, a is many-one reducible to 8 (written 'a(Rm/3') if xEa<->/(x) Eft

for some recursive function f(x),
a is one-one reducible to 8 (written 'a(Ri8') if xEct<-*f(x)Eft tor some one-

to-one recursive function/(x).
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The relation of mutual reducibility is clearly reflexive, symmetric and
transitive.

Definition. The degree of a (written 'Deg a') is the class of all sets which
are equivalent to a.

It follows that E constitutes one degree; it is called the degree of solvability
and denoted by 'A0'. Every other degree consists of nonrecursive sets and is
called a degree of unsolvability.

Notation.
Deg a g Deg 0 if a(R/3,

Deg a < Deg /3 if a(R/3, but not fi(Ra.

Definition. Deg a and Deg /3 are incomparable if neither a(Rj3 nor ^(Ra.
The structure of the collection of all degrees was studied by Kleene and

Post in [8].
Every set is equivalent to its complement. A degree which can be repre-

sented by a set in F — E can therefore also be represented by a set in F' — E
and conversely. Similarly a degree which contains an aV-set also contains an
V a-set and conversely.

Proposition 1.10. (1) Among the degrees represented by sets in F+F' there
is a highest one (written 'Ai') and this highest degree can be represented by k.

(2) Among the degrees represented by sets in aV+Va there is a highest one
(written 'A2') and this highest degree is greater than Ai.

Proof. For (1) see [15, p. 297] and for (2) see [7, p. 315].
We have A0<Ai<A2. The problem whether more than one degree can be

represented by sets in F—E was called Post's problem. It was solved inde-
pendently by Friedberg [6] and Muchnik [12]. They proved that there is
an infinite sequence of r.e. sets with mutually incomparable degrees. Conse-
quently there are denumerably many degrees between A0 and Ax which can
be represented by sets in F—E.

Definition. The set a is productive relative to the partial recursive func-
tion p(n) if

((1) p(n) is defined,
(1) u,C«->{ 1(2) p(n) £«-«,.
Every partial recursive function p(n) related to a by (1) is a productive func-
tion of a. A set is productive ii it has at least one productive function. A r.e.
set with a productive complement is called creative.

It can be shown [cf. 15, p. 295] that the complete set k is creative. Hence
k' is an example of a productive set with a r.e. complement.

Proposition 1.11. Every productive set has a recursive productive function.

Proof. Let p(n) be one of the productive functions of the productive set a.
There exists a recursive function f(n) such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1958] ON CLASSES OF RECURSIVELY ENUMERABLE SETS 33

w/(n) = {* I n G b~p & (x - p(n) V x G w„)}.

It follows that
(1) nGbp—KO/(„)=a>n + (p(n)),
(2) n^5p-xo/(n)=o,
(3) nGop—>Pf(n) is defined.

Let

/>(*) = ?«(*) = r(My)[w(a, *, y) = 0],

/>/(*) = ^(x) = r(/«y)[»»(J, x, y) = 0],
g(x) = r(juy)M<», x,y) = 0\/ m(b, x, y) = 0].

Since g(x) is a recursive function which for every x equals either p(x) or
pf(x), it suffices to Show that pf(x) is a productive function of a. By (1)
o3zCot-*o>f(x)Coi—*pf(x)G<x-(o)z + (p(x)))-^pf(x)Ga-(az.

Proposition 1.12. (1) a productive & a(R,„jS —► )3 productive,
(2) a productive*-*/?1 (Rma,
(3) a productive—*Ai ̂  Deg a.

Proof. (1) See [4, p. 140, T 2.8].
(2) In view of (1) and the fact that k' is productive, it suffices to establish

the conditional from the left to the right. According to [13, Theorem 10 ]
every r.e. set a is many-one reducible to every creative set /3. While the proof
of this theorem in [13] uses the fact that /3' is productive and has a recursive
productive function, it does not use the recursive enumerability of j8(2). We
infer by Proposition 1.11 that every r.e. set is many-one reducible to every
set with a productive complement. Thus, for any productive set 7 we have
K(Rmy' and k'uW.

(3) Immediate from (2).
The converse of (3) is false; for every productive set has an infinite r.e.

subset and it can be shown that every degree greater than A0 contains an
infinite set without any infinite r.e. subset [5, Chapter IX]. On the other
hand, every degree ^A: can be represented by a productive set according to
an unpublished result due to Mrs. C. Karp.

Definition. The sets a and /3 are isomorphic (written 'a=/3') if there
exists a recursive permutation of e which maps a onto /?. The class A is an
isomorphism type ii A consists of all sets which are isomorphic with some set a.

Every set which is isomorphic with a productive set is again productive
and similarly for creative sets.

Proposition 1.13. All creative sets are isomorphic.

Proof. See [13, p. 108, Theorem 19].
The class of all creative sets forms therefore an isomorphism type.

(*) This was pointed out to the authors by S. Tennenbaum.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 J. C. E. DEKKER AND J. MYHILL [September

II. Decidable classes. As our starting point we choose the fact that there
are no decidable classes besides 0 and F. This result can be generalized in
different directions (e.g. to Corollary 1 of Theorem 3.1 or to Theorem 4.1),
but we first present a proof which is shorter than Rice's original proof. We
shall use only two basic theorems of recursion theory, namely the fact that
some r.e. sets are not recursive and the existence of a partial recursive func-
tion q(n, x) with the properties stated in Proposition 1.1.

Theorem 2.1. The only decidable classes are 0 and F.

Proof. 0 and F are decidable, because 60 = o and 6F=e. Assume S^O
and St^F; let A denote that one of the two nonempty classes 5 and F—S
which contains o. Suppose the set 8 belongs to F—E and is the range of the
recursive function b(x). There is a nonempty set in F—A, say 7; let c(x) be
a recursive function ranging over 7. Consider the partial recursive function

dn(x) = d(n, x) = c(x) ■ sg[(py){b(y) = n) + l].

By Proposition 1.1 there is a recursive function /(re) such that d(n, x)
= q(f(n), x). Hence

n E B —> 8dn = e —> pdn = &>/(„> = y E F — A,

(1) re E /3 —> 8dn = 0 —»pdn = w/(n) = o E A,

re G/3 <->/(«) E0(F - A).
If 5 were decidable the classes F — S, A and F—A would also be decidable;
the set 8 would therefore be recursive by (1), contrary to the assumption
REF — E. Thus S is undecidable.

III. Theta sets. The set cr is called a theta set if a=6S for some class S;
o is a trivial theta set if it equals o or £. By Theorem 2.1 every nontrivial
theta set has a degree which exceeds A0. The main purpose of this section is
to strengthen this result by obtaining higher lower bounds for the degrees of
some nontrivial theta sets. A class 5 is called ancestral if oES8coEt —>t£.S.

Let us consider the following four categories of classes:
(a) SF-classes whose finite sets form an array,
(b) 2 F-classes whose finite sets do not form an array,
(c) classes which are not ancestral,
(d) classes which contain at least one infinite set without containing any

of its finite subsets.
It is clear that every class belongs to at least one of these categories and

that every class which is not a 2F-class falls under (c) or (d) (possibly both).

Theorem 3.1. If the class A is not a XT-class, the set 6A is productive.

Proof. Let A satisfy the hypothesis. By Proposition 1.12 it suffices to
prove that k'OL, 6A.

Case 1. A is not ancestral. Let «C/3, aEA, 8EF—A. By Proposition 1.1
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w/(n) = {x\ x G P &■ (n G * \/ x G a)}

for some recursive function/(n). Thus,

w G k —> u/(„) = (3 —»/(«) G 0-4,
n G k' —» w/(B) = a —>/(») G 0^4,

n G k' <-»/(n) G 0^4, i.e., k'ijW^.

Case 2. ^4 contains an infinite r.e. set without containing any of its finite
subsets, say a. Let h(n) be a one-to-one recursive function ranging over *c.
For every number n, the set

t„ = {x | x G o- & (Vy ^ x) [h(y) ^ n]}

is a r.e. subset of a; let g(n) be a recursive function such that r„=cofl(n). If
nGu' the number A(y) is different from n for all y; this implies

(1) » G k' —> «,(„> = o- G -4.

Now suppose »G/t. Then there is a unique y such that A(y) =n, say u„; thus
xGwo(») Ior * = M» and we(„) is a finite subset of a. Hence

(2) n G «—»«„(„) G A.
Combining (1) and (2) we obtain k'(R„ OA.

Corollary 1. For every nontrivial class A,
(1) at least one of the two sets 6A and B(F—A) is productive,
(2) A c.r.e. —*6A creative,
(3) Ax^ Deg 0.4.

Proof. Let At±0, At^F. Every nonempty S/-class contains e. Thus at
least one of the two nonempty classes A and F—A is not a S7"-class; this
implies (1). Suppose A is c.r.e.; then &A is r.e., hence not productive. Then
6(F—A) is productive by (1) and 0A is creative. This establishes (2). Note
that 6A and 9(F—A) have the same degree, because they are complementary.
Thus (1) implies (3) in view of Proposition 1.12 (3).

Corollary 2(3). A class is c.r.e. if and only if it is a ~Z,T-class whose finite
sets form an array.

Proof. We only have to prove the "only if" part in view of Proposition 1.8.
Let A be c.r.e., i.e., let 6A be r.e.. Then A is a S/-class, otherwise OA would
be productive. We now use the enumeration \pn} of Q mentioned in Proposi-
tion 1.7; there exists a recursive function h(n) such that pn=wn(n). Note that
pnGA<r->h(n)G8A. Using a recursive function ranging over OA one can there-
fore find a recursive function (u)n such that A -Q= [p„«», Pum, • • • ]•

(3) R. McNaughton and N. Shapiro obtained this result independently of each other and
of the authors.
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Corollary 3. a r.e.—>8(a) productive.

Proof. Let A = [a]. If a is finite A is not ancestral, and if a is infinite A
contains a, but no finite subset of a. Anyhow, A is not a SF-class and the set
6A = 8(a) is productive.

Note that Theorem 2.1 was not used in the proof of Theorem 3.1 or its
lirst corollary. We claim that Theorem 2.1 is implied by Corollary 1. Suppose,
namely, that there existed a nontrivial decidable class, say S. Then S and
F — S would be c.r.e. classes, OS and 8(F — S) recursive sets and Deg 9S
= A0<Ai. Using any of the three parts of Corollary 1 we obtain a contradic-
tion. We conclude that every nontrivial class is undecidable.

We have seen that Ai^Deg05 for every nontrivial class 5. This raises
the question whether the :S sign can be strengthened to = or <. We shall
see that neither is the case as long as all we know about S is that it is non-
trivial. (*)

Theorem 3.2. «£()-»Deg 6(a) = Aj.

Proof. First assume a = o; let S denote the class of all nonempty r.e. sets.
Then 5 is c.r.e., 9S creative and Deg 8(o) =Deg 8S = Ai. Now assume a9^0,
say a = (ai, • ■ • , ai). Then

IB = \x\ «£«,& • • -&a,E«*},
0(a) = 8-y, where < ,    , .

\y= [*\ (Vy)(yGw,' Vy = «iV • • • Vy = a.)}.

It is not difficult to verify that BE 3 and 7EV; thus Deg 6(a) gAi. By part
(3) of Corollary 1 of Theorem 3.1, A:^ Deg 0(a); hence Deg 8(a) =A,.

We proceed to determine the degree of 6Q.

Theorem 3.3. 8(F—Q) is an V 3-set to which every V 3-set is one-one reduci-
ble. Similarly, 8Q is an 3\f-set to which every 3yf-set is one-one reducible.

Proof. The complement of an V3-set is an 3V-set and conversely. More-
over, a(Ri/3 if and only if a'(Rift'. Finally, 6Q and 9(F—Q) are complementary.
Thus, the two parts of the theorem are equivalent and we may restrict our
attention to the first part.

n E 6(F - Q) <-> Un E Q«-* (V*)(3y)[y> xkyE<»n}.

By Proposition 1.2 there is a recursive condition T(y, n, z) such that yEco„
<->(3z)r(y, re, z). Hence

(4)Let for any family & of recursive functions of one variable 60, denote the set of all
numbers n for which q„(x)E&- Shapiro [18] studies 6& for several choices of ft. Some of his
theorems can be used to obtain information about BS for certain choices of 5. Much of his
terminology concerns families of partial recursive functions and is not relevant to classes of
r.e. sets. To keep the present paper reasonably self-contained we have not drawn upon his
results.
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nGO(F-Q)^ (Vx)(3y)(az)[y > x & T(y, n, z)],
^ (Vx)(3t)[k(t) > x&T(k(t), n, 1(f))],
<-> (Vx)(3/)^(n, x, I)

for some recursive condition 1iv. Consequently 0(F — Q) is an Va-set. Now
suppose a is any Va-set, say nGa<_>(Vx)(3y)$(n, x, y) for some recursive
condition $. Then

(1) n G a<-> for infinitely many x, (Vz ^ x)( 3y)$(n, z, y).

For n = 0 we can effectively find a number /(0) such that

«/<•> = {*| (Vz:gx)(3y)$(0,z,y)}

and for n = k-\-l we can effectively find a number/(ft+ 1) such that

/(ft) </(* + 1) &«/«+« = {x| (Vz g x)(3y)$(ft + 1, z, y)}.

It follows that there is a one-to-one recursive function/(n) with the property

(2) w/oo = |x| (Vz g x)(3y)$(n, z, y)}.

Combining (1) and (2) we obtain

nGa^ co/(B) GF- Q *->/(») G 0(F - Q).
Hence atRiO(F-Q).

Corollary. Deg 0(2 = Deg O(F-Q) =A2.

According to the following theorem there are many classes 5 for which
A2^Deg05.

Theorem 3.4. If the nontrivial class S has the properties

(1) 0-GS8H3GQ-+0- + I3GS,
(2) « G S,
then OQ (Ri OS and O(F-Q) (Rj O(F-S).

Proof. Let 5 satisfy the hypotheses. We shall show that every V3-set is
one-one reducible to 0(F — S). Let a be any V3-set, say

nGa<->(}jx)(3y)$(n, x, y)

for some recursive condition $ and let r be any specific set in S. Then let /
be a recursive function such that w/(n) = {x| (Vz^x)(3y)$(n, z, y)}.

n G a —* (Vx)(Vz ^ x)(3y)$(n, z, y)

—> |x| (Vz ^ x)(3y)$(n, z, y)}  = e

-* w/(n) = t

—* w/(n) + r = « G 5.
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There is a recursive function g (re) such that

coyto) = co/(o) + r,

«»(»+i) = «V(n+i) + r & g(n) < g(n + 1).
Thus,

re E a -*«,<„, E 5 -+ g(re) E 0(F - 5),

where g(w) is a one-to-one recursive function. On the other hand

re E « —» for only finitely many x, (V3 ^ x)( 3y)$(«, z, y)

—» {x| (Vz <; x)(3y)$(re, z, y)} E Q

—* W/(n) E £>

~* wff(n)  = W/(„) + T E -S"

-«(»)£0(F-S).
Thus, nEa<-*g(n)E8(F-S) and a(R10(F-5).

Since the theta sets so far discussed have been either r.e. or productive,
the question arises whether this is the case for all theta sets. In view of the
characterization of c.r.e. classes in terms of arrays and Theorem 3.1 the only
theta sets still to be examined are of the form 8S where S is a 2 F-cIass whose
finite sets do not form an array.

Theorem 3.5. There exists a XT-class A such that 8A is neither r.e. nor
productive.

Proof. By [6] or [12] there is a set in F—E whose degree is less than A^
say p. Let A denote the class of all r.e. sets which contain at least one element
of p!'. Suppose A were c.r.e.; then the finite sets in A would form an array,
say jp/(n)}, where/(re) is a one-to-one recursive function. Let g be a recursive
function such that (x) =p0iz-\- We now have

x E u'++(x) E A <r* (3n)[g(x) = /(«)].

Thus p' would be r.e. and p recursive, contrary to the assumption pEF — E.
Hence A is not c.r.e. and 8A not r.e. It remains to be shown that 8A is not
productive. We say that the set a is recursively enumerable in the set t if cr
is the range of some function h(n) which is partial recursive in the character-
istic function of t. We claim

(1) aEF&a' r.e. in /3->a(R/3,
(2) a(Rm8&8 r.e. in 7—*a r.e. in 7,
(3) 8A is r.e. in p.

The first two statements are easily verified by the reader. Note that

xE 6A*->(3y)[y Eccx-y.'] <^ (3n)[l(n) E cokCnYP-' & x = k(n)].

Let t(n) be the function which equals k(n) if l(n) Ecok<n) ■ n', but is undefined
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otherwise. Then OA =pt, where l(n) is partial recursive in the characteristic
function of p.. This establishes (3). Now suppose 0.4 were productive. Then
k'GIJBA by Proposition 1.12, and k' r.e. in p by (2) and (3). Thus /c(Rp by (1)
contrary to the assumption Degp<Ai. We conclude that OA is not produc-
tive.

The results of this section can be summarized in the following diagram.
A single-headed arrow from a to |8 indicates that a is reducible to /3, a double-
headed arrow from a to f3 means that a is reducible to [3, but not conversely,
and an arrow with heads at both ends stands for mutual reducibility. 5 is
any class which satisfies the hypotheses of Theorem 3.4.

05
T

6Q
T

6(0Jn) *-K <-> 0(a>fc) <-» OA

(«„ infinite) f (uk finite) (A c.r.e.)

V

(recursive)

IV. Separable classes. The set a is separable from the set /3 (written
'a|/3') if there is a partial recursive function p(x) such that

(1) a+PGbp&bpG(0, 1),
(2) xG<x+p-+(xGct<-+P(x) = 1).

If a I /3 is false we say that a is inseparable from /3. We can speak of two sets
as being separable or inseparable, because the | relation is obviously sym-
metric. It is readily seen that a\f3 is true if and only if there are disjoint r.e.
sets «i and /3i such that aC«i and j3G/3i. Any two separable sets are disjoint,
but not conversely. For let

o>t G F - E, a = \j(x, 0 | * G «,}, 0 = {j(x, 0 | x G »«},

then pj(x, t) =a+(3 and xGco(«->;"(x, t)Gct. Ii a|/3 were true, w( would be re-
cursive. Thus a and /3 are disjoint, but inseparable. Note that in this example
(a+/3)' is infinite.

Definition. The classes A and B are separable (written 'A 175') if OA \0B,
otherwise inseparable.

As in the case of sets any two separable classes are disjoint, but not con-
versely. Suppose namely that i(n) is a recursive function such that cot(„, = (n)
and that oGF-E. Put

A. = {(»)| nG <?},        B,= {(n)\nG<r}.
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In view of the fact that
w E <r <-> i(n) E 9A„       re E <* *-* *(») E 8B,

we see that A„\Ba implies aEE. Thus, A, and B, are disjoint, but insepara-
ble.

A set is recursive if and only if it is separable from its complement. The
class A is therefore decidable if and only if A\ F — A. This permits us to re-
phrase Theorem 2.1 as follows: every nontrivial class is inseparable from its
complement in F. This leads to the question, whether there exists any pair of
separable nontrivial classes. We shall see that there exist c such pairs. In
this section we wish to study conditions under which two classes are separa-
ble.

Theorem 4.1(6). A necessary condition for A\B is that no member of one
of the two classes A and B be included in any member of the other class.

Proof. Let p(x) be a partial recursive function such that

8 A + 6B E Sp,       xE8A*-+ p(x) = lhxE8B^r p(x) = 0.
In view of the symmetry of the | relation we only prove that no member of
A is included in any member of B. Suppose aEA, BEB and aC/3- As in the
proof of Theorem 3.1 we use a recursive function /(re) with the property

«/(n) = {x | x E B & (re E k V * E ci)}.
We now have

nEK-^0}f(n)=BEB, M$«->OJ/(n)=Q:G4,

PfC8A+8BC8p,
nEK<^f(n)E8B<-+pf(n) =0.

Since pf(n) =0 is a recursive condition it would follow that k is a recursive
set. The assumption aEA, BEB, aEB must therefore be false.

Let us examine some of the implications of the necessary condition just
obtained. Suppose A \ B. First of all,

aEAhBEB-^aB,        a + BE A + B,
since a8 is included in both a and ft and a+8 includes both a and B. More-
over,

aE A-*o,eE B.
Thus, if A and B are nontrivial and separable, neither A nor B contains o or
e. It follows that Theorem 4.1 generalizes Theorem 2.1. For suppose 5 and T
are nontrivial classes, then

(5) Theorems 4.1, 4.2 and 4.3 are due to R. McNaughton. Up till now only their statements
have been published [9]. We are indebted to McNaughton for his permission to publish the
proofs.
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S\T->eGS+T-+S+TG+F^T^F-S.

In other words, two separable nontrivial classes are not complementary.

Theorem 4.2 (6). If A and B are finite classes, the condition stated in Theo-
rem 4.1 is also sufficient for A\B.

Proof. Let A = [ao, ■ ■ ■ , on] and 73= [So, ■••,/?*] satisfy the condition
mentioned in Theorem 4.1. Suppose x^i, y ^ft; then both axG&v and /3„C«z
are false, hence both azj3y' and /3„a7. are nonempty. Consequently, for every
x^i and y^ft there exist numbers aTO and byz such that a^Ga^y and
byxGPyOtx • Let ro = ||aJ| and rb = |j6va;|j. Put

i *
c = IZ T(a„) + zZ r(ft.).

Let y=0C, then y is r.e. For every nG7 the set w„ contains at least one row
of Ta or at least one row of Tb (possibly both). For every nGy we generate
w„, i.e., we start computing qn(x) for xGbqn until we have obtained all ele-
ments in some row of Ta or all elements in some row of Tb. Ii a complete row
of Ta is obtained first we put n in 71, if a complete row of Tb is obtained first
we put n in y2; ii both these events happen simultaneously we favor 71 by
putting » in 71. Thus 71 and 72 are two disjoint r.e. sets and OA +073C7i+72
= 7. Suppose nGOA. Then nGy, «nG4, co„ includes no row of Tb and nG72-
Thus nG7—72=71; hence 04C7i- Similarly it is seen that OBGji- Conse-
quently, A 173.

Theorem 4.3(6). If A and B are infinite classes, the condition stated in
Theorem 4.1 is not sufficient for A\B.

Proof. Let aGF-E, 4„ = {(n)\nGa], Bc= {(n)\nG<r}- We have seen
in the beginning of this section that 4, is inseparable from 73,. Nevertheless,
neither of the classes Aa and 73, contains a set which is included in a set be-
longing to the other one.

Theorem 4.4. The following condition is sufficient for A \ B: there exist two
arrays {ctn} and {/3„} such that

(1) every member of A includes at least one row of {an} and every member of
B includes at least one row of \l3n},

(2) no member of A includes a row of {/3„} and no member of B includes a
row of \an}.

Proof. Let the classes 4 and 73 and the arrays {«„} and {p\} satisfy the
conditions (1) and (2). Put

C = JZ T(an) + zZ T(fin).
n—0 n—0
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The set 7 =8C is r.e. We define 71 and 72 as in the proof of Theorem 4.2 with
the slight modification that 'a0, • • • , ai and l8Q, • • • , ftk' are replaced by
'ao, «i, • • • ' and 'B0, Bu - • ■ ' respectively. We again have 8A+8BEyi+7i
=7, where 71 and 72 are disjoint r.e. sets. Suppose nE8A. Then nEl, conEA,
reET2 by (2) and hence «E7— 72 = 71. Thus dACji', similarly 8BCyi- We
conclude that A | B.

Corollary. There are exactly c pairs of separable classes.

Proof. F has only c pairs of subclasses, since F is denumerable. We pro-
ceed to show that there are at least c pairs of separable classes. Let 5 stand
for the set of all even numbers and n = 8'. Put

f7={(r|<rEF-[o]&£rC5}, W = {a\ cr E F - [o] & cr E v} ■

The classes U and W satisfy the sufficient condition stated in Theorem 4.4
with respect to the arrays {a„} = {(2re)} and \Bn} = {(2n + l)}, hence U\W.
Let Ui and Wi form any pair of classes such that UiEU and WiEW, then
Ui\ Wi. The pair (C7i, IFi) can be chosen in c2 = c different ways, because both
U and W are denumerable. The desired result follows.

It should be pointed out that neither of two separable, nontrivial classes
need contain any finite sets. This is clear if one considers A = U- (F—Q) and
B = W- (F—Q), where U and W are the classes defined above. In this example
both A and B are infinite classes.

Theorem 4.5(6). (Added October 21, 1957.) The condition stated in Theo-
rem 4.4 is not necessary for A | B.

Proof. With every partial recursive function f(x) we associate

7/ = {j(x, f(x)) \xE8f},        m(f) = (px)(f - qx).
Let c(x) denote the recursive function which is identically zero. Put

A = {ye},       B = {7/1 / is recursive & (3y)(y = m(f) &/(y) > 0)}.
We claim:

(1) AIB, (2) A and B do not satisfy the condition stated in Theorem 4.4.
Re (1). For every partial recursive function/(x) the function/(x) can be

effectively reconstructed from yf. Thus there exists a partial recursive func-
tion h(n) such that

/ partial recursive & yf = co„ —* h(n) defined &/ = <7*(n).

Let n be the set of all re such that qhtn> is defined at 0, 1, • • • , h(n), then n is
r.e. We define for nEv,

(fay)\y = h(n) & ?fc<n>(y) > 0] if (3y)[y g h(n) & qh(n)(y) > Oj,
a(re) =  <

1.0, otherwise.

(8) We are indebted for this theorem to Mrs. Pour-El.
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Thus d(n) is a partial recursive function with w as domain and

u, G A + B —» 5a(i) recursive —* <f(x) defined.

We now have:

wz G A —> co* = yc —» qh(Z) — 0 —> qh(z)d(x) = 0,

w* G 73 —> 5*(I) recursive & (3y)[y ^ m(ijA(I)) & qh(Z)(y) > 0]

^(3y)[y^A(x)&9A(I)(y)>0]

-* qh{Z)d(x) > o.

Thus 4173.
Re (2). We first prove the lemma: for each number n there exists a func-

tion f(x) such that

y, G B & (Vx)[x g, n -*/(x) = 0].

Suppose namely that <B is the family of all recursive functions g such that

g(x) — 0 for x ^ n & g(x) > 0 for x > n.

Then <B is a denumerable family and for gi, g2G® we have: gi^gt implies
m(gi)^m(g2)- The set {w(g)|gGfl3} is therefore infinite; thus it must contain
a number greater than n. Thus, for some /G® we have m(f)>n, hence
7/G-B and /(x)=0 for x^n. This proves the lemma. Now suppose there
were an array {«„} such that yc included at least one row of that array,
say at. Since

7.= (/(0,0)>/(l,0),i(2,0), •••)
there must be numbers xo, • • • , xr such that

«< = (j(xo, 0),j(xu 0), • • • ,j(xT, 0)).

Using the lemma there is a function /G® such that 7/G73 and/(x<)=0 for
0 gigr. This implies, however, 7/Z)a«, contrary to the assumption that no set
in 73 includes a row of {an}.

We note for future use that the argument employed in the last proof
establishes more than we set out to prove. For the fact that {«»} was an
array was never used. For the classes 4 and 73 defined above we have there-
fore established the following stronger statement: there is no class C oi finite
sets such that crG-A+B^>[aGA*-*(3y)(yGC&yGo')]-

V. Topological considerations. We recall that a class A is a S7"-class if
A =0 or 4 = zZo  T(an) for some sequence \an} of finite sets.

Proposition 5.1. The sum of arbitrarily many XT-classes is again a
XT-class. The product of finitely many XT-classes is again a XT-class.

Proof. We shall show that the product of two 27"-classes is again a XT-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



44 J. C. E. DEKKER AND J. MYHILL [September

class. Using this fact the reader will readily complete the proof. Let A and
B be 27"-classes. Disregarding the trivial case that either A or B is empty we
have

A = zZ Tic),       B=zZ T(Bn),
0 0

for two sequences {a„} and {&„} of finite sets. Thus

AB=zZ TM- E T(Bn) = zZ r(a»(,,)-rG8,(.,)
0 0 0

OO

=   zZ   n°tkln)  + Bl(n)).
0

Definitions. A class is open if it is a 2r-class. The class 5 is a neighbor-
hood if S= T(cr) for some finite set a. A neighborhood of the r.e. set a is any
neighborhood which contains a.

Note that T(o) is a neighborhood of a if and only if cr is a finite subset of
a. By Proposition 5.1 we have imposed a topology on the class F by defining
the open classes as the 2^-classes. The neighborhood system which we defined
evidently yields this topology.

Considered as a topological space F is connected, since every nonempty
open class contains e. Of the five separation axioms T0, ■ ■ ■ , F4 the class F
satisfies only the first one. Suppose namely that a, 8EF, a^B and nEcxB'
+a'B. Then either nE<x8' or nEct'8. Thus, either L(n) is a neighborhood of
a which does not contain 8 or L(n) is a neighborhood of 8 which does not
contain a; this shows that F is a F0-space. To show that F is not a 7\-space
we observe that the class F— [e] is not open, since it does not contain e.
We conclude that the class [e] is not closed.

Definition. An effective operation on F is a function $ from F into itself
such that <T?(con) =coy(„) for some recursive function/(re).

Theorem 5.1. (1) Every c.r.e. class is open, but not conversely.
(2) Every effective operation on F is continuous, but not conversely.

Proof. (1) Every c.r.e. class is open by Corollary 2 of Theorem 3.1. On
the other hand there are c open classes of which only denumerably many are
c.r.e. (see the remark after Proposition 1.8).

(2) Let <£ be an effective operation on F. By [14, p. 313, Corollary B] we
know that

<*>(«„) = {x\ (3y)[p„(*,S) C«.]|,

for some partial recursive function g(x, y), where the relation between the
brackets is considered false in case g(x, y) is undefined. Let V be a neighbor-
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hood of $(co,). To establish the continuity of <i> at co„ we show that there is a
neighborhood U of co„ such that $(U)G V. Let a be the finite set such that
V=T(a). Ii a = o we have V=F and we can take U=T(o)=F. Let ap^o,
say a=(a(0), ■ ■ ■ , a(r)). From now on the range of i will be assumed to be
0, • • • , r. Since aC$(con) there is for every * ay such that />,(,(,i,,)Cw., say
y(i). We define

P   —   ZZ P»(a«),¥(0)-
i

Thus /3Cw„ and «„ belongs to T(B). Put U=T(B). We have

co* G U —* /3 C co*
-» P«(«(.).*«)) C co* for every i.

—> a(i) G $(co*) for every i

-> *(«*) G /(a) = F.

It follows that $(U)GV. Thus $ is continuous at every point «„ of F. It
remains to be proved that there are continuous mappings of F into itself
which are not effective operations. Since there are only denumerably many
effective operations on F, it suffices to construct c continuous mappings of F
into itself. We do this by associating with every set y a mapping $7 defined by

It if cy t* o,

to 11 <T7 = o.

<i>7 maps T7 into itself for every y and y may be chosen in c different ways. Let
77^5, nGyb'-\-y'b and a = (n). In case nGyo' (in case nG7'5) the set a is
mapped onto e (respectively o) by $T, but onto o (respectively e) by <I>j. This
implies that different choices of y yield different mappings <£,.. We now show
that 3>7 is continuous for every choice of 7. Let V— T(a) be a neighborhood of
4>Y(co„). We wish to find a neighborhood U of oin such that $y(U)GV. If
w„-7 = o we can take any neighborhood of «„ for U, since in that case $7(co„)
= 0, a = o, V=F. Now suppose con-y^o. We take U = L(x) for some x in

co,,-7. Then

co*G (7 —» x G <o* —»co* ■ 7 5^0

-+ %(uk) = e G F.

Let us call the classes A and 73 separated ii they are disjoint and there are
open classes 4j and 73i such that A =4i(-4+73) and 73 =7^(4 +73). We can
prove that 4 173 does not imply that 4 and 73 are separated. For let 4 and
73 be defined as in the proof of Theorem 4.5. Then 4 |73; if 4 and 73 were
separated there would be an open class
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Ai = zZ r(«.)
o

such that A =AX(A +B). Thus

crEA + B-+[aEA~ (3n)(an E a)]

contrary to the remark made after the proof of Theorem 4.5.
Using the second part of Theorem 5.1 we can give another proof of

Theorem 2.1. Let S^O, S^F and

7(0)    forco„E5,
&(b>n)   ~   <

1(1)    for<onEF-S.

We wish to prove that S is undecidable. Suppose 5 were decidable. Then 8S
would be a recursive set and 4> an effective and therefore continuous opera-
tion on F. We now have a contradiction. For on the one hand $(F) = [(0), (1)]
must be connected since Fis connected; on the other hand, [(0)] =L(0) -<J>(F)
and [(1)] =L(1) -4>(F), hence 3>(F) is disconnected. We conclude that S must
be undecidable.

VI. Productive classes. Let A be a class which is not r.e. For every r.e.
subclass B of A there now exists a set yEA —B, i.e., a witness to the fact that
B is properly included in A. If, given any recursive function fn(x) which
generates the r.e. subclass B of A such a witness can be effectively found, we
call the class A productive. We wish to show that many classes are productive,
e.g., F — E, F — Q, E — Q and the class of all creative sets.

An infinite set which has no infinite r.e. subset is called immune. A r.e.
set is simple, if its complement is immune; a r.e. set is hypersimple, if it has
an infinite complement and includes at least one row of every discrete array.
A set in F — E is called mesoic if its complement is neither immune nor pro-
ductive.

Notations.
D = E-(P+Q),
H = class of all creative sets,
Z = class of all simple sets,
Zo = class of all hypersimple sets,
/ = class of all mesoic sets.
It was proved by Post [15] that Hand Z0 are nonempty and that ZaE+Z;

it was shown in [3] that / is nonempty. Thus

E = Q+ D+ P,       F-E=H + J + Z,

where in each of these equalities the three classes on the right side are non-
empty and mutually disjoint.

The subset ir of the productive set a is called a productive center of a, if
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7r= {^(n)|co„C«}, for some productive function p(n) of a(7). The set a is
called semiproductive relative to the partial recursive function p(n) if

((1) p(n) is defined,
v(2) co„ C+cop(B) C a.

Every partial recursive function p(n) related to a by (1) is called a seww-
productive function of a. The set a is semiproductive if it has at least one semi-
productive function. It is readily seen that every productive set is semi-
productive; the converse is false by [4, T 4.2].

We recall from §1 that the class 4 is r.e. if and only if 4 = {co^lxGcOn}
for some n.

Notation. Wn= \a>z\xG<>>n}.
It follows that {IFn} is a r.e. sequence of r.e. classes in which every r.e.

class occurs infinitely many times; W0 = O, since co0 = o. Every number n such
that 4 = Wn is an index of the r.e. class 4. We say that a r.e. class is given
if one of its indices is given. It is clear from the proof of Proposition 1.5 that
given an index of any r.e. class 4 which contains at least one nonempty set
we can effectively find a recursive function fn(x) which generates the class
of all nonempty members of A.

Definition. The class 4 is called productive relative to the partial recur-
sive function p(n), ii

7(1) p(n) is defined,(1) W, C 4 -» \       r
1(2) cop(n) GA-Wn.

Let p(n) be a partial recursive function related to A by (1). Then p(n) is
called a productive function oi A and the class {wj,(ni| IFnC4 } is called the
productive center of 4 relative to p(n) [written 'C(A,p)']. The class A is called
productive if it has at least one productive function. The subclass C of the
productive class A is called a productive center of 4, if C=C(4, p) for some
productive function p(n) of 4.

We now list some elementary properties of productive classes. The proofs
are similar to those of the corresponding properties of productive sets estab-
lished in [4] and are therefore omitted.

Propositions.
6.1. 4 productive class is not r.e., but has an infinite r.e. subclass [cf. 4,

T2.2].

6.2. The class A is productive if and only if A — [o] j^O and there exists a
partial recursive function q(n) such that

(') The following unpublished result is due to Mrs. C. Karp: among the productive centers
of any productive set there are denumerably many which are mutually disjoint.
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W„-[o]^0\ 1(1) q(n) is defined, ..
Wn C A) \(2) «,(„) E -4 — IF*.

6.3. The class A is productive if and only if there exists a partial recursive
function t(n) such that

(1) l(n) is defined,
Wn E A -» • (2)  WtM E A - Wn, [cf. 4, Proposition C],

(3)  IF((n) is infinite.

6.4. If Co is a productive center of the productive class A, there is a productive
center G of A such that CiECo and Co — Ci is infinite [cf. 4, Proposition D].

Corollary. Every productive class A has a productive center Ci such that
A—Ci is infinite.

6.5. Every productive class A has exactly denumerably many productive
centers and exactly denumerably many productive functions [cf. 4, T 2.3].

6.6. Let A be productive relative to p(n) and C(A, p)EBEA. Then B is
also productive relative to p(n) and C(B, p)EC(A, p) [cf. 4, T 2.4].

Corollary 1. If A is productive relative to p(n), so is C(A, p).

Corollary 2. Every productive class includes exactly c productive classei.

6.7. Let A be a productive class with a productive center C and let B be a
r.e. class. Then

(1) BEA implies that A —B is productive with a productive center included
in C,

(2) AEB implies that A+(F — B) is productive with a productive center
included in C [cf. 4, T. 2.5].

Theorem 6.1. Every productive class has a recursive productive function.

Proof. Let p(n) be one of the productive functions of the productive class
A. We now use the part of the proof of Proposition 1.11 which starts with
"There exists" and ends with "Since g(x)," but omitting (3). We then pro-
ceed as follows.

(1*)   nE0-p-*W/iai = Wn+[c0P<n)],
(2*) n&p-+WM=OCA,
(3*) nE8p->J>f(n) is defined.

We claim that pf(x) is also a productive function of A. For by (1*)

IF, E A -» WHz) EA-> UpfM E A - (Wx + [u,w]) -► «„<,, E A - Wx.

Since both p(x) and pf(x) are productive functions of A, so is the recursive
function g(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1958] ON CLASSES OF RECURSIVELY ENUMERABLE SETS 49

Theorem 6.2. (1) 7/4 is a productive class with a productive center C, then
OA is a productive set with a productive center included in OC.

(2) If OA is a productive set, A is not necessarily a productive class.

Proof. (1) Let 4 be productive relative to p(n) and let C=C(A, p). Then

<on C 04 -» Wn G A ->co,,,, G (A - Wn) ■ C-> p(n) G (BA -co„)-0C.
(2) Q is not a ST-class, hence OQ is a productive set. Nevertheless, Q is

not a productive class, since it is r.e.
Definition. The class A is called semiproductive relative to the partial

recursive function p(n) ii
((I) p(n) is defined,(3) W. G A -» r J FK '
1(2) WnG+WpWGA.

Every partial recursive function p(n) related to A by (1) is called a semipro-
ductive function of 4. A class is semiproductive if it has at least one semi-
productive function.

Every productive class is semiproductive; the converse is false, for if a
is a semiproductive, but not productive set [see 4, T 4.2] the class {(n)|nGa)
is also semiproductive, but not productive.

Theorem 6.3. The following three conditions are equivalent: a is semipro-
ductive, K(a) is semiproductive, K(a) is productive.

Proof. There exist recursive functions q(n) and t(n) such that

co„<„) =  2 03x, where x ranges over u„ (hence wz over Wn),

WtM = K(cl>„).

(1) If K(a) is productive it is semiproductive. To establish the converse,
assume that K(a) is semiproductive relative to p(n).

Wn G K(a) —» co3(n) C a

-» Wn G K(utM) = WHM G K(a)
->WnG WtqM C+ WptqM G K(a)
—* co,p(,(„) G K(a) — Wn.

Thus K(a) is productive relative to qptq(n).
(2) Suppose a is semiproductive relative to p(n).

Wn G K(a) -» co9(n) C a

—* C0,(„)  C+ C0M(n)  C Ot

—> C0j,a(n) G 7^(a) — IF„.

Thus 7£(a) is productive relative to pq(n). Conversely, assume that K(a) is
productive relative to p(n).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



50 J. C. E. DEKKER AND J. MYHILL [September

Wn C « -» WtM C K(a)
—* coptM E K(a) — Wt(n)

—♦ Upttn) Cd&~ (Wpf(„) C Wn).

It follows that a is semiproductive relative to any partial recursive function
a(n) such that wO(„)=w„+c0j,«„).

Combining the last theorem with the fact that not every semiproductive
set is productive we conclude that if the set a is productive, so is the class
K(a), but not conversely.

Notation. Im (a)= {o\cr~a}.

Theorem 6.4. F—Q is a productive class which for every aE(F-Q)
— (Z+P) has a productive center which is included in Im (a).

Proof. Let W„— [o] be nonempty. From n we can effectively obtain a
recursive function /^'(x) of m and x which generates Wn— [o]. For the sake
of simplicity we shall omit the superscript '(re)' and write 'fm(x)'. One should,
however, keep in mind that all functions and sets defined in terms of fm(x)
depend on re. Let the sequence /m(0),/m(l), • • •  be called row m. We define

c(0)=fo(0),
d(0) =the first element in row 0 which differs from c(0),
c(x + l) =the first element in row x + 1 which exceeds

max (c(0), d(0), ■ ■ ■ , c(x), d(x)),

d(x+l) =the second such element in row x + 1,
c'(0) = the smallest number not occurring in {c(n)} which is smaller than

some number in \c(n)},
c'(x + l)=the smallest number not occurring in {c(re)J which exceeds

c'(x), but is smaller than some number in \c(n)).
We denote the ranges of the functions c(x), d(x) and c'(x) by y, 8 and -n

respectively. The functions c(x), d(x) and c'(x) are clearly partial recursive;
whether they are recursive depends on the number re. In the special case that
WnEF — Q we have: c(x), d(x), c'(x) are recursive and strictly increasing,
n=y', and y is not included in any set of Wn [cf. 2, the proof of T 1.3]. In
this special case we have therefore yE(F-Q) — W„; thus, F—Q is a produc-
tive class. Let aE(F—Q) — (Z+P). We wish to prove that F—Q has a pro-
ductive center which is included in Im (a). The set a is included in some set
in D, say r. Let t(x) and t'(x) denote the strictly increasing recursive functions
which range over r and r' respectively. Let g(x) be the partial recursive func-
tion which maps t(x) onto c(x), whenever c(x) is defined and t'(x) onto c'(x),
whenever c'(x) is defined. Put ya =g(a). In the special case WnEF — Q we
have: g(x) is a recursive permutation, 7Q=a, 7« = f(a)Cg(r)=7- Hence
vEyd, and therefore ya is not included in any set of Wn- Thus,

y* E (F - Q) - Wn & 7« E Im(«).
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This completes the proof.

Corollary. Let S be one of the classes D, H and J. Then S is productive
and for every aGS it has a productive center included in Im(a).

Proof. Under the hypothesis F — Q has a productive center Ca such that

Ca G Im(«) GSGF -Q.
We now apply Proposition 6.6.

The class 4 is recursively closed if aG4 implies Im(a)G4. The class 5
is called a product system if 5 is closed under the operation of intersection.
We say that a is almost included in /3 (written 'aG*/3') if a{i' is finite.

Theorem 6.5. Suppose (1) OG+AGF—Q, (2) A is recursively closed,
(3) AGTGP — Qfor some product system T, (4) A is not included in P. Then
A is a productive class which for every aGA —P has a productive center which is
included in Im(a).

Proof. Let Wn— [o] be nonempty. From n we can effectively obtain a
recursive function fm(x) (depending on n) of m and x which generates Wn
— [o]. Put am=pfm and denote the product of the i + l sets a0, • • • , on by /8,-.
From/m(x) we can effectively find a partial recursive function bi(x) such that
/3j=p6i. We define

c(0)=6o(0),
c(x + l) =bx+i(ay) [bx+i(y)>c(x)],
y = (c(0),c(2), ■ ■ ■),
c'(0)=the smallest number not occurring in {c(2n)j which is smaller

than some number in {c(2n)},
c'(x + l) = the smallest number not occurring in {c(2n)j which exceeds

c'(x), but is smaller than some number in {c(2n)}.
The functions c(x) and c'(x) are partial recursive. In the special case

W„GA we have: c(x) and c'(x) are recursive and strictly increasing, yGD,
y'=pc'; moreover,

(a) <r G Wn -» y G* *

[cf. 2, the proof of T 3.5]. Suppose aGA —P and r is a subset of a which be-
longs to D. Let t(x) and t'(x) be the strictly increasing recursive functions
which range over r and r' respectively. Let h(x) be the partial recursive func-
tion which maps t(x) onto c'(x) whenever c'(x) is defined, and t'(x) onto c(x)
whenever c(x) is defined. Let us again restrict ourselves to the special case
WnGA. We then have: h(x) is a recursive permutation, h(a)=a andy'Gh(a).
If h(a) belonged to Wn it would almost include y by (a). Since y'Gh(a) this
would imply the false statement aGP- Thus,

h(a) G A - Wn & h(a) G Im(a).

This completes the proof.
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Corollary. Let S be one of the classes Z, Z+P, Z0, Zo+P. Then Sis
productive and for every aES — P it has a productive center which is included
in Im(a).

Proof. Let 5 satisfy the hypothesis. Then 5 satisfies the conditions (1),
(2) and (4) listed in Theorem 6.5. By [3, Theorems 1.5 and 1.6] the four
classes involved are product systems. Thus S is a productive class. For the
part of the Corollary which deals with productive centers, see the proof of
the Corollary of Theorem 6.4.

Theorem 6.6. Let aEF. Then
(1) aEP + Q—>Im(a) a r.e. class,
(2) aEP~T-Q~>Im(a) a productive class.

Proof. The first part is readily verified by the reader. Assume

aEF-(P+Q) = D+H + J + Z.
Let 5 denote that one of the four classes D, H, J, Z to which a belongs. Using
the Corollaries of Theorems 6.4 and 6.5 we conclude that 5 is a productive
class with a productive center Ca such that CaEln\(a)ES. It follows by
Proposition 6.6 that Im(a) is a productive class.

Combining Theorems 6.4 and 6.5 with Propositions 6.6 and 6.7 one can
establish the productivity of a large variety of classes.

In the remainder of this section we further restrict the meaning of the
word "class" to that of "nonempty subclass of F—[o]"; the letter 'A' will
only be used to denote such a class. The information that a class A is produc-
tive (or merely, that it is not r.e.) also tells us something about the family of
all recursive functions which range over sets in A.

Notation. Qn- {qy(x)\yEo)n}-
Definition. Let ft be a family of recursive functions.
(1) ft is recursively enumerable ii ft is empty or there exists a recursive

function bv(x) of x and y such that

f(x)Ea^(3y)[f(x) = 6„(s)]
(2) ft is productive ii there exists a partial recursive function p(n) such

that
7(1) p(n) is defined,

0n C ft -> { ,„,
1(2) qptn)(x) E ft - e„.

It is readily seen that the family ft of recursive functions is r.e. if and
only if ft = 0„ for some re. Also, while a productive family is never r.e., it
always has an infinite r.e. subfamily. The notion of a productive center can
be introduced for productive families in an obvious manner. The family of all
primitive recursive functions of one variable is r.e. [7, p. 272] and the family
of all recursive functions of one variable is productive [4, T 2.9 and its proof].
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Notations.
JF = family of all recursive functions of one variable,
??i = {/l/Gff &/ is one-to-one},
ff4={/|/Gff&p/G4},
Ji4 = j/|/Gffi&p/G4}.
The following statements are readily verified:
(I) If the class 4 is not r.e., the family $4 is not r.e., and any subfamily

(B of 54 such that {p/|/G<b} =4 is not r.e.,
(II) If the class 4 is productive, the family $4 is productive; if, more-

over, AGF— Q, the family $iA is also productive.

Theorem 6.7. Let 5 be any of the following classes: F—E, F—Q, E — Q,D,
H, Z, Zo, J, Im(a) for any aGF— (P + Q). Then both JF5 and fJi5 are productive
families of recursive functions.

Proof. F — E and E — Q are productive, because F—Q has a productive
center included in 7/ and one included in D and

HGF-EGF-Q,       DGE-QGF-Q.
The other classes mentioned in the theorem are productive by previous
theorems. The desired result now follows by (II).

VII. Recursively enumerable classes. In § § I and VI we have seen that
the following classes are r.e.:

(1) 0, F, E, P, Q and every finite class,
(2) L(a) and K(ff) for a, PGF,
(3) zZn-o T(an) for any array {«„},
(4) Im(o) foraGP+<?.

It was shown in §111 that there are no c.r.e. classes besides those men-
tioned under (3). The r.e. classes E, P, Q and Im(a) for aGP + Q are not
2/"-classes; they are therefore not c.r.e., though they are r.e. The class L(a)
is r.e., but not c.r.e., if aGF— Q; the class K(ft) is r.e., but not c.r.e., if
fiGF— [e]. It is not hard to show that the following classes are r.e.:

(5) PL(a) and QK(fS) for a, pGF,
(6) L(a)-K(P)={o\aGP&aGaGP} for a, QGF.

The class mentioned under (6) is trivial if either a is not included in ft or both
a = o and /3 = e.

We recall that the sum of two r.e. classes is a r.e. class and that the sum
or product of two c.r.e. classes is a c.r.e. class.

Theorem 7.1. There exist two r.e. classes whose product is not r.e.

Proof. Let 4 = {(n)|nG«J, 73= {co„|nGco„}, then 4 is r.e., because
cOi(n) = (n) for some recursive function i(n), and 73 is r.e., because {n|nGw„}
is r.e. Clearly, 4 • 73 = {(n) | (n) = co„}, hence

(1) (n)G A-B^(n) = co,.
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By the Corollary of Proposition 1.3 there are infinitely many numbers k such
that (k) =w<(fc) =cOi, hence A B is infinite. Obviously oEA B. Suppose A B
were r.e., say

AB= [(MO)), (MO)), ■ • • ]
for some recursive function fm(x). Put cm=fm(0), y=pc then

(2) (re) E A B «-+ re E 7, where 7 is r.e.

Combining (1) and (2) we get

(3) (re) = ccn«-» re E 7, where 7 is r.e.

To show that A B is not r.e. we prove that (3) leads to a contradiction (8).
Assume that (3) holds. As a preliminary we show that for every set co„ such
that «Ew„ we can decide whether («) =u„ or (w)C+Wn- For suppose wEwre;
since con^o we can find a recursive function t(x) ranging over co„ (e.g., t(x)
— qP(n)(x), see Proposition 1.4). If we generate the sequence t(0), c(0), t(l),
c(l), ■ ■ • we will after a finite number of steps either find a y such that t(y)
5*n or a y such that c(y) =«; in the former case (re)C+wB and in the latter
case «E7, i.e., (w)=w„. Using this effective procedure we now describe an
effective procedure which enables us to decide for any given r.e..set whether
it is empty. Let x be any number. We can find a recursive function g(n) such
that coB(„) =«! + («); by the Corollary of Proposition 1.3 we can find numbers
p and q such that

(4) &>p = «x + (p),        ccq = ox + (q),        p ^ q-

Test each of the statements (p) =wp and (q) =w,. There are three (not mutu-
ally exclusive) possibilities:

(a) (p) C+oip = o>z+ (p),

(b) (q) C+co« = co* + (q),

(c) (p) = cop & (q) = co,.

If (a) or (b) holds we have cox^o. It follows from (3) that u,Cwp-w5. Thus, if
(c) holds we have wx = o. The assumption that (3) is valid has now led to a
contradiction. For, since [o] is a nontrivial class, there is no effective pro-
cedure to test cox = o.

A r.e. set is semicreative if its complement is semiproductive. Every creative
set is of course semicreative, but there are semicreative sets which are not
creative(9). A r.e. set is regular if it belongs to F — E, but is neither semicre-
ative nor simple.

(8) The following argument is due to J. R. Shoenfield.
(9) According to an unpublished result of J. R. Shoenfield. Added in proof, July IS, 1958:

This result is now published; see Proc. Amer. Math. Soc. vol. 8 (1957) p. 966.
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Proposition 7.1. There exist exactly denumerably many regular sets.

Proof. Let %GZ, yGD, qCf, M=f—V- We claim that p is regular. First of
all, p is r.e., because p = f -rj'. Secondly, p is not recursive, for if it were,
f = p+?j would also be recursive. Thus, p.GF — E. Note that n' = t'-\-y, where
f and n are disjoint, f immune and r/GD- Hence p' is not immune, i.e., p is
not simple. If p' were semiproductive, w could be effectively extended to a r.e.
set iji such that nG+ViGv+V- Iterating this effective procedure we would
obtain a r.e. sequence {r]„} oi infinite r.e. sets such that

V G+V1G+V2G+ • ■ ■  C V + f.
Let ft denote the sum of all sets occurring in {w„}. Then -ft — t] is an infinite
r.e. subset of the immune set f which is impossible. Hence p' is not semi-
productive and p is regular. Every recursive permutation which interchanges
the element m of p with an element x of p', but leaves all other elements fixed,
maps p onto a regular set px different from p. Since (keeping m fixed) different
choices of x yield different sets ux it readily follows that there are exactly
denumerably many regular sets.

Definition. The class 4 is immune ii it is infinite, but has no infinite r.e.
subclass.

We now classify the r.e. classes in terms of the nature of their comple-
ments in F in the same way as this is done for r.e. sets.

Definition. Let A be a r.e. class. Then A is semirecursive if F—A is r.e.,
creative if F—A is productive, semicreative if F—A is semiproductive, simple
if F—A is immune and regular if F—A is neither r.e. nor semiproductive nor
immune.

Every creative class is semicreative. The converse is false. For if a is a
semicreative, but not creative set, the class F— {(n) \ nGoe'} is semicreative,
but not creative. Every r.e. class belongs to exactly one of the four categories:
semirecursive, semicreative, simple and regular. Our first task is to show that
each of these categories is nonempty. We shall see that this is already the
case if we restrict ourselves to c.r.e. classes.

Notation. If aGF, Nodi a ={a\ a GF&a-a 9^0}.

Theorem 7.2. Among the c.r.e. classes there are denumerably many in each
of the four categories: semirecursive, creative, simple and regular.

Proof. Let aGF. Clearly,

Nodi a = \Z Ux),       F - Nodi a = K(a').

Thus Nodi is a c.r.e. and its classification can be studied by investigating
K(a'). It is readily verified that

(1) a' r.e.<^K(a') r.e.,
(2) a' immuneoX(a') immune.
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We know by Theorem 6.3 that
(3) a' semiproductive«-»7l'(a') semiproductive<-»i£(a') productive.

Thus,
(4) a recursive<-»Nodi a semirecursive,
(5) a simple<->Nodi a simple,
(6) a semicreative<-»Nodi a semicreative<-»Nodi a creative.

Combining (4), (5) and (6) we get

a regular <-» Nodi a regular.

Different choices of a yield different c.r.e. classes Nodi a. Since there are
denumerably many recursive sets, there are at least denumerably many
semirecursive c.r.e. classes, hence exactly denumerably many such classes.
For each of the other three categories the denumerability of the collection of
all c.r.e. classes in that category is established similarly.

Among the c.r.e. classes those which are semirecursive are characterized
by Rice in [17]. He proved that the c.r.e. class 5 has a r.e. complement in
F if and only if 5 = 0 or 5 can be expressed as zZo F(p/(„)) for some recursive
function /(re) with a recursive range.

While the most obvious examples of semirecursive classes are perhaps
those which are c.r.e. or have a c.r.e. complement, there are many other
semirecursive classes.

Theorem 7.3. Let aEE. Then [a] is semirecursive. Under the additional
assumption a^o, neither [a] nor F— [a] is c.r.e.

Proof. The second part is readily verified by the reader; we only prove
the first part. Assume aEE. The class [a] is r.e. and it suffices to show that
F— [a] is r.e.

F - [a] = B + C, where

B = {a\crE F &a(t<r}     and    C = {a\ a E F &: era' ^ o}.

Since C is r.e. (even c.r.e.), it suffices to prove that B is r.e. The class

F„= {o-|crEF&reEcr}

is r.e. for every re, and B = zZnea Bn. Thus B is r.e.
Since every finite set is recursive one might be tempted to conjecture

that every finite class is semirecursive; we do not know, however, whether this
is the case(10).

While we have shown that semirecursive classes exist the examples of

(10) Added in proof, July 15, 1958. It is, by a theorem of Friedberg (to be published in the
Journal of Symbolic Logic) to the effect that there is a partial recursive function/.(x) such that
every r.e. set appears exactly once in the sequence {pfi}. From this it obviously follows that
every class with a finite complement is r.e. and every finite class is semirecursive.
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such classes so far discussed are unsatisfactory in the following respect:
whether 5 = Nodi a for aGE or 5= [a] for aGTi, in both cases 5 is defined
in terms of a recursive set. A similar remark can be made about the examples
of r.e. classes in the other three categories given in the proof of Theorem 7.2.
For if such classes exist at all, it is hardly surprising that some of them can
be defined in terms of r.e. sets of similar type. In the following two theorems
this situation will be remedied as far as semirecursive and creative classes are
concerned.

Theorem 7.4. If aGF—Q the class L(a) is semirecursive, but neither L(a)
nor F — L(a) is c.r.e.

Proof. L(a) contains the infinite r.e. set a, but none of its finite subsets;
F — L(a) contains all finite sets, but not «. Thus, neither L(a) nor F—L(a)
is c.r.e., because neither is a 27"-class. L(a) is r.e. by Proposition 1.6(c). To
complete the proof we show that F — L(a) is r.e. Let a(n) be a one-to-one
recursive function ranging over a and p(x, y) a recursive function for which
wj>(*.i/) =«x— (a(y))- We define

b(x) = p(k(x), l(x)), ft = pi.

The function b(x) is recursive and the set ft is r.e. We claim that F—L(a)
= \o3n\nGft}- Clearly al(x)G^b(Z), hence o)nGF — L(a), for every nGft- Sup-
pose o)tGF — L(a); let a(u)Got — co<. Then

co»y«,u) = C0p«,u) = (jit — (a(u)) = co<,

and ft contains an index of co*, namely bj(t, u).
Let us consider the special case of the last theorem obtained by restricting

a to E — Q. Then L(a) is semirecursive, while neither L(a) nor F—L(a) is
c.r.e. On the other hand, aGE — Q not only implies that K(a) is semirecur-
sive, but also that F — K(a) is c.r.e. (observe the absence of duality).

Theorem 7.5. The following classes are creative: Q, E, F—(Z+P) and
F-Z.

Proof. By Theorem 6.4 the class F—Q is productive and has a productive
center included in 77. Since HGF — EGF — Q we infer by Proposition 6.5
that F — E is productive. The r.e. classes Q and E are therefore creative. By
the Corollary of Theorem 6.5 the classes Z and Z+P are productive. More-
over, F—Z=(F— (Z+P))+P, where P is r.e. To complete the proof it is
therefore enough to show that F—(Z+P) is r.e. Let '<I>(n, x)' denote the
condition: q„(0), • • • , qn(x) are defined and different. Then $ is a r.e. condi-
tion and there is a recursive function t(n) such that

y G co((„) <-> (3x)( 3z) [y = q„(x) & <i>(n, x) & z < x & qn(z) > qn(x)].
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Clearly, coHn)C<^n for all re. We distinguish two cases.
Case 1. Either qn(x) is not recursive, or qn(x) is recursive, but not one-to-

one. Then a>((B)E(?CF-(Z+P).
Case 2. qn(x) is recursive and one-to-one. In this case wi(„) consists of all

elements in the enumeration {qn(x)} of a>„ which are preceded by at least one
greater element. Put

w„ = a = (a0, oi, • • • ), where ax = qn(x),

bo = ao,
b„+i — the first element in {ax} which exceeds bn.

Then u)n=<j>tin)+pbn, where pb„ is an infinite recursive set disjoint from
uj<(n). Thus co(f„)EF—(Z+F). Let F= [coi(o), C0((n, • • • ]. Having verified that
T is included in F—(Z+P) we proceed to prove

7 E F - (Z + P) -» 7 E T.
Assume the hypothesis. We distinguish three cases.

Case 1. 7 = 0. Note that cd(,o) =o, because go(0) is undefined. Hence yET.
Case 2. yj^o and yEQ, say

7 = (ci, ■ • ■ , cp), where Ci < c2 < • • • < cp.

Let k be any fixed number greater than cp. There obviously exists a recursive
function q,(x) such that

3,(0) = ft,
9.(1) = Ci, 9,(2) = c2, • • • , q{(p) = cp,

qt(x) = cp for x > p.

It follows that 7=co((,)EF.
Case 3. tE(?- Since yEF— (Z+P) the set 7' has an infinite recursive

subset, say 5. Let c(n) be a one-to-one recursive function ranging over 7. Put

«(0) = (w)[yE5&y > c(0)],
e(« + 1) = (py)[y E 8 & y > max (e(re), e(w + 1))].

Then e(n) is a strictly increasing recursive function such that (a) e(i) and c(i)
are less than e(re + l) for O^t'^re, (b) e(n)>c(n) for all re. Let us now con-
sider the sequence

(I) e(0), c(0), e(l), c(l), ■■■.

By (a) the element e(x) is greater than all its predecessors in (I) and by (b) the
element c(x) is less than its immediate predecessor in (I). The function h(n)
defined by h(2n)—e(n), k(2n + l)=c(n) is one-to-one and recursive. If r is a
number such that h(x)=qr(x) we have 7=w<(r)EF.
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Proposition 7.2. Let A be a creative class, B a r.e. class and BGF — A.
Then A +73 is creative.

Proof. Use the first part of Proposition 6.7 and the fact that the sum of two
r.e. classes is r.e.

Once we know that certain r.e. classes are creative one can establish the
creativity of many other r.e. classes using Proposition 7.2. For example,
P-\-Q is creative, because Q is creative and P is a r.e. subclass oi F — Q.
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