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SOME THEOREMS ON FELLER PROCESSES: TRANSIENCE,

LOCAL TIMES AND ULTRACONTRACTIVITY

RENÉ L. SCHILLING AND JIAN WANG

Abstract. We present sufficient conditions for the transience and the exis-
tence of local times of a Feller process, and the ultracontractivity of the as-
sociated Feller semigroup; these conditions are sharp for Lévy processes. The
proof uses a local symmetrization technique and a uniform upper bound for
the characteristic function of a Feller process. As a by-product, we obtain for
stable-like processes (in the sense of R. Bass) on Rd with smooth variable index
α(x) ∈ (0, 2) a transience criterion in terms of the exponent α(x); if d = 1 and
infx∈R α(x) ∈ (1, 2), then the stable-like process has local times.

1. Background and main results

In this paper we study sample path properties of Feller processes. Our main tool
will be the fact that the infinitesimal generator of the associated Feller semigroup
can be written as a pseudodifferential operator with negative definite symbol.

A Feller process (Xt)t�0 with state space Rd is a strong Markov process whose
associated operator semigroup (Tt)t�0,

Ttu(x) = E
x (u(Xt)) , u ∈ C∞(Rd), t � 0, x ∈ R

d,

(C∞(Rd) is the space of continuous functions vanishing at infinity) enjoys the Feller
property, i.e. maps C∞(Rd) into itself. The semigroup (Tt)t�0 is said to be a Feller
semigroup. That is, (Tt)t�0 is a one-parameter semigroup of contraction operators
Tt : C∞(Rd) → C∞(Rd) which is strongly continuous: limt→0 ‖Ttu− u‖∞ = 0 and
has the sub-Markov property : 0 � Ttu � 1 whenever 0 � u � 1.

The (infinitesimal) generator (A,D(A)) of the semigroup or the process is given
by the strong limit

Au := lim
t→0

Ttu− u

t

on the set D(A) ⊂ C∞(Rd) of those u ∈ C∞(Rd) for which the above limit exists
w.r.t. the sup-norm. We will call (A,D(A)) Feller generator for short.

Before we proceed with general Feller semigroups it is instructive to have a brief
look at Lévy processes and convolution semigroups, which are a particular subclass
of Feller processes. Our standard reference for Lévy processes is the monograph
by Sato [27]. A Lévy process (Yt)t�0 is a stochastically continuous random process
with stationary and independent increments. The characteristic function of a Lévy
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process has a particularly simple structure,

(1.1) E
x
(
ei〈ξ,Yt−x〉

)
= E

0
(
ei〈ξ,Yt〉

)
= e−tψ(ξ),

where ψ : Rd → C is the characteristic exponent, which is a continuous negative
definite function in the sense of Schoenberg. This amounts to saying that ψ is given
by the Lévy-Khintchine formula

(1.2) ψ(ξ) = c− i〈b, ξ〉+ 〈ξ, aξ〉+
∫
y �=0

(
1− ei〈y,ξ〉 + i〈y, ξ〉�{|y|�1}

)
ν(dy).

The tuple (c, b, a, ν) consisting of c ∈ R+, b ∈ Rd, a positive semidefinite matrix
a ∈ R

d×d and a Radon measure ν on R
d \ {0} with

∫
y �=0

|y|2(1+ |y|2)−1 ν(dy) < ∞
is called Lévy characteristics (of ψ). The measure ν is often called Lévy measure.
The Lévy characteristics determine ψ uniquely—and vice versa. Since (Yt)t�0 is a
Markov process, (1.1) and (1.2) characterize the finite-dimensional distributions of
(Yt)t�0 and, hence, the process itself.

In the analysis of the Lévy process, the characteristic exponent ψ and the fact
that Eei〈ξ,Xt〉 = e−tψ(ξ) play a key role. They allow, in particular, the use of
methods from harmonic analysis to study Lévy processes. For details we refer to
Sato’s monograph [27] and the still unsurpassed survey paper by Fristedt [12]. At
this point let us just recall those properties which are relevant for the present paper.

(A) Existence of transition densities. The problem to decide whether a Lévy
process (Yt)t�0 has a transition density with respect to Lebesgue measure is not
yet completely solved. The classic Hartman–Wintner condition

lim
|ξ|→∞

Reψ(ξ)

log(1 + |ξ|) = ∞

is sufficient, see [14], and necessary, see [21], for the existence of smooth densities
for all times t > 0. On the other hand, Hawkes’ result [15] states that a Lévy
process has for all t > 0 a transition density if, and only if, (Yt)t�0 has the strong
Feller property.

(B) Transience and recurrence. A Markov process (Xt)t�0 is transient if there
exists a countable cover {Aj}j�1 of R

d such that Ex
( ∫∞

0
�Aj

(Xt) dt
)
< ∞ for every

x ∈ Rd and j � 1; otherwise it is called recurrent. For a Lévy process (Yt)t�0 we
have the classic Chung–Fuchs criterion; see [7, 26] or [27, Section 37]: (Yt)t�0 is
transient or recurrent according to∫

|ξ|�r

dξ

Reψ(ξ)
< ∞ or = ∞

for some, hence all, r > 0.

(C) Local times. Let (Xt)t�0 be a Markov process on Rd and Ft := σ(Xs : s � t).
If there exists an (Ft)t�0-adapted nonnegative process (L(·, t))t�0 such that for any
measurable bounded function f � 0,∫ t

0

f(Xs) ds =

∫
Rd

f(x)L(x, t) dx almost surely,

then (L(·, t))t�0 is called the local time of the process.
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A Lévy process admits local times if, and only if, Hawkes’ criterion is satisfied:∫
Rd

dξ

1 + Reψ(ξ)
< ∞;

see [16, Theorems 1 and 3] or the earlier related result [13, Theorem 4].
Every Lévy process is spatially homogeneous. Therefore, the associated semi-

group is of convolution type,

Stu(x) = E
x (u(Yt)) = E

0 (u(Yt + x)) =

∫
u(x+ y)P0(Yt ∈ dy)

and a short direct calculation shows that (St)t�0 is indeed a Feller semigroup with
infinitesimal generator

(1.3) −ψ(D)u(x) := −
∫

ψ(ξ) û(ξ) ei〈x,ξ〉 dξ, u ∈ C∞
c (Rd),

where C∞
c (Rd) is the space of smooth, compactly supported functions in Rd and

û(ξ) := (2π)−d
∫
u(x) e−i〈x,ξ〉 dx denotes the Fourier transform of u; cf. [20, p. 141].

The operator ψ(D) is a first example of a so-called pseudodifferential operator with
symbol ψ(ξ). Since ψ does not depend on x the operator has constant “coefficients”.
Notice that the symbol is just the characteristic exponent of the process (Yt)t�0.

Let us return to the general situation. Under the assumption that the test
functions C∞

c (Rd) are contained in D(A), Ph. Courrège [8, Theorem 3.4] proved
that the generator A restricted to C∞

c (Rd) is a pseudodifferential operator,

(1.4) Au(x) = −p(x,D)u(x) := −
∫

ei〈x,ξ〉 p(x, ξ) û(ξ) dξ, u ∈ C∞
c (Rd),

with symbol p : Rd × Rd → C. The symbol p(x, ξ) is locally bounded in (x, ξ),
measurable as a function of x, and for every fixed x ∈ R

d, it is a continuous negative
definite function in the co-variable. This is to say that it enjoys the following Lévy-
Khintchine representation,
(1.5)

p(x, ξ) = c(x)− i〈b(x), ξ〉+ 1

2
〈ξ, a(x)ξ〉+

∫
z �=0

(
1− ei〈z,ξ〉 + i〈z, ξ〉�{|z|�1}

)
ν(x, dz),

where (c(x), b(x), a(x), ν(x, dz))x∈Rd are the Lévy characteristics: c(x) is a non-
negative measurable function, b(x) := (bj(x)) ∈ Rd is a measurable function,
a(x) := (ajk(x)) ∈ Rd×d is a nonnegative definite matrix-valued function, and
ν(x, dz) is a nonnegative, σ-finite kernel on Rd × B(Rd \ {0}) such that for every
x ∈ R

d,
∫
z �=0

(1∧|z|2) ν(x, dz) < +∞. For details and a comprehensive bibliography

we refer to the monographs [18] by N. Jacob and the survey paper [20].
This means that Feller generators are “variable coefficient” Lévy-type operators

and that, as soon as we fix x = x0, −p(x0, D) is the generator of a Lévy process.
The problem is that p(x, ξ) is no longer the characteristic exponent of the Feller
process (Xt)t�0; i.e., the formula E

xei〈ξ,Xt−x〉 = e−tp(x,ξ) is, in general, wrong. On
the other hand, it is natural to expect that

E
xei〈ξ,Xt−x〉 ≈ e−tp(x,ξ);

this would be quite clear for classical pseudodifferential operators (but the classical
theory does not apply here since our symbols are “rough” and do not fit into that
framework); see e.g. Taylor [35] and also [19] and [18]. The first major result of
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the present paper is, therefore, to establish a comparison between the characteristic
function of the process and the symbol.

We will frequently make the following two assumptions on the symbol p(x, ξ):

(1.6) ‖p(·, ξ)‖∞ � c(1 + |ξ|2) and p(·, 0) ≡ 0.

The first condition means that the generator has only bounded ‘coefficients’; see,
e.g., [31, Lemma 2.1] or [32, Lemma 6.2]; the second condition implies that the
Feller process is conservative in the sense that the life time of the process is almost
surely infinite; see [30, Theorem 5.2].

Theorem 1.1. Let (Xt)t�0 be a Feller process with the generator (A,D(A)) such
that C∞

c (Rd) ⊂ D(A). Then A|C∞
c (Rd) = −p(·, D) is a pseudodifferential operator

with symbol p(x, ξ). Assume that the symbol satisfies (1.6). Then for any t � 0
and every x, ξ ∈ Rd,

(1.7)
∣∣∣Ex
(
ei〈Xt−x,ξ〉)∣∣∣ � exp

[
− t

16
inf
z∈Rd

Re p(z, 2ξ)

]
.

Note that the estimate (1.7) from Theorem 1.1 is both natural and trivial for a
Lévy process (Yt)t�0:∣∣∣Ex

(
ei〈Yt−x,ξ〉)∣∣∣ = ∣∣∣E0

(
ei〈Yt,ξ〉)∣∣∣ = ∣∣e−tψ(ξ)

∣∣ = e−tReψ(ξ).

With the help of Theorem 1.1 we are able to provide criteria for the ultracontrac-
tivity of Feller semigroups, the transience and the existence of local times of Feller
processes. The results (i)–(iii) from Theorem 1.2 below are the exact counterparts
of the corresponding results and criteria (A)–(C) for a Lévy process. In particular,
this indicates that the results are sharp.

Theorem 1.2. Let (Xt)t�0 be a Feller process with the generator (A,D(A)) such
that C∞

c (Rd) ⊂ D(A). Then A|C∞
c (Rd) = −p(·, D) is a pseudodifferential operator

with symbol p(x, ξ). Assume that the symbol satisfies (1.6).

(i) If

(1.8) lim
|ξ|→∞

inf
z∈Rd

Re p(z, ξ)

log(1 + |ξ|) = ∞,

then the corresponding Feller semigroup (Tt)t�0 is ultracontractive; i.e., ‖Tt‖1→∞ <
∞ for every t > 0.

If P (t, x, dy) is the transition function of (Xt)t�0, then P (t, x, dy) has a density
function p(t, x, y) with respect to Lebesgue measure, and for every t > 0,

(1.9) sup
x,y∈Rd

p(t, x, y) � (4π)−d

∫
exp

(
− t

16
inf
z∈Rd

Re p(z, ξ)

)
dξ.

Consequently, the Feller semigroup (Tt)t�0 has the strong Feller property; i.e., for
any f ∈ Bb(R

d) and t > 0, Ttf ∈ Cb(R
d), where Cb(R

d) is the space of bounded
continuous functions on R

d.

(ii) If

(1.10)

∫
{|ξ|�r}

dξ

inf
z∈Rd

Re p(z, ξ)
< ∞ for every r > 0,

then the Feller process (Xt)t�0 is transient.
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(iii) If

(1.11)

∫
Rd

dξ

1 + inf
z∈Rd

Re p(z, ξ)
< ∞,

then the Feller process (Xt)t�0 has local times (L(·, t))t�0 on L2(dx⊗ dP).

The rest of this paper is organized as follows. In Section 2 we will study the
characteristic function of a Feller process. We first point out that, under some
mild additional assumptions on a Feller process, the characteristic function is real
if, and only if, the associated symbol is real. Then, we give the proof of Theorem
1.1 by using the local symmetrization technique; this approach may well turn out
to be useful for further studies of Feller processes. Section 3 is devoted to proving
Theorem 1.2. Some examples, including stable-like processes, are presented here to
illustrate our results. For the sake of completeness, a few necessary properties and
estimates for a Feller process are proved in a simple and self-contained way in the
appendix.

2. Characteristic functions of Feller processes

Before we study the characteristic functions of Feller processes, it is instructive
to have a brief look at Lévy processes which are a particular subclass of Feller
processes. Our standard reference for Lévy processes is the monograph by K. Sato
[27]. A Lévy process (Yt)t�0 is a stochastically continuous random process with sta-
tionary and independent increments. The characteristic function of a Lévy process
has a particularly simple structure,

E
x
(
ei〈Yt−x,ξ〉) = E

0
(
ei〈Yt,ξ〉) = e−tψ(ξ), x, ξ ∈ R

d, t � 0,

where ψ : Rd → C is a continuous negative definite function; i.e., it is given
by a Lévy-Khintchine formula of the form (1.5) with characteristics (c, b, a, ν(dz))
which do not depend on x. A short direct calculation shows that the infinitesimal
generator of Yt is given by

Lu(x) = −ψ(D)u(x) := −
∫

ei〈x,ξ〉 ψ(ξ) û(ξ) dξ, u ∈ C∞
c (Rd).

This means that a Lévy process is generated by a constant-coefficient pseudodif-
ferential operator. The symbol is given by the characteristic exponent (i.e. the
logarithm of the characteristic functions) of the Lévy process.

This relation is no longer true for general Feller processes. Since the Feller process
(Xt)t�0 is not spatially homogeneous, the characteristic function of Xt, t � 0, will
now depend on the starting point x ∈ Rd, i.e. on Px. Therefore, we get a (d+ 1)-
parameter family of characteristic functions:

(2.12) λt(x, ξ) := e−i〈ξ,x〉Tt(e
i〈ξ,·〉)(x) = E

x
(
ei〈Xt−x,ξ〉);

hence, for every t � 0 and x ∈ Rd, the function ξ → λt(x, ξ) is positive definite.
Note that (2.12) is well defined, since the operator Tt extends uniquely to a bounded
operator on Bb(R

d) (the space of bounded measurable functions); cf. [30, Section
3]. According to [17, Theorem 1.1], for any Schwartz function u, we have

(2.13) Ttu(x) =

∫
ei〈x,ξ〉û(ξ)λt(x, ξ) dξ;
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i.e. on the Schwartz space S(Rd) the operator Tt, t � 0, is a pseudodifferential
operator with symbol λt(x, ξ).

If the domain of the Feller generator A is sufficiently rich, e.g. if it contains the
space C2

b (R
d) of twice differentiable functions with bounded derivatives, we know

from [17, Theorem 1.2] (and [29, Theorem 3.1] for the general case) that

(2.14)
d

dt
λt(x, ξ)

∣∣∣∣
t=0

= −p(x, ξ), x, ξ ∈ R
d.

This allows us to interpret the symbol probabilistically as the derivative of the
characteristic function of the process. Since the symbol of Tt is not e−tq(x,ξ), we
can only expect that the pseudodifferential operator e−tq(x,D) with symbol e−tq(x,ξ)

is a reasonably good approximation. Under some mild additional assumptions on
p(x, ξ), one of us obtained in [28, Lemma 2] the following pointwise estimate:

(2.15) |λt(x, ξ)− e−tq(x,ξ)| � C(ξ, ρ) tρ

for t � 0, ρ ∈ [0, 1] and x, ξ ∈ Rd. See also the earlier related paper [19].

2.1. Characteristic functions and symbols. Recall that ((Xt)t�0, (P
x)x∈Rd)

is a solution to the martingale problem for the operator (−p(·, D), C∞
c (Rd)), if

Px(X0 = x) = 1 for all x ∈ Rd, and if for all f ∈ C∞
c (Rd) the process (Mf

t ,Ft)t�0,

Mf
t := f(Xt)−

∫ t

0

(−p(Xs, D))f(Xs) ds,

is a local martingale under Px. Here Ft = σ(Xs : s � t) is the natural filtration of
the process (Xt)t�0. The martingale problem for (−p(·, D), C∞

c (Rd)) is well posed
if the finite-dimensional distributions for any two solutions with the same initial
distribution coincide.

The following result points out the relations between characteristic functions and
the symbol of Feller processes.

Theorem 2.1. Let (Xt)t�0 be a Feller process with the generator (A,D(A)) such
that C∞

c (Rd) ⊂ D(A). Then A|C∞
c (Rd) = −p(·, D) is a pseudodifferential operator

with symbol p(x, ξ). For any x ∈ Rd and t � 0, let λt(x, ξ) be the characteristic
function of (Xt)t�0 given by (2.12). Assume that the symbol p(x, ξ) satisfies (1.6).
Then, we have the following statements:

(i) The assertion (2.14) holds; that is, for any x, ξ ∈ Rd,

d

dt
λt(x, ξ)

∣∣∣∣
t=0

= −p(x, ξ).

(ii) If the characteristic function λt(x, ξ) is real for all x, ξ ∈ Rd and t � 0, then
the symbol p(x, ξ) is also real.

(iii) Suppose that the martingale problem for (−p(·, D), C∞
c (Rd)) is well posed. If

the symbol p(x, ξ) is real, then the characteristic function λt(x, ξ) is real for all
x, ξ ∈ Rd and t � 0.

Remark 2.2. The statement that the martingale problem for (−p(·, D), C∞
c (Rd)) is

well posed is equivalent to saying that the test functions C∞
c (Rd) are an operator

core for the Feller operator (A,D(A)), i.e., A|C∞
c (Rd) = A. See Proposition 4.6 in

the appendix for the proof.

We start with some analytic properties of a symbol p(x, ξ) which satisfies (1.6).
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Lemma 2.3. Let (Xt)t�0 be a Feller process with the generator (A,D(A)) such that
C∞

c (Rd) ⊂ D(A); i.e., A|C∞
c (Rd) = −p(·, D) is a pseudodifferential operator with

symbol p(x, ξ). If the symbol p(x, ξ) satisfies (1.6), then the function x → p(x, ξ) is
continuous for every fixed ξ ∈ Rd, and

(2.16) lim
r→0

sup
z∈Rd

sup
|ξ|�r

|p(z, ξ)| = 0.

Proof. Since C∞
c (Rd) ⊂ D(A) and A|C∞

c (Rd) = −p(·, D), the operator −p(·, D)

maps C∞
c (Rd) into C∞(Rd). By the assumption (1.6), the function x → p(x, 0) = 0

is continuous. Therefore, the required assertions follow from (the proof of) [30,
Theorem 4.4]. �

Proof of Theorem 2.1. (i) Under more restrictive conditions, the conclusion (2.14)
has been shown in [17, Theorem 1.2] and [29, Theorem 3.1]. The following self-
contained proof avoids these technical restrictions.

Every Feller semigroup (Tt)t�0 has a unique extension onto the space Bb(R
d) of

bounded Borel measurable functions; cf. [30, Section 3]. For notational simplicity,
we use (Tt)t�0 for this extension. According to [30, Corollary 3.3 and Theorem 4.3]
and Lemma 2.3, t → Ttu is continuous with respect to locally uniform convergence
for all continuous and bounded functions u ∈ Cb(R

d).
Let eξ(x) = ei〈ξ,x〉 for x, ξ ∈ Rd. By Proposition 4.2 in the appendix, we know

that for t > 0 and x, ξ ∈ Rd,

Tteξ(x) = eξ(x) +

∫ t

0

TsAeξ(x) ds.

Note that, see e.g. [31, Proof of Lemma 6.3, Page 607, Lines 14–15],

−p(x, ξ) = e−ξ(x)Aeξ(x).

Therefore,

λt(x, ξ) = e−ξ(x)Tteξ(x) = 1− e−i〈ξ,x〉
∫ t

0

Ts

(
p(·, ξ)ei〈ξ,·〉

)
(x) ds.

Since λ0(x, ξ) = 1, we obtain that for any x, ξ ∈ Rd,

d

dt
λt(x, ξ)

∣∣∣∣
t=0

= lim
t→0

λt(x, ξ)− 1

t

= −e−i〈ξ,x〉 lim
t→0

∫ t

0
Ts

(
p(·, ξ)ei〈ξ,·〉

)
(x) ds

t

= −e−i〈ξ,x〉p(x, ξ)ei〈ξ,x〉

= −p(x, ξ).

In the third equality we have used the fact that for fixed x, ξ ∈ Rd, the function
t → Tt

(
p(·, ξ)ei〈ξ,·〉

)
(x) is continuous; cf. the remark in the last paragraph. This

proves (i).

(ii) This follows directly from (i).

(iii) For every t � 0 we define X̃t = 2X0 − Xt. Clearly, (X̃t)t�0 is also a strong

Markov process with the same starting point as (Xt)t�0. Let P̃
x be the probability

of the process (X̃t)t�0 with starting point x ∈ R
d, and denote by (T̃t)t�0 the

semigroup of (X̃t)t�0. We claim that (X̃t)t�0 enjoys the Feller property.
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Let P (t, x, dy) be the transition function of the process (Xt)t�0. Then, for all
u ∈ C∞(Rd) and for a fixed x0 ∈ Rd, we find

|Ẽx(u(X̃t))− Ẽ
x0(u(X̃t))|

= |Ex(u(2x−Xt))− E
x0(u(2x0 −Xt))|

� |Ex(u(2x−Xt))− E
x(u(2x0 −Xt))|+ |Ex(u(2x0 −Xt))− E

x0(u(2x0 −Xt))|

�
∫

|u(2x− y)− u(2x0 − y)|P (t, x, dy) + |Ex(u(2x0 −Xt))− E
x0(u(2x0 −Xt))|.

Since u is uniformly continuous, we find for every ε > 0 some δ := δ(ε) > 0 such
that |u(z1) − u(z2)| < ε for all |z1 − z2| < δ. This and the Feller property of Xt

show that for all |x− x0| < δ,

|Ẽx(u(X̃t))− Ẽ
x0(u(X̃t))| � ε+ |Ex(u(2x0 −Xt))− E

x0(u(2x0 −Xt))|.

We can now let x → x0 and obtain lim supx→x0
|Ẽx(u(X̃t))−Ẽ

x0(u(X̃t))| � ε. Since
ε > 0 was arbitrary, we can let ε → 0 and conclude that

lim
x→x0

|Ẽx(u(X̃t))− Ẽ
x0(u(X̃t))| = 0.

On the other hand, let τB(x,r) be the first exit time of the process from the ball
B(x, r). According to Proposition 4.3 in the appendix, we know for all r > 0 and
x ∈ R

d,

P
x(|Xt − x| � r) � P

x(τB(x,r) � t) � c1 t sup
z∈Rd

sup
|ξ|�1/r

|p(z, ξ)|

for some constant c1 > 0. By the assertion (2.16) in Lemma 2.3, we can choose
δ1 := δ1(ε) such that

P
x(|Xt − x| � δ1) � ε/(2‖u‖∞).

Since u ∈ C∞(Rd), we find δ2 := δ2(ε) > 0 such that sup|z|�δ2 |u(z)| � ε/2.

Therefore, for all t > 0 and x ∈ Rd with |x| � δ1 + δ2, we have

|Ẽx(u(X̃t))| = |Ex(u(2x−Xt))|
� E

x
(
|u(2x−Xt)|�{|Xt−x|�δ1}

)
+ E

x
(
|u(2x−Xt)|�{|Xt−x|�δ1}

)
� sup

|z|�|x|−δ1

|u(z)|+ ‖u‖∞P
x(|Xt − x| � δ1)

� sup
|z|�δ2

|u(z)|+ ε

2
� ε,

which proves the Feller property of (T̃t)t�0.

Let (Ã,D(Ã)) be the generator of the Feller semigroup (T̃t)t�0. We claim that

C∞
c (Rd) ⊂ D(Ã) and

Ã|C∞
c (Rd) = −p(·, D) = A|C∞

c (Rd).

For this, we use the weak infinitesimal operator (Ãw, D(Ãw)) of the Feller process

(X̃t)t�0; see [9, Chapter I, Section 6] for details on the weak infinitesimal opera-
tor of a Markov semigroup. According to [27, Lemma 31.7, Page 209], we have

(Ã,D(Ã)) = (Ãw, D(Ãw)). Therefore, it suffices to verify that the test functions
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C∞
c (Rd) are in the weak domain D(Ãw) and that Ãw|C∞

c (Rd) = −p(·, D). We have

to show that for u ∈ C∞
c (Rd) and every x ∈ R

d,

lim
t→0

T̃tu(x)− u(x)

t
= −p(x,D)u(x).

This can be seen from the following arguments. Using the Fourier transform, the

Fubini theorem and the definition of (X̃t)t�0, we get

lim
t→0

Ẽx
(
u
(
X̃t

)
− u(x)

)
t

= lim
t→0

1

t
Ẽ
x

(∫
ei〈

˜Xt,ξ〉 û(ξ) dξ −
∫

ei〈x,ξ〉 û(ξ) dξ

)
= lim

t→0

1

t

∫
û(ξ) Ẽx

(
ei〈

˜Xt,ξ〉 − ei〈x,ξ〉
)
dξ

= lim
t→0

1

t

∫
û(ξ)ei〈2x,ξ〉 Ex

(
e−i〈Xt,ξ〉 − e−i〈x,ξ〉

)
dξ

= lim
t→0

1

t

∫
û(ξ)ei〈2x,ξ〉 Ex

(∫ t

0

Ae−i〈Xs,ξ〉 ds

)
dξ

= lim
t→0

1

t

∫
û(ξ)ei〈2x,ξ〉 Ex

(∫ t

0

e−i〈Xs,ξ〉(− p(Xs,−ξ)
)
ds

)
dξ

= −
∫

ei〈x,ξ〉 p(x,−ξ) û(ξ) dξ

= −
∫

ei〈x,ξ〉 p(x, ξ) û(ξ) dξ

= −p(x,D)u(x).

In this calculation we have (repeatedly) used that C∞
c (Rd) ⊂ D(A), A|C∞

c (Rd) =

−p(·, D) and that the function x → eξ(x) = e−i〈x,ξ〉 belongs for every fixed ξ ∈ Rd

to the extended domain of the Feller operator D̃(A); see Proposition 4.2 below. In
the penultimate line we used that p(x, ξ) is real, i.e. p(x, ξ) = p(x,−ξ). Therefore,

the weak infinitesimal operator of (T̃t)t�0 on C∞
c (Rd) is just −p(·, D).

According to [10, Chapter 4, Proposition 1.7] and [9, Chapter I, (1.49), Page 40],

both ((Xt)t�0, (P
x)x∈Rd) and ((X̃t)t�0, (P̃

x)x∈Rd) are solutions to the martingale
problem for the operator (−p(·, D), C∞

c (Rd)). Since the martingale problem for

(−p(·, D), C∞
c (Rd)) is well posed, ((X̃t)t�0, (P̃

x)x∈Rd) and ((Xt)t�0, (P
x)x∈Rd) have

the same finite-dimensional distributions. In particular, for any t > 0 and x, ξ ∈ Rd,

E
x
(
ei〈Xt−x,ξ〉) = Ẽ

x
(
ei〈

˜Xt−x,ξ〉),
which shows that λt(x, ξ) = λt(x,−ξ) = λt(x, ξ); i.e., the characteristic function
λt(x, ξ) is real. �

2.2. Uniform upper bound for characteristic functions. We begin with a
uniform upper bound for characteristic functions for small t � 1.

Proposition 2.4. Let (Xt)t�0 be a Feller process with the generator (A,D(A))
such that C∞

c (Rd) ⊂ D(A). Then A|C∞
c (Rd) = −p(·, D) is a pseudodifferential
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operator with symbol p(x, ξ). Assume that the symbol satisfies (1.6) as well as the
following sector condition: there exists some c ∈ [0, 1) such that for all ξ ∈ Rd,

(2.17) sup
x∈Rd

| Im p(x, ξ)| � c inf
x∈Rd

Re p(x, ξ).

Then, for any ξ ∈ Rd and ε ∈ (0, 1 − c), there exists some t0 := t0(ξ, ε) > 0 such
that for all t ∈ [0, t0],

(2.18) sup
x∈Rd

|λt(x, ξ)| � exp
[
−(1− c− ε) t inf

z∈Rd
Re p(z, ξ)

]
.

As a direct consequence of Proposition 2.4, we get

Corollary 2.5. Let (Xt)t�0 be a Feller process with generator (A,D(A)) satisfying
the assumptions of Proposition 2.4. Assume further that the symbol p(x, ξ) is real.
Then, for any ξ ∈ Rd and δ ∈ (0, 1), there exists some t0 := t0(ξ, δ) > 0 such that
for any t ∈ [0, t0],

(2.19) sup
x∈Rd

|λt(x, ξ)| � exp

[
−δ t inf

z∈Rd
p(z, ξ)

]
.

Proof of Proposition 2.4. Fix ξ ∈ Rd and ε ∈ (0, 1− c). Without loss of generality,
we may assume that infz∈Rd Re p(z, ξ) > 0 and ξ �= 0; otherwise, the assertion
(2.18) would be trivial.

Step 1. Denote by P (t, x, dy) the transition function of the Feller process (Xt)t�0

and write eξ(x) = ei〈ξ,x〉 for x, ξ ∈ Rd. Below we will examine the technique in the
proof of Theorem 2.1 (i) in detail. Since there exists a constant c > 0 such that
|p(x, ξ)| � c(1 + |ξ|2) for all x, ξ ∈ Rd, the Feller operator A has an extension such
that Aeξ is well defined; cf. [31, Lemma 2.3] or Proposition 4.2 in the appendix. The
assumption p(·, 0) ≡ 0 guarantees, see [30, Theorem 5.2], that the process (Xt)t�0

is conservative. Therefore, see [31, Corollary 3.6] or Proposition 4.2, we find for
t > 0 and x, ξ ∈ Rd,

(2.20) Tteξ(x) = eξ(x) +

∫ t

0

TsAeξ(x) ds.

Note that, see e.g. [31, Proof of Lemma 6.3, Page 607, Lines 14–15],

−p(x, ξ) = e−ξ(x)Aeξ(x).

Therefore,

(2.21)

λt(x, ξ) = e−ξ(x)Tteξ(x)

= 1− e−i〈ξ,x〉
∫ t

0

Ts

(
p(·, ξ)ei〈ξ,·〉

)
(x) ds

= 1−
∫ t

0

∫
p(y, ξ)ei〈y−x,ξ〉 P (s, x, dy) ds.

Step 2. Denote by Re z and Im z the real and imaginary parts of z ∈ C. From
(2.12) we get

(2.22) Reλt(x, ξ) =

∫
cos〈y − x, ξ〉P (s, x, dy)

and

Imλt(x, ξ) =

∫
sin〈y − x, ξ〉P (s, x, dy).
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Using (2.1), we find for all t > 0 and x, ξ ∈ Rd,

Reλt(x, ξ) = 1−
∫ t

0

∫ (
cos〈y−x, ξ〉Re p(y, ξ)−sin〈y−x, ξ〉 Im p(y, ξ)

)
P (s, x, dy) ds.

Thus, for every t > 0,

Reλt(x, ξ) � 1−
∫ t

0

∫ (
Re p(y, ξ) + | Im p(y, ξ)|

)
P (s, x, dy) ds

� 1− 2 sup
z∈Rd

|p(z, ξ)| t.

For every ε ∈ (0, 1− c) we define t1 = t1(ξ, ε) > 0 by

(2.23) t1 :=
ε

8 sup
z∈Rd

|p(z, ξ)| .

Then we find for all t ∈ (0, t1],

(2.24) Reλt(x, ξ) � 1− ε

4
.

Set

g1(ξ, ε) :=
ε

4|ξ|

[
infz∈Rd Re p(z, ξ)

1 + supz∈Rd | Im p(z, ξ)| ∧ 1

]
and denote by τB(x,r) the first exit time of the process from the open ball B(x, r),
i.e.

τB(x,r) := inf{t > 0 : Xt /∈ B(x, r)}.
Then we have for every t > 0 and x, ξ ∈ Rd,

Reλt(x, ξ) � 1−
∫ t

0

∫
{|y−x|�g1(ξ,ε)}

Re p(y, ξ) cos〈y − x, ξ〉P (s, x, dy) ds

+

∫ t

0

∫
{|y−x|�g1(ξ,ε)}

| Im p(y, ξ)|| sin〈y − x, ξ〉|P (s, x, dy) ds

+ 2 sup
z∈Rd

|p(z, ξ)|
∫ t

0

P
x
(
|Xs − x| � g1(ξ, ε)

)
ds

� 1− inf
z∈Rd

Re p(z, ξ)

∫ t

0

∫
{|y−x|�g1(ξ,ε)}

cos〈y − x, ξ〉P (s, x, dy) ds

+ sup
z∈Rd

| Im p(z, ξ)|
∫ t

0

∫
{|y−x|�g1(ξ,ε)}

| sin〈y − x, ξ〉|P (s, x, dy) ds

+ 2 sup
z∈Rd

|p(z, ξ)|
∫ t

0

P
x
(
τB(x,g1(ξ,ε)) � s

)
ds.

In the second inequality we used that cos〈y−x, ξ〉 � 0 on the set {|y−x| � g1(ξ, ε)}
and {|Xs − x| � g1(ξ, ε)} ⊂ {τB(x,g1(ξ,ε)) � s}.

We know from [31, Lemmas 4.1 and Lemma 5.1], see also Proposition 4.3 in the
appendix for a simple self-contained proof, that for x, ξ ∈ Rd and s > 0,

(2.25)

P
x
(
τB(x,g1(ξ,ε)) � s

)
� c1 s sup

|y−x|�g1(ξ,ε)

sup
|η|�1/g1(ξ,ε)

|p(y, η)|

� c1 s sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)|
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for some absolute constant c1 > 0. Note that on the set {|y − x| � g1(ξ, ε)},

| sin〈y − x, ξ〉| � |〈y − x, ξ〉| � g1(ξ, ε)|ξ|.

If we combine all estimates from above, we arrive at

Reλt(x, ξ) � 1− inf
z∈Rd

Re p(z, ξ)

∫ t

0

∫
{|y−x|�g1(ξ,ε)}

cos〈y − x, ξ〉P (s, x, dy) ds

+
ε

4
inf
z∈Rd

Re p(z, ξ) t+ c1 sup
z∈Rd

|p(z, ξ)| sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)| t2

� 1− inf
z∈Rd

Re p(z, ξ)

∫ t

0

∫
cos〈y − x, ξ〉P (s, x, dy) ds

+ inf
z∈Rd

Re p(z, ξ)

∫ t

0

P
x
(
|Xs − x| � g1(ξ, ε)

)
ds

+
ε

4
inf
z∈Rd

Re p(z, ξ) t+ c1 sup
z∈Rd

|p(z, ξ)| sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)| t2

� 1− inf
z∈Rd

Re p(z, ξ)

∫ t

0

∫
cos〈y − x, ξ〉P (s, x, dy) ds

+
c1
2

inf
z∈Rd

Re p(z, ξ) sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)| t2

+
ε

4
inf
z∈Rd

Re p(z, ξ) t+ c1 sup
z∈Rd

|p(z, ξ)| sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)| t2

= 1− inf
z∈Rd

Re p(z, ξ)

∫ t

0

Reλs(x, ξ) ds

+
ε

4
inf
z∈Rd

Re p(z, ξ) t+
3c1
2

sup
z∈Rd

|p(z, ξ)| sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)| t2.

For the third inequality we used {|Xs − x| � g1(ξ, ε)} ⊂ {τB(x,g1(ξ,ε)) � s} and
(2.25), while the last equality follows from (2.22).

Using (2.24) we find for all t ∈ (0, t1],

(2.26)

Reλt(x, ξ) � 1−
(
1− ε

2

)
inf
z∈Rd

Re p(z, ξ) t

+
3c1
2

sup
z∈Rd

|p(z, ξ)| sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)|t2.

Step 3. We will now consider Imλt(x, ξ). For every t > 0 and x, ξ ∈ Rd, we find
from (2.1) that

Imλt(x, ξ) = −
∫ t

0

∫ (
cos〈y−x, ξ〉 Im p(y, ξ)+sin〈y−x, ξ〉Re p(y, ξ)

)
P (s, x, dy) ds.

Therefore, for each t > 0,∣∣ Imλt(x, ξ)
∣∣ � sup

z∈Rd

| Im p(z, ξ)| t+
∫ t

0

∫
Re p(y, ξ)| sin〈y − x, ξ〉|P (s, x, dy) ds.

Set

g2(ξ, ε) :=
ε

4|ξ|
infz∈Rd Re p(z, ξ)

supz∈Rd Re p(z, ξ)
.
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Then, similar to the reasoning in Step 2, we see∣∣ Imλt(x, ξ)
∣∣ � sup

z∈Rd

| Im p(z, ξ)| t

+ sup
z∈Rd

Re p(z, ξ)

∫ t

0

∫
{|y−x|�g2(ξ,ε)}

| sin〈y − x, ξ〉|P (s, x, dy) ds

+ sup
z∈Rd

Re p(z, ξ)

∫ t

0

P
x
(
|Xs − x| � g2(ξ, ε)

)
ds

� sup
z∈Rd

| Im p(z, ξ)| t+ ε

4
inf
z∈Rd

Re p(z, ξ) t

+
c1
2

sup
z∈Rd

|p(z, ξ)| sup
z∈Rd

sup
|η|�1/g2(ξ,ε)

|p(z, η)| t2.

This along with (2.24) and (2.26) yields for all t ∈ (0, t1],

|λt(x, ξ)| � |Reλt(x, ξ)|+ | Imλt(x, ξ)|
= Reλt(x, ξ) + | Imλt(x, ξ)|

� 1−
[(

1− 3ε

4

)
inf
z∈Rd

Re p(z, ξ)− sup
z∈Rd

| Im p(z, ξ)|
]
t

+
c1
2

sup
z∈Rd

|p(z, ξ)|
[
3 sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)|

+ sup
z∈Rd

sup
|η|�1/g2(ξ,ε)

|p(z, η)|
]
t2.

Now set

S := 2c1 sup
z∈Rd

|p(z, ξ)|
[
3 sup
z∈Rd

sup
|η|�1/g1(ξ,ε)

|p(z, η)|+ sup
z∈Rd

sup
|η|�1/g2(ξ,ε)

|p(z, η)|
]

and define t2 = t2(ε, ξ) by

t2 := t1 ∧
ε inf
z∈Rd

Re p(z, ξ)

S
.

Then we obtain for all t ∈ (0, t2],

(2.27)
∣∣λt(x, ξ)

∣∣ � 1−
[
(1− ε) inf

z∈Rd
Re p(z, ξ)− sup

z∈Rd

| Im p(z, ξ)|
]
t.

Because of the sector condition (2.17), we see∣∣λt(x, ξ)
∣∣ � 1− (1− c− ε) t inf

z∈Rd
Re p(z, ξ)

� exp

[
−(1− c− ε)t inf

z∈Rd
Re p(z, ξ)

]
,

where the last estimate follows from the elementary inequality 1 − r � e−r for
r ∈ R. In particular, for any t ∈ (0, t2],

sup
x∈Rd

|λt(x, ξ)| � exp

[
−(1− c− ε) t inf

z∈Rd
Re p(z, ξ)

]
,

which is the required assertion by taking t0 = t2. �
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Remark 2.6. (i) Note that t2(ε, ξ) → 0 as ε → 0, which means that the approach
above fails for ε = 0. Therefore, Proposition 2.4 will, in general, not hold with
ε = 0 nor can we expect Corollary 2.5 to be true if δ = 1.

(ii) A variant of our approach yields a uniform lower bound for characteristic
functions for small t. More precisely: Let (Xt)t�0 be a Feller process with the
generator (A,D(A)) such that C∞

c (Rd) ⊂ D(A). Then A|C∞
c (Rd) = −p(·, D) is a

pseudodifferential operator with symbol p(x, ξ). Assume that the symbol satisfies
(1.6). Then for any ε > 0 and ξ ∈ Rd, there exists some t0 = t0(ε, ξ) > 0 such that
for any t ∈ (0, t0],

inf
x∈Rd

|λt(x, ξ)| � exp

(
−(1 + ε) t sup

z∈Rd

|p(z, ξ)|
)
.

(iii) From the pointwise estimate (2.15), one can get that for any ξ ∈ Rd, there
exists some t0 := t0(ξ) > 0 such that for all t ∈ [0, t0],

sup
x∈Rd

|λt(x, ξ)| � e
−t inf

x∈Rd
Re p(x,ξ)

+ C(ξ, 1) t.

Although the remainder term C(ξ, 1) in (2.15) is well known, see [28, Lemma 2] for
details, we were not able to derive the assertion (2.18) from this estimate.

Our main result in this subsection is the following uniform upper bound of the
characteristic function, which is just Theorem 1.1 in Section 1.

Theorem 2.7. Let (Xt)t�0 be a Feller process with the generator (A,D(A)) such
that C∞

c (Rd) ⊂ D(A); i.e., A|C∞
c (Rd) = −p(·, D) is a pseudodifferential operator

with symbol p(x, ξ). For all x ∈ Rd and t � 0, let λt(x, ξ) be the characteristic
function of (Xt)t�0 given by (2.12). Assume that the symbol satisfies (1.6). Then,
for all t � 0 and ξ ∈ Rd,

sup
x∈Rd

|λt(x, ξ)| � exp

[
− t

16
inf
z∈Rd

Re p(z, 2ξ)

]
.

Proof of Step 1. First we assume that the characteristic function λt(x, ξ) is real for
every t � 0 and every x, ξ ∈ Rd. Then, by Theorem 2.1 (ii), the corresponding
symbol p(x, ξ) is also real. On the other hand, applying Corollary 2.5 with δ = 1/2
yields that there exists some t0 := t0(ξ) > 0 such that for all t ∈ (0, t0],

(2.28) sup
x∈Rd

|λt(x, ξ)| � exp

[
−1

2
t inf
z∈Rd

p(z, ξ)

]
.

Since
√
p(x, ·) is subadditive, i.e.

√
p(x, ξ1 + ξ2) �

√
p(x, ξ1) +

√
p(x, ξ2) for all

x, ξ1, ξ2 ∈ Rd, we see

inf
z∈Rd

p(z, 2ξ) � 4 inf
z∈Rd

p(z, ξ).

Thus, (2.28) leads to

(2.29) sup
x∈Rd

|λt(x, ξ)| � exp

[
−1

8
t inf
z∈Rd

p(z, 2ξ)

]
.

For every t > 0 we can choose some m := m(ξ) ∈ N such that t
m ∈ (0, t3], where

t3 = t0 ∧
2

infz∈Rd p(z, 2ξ)
.
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We will prove by induction that for any k = 1, 2, . . . ,m,

(2.30) sup
x∈Rd

|λk t
m
(x, ξ)| � exp

[
− k

16

t

m
inf
z∈Rd

p(z, 2ξ)

]
.

First, according to (2.29), we know that (2.30) holds with k = 1. Assume that
(2.30) is satisfied with k = j. Then, for k = j+1, by the Markov property and the
fact that the characteristic function λt(x, ξ) is real for any t � 0 and x, ξ ∈ R

d, we
have∣∣∣∣λ(j+1)t/m(x, ξ)

∣∣∣∣ = ∣∣∣∣Ex
(
ei〈X(j+1)t/m−x,ξ〉

)∣∣∣∣
=

∣∣∣∣Ex
(
ei〈Xt/m−x,ξ〉

E
Xt/m

(
ei〈Xjt/m−x,ξ〉

))∣∣∣∣
=

∣∣∣∣Ex
(
ei〈Xt/m−x,ξ〉λjt/m(Xt/m, ξ)

)∣∣∣∣
=

∣∣∣∣Ex
(
cos 〈Xt/m − x, ξ〉λjt/m(Xt/m, ξ)

)∣∣∣∣
�
[
E
x
(
cos2〈Xt/m − x, ξ〉

)]1/2 [
E
x
(
λ2
jt/m(Xt/m, ξ)

)]1/2
�
[
E
x
(
cos2〈Xt/m − x, ξ〉

)]1/2
sup
x∈Rd

|λjt/m(x, ξ)|

�
[
1 + Ex(cos 〈Xt/m − x, 2ξ〉)

2

]1/2
exp

[
− j

16

t

m
inf
z∈Rd

p(z, 2ξ)

]
.

The first inequality follows from the Cauchy-Schwarz inequality, and in the last
inequality we have used the induction hypothesis and the fact that

cos2 θ =
1

2

(
1 + cos(2θ)

)
, θ ∈ R.

Therefore,

sup
x∈Rd

∣∣∣∣λ(j+1) t
m
(x, ξ)

∣∣∣∣� sup
x∈Rd

[
1+E

x(cos 〈Xt/m−x, 2ξ〉)
2

] 1
2

exp

[
− j

16

t

m
inf
z∈Rd

p(z, 2ξ)

]
.

For any x ∈ Rd we can use (2.28) and the assumptions that λt(x, ξ) is real and
t

2m infz∈Rd p(z, 2ξ) � 1 to deduce

1 + Ex(cos 〈Xt/m − x, 2ξ〉)
2

=
1 + λt/m(x, 2ξ)

2

�
1 + |λt/m(x, 2ξ)|

2

�
1 + exp

[
− t

2m infz∈Rd p(z, 2ξ)
]

2

�
1 + 1−

[
t

2m infz∈Rd p(z, 2ξ)
]
+ 1

2

[
t

2m infz∈Rd p(z, 2ξ)
]2

2
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� 1−
t
m infz∈Rd p(z, 2ξ)

8

� exp

[
−

t
m infz∈Rd p(z, 2ξ)

8

]
,

where the third and the last inequality follow from the elementary estimates

1− r � e−r � 1− r + r2/2, r � 0.

Thus, we get

sup
x∈Rd

[
1 + Ex(cos 〈Xt/m − x, 2ξ〉)

2

]1/2
� exp

[
−

t
m infz∈Rd p(z, 2ξ)

16

]
,

and the induction step is complete.
Taking k = m in (2.30) we find, in particular, for all t > 0,

(2.31) sup
x∈Rd

|λt(x, ξ)| � exp

[
− t

16
inf
z∈Rd

p(z, 2ξ)

]
.

Step 2. Now we consider the general case where λt(x, ξ) is not necessarily real. Us-
ing a local symmetrization technique we can reduce the general case to the situation
treated in Step 1. Let (Xt)t�0 be a Feller process with the generator (A,D(A))
and the semigroup (Tt)t�0 such that C∞

c (Rd) ⊂ D(A) and A|C∞
c (Rd) = −p(·, D) is

a pseudodifferential operator with symbol p(x, ξ). Denote by λt(x, ξ) the charac-
teristic function of Xt − x under Px.

Construct on the same probability space a stochastic process (X∗
t )t�0 such that

X∗
0 = X0 and (X∗

t )t>0 is an independent copy of (Xt)t>0, and define a further

process (X̃t)t�0 on Rd by X̃t = 2X∗
0 − X∗

t , t � 0. Clearly, the process (X̃t)t>0

is independent of (Xt)t>0 but it has the same initial distribution, i.e. X̃0 ∼ X0.

From the proof of Theorem 2.1 (iii) we see that (X̃t)t�0 is a Feller process with

the generator (Ã,D(Ã)) and the semigroup (T̃t)t�0 such that C∞
c (Rd) ⊂ D(Ã),

and Ã|C∞
c (Rd) = −p̃(·, D) is a pseudodifferential operator with symbol p̃(x, ξ) =

p(x,−ξ). Moreover, the characteristic function of (X̃t)t�0 is λ̃t(x, ξ) = λt(x,−ξ)
for every t � 0 and x ∈ Rd.

For every t � 0 we define the local symmetrization XS
t = 1

2

(
Xt + X̃t

)
. Lemma

2.8 below shows that the local symmetrization (XS
t )t�0 is a Feller process with the

generator (AS , D(AS)) such that C∞
c (Rd) ⊂ D(AS), and AS|C∞

c (Rd) = −pS(·, D) is

a pseudodifferential operator with symbol 2Re p(x, ξ/2); moreover, the character-
istic function of (XS

t )t�0 is |λt(x, ξ/2)|2.
We can now apply the conclusion of Step 1, in particular (2.31), to the process

(XS
t )t�0; we obtain that for any t > 0,

sup
x∈Rd

|λt(x, ξ/2)|2 � exp

[
− t

8
inf
z∈Rd

Re p(z, ξ)

]
.
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That is,

sup
x∈Rd

|λt(x, ξ)|2 � exp

[
− t

8
inf
z∈Rd

Re p(z, 2ξ)

]
,

which is what we have claimed. �

Lemma 2.8 (Local Symmetrization). Let (Xt)t�0 be a Feller process with gen-
erator (A,D(A)) such that C∞

c (Rd) ⊂ D(A), i.e. A|C∞
c (Rd) = −p(·, D). Denote by

(X∗
t )t�0 an independent copy of (Xt)t�0, set X̃t := 2X∗

0 −X∗
t and let (XS

t )t�0 be

the local symmetrization of (Xt)t�0, i.e. for any t � 0, XS
t = 1

2

(
Xt + X̃t

)
. Then,

(XS
t )t�0 is a Feller process with the generator (AS, D(AS)) such that

(i) C∞
c (Rd) ⊂ D(AS), and AS|C∞

c (Rd) = −pS(·, D) is a pseudodifferential operator

with symbol pS(x, ξ) = 2Re p(x, ξ/2);

(ii) the characteristic function of (XS
t )t�0 is |λt(x, ξ/2)|2 for every t � 0 and

x ∈ R
d.

Proof. Clearly, (XS
t )t�0 is a strong Markov process. Denote by (TS

t )t�0 the semi-

group of (XS
t )t�0. Since (Xt)t>0 and (X̃)t>0 are independent withX0 ∼ X̃0 we find

that for all u ∈ Bb(R
d) (the set of bounded measurable functions on Rd), x ∈ Rd

and t � 0,

(2.32) TS
t u(x) =

∫
u(z)PS(t, x, dz) =

∫∫
u
(z1 + z2

2

)
P (t, x, dz1) P̃ (t, x, dz2),

where P (t, x, dy), P̃ (t, x, dy) and PS(t, x, dy) are the transition functions of (Xt)t�0,

(X̃t)t�0 and (XS
t )t�0, respectively.

As mentioned above, since p(·, 0) ≡ 0, [30, Theorem 5.2] shows that the processes

(Xt)t�0 and (X̃t)t�0 are conservative. Thus, according to Proposition 4.5 (i) in the

appendix, both semigroups (Tt)t�0 and (T̃t)t�0 are Cb-Feller semigroups; i.e., they
map the space Cb(R

d) of bounded continuous functions on Rd into itself. This along
with (2.32) yields the Cb-Feller property of (TS

t )t�0. Indeed, for any fixed x0 ∈ Rd

and t > 0, due to the Cb-Feller property of (Tt)t�0 and (T̃t)t�0, we know that the

probability measures P (t, x, dz) and P̃ (t, x, dz) converge weakly to P (t, x0, dz) and

P̃ (t, x, dz) respectively, as x tends to x0. Thus, the convolution of P (t, x, dz) and

P̃ (t, x, dz) converges weakly to the convolution of P (t, x0, dz) and P̃ (t, x0, dz) as x
tends to x0. That is, for any u ∈ Cb(R

d),

lim
x→x0

∫∫
u(z1+z2)P (t, x, dz1)P̃ (t, x, dz2)=

∫∫
u(z1+z2)P (t, x0, dz1)P̃ (t, x0, dz2).

This immediately yields the Cb-Feller property of (TS
t )t�0.

On the other hand, let (AS
w, D(AS

w)) be the weak infinitesimal operator of the pro-
cess (XS

t )t�0. Again from the proof of Theorem 2.1 (iii) we deduce that C∞
c (Rd) ⊂

D(AS
w), and AS

w|C∞
c (Rd) = −pS(·, D) is a pseudodifferential operator with symbol

pS(x, ξ) = 2Re p(x, ξ/2). Indeed, for any u ∈ C∞
c (Rd) and x ∈ R

d, using (2.32),
the Fourier transform and the Fubini theorem, we get

lim
t→0

TS
t u(x)− u(x)

t

= lim
t→0

1

t

(∫∫
u
(z1 + z2

2

)
P (t, x, dz1) P̃ (t, x, dz2)− u(x)

)
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= lim
t→0

1

t

(
2d
∫∫

ei〈ξ,x+z2〉 λt(x, ξ) û(2ξ) dξ P̃ (t, x, dz2)− 2d
∫

ei〈2ξ,x〉 û(2ξ) dξ

)
= lim

t→0

1

t

(
2d
∫

ei〈ξ,2x〉 λt(x, ξ) û(2ξ) dξ

∫
ei〈ξ,z2−x〉P̃ (t, x, dz2)

− 2d
∫

ei〈2ξ,x〉 û(2ξ) dξ

)
= lim

t→0

1

t

(
2d
∫

ei〈ξ,2x〉 λt(x, ξ)λt(x,−ξ) û(2ξ) dξ − 2d
∫

ei〈2ξ,x〉 û(2ξ) dξ

)
= lim

t→0
2d
(∫

ei〈2ξ,x〉
|λt(x, ξ)|2 − 1

t
û(2ξ) dξ

)
= −2d

(∫
ei〈2ξ,x〉

(
p(x, ξ) + p(x,−ξ)

)
û(2ξ) dξ

)
= −

∫
ei〈ξ,x〉

(
2Re p(x, ξ/2)

)
û(ξ) dξ

= −pS(x,D)u(x).

The second and the fourth equalities follow from the fact that the characteristic

functions corresponding to P (t, x, dy) and P̃ (t, x, dy) are λt(x, ξ) and λ̃t(x, ξ) =
λt(x,−ξ), respectively. In the third equality from below we used Theorem 2.1
(i) and the dominated convergence theorem. Therefore, the weak infinitesimal
operator of (TS

t )t�0 on C∞
c (Rd) is just −pS(·, D). According to [9, Chapter I,

(1.49), Page 40], ((XS
t )t�0, (P

x)x∈Rd) is the solution to the martingale problem for
(−pS(·, D), C∞

c (Rd)).
Furthermore, according to Lemma 2.3, we get

lim
r→∞

sup
x∈Rd

sup
|ξ|�1/r

Re p(x, ξ/2) = 0.

Hence, Lemma 2.3 and Proposition 4.4 in the appendix finally imply that (TS
t )t�0

is a Feller semigroup, and so (XS
t )t�0 is a Feller process.

Let (AS, D(AS)) be the Feller generator of (XS
t )t�0. According to [27, Lemma

31.7, Page 209] and the conclusion above, C∞
c (Rd) ⊂ D(AS) and AS |C∞

c (Rd) =

−pS(·, D). Again by the independence of (Xt)t>0 and (X̃)t>0 and the fact that

X0 ∼ X̃0 we see that for any t > 0 the characteristic function of (XS
t )t�0 is given

by

λS
t (x, ξ) = E

x
(
ei〈X

S
t −x,ξ〉)

= E
x
(
ei〈(Xt−x)/2,ξ〉 × ei〈(

˜Xt−x)/2,ξ〉)
= E

x
(
ei〈Xt−x,ξ/2〉 × ei〈

˜Xt−x,ξ/2〉)
= E

x
(
ei〈Xt−x,ξ/2〉)

E
x
(
ei〈

˜Xt−x,ξ/2〉)
= |λt(x, ξ/2)|2.

Together with Theorem 2.1 (i) this also shows that the symbol of the process
(XS

t )t�0 is 2Re p(x, ξ/2). �
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3. Proof of Theorem 1.2 and some applications

3.1. Proof of Theorem 1.2.

Proof. (i) For any t > 0,

‖Tt‖1→∞ := sup
u∈L1(dx), ‖u‖1=1

‖Ttu‖∞

= sup
u∈C∞

c (Rd), ‖u‖1=1

‖Ttu‖∞

= sup
u∈C∞

c (Rd), ‖u‖1=1

sup
x∈Rd

∣∣∣∣ ∫ ei〈x,ξ〉û(ξ)λt(x, ξ) dξ

∣∣∣∣
� sup

u∈C∞
c (Rd), ‖u‖1=1

sup
x∈Rd

∫
|û(ξ)||λt(x, ξ)| dξ

� (2π)−d sup
x∈Rd

∫ ∣∣λt(x, ξ)
∣∣dξ,

where we have used that for all ξ ∈ Rd, |û(ξ)| � (2π)−d‖u‖1. By assumption (1.8)
and Theorem 2.4,

‖Tt‖1→∞ � (2π)−d

∫
exp
(
− t

16
inf
z∈Rd

Re p(z, 2ξ)
)
dξ < ∞,

which yields the ultracontractivity of the Feller semigroup. Now we can get the
existence of the transition density and the strong Feller property of the semigroup
from [38, Proposition 3.3.11] and [34, Corollary 2.2], respectively.
(ii) The assertion follows essentially from [39, Theorem 2.2] and Theorem 2.4. For
the reader’s convenience we repeat the relevant part of the argument from [39,
Theorem 2.2]. For x = (x1, . . . , xd) and r > 0, write

Q(x, r) :=
{
z = (z1, . . . , zd) ∈ R

d : |zj − xj | � r for 1 � j � d
}
.

For any x ∈ Rd and r > 0, define

g(y) = gx(y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r2d, if y = x,

d∏
j=1

( sin r(yj − xj)

yj − xj

)2
, if y �= x.

If fj : R → R, j = 1, . . . , d, are functions we denote by
⊗d

j=1 fj(x) :=
∏n

j=1 fj(xj)

their tensor product. Notice that
⊗d

j=1 fj : Rd → R. Then, g ∈ Bb(R
d) ∩ L1(Rd)

and

ĝ(ξ) = (8π)−de−i〈x,ξ〉
( d⊗

j=1

�[−r,r] ∗
d⊗

j=1

�[−r,r]

)
(ξ);

cf. [18, Table 3.5.19, Page 117, Vol. 1]. In particular, ĝ ∈ L1(Rd). According to the
proof of [17, Theorem 1.1], see also [17, Remark (B), Page 65], (2.13) holds for the
test function g. That is,

Ttg(x) =

∫
ei〈x,ξ〉ĝ(ξ)λt(x, ξ) dξ.
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Since
∣∣ sin r

r

∣∣ � 1/2 for |r| � π/3, we know that g(y) � (4−1r)2d for all y ∈
Q(x, π/(3r)). For s > 0, write Xs = (X1

s , . . . , X
d
s ). By monotone convergence,

(4−1r)2d Ex

(∫ ∞

0

d⊗
j=1

�[xj−π/(3r), xj+π/(3r)](Xs) ds

)

= lim
α→0

E
x

(∫ ∞

0

e−αt(4−1r)2d
d⊗

j=1

�[xj−π/(3r), xj+π/(3r)](Xs) ds

)

� lim
α→0

∫ ∞

0

e−αtTtg(x) dt

= lim
α→0

∫ ∞

0

e−αt dt

∫
ei〈x,ξ〉ĝ(ξ)λt(x, ξ) dξ

= (8π)−d lim
α→0

∫ ∞

0

e−αt

∫ ( d⊗
j=1

�[−r,r] ∗
d⊗

j=1

�[−r,r]

)
(ξ)λt(x, ξ) dξ dt

= (8π)−d lim
α→0

∫ ∞

0

e−αt

∫ ( d⊗
j=1

�[−r,r] ∗
d⊗

j=1

�[−r,r]

)
(ξ) Reλt(x, ξ) dξ dt

� (8π)−d lim
α→0

∫ ∞

0

e−αt

∫ ( d⊗
j=1

�[−r,r] ∗
d⊗

j=1

�[−r,r]

)
(ξ) |Reλt(x, ξ)| dξ dt.

In the penultimate line we have used that the function
⊗d

j=1 �[−r,r] ∗
⊗d

j=1 �[−r,r]

is symmetric. Note that for all ξ ∈ Rd,

( d⊗
j=1

�[−r,r] ∗
d⊗

j=1

�[−r,r]

)
(ξ) � (2r)d

( d⊗
j=1

�[−2r,2r]

)
(ξ) � (2r)d�Q(0,2r)(ξ).

This inequality and (2.18) give

(πr
4

)d
E
x

(∫ ∞

0

d⊗
j=1

�[xj−π/(3r), xj+π/(3r)](Xs) ds

)

� lim
α→0

∫ ∞

0

e−αt

∫
Q(0,2r)

|Reλt(x, ξ)| dξ dt

�
∫ ∞

0

∫
Q(0,2r)

|Reλt(x, ξ)| dξ dt

�
∫ ∞

0

∫
{|ξ|�2r

√
d}

|λt(x, ξ)| dξ dt

�
∫ ∞

0

∫
{|ξ|�2r

√
d}

exp

(
− t

16
inf
z∈Rd

Re p(z, 2ξ)

)
dξ dt

= 16

∫
{|ξ|�2r

√
d}

dξ

infz∈Rd Re p(z, 2ξ)
.
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Therefore, for any r > 0,

E
x
(∫ ∞

0

�Q(x,π/(3r))(Xs) ds
)
� 4d+2

(πr)d

∫
{|ξ|�2r

√
d}

dξ

infz∈Rd Re p(z, 2ξ)
.

Since r > 0 is arbitrary, the assertion follows because of (1.10).

(iii) Our proof follows Berman’s argument; see [5, Chapter V, Theorem 1.1 (1),
Page 126] and [4, Section 3]. The occupation measure μt of the time interval [0, t],
t > 0, is defined through the relation∫

Rd

f(x)μt(dx) =

∫ t

0

f(Xs) ds for all f ∈ Bb(R
d), f � 0.

Define the measure μ by

μ(dx) :=

∫ ∞

0

e−t μt(dx) dt

in the vague topology of measures. In particular, each μt is absolutely continuous
with respect to μ with a density bounded from above by et. We claim that

(3.33)

∫
Rd

E
x
(
|μ̂(ξ)|2

)
dξ < ∞ for every x ∈ R

d.

Using Fubini’s theorem and then Plancherel’s theorem we conclude that, almost
surely, μ has a square-integrable density dμ

dx with respect to dx ⊗ dP. By the

definition of μt and μ, the local time of the process is just L(x, t) = et × dμ
dx for all

x ∈ Rd and t � 0, and so the required assertion follows.
All that remains to be done is to establish (3.33). From the very definition of μ,

one has

E
x
(
|μ̂(ξ)|2

)
= E

x
(
μ̂(ξ)μ̂(−ξ)

)
= E

x

[(∫ ∞

0

e−sei〈Xs,ξ〉 ds

)(∫ ∞

0

e−te−i〈Xt,ξ〉 dt

)]
= E

x

(∫ ∞

0

∫ ∞

0

e−(s+t)ei〈Xs−Xt,ξ〉 ds dt

)
= E

x

(∫ ∞

0

∫ ∞

t

e−(s+t)ei〈Xs−Xt,ξ〉 ds dt

)
+ E

x

(∫ ∞

0

∫ t

0

e−(s+t)ei〈Xs−Xt,ξ〉 ds dt

)
= E

x

(∫ ∞

0

∫ ∞

t

e−(s+t)ei〈Xs−Xt,ξ〉 ds dt

)
+ E

x

(∫ ∞

0

∫ ∞

s

e−(s+t)ei〈Xs−Xt,ξ〉 dt ds

)
= 2Ex

(∫ ∞

0

∫ ∞

t

e−(s+t) Re ei〈Xs−Xt,ξ〉 ds dt

)
= 2

∫ ∞

0

∫ ∞

t

e−(s+t) ReEx
(
ei〈Xs−Xt,ξ〉

)
ds dt

= 2

∫ ∞

0

∫ ∞

t

e−(s+t)
E
x

(
ReEy

(
ei〈Xs−t−y,ξ〉

)∣∣∣
y=Xt

)
ds dt.

In the last step we have used the Markov property. From (2.18) we conclude that

E
x
(
|μ̂(ξ)|2

)
� 2

∫ ∞

0

∫ ∞

t

e−(s+t) sup
z∈Rd

∣∣∣Reλs−t(z, ξ)
∣∣∣ ds dt

� 2

∫ ∞

0

∫ ∞

t

e−(s+t) sup
z∈Rd

∣∣∣λs−t(z, ξ)
∣∣∣ ds dt
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� 2

∫ ∞

0

∫ ∞

t

e−(s+t)− 1
16 (s−t) inf

z∈Rd
Re p(z,ξ) ds dt

= 2

∫ ∞

0

∫ ∞

t

e−(s−t)− 1
16 (s−t) inf

z∈Rd
Re p(z,ξ) ds e−2t dt

=
16

16 + infz∈Rd Re p(z, ξ)
.

This estimate and the assumption (1.11) show that (3.33) holds. �
Remark 3.1. (i) A close inspection of the proofs of Theorem 1.2 (ii) and (iii) shows
that the transience and the existence of local times for a Feller process only depend
on Reλt(x, ξ), i.e. the real part of the characteristic function. This is familiar from
the theory of Lévy processes.

(ii) If for every x ∈ Rd the symbol Re p(x, ξ) is a function of |ξ| which is unbounded
in ξ, i.e. if for every x ∈ Rd, Re p(x, ξ) = Re p(x, |ξ|) and

lim
|ξ|→∞

Re p(x, |ξ|) = ∞,

then we can replace the condition ‘for every r > 0’ in (1.10) by ‘for some r > 0’.
This can be seen from the following argument: first,∫

{|ξ|�r}

dξ

infz∈Rd Re p(z, ξ)
= ∞

is equivalent to saying that∫
{|ξ|�r}

dξ

supz∈Rd

(
− Re p(z, ξ))

= −∞.

Now, if there exists r0 > 0 such that∫
{|ξ|�r0}

dξ

infz∈Rd Re p(z, ξ)
< ∞

and ∫
{|ξ|�r}

dξ

infz∈Rd Re p(z, ξ)
= ∞ for all r > r0,

then, ∫
{|ξ|�r0}

dξ

supz∈Rd

(
− Re p(z, ξ)

) < −∞

and ∫
{|ξ|�r}

dξ

supz∈Rd

(
− Re p(z, ξ)

) = −∞ for all r > r0.

Hence, ∫
{r0�|ξ|�r}

dξ

supz∈Rd

(
− Re p(z, ξ)

) = −∞ for all r > r0.

Thus, there exists a sequence (ξn)n�1 ⊂ {z ∈ Rd : r0 � |z| � r} such that

lim
n→∞

sup
z∈Rd

Re p(z, ξn) = 0.

In particular, for all x ∈ R
d, lim

n→∞
Re p(x, ξn) = 0.

By compactness, there is a subsequence (ξ′n)n�1 of (ξn)n�1 such that limn→∞ ξ′n
= ξ0. Since the function ξ → Re p(x, ξ) is continuous for any fixed x ∈ Rd, we
get that Re p(x, ξ0) = 0 for every x ∈ Rd. Thus, for any x ∈ Rd and η ∈ Rd
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with |η| = |ξ0|, Re p(x, η) = 0. Since
√
Re p(x, ·) is subadditive, ξ → Re p(x, ξ) is

periodic. Because of (1.6), there is a constant C = C(ξ0) such that

sup
x,ξ∈Rd

Re p(x, ξ) � C,

which cannot be the case since Re p(x, ξ) is unbounded.

3.2. Examples.

Feller processes with real symbol obtained by variable order subordina-
tion. Let ψ be a real-valued negative definite function on R

d such that ψ(0) = 0.
Let f : Rd × [0,∞) → [0,∞) be a measurable function such that supx f(x, s) �
c(1 + s) for some constant c > 0, and for fixed x ∈ Rd the function s → f(x, s)
is a Bernstein function with f(x, 0) = 0. Bernstein functions are the characteristic
Laplace exponents of subordinators; our standard reference is the monograph [33].
Then,

q(x, ξ) := f(x, ψ(ξ))

is a real-valued symbol satisfying (1.6). Since f(x, s) = sr(x), where r : Rd → [0, 1]
is a possible choice for f , this class includes symbols describing variable (fractional)
order of differentiation or variable order fractional powers. We refer to [11] and the
references therein for more details on Feller semigroups obtained by variable order
subordination. According to Theorem 1.2 and Remark 3.1, we see

Corollary 3.2. Let (Xt)t�0 be a Feller process with the symbol q(x, ξ) = f(x, ψ(ξ))
above. Set f0(s) := infx∈Rd f(x, s) for s ∈ [0,∞). Then, we have

(i) If

lim
|ξ|→∞

f0(ψ(ξ))

log(1 + |ξ|) = ∞,

then the corresponding Feller semigroup (Tt)t�0 is ultracontractive and has the
strong Feller property.

(ii) If ∫
{|ξ|�r}

dξ

f0(ψ(ξ))
< ∞ for every r > 0,

then the Feller process (Xt)t�0 is transient.

(iii) If ∫
dξ

1 + f0(ψ(ξ))
< ∞,

then the Feller process (Xt)t�0 has local times.
If the symbol ψ(ξ) only depends on |ξ|, i.e. if ψ(ξ) = φ(|ξ|) for some function φ,

then it is enough to assume that the condition in (ii) holds for some r > 0.

Rich Bass’ stable-like processes. A stable-like process on Rd is a Feller pro-
cess, whose generator has the same form as that of a rotationally symmetric stable
Lévy motion, but the index of ‘stability’ depends on the state space; see [1]. The
infinitesimal generator is of the form

L(α)u(x) =

∫
z �=0

(
u(x+z)−u(x)−〈∇u(x), z〉�{|z|�1}

) Cα(x)

|z|d+α(x)
dz, u ∈ C2

b (R
d),
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where 0 < α(x) < 2 and Cα(x) is a constant defined through the Lévy-Khintchine
formula

|ξ|α(x) = Cα(x)

∫
z �=0

(
1− cos〈ξ, z〉

) dz

|z|d+α(x)
,

i.e.

Cα(x) = α(x)2α(x)−1Γ
(
(α(x) + d)/2

)/(
πd/2Γ

(
1− α(x)/2

))
;

see [3, Exercise 18.23, Page 184]. In other words, the operator L(α) can be regarded
as a pseudodifferential operator of variable order with symbol |ξ|α(x), i.e. L(α) =
−(−Δ)α(x)/2.

Theorem 3.3. Assume that α(x) ∈ C1
b (R

d) such that 0 < α = inf α � α(x) �
supα = α < 2. Then, there exists a Feller process (Xt)t�0 (which we call a stable-

like process in the sense of R. Bass) having the symbol |ξ|α(x), such that the following
statements hold.

(i) The Feller semigroup (Tt)t�0 of (Xt)t�0 has the strong Feller property, and the
transition probability P (t, x, dy) of (Xt)t�0 has a density function p(t, x, y) with
respect to Lebesgue measure; moreover

sup
x,y∈Rd

p(t, x, y) �

⎧⎨⎩C t−d/α for small t � 1;

C t−d/α for large t � 1.

(ii) If d � 2, then the process (Xt)t�0 is transient.

(iii) If d = 1 and sup|x|�K α(x) ∈ (0, 1) for some constant K > 0, then the process

(Xt)t�0 is transient.

(iv) If d = 1 and infx∈R α(x) ∈ (1, 2), the process (Xt)t�0 has local times.

Before we begin with the proof of Theorem 3.3, a few words on related work on
stable-like processes are appropriate.

Remark 3.4. (i)Under the condition that α(·) ∈ C∞
b (Rd), the strong Feller property

of stable-like processes has been established in [34, Theorem 3.3]. In addition to
this, our result provides an upper bound for on-diagonal estimates of the heat
kernel of stable-like processes. Note that a stable-like process is not symmetric;
i.e., Dirichlet form methods fail if we want to derive estimates as in Theorem 3.3
(i).

(ii) If α(x) is Dini continuous and infx∈R α(x) ∈ (1, 2), the existence of local times
for stable-like processes was shown by Bass [2, Theorem 2.1]. Bass’ technique is
different from ours.

(iii) Recurrence and transience of a particular class of one-dimensional stable-
like processes (with discontinuous exponents) have been studied in [6] using an
overshoot approach under the assumption that the underlying process is a Lebesgue-
irreducible T-process. Although the setting in [6, Corollary 5.5] is different from
the situation here, we remark that our proof shows that a stable-like process with
α(x) ∈ C1

b (R
d) and 0 < α = inf α � α(x) � supα = α < 2 is a Lebesgue-irreducible

T-process.

Proof of Theorem 3.3. According to [1, Corollary 2.3] the solution to the martingale
problem for (L(α), C∞

0 (Rd)) is well posed. Therefore there exists a unique strong
Markov process ((Xt)t�0, (P

x)x∈Rd) for which Px solves the martingale problem for
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(L(α), C∞
0 (Rd)) at each point x ∈ Rd. For any t � 0, x ∈ Rd and f ∈ Bb(R

d), we
define

Ttf(x) = E
x(f(Xt)).

From [1, Propositions 6.1 and 6.2], we know that (Tt)t�0 is a Markov semigroup
which has the Cb-Feller property; that is, for any t � 0, Tt maps the set of bounded
continuous functions into itself. By Proposition 4.4 we see that Tt enjoys the Feller
property; i.e., Tt maps the set of continuous functions vanishing at infinity into
itself. Note that the uniqueness of the solution for the martingale problem indicates
that C∞

c (Rd) is contained in the extended domain of the operator L(α). On the
other hand, it is easy to check that, under our assumptions on the index function
α, we have L(α)u ∈ C∞(Rd) for any u ∈ C∞

c (Rd). Thus, Proposition 4.1 shows
that C∞

c (Rd) actually is contained in the domain of the operator L(α). Therefore,
(i), (ii) and (iv) follow from Theorem 1.2.

To prove the assertion (iii) we need a few auxiliary results on stable-like pro-
cesses. Let P (t, x, dy) be the transition function of (Xt)t�0 and denote its den-
sity by p(t, x, y). Note that x → Cα(x) is a positive function of class C∞

b (Rd).
From [22, Theorem 5.1 and its Corollary, Pages 759–760] we know that p(t, x, y) is
strictly positive everywhere on (0,∞) × Rd × Rd. Therefore, (Xt)t�0 is Lebesgue
irreducible; i.e., for any Borel measurable set A with Leb(A) > 0 and x ∈ R

d,
E
x
( ∫∞

0
�A(Xt) dt

)
> 0. Recall that a Markov process (Xt)t�0 is Harris recurrent if

for any Borel measurable set A with Leb(A) > 0 and x ∈ Rd, Ex
( ∫∞

0
�A(Xt) dt

)
=

∞. The Lebesgue irreducibility and the strong Feller property yield that the stable-
like process (Xt)t�0 is either Harris recurrent or transient; see e.g. [24, Theorem
3.2 (a)] and [36, Theorem 2.3]. Moreover, we know from [23, Theorem 3.3] that
(Xt)t�0

is Harris recurrent if, and only if, Px(σ
B(0,R)

< ∞) = 1 for every x ∈ Rd;

is transient if, and only if, Px(σ
B(0,R)

< ∞) < 1 for some x ∈ Rd,

where σ
B(0,R)

is the first entrance time of the process into B(0, R) and R > 0 is

any fixed radius. From these characterizations, we conclude that any two stable-
like processes which coincide outside some compact set have the same (Harris)
recurrence and transience behaviour; see [6, Theorems 4.6 and 4.7].

Now we can use Theorem 1.2 (ii) to infer that a one-dimensional stable-like pro-
cess is transient if supx∈R

α(x) ∈ (0, 1). Therefore, (iii) follows from this conclusion
and the remark above. �

4. Appendix

Let (Xt)t�0 be a Feller process with generator (A,D(A)) and semigroup (Tt)t�0.
Let us first comment on the assumption that

(4.34) the test functions C∞
c (Rd) are contained in the domain D(A)

of the Feller generator A. Usually (4.34) is not easy to verify in applications; on the
other hand, we do not know many nontrivial examples of Feller processes which do
not satisfy (4.34). In what follows, we will make full use of the extended domain of
the Feller generator A, which is easier to deal with than the domain D(A).
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Recall that for a strong Markov process (Xt)t�0 on Rd with infinitesimal gener-

ator (A,D(A)), the extended domain D̃(A) is defined by

D̃(A) =

{
u ∈ B(Rd) : there is a measurable function g such that

(
u(Xt)−

∫ t

0

g(Xs) ds, Ft

)
t�0

is a local martingale under Px

}
,

where Ft := σ(Xs : s � t) is the natural filtration of the process (Xt)t�0, and
B(Rd) is the space of Borel measurable functions on Rd. The function g appearing

in the definition of D̃(A) need not be unique; cf. [10, Chapter 1, Page 24]. If,

however, Au can be defined, g = Au is admissible; in particular, D(A) ⊂ D̃(A).
Conversely, we can use the situation where g is unique to extend the operator
(A,D(A)). The concept of extended domain is similar to the full generator for a
contraction semigroup in [10, Chapter 1, Pages 23–24].

For a Feller generator (A,D(A)) such that C∞
c (Rd) ⊂ D(A) one has C∞

c (Rd) ⊂
D̃(A); see [10, Chapter 4, Proposition 1.7] and [31, Lemma 2.3 and Corollary 3.6].
On the other hand, the condition C∞

c (Rd) ⊂ D(A) along with the assumption

(1.6) implies that C∞
c (Rd) ⊂ C2

b (R
d) ⊂ D̃(A); see Proposition 4.2 below for the

simple proof of the assertion that C∞
b (Rd) ⊂ D̃(A), where C∞

b (Rd) is the space of
arbitrarily often differentiable functions such that the function and its derivatives
are bounded. Conversely, we have

Proposition 4.1. Let (Xt)t�0 be a Feller process with generator (A,D(A)). Sup-

pose that C∞
c (Rd) ⊂ D̃(A), and that for any u ∈ C∞

c (Rd) there is (an extension of
A) such that Au is well defined and in C∞(Rd), the space of continuous functions
vanishing at infinity. If the process (Xt)t�0 is conservative, then C∞

c (Rd) ⊂ D(A).

Proof. The Feller semigroup (Tt)t�0 has a unique extension on Bb(R
d) (the space of

the bounded Borel measurable functions); cf. [30, Section 3]. For simplicity, we still
denote by (Tt)t�0 this extension. Since the process (Xt)t�0 is conservative, Tt1 = 1
for every t � 0. According to [30, Corollary 3.4], t → Ttu is for all u ∈ Cb(R

d)
continuous with respect to locally uniform convergence.

Let τ
B(x,r)

be the first exit time of the process from the open ball B(x, r). Since

C∞
c (Rd) ⊂ D̃(A), for any x ∈ Rd, r > 0 and u ∈ C∞

c (Rd),

E
x

(
u(Xt∧τ

B(x,r)
)−
∫ t∧τ

B(x,r)

0

Au(Xs) ds

)
= u(x).

Since (Xt)t�0 is conservative, τ
B(x,r)

r→∞−−−→ ∞. Thus, we can use the dominated

convergence theorem to find that for all u ∈ C∞
c (Rd),

E
x

(
u(Xt)−

∫ t

0

Au(Xs) ds

)
= u(x).

Pick x ∈ Rd; by the continuity of t → Tt(Au)(x),

lim
t→0

E
x
(
u
(
Xt

)
− u(x)

)
t

= lim
t→0

1

t

(∫ t

0

Ts(Au)(x) ds

)
= Au(x).
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Thus, u belongs to the domain of the weak infinitesimal generator of the process
Xt. The required assertion follows from [27, Lemma 31.7, Page 209]. �

Next, we present a consequence of the assumption C∞
c (Rd) ⊂ D(A) for Feller

processes.

Proposition 4.2. Let (Xt)t�0 be a Feller process with generator (A,D(A)) and
semigroup (Tt)t�0. Assume that C∞

c (Rd) ⊂ D(A) so that A|C∞
c (Rd) is a pseudodif-

ferential operator −p(·, D) with symbol p(x, ξ). If (1.6) is satisfied, then

Tteξ(x) = eξ(x) +

∫ t

0

TsAeξ(x) ds

holds for all t > 0 and x, ξ ∈ R
d, where eξ(x) = ei〈ξ,x〉.

Proof. Denote by C∞
b (Rd) the space of arbitrarily often differentiable functions such

that the function and its derivatives are bounded. First we prove that C∞
b (Rd) is

contained in the extended domain D̃(A) of the Feller generator A.
Let (b(x), a(x), ν(x, dz))x∈Rd be the Lévy characteristics of the symbol p(x, ξ)

given by (1.5); under the assumption (1.6), c(x) ≡ 0. Then A has the following
representation as an integro-differential operator:

(4.35)

Lf(x) =
1

2

d∑
j,k=1

ajk(x)∂jkf(x) +

d∑
j=1

bj(x)∂jf(x)

+

∫
z �=0

(
f(x+ z)− f(x)− 〈∇f(x), z〉�{|z|�1}

)
ν(x, dz).

For all u ∈ C∞
c (Rd) we have −p(x,D)u(x) = Lu(x), x ∈ R

d, cf. [31, (2.7) and Corol-

lary 2.4], and by [31, Lemma 2.3 and Corollary 3.6] we have C2
b (R

d) ⊂ D̃(A). On
the other hand, [31, Lemma 2.3 and Corollary 3.6] also show that (L,D(L)) is the
unique extension of the Feller generator A onto C2

b (R
d) such that ‖Lu‖∞ � C‖u‖C2

b

holds for all u ∈ C2
b (R

d) and some constant C > 0; here ‖u‖C2
b
:=
∑

|α|�2 ‖∂αu‖∞.

Let χ ∈ C∞
c (Rd) be a smooth cutoff function such that �B(0,1)(y) � χ(y) �

�B(0,2)(y) for y ∈ Rd. For u ∈ C∞
b (Rd) we define ux

n(y) := χ((y−x)/n)u(y). Then,

ux
n ∈ C∞

c (Rd) for every n � 1. By the Taylor formula and the Leibniz rule we see
that for any compact set K ⊂ Rd there exists a positive constant C := C(K,u, n)
such that |Lux

n(y)| � C for all y ∈ K. Let τ
B(x,r)

be the first exit time of the process

from the open ball B(x, r). By the bounded convergence theorem and the fact that

C∞
c (Rd) ⊂ D̃(L), we find for all x ∈ Rd and r, t > 0,

E
x

(
u(Xt∧τ

B(x,r)
)− u(x)

)
= lim

n→∞
E
x

(
ux
n(Xt∧τ

B(x,r)
)− ux

n(x)

)
= lim

n→∞
E
x

(∫ t∧τ
B(x,r)

0

Lux
n(Xs) ds

)
= lim

n→∞
E
x

(∫(
0, t∧τ

B(x,r)

) Lux
n(Xs) ds

)
.
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By the dominated convergence theorem, we may interchange limit and integration
to get

E
x

(
u(Xt∧τ

B(x,r)
)− u(x)

)
= E

x

(∫(
0, t∧τ

B(x,r)

) lim
n→∞

Lux
n(Xs) ds

)
= E

x

(∫(
0, t∧τ

B(x,r)

) Lu(Xs) ds

)
.

Therefore, for any x ∈ Rd and r > 0,

E
x

(
u(Xt∧τ

B(x,r)
)−

∫ t∧τ
B(x,r)

0

Lu(Xs) ds

)
= u(x).

Because of (1.6), the process (Xt)t�0 is conservative. Therefore, τB(x,r)

r→∞−−−→ ∞,

and we find by dominated convergence for all u ∈ C∞
b (Rd) that

E
x

(
u(Xt)−

∫ t

0

Lu(Xs) ds

)
= u(x).

Note that (L,D(L)) is the unique extension of (A,D(A)), C∞
b (Rd) ⊂ D(L). Now

the Markov property shows that u ∈ D̃(A).
If we set u(x) = eξ(x) and use that Leξ(x) = Aeξ(x), the assertion follows. �

If C∞
c (Rd) ⊂ D(A), the following result can be deduced from [31, Lemmas 4.1

and Lemma 5.1].

Proposition 4.3. Let (Xt)t�0 be a Feller process with generator (A,D(A)) such
that C∞

c (Rd) ⊂ D(A) and (1.6) holds. Let τ
B(x,r)

be the first exit time of the process

from the open ball B(x, r). Then, for any x ∈ Rd and r, t > 0,

P
x(τ

B(x,r)
� t) � c t sup

|y−x|�r

sup
|ξ|�1/r

|p(y, ξ)|(4.36a)

� c t sup
|ξ|�1/r

sup
z∈Rd

|p(z, ξ)|(4.36b)

with an absolute constant c > 0.

Let (Xt)t�0 be a strong Markov process with semigroup (Tt)t�0 and generator
A. Assume that the semigroup (Tt)t�0 has the Cb-Feller property, i.e. Tt(Cb(R

d)) ⊂
Cb(R

d) for all t > 0, where Cb(R
d) is the set of bounded and continuous functions

on Rd. Moreover, we assume that C∞
c (Rd) is contained in the extended domain

D̃(A) of the operator A and that A|C∞
c (Rd) = −p(·, D), where −p(·, D) is a pseu-

dodifferential operator with symbol p(x, ξ). Then, for any u ∈ C∞
c (Rd),(

u(Xt)−
∫ t

0

(−p(Xs, D)u(Xs)) ds, Ft

)
t�0

is a local martingale under P
x.

Furthermore, we have the following simple condition on the symbol p(x, ξ) to yield
the (C∞-)Feller property of (Tt)t�0.

Proposition 4.4. If the symbol p(x, ξ) satisfies

(4.37) lim
r→∞

sup
|x|�r

sup
|ξ|�1/r

|p(x, ξ)| = 0,

then (Tt)t�0 has the Feller property; i.e., Tt(C∞(Rd)) ⊂ C∞(Rd) for every t � 0,
where C∞(Rd) is the set of continuous functions on Rd vanishing at infinity.
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Proof. Since
√
|p(x, ·)| is, for any fixed x ∈ Rd, subadditive, it is not hard to see

that (4.37) is equivalent to

(4.38) lim
r→∞

sup
|x|�γr

sup
|ξ|�1/r

|p(x, ξ)| = 0, γ � 1.

A close inspection of the proof of Proposition 4.3 shows that (4.36a) also holds
in the present setting. For every f ∈ C∞(Rd) we see by the Cb-Feller property that
Ttf ∈ Cb(R

d) is continuous. We have to study the behaviour of Ttf(x) as |x| → ∞.
If f ∈ C∞(Rd), we find for every ε > 0 some r1 := r1(ε, f) > 0 such that

|f(y)| � ε/2 for all |y| � r1.

Because of (4.38), there is some constant r2 := r2(ε, f) > r1 > 0 such that

sup
|z|�3|y|/2

sup
|ξ|�2/|y|

|p(z, ξ)| � ε

2c t(‖f‖∞ + 1)
for all |y| � r2

(c is the constant appearing in Proposition 4.3). By (4.36a) we find for y ∈ Rd with
|y| � 2r2

|(Ttf)(y)| �
∫

|f(z)|Py(Xt ∈ dz)

=

∫
B(0,r2)

|f(z)|Py(Xt ∈ dz) +

∫
Bc(0,r2)

|f(z)|Py(Xt ∈ dz)

� ‖f‖∞ P
y(|Xt| � r2) + ε/2

� ‖f‖∞ P
y(|Xt − y| � |y| − r2) + ε/2

� ‖f‖∞ P
y(sup

s�t
|Xs − y| � |y|/2) + ε/2

� c t ‖f‖∞ sup
|z−y|�|y|/2

sup
|ξ|�2/|y|

|p(z, ξ)|+ ε/2

� c t ‖f‖∞ sup
|z|�3|y|/2

sup
|ξ|�2/|y|

|p(z, ξ)|+ ε/2

� ε,

which shows that lim|y|→∞ Ttf(y) = 0 for all f ∈ C∞(Rd). �

The following statement presents a general connection between a Cb-Feller and
a (C∞-)Feller semigroup.

Proposition 4.5. (i) Suppose that (Tt)t�0 is a Feller semigroup. If Tt1 ∈ Cb(R
d)

for every fixed t � 0, then (Tt)t�0 is a Cb-Feller semigroup. In particular, any
conservative Feller semigroup, i.e. for t � 0, Tt1 = 1, is a Cb-Feller semigroup.

(ii) Let (Tt)t�0 be a Cb-Feller semigroup and (P (t, x, dy))t>0 the corresponding fam-
ily of kernels; i.e., for any t > 0, x ∈ Rd and u ∈ Cb(R

d), Ttu(x)=
∫
u(y)P (t, x, dy).

Then, (Tt)t>0 is a Feller semigroup if, and only if, for all t > 0 and all bounded
sets B ∈ B(Rd),

lim
|x|→∞

P (t, x, B) = 0.

Proof. (i) This is just [30, Corollary 3.4].

(ii) Assume that (Tt)t�0 is Cb-Feller. Then, for any t > 0 and f ∈ C∞(Rd), Ttf is
continuous. For any ε > 0, we first choose δ > 0 such that |f |�B(0,δ)c � ε. Thus,
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3284 RENÉ L. SCHILLING AND JIAN WANG

for x ∈ Rd,

|Ttf(x)| �
∫
B(0,δ)

|f(y)|P (t, x, dy) +

∫
B(0,δ)c

|f(y)|P (t, x, dy)

� ‖f‖∞P (t, x, B(0, δ)) + ε.

Hence,

lim
|x|→∞

|Ttf(x)| � ‖f‖∞ lim
|x|→∞

P (t, x, B(0, δ)) + ε = ε.

Letting ε → 0 yields that Ttf ∈ C∞(Rd).
On the other hand, for any bounded set B ∈ B(Rd), we can choose some f ∈

C∞(Rd) such that f � 0 and f |B ≡ 1. Therefore,

Ttf(x) �
∫
B

f(y)P (t, x, dy) = P (t, x, B).

Since (Tt)t�0 is (C∞-)Feller,

0 = lim
|x|→∞

|Ttf(x)| = lim
|x|→∞

Ttf(x) � lim
|x|→∞

P (t, x, B). �

We close this section with an abstract result for Feller semigroups.

Proposition 4.6. The martingale problem for (−p(·, D), C∞
c (Rd)) is well posed if,

and only if, the test functions C∞
c (Rd) are an operator core for the Feller generator

(A,D(A)), i.e. A|C∞
c (Rd) = A.

Proof. Assume that the martingale problem for (−p(·, D), C∞
c (Rd)) is well posed.

According to a result by van Casteren, [37, Theorem 2.5, Page 283], see also that
by Okitaloshima and van Casteren, [25, Theorem 3.1, Page 789], there exists a
unique extension (A,D(A)) of (−p(·, D), C∞

c (Rd)) which is a Feller generator. In

particular, A|C∞
c (Rd) = A.

On the other hand, suppose that the test functions C∞
c (Rd) are an operator core

for the Feller operator (A,D(A)). By the Hille-Yosida-Ray Theorem, see e.g. [10,
Chapter 4, Theorem 2.2, Page 165], the range (λ + p(·, D))(C∞

c (Rd)) is dense in
C∞(Rd) for some λ > 0. Since (−p(·, D), C∞

c (Rd)) satisfies the positive maximum
principle, it is dissipative in the sense that

‖λu− (−p(·, D))u‖∞ � λ‖u‖∞ for all u ∈ C∞
c (Rd);

cf. [10, Chapter 4, Theorem 2.1, Page 165]. Therefore, the well-posedness of the
martingale problem for (−p(·, D), C∞

c (Rd)) follows from [10, Chapter 4, Theorem
4.1, Page 182]. �
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