SOME THEOREMS ON LOCALLY PRODUCT RIEMANNIAN SPACES

Shun-ICHI TACHIbANA

(Received November 25, 1959)

In a previous paper [3] ${ }^{1)}$, we have generalized the notion of analytic tensors and obtained the one of Φ-tensors. As a natural developement, we shall deal with locally product Riemannian spaces. Since such a space is formally analogous to a Kählerian space, it seems to be interesting to translate well known theorems in the latter to the former.

We shall devote § 1 to preliminaries. In § 2, we shall obtain an integral formula for a tensor field in a compact orientable space and give an application on harmonic tensors. In $\S 3$ another application will be given and we shall see that in a compact orientable locally product Riemannian space an infinitesimal projective (or conformal) transformation is necessarily an isometry. In $\S 6$ we shall discuss infinitesimal product-projective transformations which correspond to holomorphically projective transformations in a Kählerian space. Its preliminary results are given in $\S 4$ and $\S 5$. In $\S 7$ infinitesimal product-conformal transformations are defined and discussed.

The author expresses his hearty thanks to his colleague S . Ishihara who gave him many valuable suggestions in the course of the preparation of this paper.

1. Preliminaries. Let us consider an n-dimensional locally product Riemannian space. Then, by definition, there exists a system of coordinate neighborhoods $\left\{U_{\alpha}\right\}$ such that in each U_{a} the line element is given by the form

$$
\begin{equation*}
d s^{2}=\sum_{\lambda, \mu=1}^{p} g_{\lambda \mu}\left(x^{\nu}\right) d x^{\lambda} d x^{\mu}+\sum_{a, b=p+1}^{n} g_{a b}\left(x^{c}\right) d x^{a} d x^{b^{2}}, \tag{1.1}
\end{equation*}
$$

and in $U_{\alpha} \cap U_{\beta}$ the coordinate transformation $\left(x^{\lambda}, x^{a}\right) \rightarrow\left(x^{\lambda^{\prime}}, x^{a \prime}\right)$ is given by the form

$$
\begin{equation*}
x^{\lambda^{\prime}}=x^{\lambda^{\prime}}\left(x^{\mu}\right), \quad x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}\right) \tag{1.2}
\end{equation*}
$$

Such a coordinate system (x^{λ}, x^{a}) will be called a separating coordinate

[^0]system.
If we define $\boldsymbol{\varphi}_{i}{ }^{h}$ by
\[

\left(\varphi_{i}{ }^{\prime}\right)=\left($$
\begin{array}{cc}
\delta_{\lambda}{ }^{\mu} & 0 \tag{1.3}\\
0 & -\delta_{a}{ }^{b}
\end{array}
$$\right)
\]

in each U_{α}, then they define a tensor field and satisfy

$$
\begin{align*}
\boldsymbol{\varphi}_{i}^{r} \boldsymbol{\varphi}_{r}{ }^{h} & =\delta_{i}{ }^{h}, \tag{1.4}\\
g_{r i} \boldsymbol{\varphi}_{j}^{r} & =g_{j r} \boldsymbol{\varphi}_{i}^{r}, \tag{1.5}\\
\nabla_{j} \boldsymbol{\varphi}_{i}{ }^{h} & =0, \tag{1.6}
\end{align*}
$$

where ∇_{j} denotes the operator of the Riemannian covariant derivation. (1. 4) shows that $\varphi_{i}{ }^{h}$ assigns an almost-product structure to the space [1], [2], [5], [6]. (1. 5) means that the Riemannian metric tensor $g_{j i}$ is pure in the sence of [3].

Conversely consider an n-dimensional Riemannian space M which admits a tensor field ${\varphi_{i}}^{h}\left(\neq \delta_{i}{ }^{h}\right)$ satifying (1.4), (1.5) and (1.6). By virtue of (1.4), the matrix $\left(\boldsymbol{\phi}_{i}{ }^{h}\right)$ has ± 1 as its proper values. Let us denote by $T(P)$ the tangent vector space of M at a point P and let $E(P)$ and $F(P)$ be the proper vector spaces corresponding to the proper values +1 and -1 respectively. If we put $\operatorname{dim} E(P)=p$ and $\operatorname{dim} F(P)=q$, then they are constant and it holds that $\varphi \equiv \phi_{r}{ }^{r}=p-q=n-2 q$. By virtue of (1.6) the field of vector spaces $E(P)$ (resp. $F(P)$), $P \in M$, constitutes a p-(resp. q-) dimensional involutive distribution [6]. Consequently there exists a system of coordinate neighborhoods such that (1.3) holds good. Since $\varphi_{i}{ }^{h}$ is a tensor, coordinate transformations among the coordinate systems are the type of (1.2). In such a coordinate system, (1.5) is equivalent to $g_{\wedge a}=0$, from which and (1.6) we have $g_{\lambda \mu}$ $=g_{\lambda \mu}\left(x^{\nu}\right)$ and $g_{a b}=g_{a b}\left(x^{c}\right)$. Thus the space under consideration is nothing but the locally product Riemannian space.

Throughout the paper we shall assume that M is an n-dimensional locally product Riemannian space whose positive definite metric tensor is given by $g_{j i}$ and that p and q are greater than 1 .

We shall say that a vector field v^{i} is decomposable ${ }^{3}$, if its covariant derivative is pure, i.e., $\underset{v}{\mathcal{V}} \boldsymbol{\varphi}_{i}{ }^{h}=0$ is valid ${ }^{4}$. With respect to a separating coordinate system $\left(x^{\lambda}, x^{a}\right)$, it is equivalent to the fact that $\partial_{\lambda} v^{a}=0$ and $\partial_{a} v^{\lambda}=0$ are valid.

A tensor field will be called decomposable if it and its covariant deri-
3) A covariant vector field u_{i} is called decomposable, if $u^{i}=g^{i} u_{r}$ is decomposable. This is equivalent to the fact that $\nabla J u_{i}$ is pure.
4) $\underset{v}{\mathcal{E}}$ denotes the operator of Lie derivation with respect to v^{i}.
vative are both pure. Hence a tensor $\xi_{i}{ }^{h}$ is decomposable if $\xi_{\lambda}{ }^{a}=\xi_{a}{ }^{\lambda}=0$, $\xi_{\lambda}{ }^{\mu}=\xi_{\lambda}{ }^{\mu}\left(x^{\nu}\right)$ and $\xi_{a}{ }^{b}=\xi_{a}{ }^{b}\left(x^{c}\right)$ are valid in a separating coordinate system. In particular, $g_{j i}$ is decomposable.

Let $R_{k j i}{ }^{h}, R_{j i}=R_{r j i}{ }^{r}$ and $R=R_{j i} g^{j i}$ be the Riemannian curvature tensor, the Ricci tensor and the scalar curvature formed from $g_{j i}$ respectively. Then the following lemma has been known [3].

Lemma 1. The Riemannian curvature tensor and its succesive covariant derivatives are decomposable.

The following identity is well known

$$
\begin{equation*}
\nabla_{j} R=2 \nabla_{r} R_{j}^{r} \tag{1.7}
\end{equation*}
$$

Since we have known that $\nabla_{k} R_{j i}$ is pure by virtue of Lemma 1, the identity

$$
\begin{equation*}
\nabla_{j} R^{*}=\varphi_{j}^{r} \nabla_{r} R \tag{1.8}
\end{equation*}
$$

is obtained, where we have put $R^{*}=\varphi^{r_{t}} R_{r t}{ }^{5)}$.
2. An integral formula. In this section we shall only consider a compact orientable space M. Let $\left.\boldsymbol{\xi}_{(i)} \equiv \boldsymbol{\xi}_{i_{p} \ldots i_{1}}{ }^{6}\right)$ be a tensor field and define

$$
\begin{aligned}
\xi_{(l)}^{*} & \equiv \xi_{l_{p} \ldots i_{1}}^{*} \equiv \xi_{i_{p} \ldots i_{2 r}} \varphi_{i_{1}}{ }^{r}, \\
a_{f(i)}(\xi) & \equiv\left(\boldsymbol{\varphi}_{l}{ }^{r} \nabla_{r} \xi_{(i)}-\nabla_{l} \xi_{(i)}^{*}\right) \boldsymbol{\varphi}_{j}{ }^{l} \\
& =\nabla_{j} \xi_{(i)}-\varphi_{j}{ }^{l} \nabla_{l} \xi_{(i)}^{*} .
\end{aligned}
$$

If $\xi_{(i)}$ is pure, then $a_{j(i)}(\xi)=0$ means that $\xi_{(i)}$ is decomposable, i. e., $\nabla_{l} \xi_{(i)}$ is pure.

Denoting the square of $a_{f(i)}(\xi)$ by $a^{2}(\xi)$, we obtain easily

$$
\nabla^{r}\left(a_{r(i)} \xi^{(i)}\right)=\left(\nabla^{r} a_{r^{(i)}}\right) \xi^{(i)}+(1 / 2) a^{2}(\xi),
$$

from which and Green's theorem we have
THEOREM 1. In a compact orientable space M, the integral formula

$$
\int_{s r}\left[\left(\nabla^{r} \nabla_{r} \xi_{(i)}-\phi^{r t} \nabla_{r} \nabla_{t} \xi_{(i)}^{*}\right) \xi^{(i)}+(1 / 2) a^{2}(\xi)\right] d \sigma=0
$$

is valid for a tensor field $\xi_{(i)}$, where $d \sigma$ means the volume element of M.
COROLLARY. In a compact orientable space M, a necessary and sufficient condition in order that a pure tensor $\xi_{(i)}$ is decomposable is that

[^1]$$
\nabla^{r} \nabla_{r} \xi_{(i)}=\phi^{r_{t}} \nabla_{r} \nabla_{t} \xi_{(i)}^{*} .
$$

On the other hand we have known [7] that in a compact orientable Riemannian space a skew-symmetric tensor $\boldsymbol{\xi}_{(i)}$ is harmonic when and only when it satisfies that
(2. 1) $\quad \nabla^{r} \nabla_{r} \xi_{(i)}-\sum_{k=1}^{p} R_{i k}{ }^{r} \xi_{i_{p} \ldots r \ldots i_{1}}+\sum_{l>k} R_{i_{l} l_{k}}{ }^{r} \xi_{i_{p} \ldots r \ldots s \ldots i_{1}}=0$.

Now let $\xi_{(i)}$ be a pure harmonic tensor, then $\xi_{(i)}^{*}$ is a skew-symmetric pure tensor [3]. Since we can see that $\xi_{(i)}^{*}$ also satisfies the equation of the same form as (2.1), we have

LEMMA 2. In a compact orientable space M, if a pure tensor $\xi_{(i)}$ is harmonic, then so is $\xi_{(1)}^{*}$.

If $\boldsymbol{\xi}_{(i)}$ is pure harmonic, then it holds that

$$
\nabla_{l} \xi_{(i)}=\sum_{k=1}^{p} \nabla_{i_{k}} \xi_{i_{p} \ldots l \ldots i_{1}}, \quad \nabla_{l} \xi_{(i)}^{*}=\sum_{k=1}^{p} \nabla_{i_{k}} \xi_{i_{p} \ldots \ldots \ldots i_{1}}^{*}
$$

Hence we have

$$
\begin{aligned}
\phi^{r t} \nabla_{r} \nabla_{t} \xi_{(i)}^{*} & =\phi^{r t} \nabla_{r}\left[\sum_{k=1}^{p} \nabla_{i_{k}} \xi_{i_{p} \ldots t . i_{1}}^{*}\right]=\nabla_{r}\left[\sum_{k=1}^{p} \nabla_{i_{k}}\left(\phi^{r t} \xi_{i_{p} \ldots t \ldots i_{1}}^{*}\right)\right] \\
& =\nabla^{r}\left[\sum_{k=1}^{p} \nabla_{k} \xi_{k} \ldots \ldots i_{1}\right]=\nabla^{r} \nabla_{r} \xi_{(i)} .
\end{aligned}
$$

Thus we get
THEOREM 2. In a compact orientable space M, a pure harmonic tensor is decomposable.
3. Infinitesimal transformations. As a corollary of Theorem 1, we have

THEOREM 3. In a compact orientable space M, the integral formula

$$
\int_{3 r}\left[\left(\nabla^{r} \nabla_{r} v_{i}-\varphi^{r t} \nabla_{r} \nabla_{t} v_{i}^{*}\right) v^{i}+(1 / 2) a^{2}(v)\right] d \sigma=0
$$

is valid for a vector field v^{i}.
In this section we shall give some applications of this theorem. Let us consider a vector field \boldsymbol{v}^{i} and put

$$
t_{j i}^{h} \equiv \underset{v}{\mathcal{L}}\left\{{ }_{j i}^{h}\right\}=\nabla_{j} \nabla_{i} v^{h}+R_{r j i}^{h} v^{r} .
$$

Taking account of the purity of $R_{r j i}{ }^{h}$, if we transvect the last equation with
$\boldsymbol{\phi}^{j i} \boldsymbol{\varphi}_{h}{ }^{l}$, then we have

$$
\boldsymbol{\varphi}^{\prime \prime} \boldsymbol{\varphi}_{h}{ }^{l} t_{j i}{ }^{h}=\boldsymbol{\varphi}^{j i} \nabla_{j} \nabla_{i} v^{* l}+R_{r}{ }^{l} v^{r} .
$$

Hence we find

$$
\begin{equation*}
g^{j i} t_{j i}{ }^{h}-\varphi^{r t} \varphi_{s}{ }^{h} t_{r t}{ }^{s}=\nabla^{r} \nabla_{r} v^{h}-\phi^{r t} \nabla_{r} \nabla_{t} v^{\geqslant h} . \tag{3.1}
\end{equation*}
$$

Now consider an infinitesimal projective transformation v^{i}, then it satisfies by definition

$$
\begin{equation*}
t_{j i}{ }^{h}=\rho_{j} \delta_{i}{ }^{h}+\rho_{i} \delta_{j}{ }^{h}, \tag{3.2}
\end{equation*}
$$

where ρ_{i} is a certain vector.
Substituting this into (3.1) it follows that

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v^{h}=\varphi^{\tau t} \nabla_{r} \nabla_{t} v^{* h}, \tag{3.3}
\end{equation*}
$$

which and Theorem 3 show that v^{i} is decomposable, i. e., it satisfes ${\underset{v}{\mathcal{v}}}_{\mathcal{E}} \boldsymbol{\varphi}_{i}{ }^{h}=0$.
On the other hand, since the identity

$$
\underset{v}{\mathscr{E}} \nabla_{j} \varphi_{j}^{h}-\nabla_{j} \mathscr{E}_{v} \boldsymbol{\varphi}_{i}{ }^{h}=t_{j r}{ }^{h} \varphi_{i}{ }^{r}-t_{j i}{ }^{r} \boldsymbol{\varphi}_{r}{ }^{h}
$$

holds good, we have

$$
\boldsymbol{t}_{j r}{ }^{h} \boldsymbol{\varphi}_{i}{ }^{r}=\boldsymbol{t}_{j i}{ }^{r} \boldsymbol{\varphi}_{r}{ }^{h},
$$

from which and (3.2) we obtain $\rho_{i}=0$. Thus
THEOREM 4^{7}. In a compact orientable space M, an infinitesimal projective transformation is necessarily an isometry.

COROLLARY. In a compact orientable space M, a Killing vector is decomposable.

In the next place we consider an infinitesimal conformal transformation \boldsymbol{v}^{i}. It satisfies by definition

$$
\begin{equation*}
\underset{v}{\mathcal{L}} g_{j i}=\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \rho g_{j i} \tag{3.4}
\end{equation*}
$$

where ρ is a scalar, from which we have

$$
\begin{equation*}
t_{j i}{ }^{h}=\rho_{j} \delta_{i}{ }^{h}+\rho_{i} \delta_{j}{ }^{h}-\rho^{h} g_{j i}, \quad \rho_{j}=\partial_{j} \rho . \tag{3.5}
\end{equation*}
$$

Hence taking account of (3.1) it follows that

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}-\phi^{r} \nabla_{r} \nabla_{t} v_{i}^{*}=-n \rho_{i}+\varphi \rho_{i}^{*} \tag{3.6}
\end{equation*}
$$

On the other hand, from (3.4) we have

$$
\nabla_{r} v^{r}=n \rho, \quad \nabla_{r} v^{* r}=\varphi \rho .
$$

[^2]Hence it holds that

$$
\begin{align*}
-n \rho_{i} v^{i} & =-\left(\nabla_{i} \nabla_{r} v^{r}\right) v^{i} \\
& =(n \rho)^{2}-\nabla_{i}\left(v^{i} \nabla_{r} v^{r}\right), \\
n \rho_{i}^{*} v^{i} & =\left(\varphi_{i}^{t} \nabla_{t} \nabla_{r} v^{r}\right) v^{i} \tag{3.7}\\
& =\nabla_{t}\left(v^{* t} \nabla_{r} v^{r}\right)-n \varphi \rho^{2} .
\end{align*}
$$

Substituting (3.6) and (3.7) into the integral formula in Theorem 3, we obtain

$$
\int_{M}\left[\left(n^{2}-\varphi^{2}\right) \rho^{2}+(1 / 2) a^{2}(v)\right] d \sigma=0
$$

which shows that $\rho=0$. Consequently we have
THEOREM 5. In a compact orientable M, an infinitesimal conformal transformation is necessarily an isometry.
4. Separately Einstein spaces. If the Ricci tensor of our space M satisfies the relation

$$
\begin{equation*}
R_{j i}=a g_{j i}+b \boldsymbol{\varphi}_{j i} \tag{4.1}
\end{equation*}
$$

then we shall call the space a separately Einstein space. If we make use of a separating coordinate system (x^{λ}, x^{a}), then (4. 1) becomes

$$
R_{\lambda \mu}=(a+b) g_{\lambda \mu}, \quad R_{\lambda c}=0, \quad R_{c e}=(a-b) g_{c e}
$$

Let us consider such a space, then from (4.1) we have

$$
\begin{equation*}
R=n a+\varphi b, \quad R^{*}=\varphi a+n b, \tag{4.2}
\end{equation*}
$$

from which it holds that

$$
a=\alpha_{0} R+\beta_{0} R^{*}, \quad b=\alpha_{0} R^{*}+\beta_{0} R
$$

where we have put

$$
\alpha_{0}=n /\left(n^{2}-\varphi^{2}\right), \quad \beta_{0}=-\varphi /\left(n^{2}-\varphi^{2}\right)
$$

If we substitute (4.2) into (1.8), then we have

$$
n\left(b_{j}-\boldsymbol{\varphi}_{j}{ }^{r} a_{r}\right)=\boldsymbol{\varphi}\left(\boldsymbol{\varphi}_{j}{ }^{r} b_{r}-a_{j}\right),
$$

where $a_{j}=\partial_{j} a$ and $b_{j}=\partial_{j} b$. Transvecting this with $\varphi_{i}{ }^{j}$, then it follows

$$
\boldsymbol{\varphi}\left(b_{i}-\boldsymbol{\varphi}_{i}{ }^{r} a_{r}\right)=n\left(\boldsymbol{\varphi}_{i}{ }^{r} b_{r}-a_{i}\right) .
$$

Thus from the last two equations we get

$$
\begin{equation*}
a_{j}=\varphi_{j}^{r} b_{r} \tag{4.3}
\end{equation*}
$$

On the other hand, if we substitute (4.1) and (4.2) into (1. 7), then we
obtain $(n-4) a_{j}+\varphi b_{j}=0$, from which we get, taking account of (4.3), $a_{j}=0$ provided that p and q are different from 2. Therefore we have

THEOREM 6. In a separately Einstein space, the scalar curvature is constant if p and q are different from 2.
5. Spaces of serarately constant curvature. Let us consider an arbitrary but fixed point P in our space M. In this section we shall restrict our attention to the tangent space $T(P)$ and write $E=E(P)$ and $F=F(P)$.

We shall assume that the dimensions p and q are greater than 2.
In the first place we have
Lemma 3. If $a^{i} \in E$ and $b^{i} \in F$, then it holds that

$$
R_{k j i h} a^{i} b^{h}=0
$$

This follows from the facts that $R_{k j i n}$ is pure and $a^{i} b^{h}$ is hybrid [3].
As a trivial consequence, we obtain the following
THEOREM 7. The sectional curvature determined by $a^{i} \in E$ and $b^{i} \in F$ vanishes.

A vector u^{i} is uniquely decomposed in the form

$$
\begin{equation*}
u^{i}=a^{i}+b^{i}, \quad a^{i} \in E, b^{i} \in F \tag{5.1}
\end{equation*}
$$

Let v^{i} be another vector and put

$$
\begin{equation*}
v^{i}=r^{i}+s^{i}, \quad r^{i} \in E, s^{i} \in F \tag{5.2}
\end{equation*}
$$

If we put $R(u, v)=R_{k j i h} u^{c} v^{j} u^{i} v^{h}$, then we have by means of Lemma 3

$$
\begin{equation*}
R(u, v)=R(a, r)+R(b, s) \tag{5.3}
\end{equation*}
$$

Now we assume that the sectional curvature of 2 -planes in E and the one of 2 -planes in F have values λ and μ respectively which are independent of the direction of 2 -planes.

From the assumption and (5.3), we get

$$
R(u, v)=\lambda\left[a^{2} r^{2}-(a, r)^{2}\right]+\mu\left[b^{2} s^{2}-(b, s)^{2}\right],
$$

where

$$
a^{2}=a_{i} a^{i}, \quad(a, r)=a_{i} r^{i}, \text { etc. }
$$

By virtue of (5.1) and (5.2), the last equation is written in the following form

$$
\begin{align*}
R(u, v) & =(1 / 4)(\lambda+\mu)\left[u^{2} v^{2}+\left(u^{*}, u\right)\left(v^{*}, v\right)-(u, v)^{2}-\left(u^{*}, v\right)^{2}\right] \tag{5.4}\\
& +(1 / 4)(\lambda-\mu)\left[\left(u^{*}, u\right) v^{2}+\left(v^{*}, v\right) u^{2}-2(u, v)\left(u^{*}, v\right)\right]
\end{align*}
$$

$$
=\left(A r_{k j i h}+B r_{k j l h}^{*}\right) u^{\kappa} v^{j} u^{i} v^{h},
$$

where

$$
\begin{align*}
& r_{k j i h}=g_{k i} g_{j h}-g_{j i} g_{k h}+\varphi_{k i} \varphi_{j h}-\varphi_{j i} \varphi_{k h}, \tag{5.5}\\
& r_{k j i h}^{*}=r_{k j i t} \varphi_{h}^{t}, \\
& A=(1 / 4)(\lambda+\mu), \quad B=(1 / 4)(\lambda-\mu) .
\end{align*}
$$

It is evident that $r_{k j i h}$ is a pure tensor and satisfies

$$
\begin{gathered}
r_{(k j) i h}=0, \quad r_{k j i h}=r_{i n k j}, \\
r_{[k j i l / h}=0 .
\end{gathered}
$$

Since (5. 4) holds good for any u^{i} and v^{i}, we have

$$
\begin{equation*}
R_{k j i h}=A r_{k j i h}+B r_{k j i h}^{*} . \tag{5.6}
\end{equation*}
$$

Conversely, if the Riemannian curvature tensor takes the form (5. 6), A and B being scalars, then we can prove that the sectional curvature of 2 -planes in E (resp. F) has a value which is independent of the direction.

We call the space satisfying $(5,6)$ at any point of M a space of separately constant curvature.

THEOREM 8. If the sectional curvature of 2 -planes in E and the one of 2 -planes in F have values which are independent of the direction respectively at any point, p and q being greater than 2, then the space is of separately constant curvature. The converse is also true.

From (5. 6) we have $R_{j i}=a g_{j i}+b \boldsymbol{\varphi}_{j i}$, where

$$
a=-(n-2) A-\varphi B, \quad b=-(n-2) B-\varphi A .
$$

Hence a space of separately constant curvature is separately Einsteinian. From Theorem 7 we get

THEOREM 9. In a space of separately constant curvature ($p, q>2$), the scalar curvature R is constant.
6. Infinitesimal product-projective transformations. We can easily obtain the following

LEMMA 4. A vector field $v_{i}=\partial_{i} f$ is decomposable if there exists a scalar function g such that $\partial_{i} f=\boldsymbol{\varphi}_{i}{ }^{r} \partial_{r} g$.

We shall call a vector field v^{i} an infinitesimal product-projective transformation or, for brevity, a $P P$-transformation, if it satisfies ${ }^{8)}$

[^3]\[

$$
\begin{equation*}
t_{j i}{ }^{h}=\rho_{j}^{*} \delta_{i}{ }^{h}+\rho_{i}^{*} \delta_{j}^{h}+\rho_{j} \varphi_{i}^{h}+\rho_{i} \varphi_{j}^{h} \tag{6.1}
\end{equation*}
$$

\]

where ρ_{i} is a vector and $\rho_{i}^{*}=\boldsymbol{\varphi}_{i}{ }^{r} \rho_{r}$.
In this case we shall call ρ_{i} the associated vector of v^{i}.
Let v^{i} be a $P P$-transformation, then we know easily that (3.3) holds good. Hence

THEOREM 10. In a compact orientable space M, an infinitesimal pro-duct-projective transformation is decomposable.

If we take account of the purity of $R_{k j i}{ }^{h}$, then we can obtain
THEOREM 11. If v^{i} is an infinitesimal product-projective transformation whose associated vector is ρ_{i}, then so is $v^{* i}$ and its associated vector is ρ_{c}^{*}.

Let us consider a $P P$-transformation v^{i}, then from (6.1) we have

$$
\nabla_{j} \nabla_{r} v^{r}=(n+2) \rho_{j}^{*}+\varphi \rho_{j}, \quad \nabla_{j} \nabla_{r} v^{* r}=(n+2) \rho_{j}+\varphi \rho_{j}^{*} .
$$

The left hand members are gradient, so we have that ρ_{i} and ρ_{i}^{*} are gradient. If we put $\rho_{i}=\partial_{i} \rho$ and $\rho_{i}^{*}=\partial_{i} \rho^{*}$, where ρ and ρ^{*} are scalars, then we have $\partial_{i} \rho^{*}=\varphi_{i}{ }^{\tau} \partial_{r} \rho$, which and Lemma 4 show that ρ_{i} and ρ_{i}^{*} are decomposable.

Substituting (6.1) into the identity

$$
\underset{v}{\mathcal{L}} R_{k j i}{ }^{h}=\nabla_{k} t_{j i}{ }^{h}-\nabla_{j} t_{k i}{ }^{h},
$$

we get

$$
\begin{equation*}
{\underset{v}{\mathcal{L}}}_{\mathcal{L}} R_{k j i}^{h}=\delta_{j}^{h} \nabla_{k} \rho_{i}^{*}-\delta_{k}^{h} \nabla_{j} \rho_{i}^{*}+\varphi_{j}^{h} \nabla_{k} \rho_{i}-\varphi_{k}^{h} \nabla_{j} \rho_{i}, \tag{6.2}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\underset{v}{\mathcal{L}} R_{j i}=-\varphi \nabla_{j} \rho_{i}-(n-2)_{\nabla_{j}} \rho_{i}^{*} \tag{6.3}
\end{equation*}
$$

Now we assume that v^{i} under consideration is decomposable, then it holds that

$$
\begin{equation*}
\underset{v}{\mathcal{E}} R_{j i}^{*}=-(n-2) \nabla_{j} \rho_{i}--\varphi \nabla_{j} \rho_{i}^{*} \tag{6.4}
\end{equation*}
$$

From (6. 3) and (6. 4) we have

$$
\begin{equation*}
{\underset{v}{f}}_{f}^{\mathcal{L}_{j i}}=-\nabla_{j} \rho_{i} \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{j i}=\beta_{1} R_{j i}+\alpha_{1} R_{j i}^{*} \tag{6.6}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{1}=(n-2) /\left\{(n-2)^{2}-\varphi^{2}\right\}, \quad \beta_{1}=-\varphi /\left\{(n-2)^{2}-\varphi^{2}\right\} . \tag{6.7}
\end{equation*}
$$

From (6. 2) and (6. 5) we obtain

$$
\underset{v}{\underset{v}{f}} P_{k j i}^{h}=0,
$$

where we have put

$$
\begin{equation*}
P_{k j i}{ }^{h}=R_{k j i}{ }^{h}+U_{k i}^{*} \delta_{j}^{h}-U_{j, i}^{*} \delta_{k}{ }^{h}+U_{k i} \varphi_{j}{ }^{h}-U_{j i} \boldsymbol{\varphi}_{k}{ }^{h}, \tag{6.8}
\end{equation*}
$$

which will be called the product-projective curvature tensor.
If we substitute (6.6) into (6.8), then $P_{k j i}{ }^{h}$ is also written as follows

$$
\begin{aligned}
P_{k j i}{ }^{h}=R_{k j i}{ }^{h} & +\alpha_{1}\left\{R_{k i} \delta_{j}^{h}-R_{j i} \delta_{k}{ }^{h}+R_{k}^{*} \varphi_{j}{ }^{h}-R_{j i}^{*} \varphi_{k}{ }^{h}\right\} \\
& +\beta_{1}\left\{R_{k i}^{*} \delta_{j}^{h}-R_{j:}^{*} \delta_{k}{ }^{h}+R_{k i} \varphi_{j}{ }^{h}-R_{j i} \varphi_{k}{ }^{h}\right\} .
\end{aligned}
$$

The following theorem is a consequence by some calculations.
THEOREM 12. In order that the product-projective curvature tensor $P_{k j i}{ }^{n}$ vanishes at any point, it is necessary and sufficient that the space under consideration is of separately constant curvature.
7. Infinitesimal product-conformal transformations. We call a vector field v^{i} an infinitemisal product-conformal transformation or, for brevity, a $P C$-transformation, if it satisfies

$$
\begin{equation*}
\underset{v}{\mathcal{L}} g_{j i}=2\left(\rho g_{j i}+\sigma \varphi_{j i}\right), \tag{7.1}
\end{equation*}
$$

where ρ and σ and scalar functions such that

$$
\begin{equation*}
\partial_{i} \rho=\varphi_{i}^{r} \partial_{r} \sigma \tag{7.2}
\end{equation*}
$$

With respect to a separating coordinate system, (7.1) and (7.2) are written as follows

$$
\begin{gathered}
\underset{v}{\mathcal{f}} g_{\lambda \mu}=2(\rho+\sigma) g_{\lambda \mu}, \quad{\underset{v}{v}}_{\mathcal{f}} g_{\Delta a}=0, \quad \underset{v}{\mathcal{f}} g_{a b}=2(\rho-\sigma) g_{a b}, \\
\partial_{a}(\rho+\sigma)=0, \quad \partial_{\Lambda}(\rho-\sigma)=0 .
\end{gathered}
$$

By virtue of Lemma 4 and (7.2), the vectors $\rho_{i}=\partial_{i} \rho$ and $\sigma_{i}=\partial_{i} \sigma$ are decomposable.

If we take account of the identity

$$
\nabla_{k} \mathcal{L}_{v} g_{j i}-\underset{v}{\mathcal{E}} \nabla_{k} g_{j i}=t_{k j}^{r} g_{r i}+t_{k i}^{r} g_{j r}
$$

then we have

$$
t_{j i}{ }^{h}=\rho_{j} \delta_{i}{ }^{h}+\rho_{i} \delta_{j}{ }^{h}-\rho^{h} g_{j i}+\sigma_{j} \boldsymbol{\varphi}_{i}{ }^{h}+\sigma_{i} \varphi_{j}{ }^{h}-\sigma^{h} \boldsymbol{\varphi}_{j i} .
$$

From the last equation we can see that v^{i} satisfies (3. 3). Thus
THEOREM 13. In a compact orientable space M, an infinitesimal pro-
duct-conformal tansformation is decomposable.
For a $P C$-transformation, the following equations are valid.

$$
\begin{aligned}
& \underset{v}{\mathcal{E}} g^{j i}=-2\left(\rho g^{j i}+\sigma \phi^{j \prime}\right), \\
& \underset{v}{\mathcal{L}} R_{k j i}{ }^{h}=\rho_{k j i}{ }^{h} \text {, } \\
& \underset{v}{\mathcal{E}} R_{j t}=-(n-4)_{\nabla_{j} \rho_{i}}-\varphi \nabla_{j} \sigma_{i}-x g_{j i}-y \varphi_{j i}, \\
& \underset{v}{\mathcal{E}} R_{j}{ }^{h}=-(n-4)_{\nabla_{j}} \rho^{h}-\varphi \nabla_{j} \sigma^{h}-x \delta_{j}{ }^{h}-y \varphi_{j}{ }^{h}-2\left(\rho R_{j}{ }^{h}+\sigma R_{j}^{* h}\right), \\
& \underset{v}{\underset{\sim}{f}} R=-2\left[(n-2) x+\varphi y+\rho R+\sigma R^{*}\right] \text {. }
\end{aligned}
$$

where we have put $x=\nabla_{r} \rho^{r}, y=\nabla_{r} \sigma^{r}$ and

$$
\begin{align*}
\rho_{k j i}{ }^{h} & =\delta_{j}{ }^{h} \nabla_{k} \rho_{i}+\boldsymbol{\varphi}_{j}{ }^{h} \nabla_{k} \sigma_{i}+g_{k i} \nabla_{j} \rho^{h}+\boldsymbol{\varphi}_{k i} \nabla_{j} \sigma^{h} \tag{7.3}\\
& -\delta_{k}{ }^{h} \nabla_{j} \rho_{i}-\boldsymbol{\varphi}_{k}{ }^{h} \nabla_{j} \sigma_{i}-g_{j i} \nabla_{k} \rho^{h}-\boldsymbol{\varphi}_{j i} \nabla_{k} \sigma^{h},
\end{align*}
$$

which is pure.
In the following we shall assume that v^{i} is decomposable $P C$-transformation and p and q are greater than 2.

We shall obtain a tensor which is invariant under such transformations.
Since we have $\underset{v}{f} \boldsymbol{\varphi}_{i}{ }^{h}=0$ by the assumption, it follows that

$$
\begin{aligned}
& \underset{v}{\mathcal{L}} \boldsymbol{\varphi}_{j i}=2\left(\rho \boldsymbol{\varphi}_{j i}+\sigma g_{j i}\right), \quad \underset{v}{\mathcal{L}} \boldsymbol{\rho}^{j i}=-2\left(\rho \boldsymbol{\varphi}^{j i}+\sigma g^{i \prime}\right), \\
& \underset{v}{\mathcal{L}} R_{j i}^{*}=-(n-4)_{\nabla_{j}} \sigma_{i}-\varphi \nabla_{j} \rho_{i}-x \boldsymbol{\varphi}_{j i}-y g_{j i}, \\
& \underset{v}{\mathcal{L}} R_{j}^{* h}=-(n-4)_{\nabla_{j}} \sigma^{h}-\varphi \nabla_{j} \rho^{h}-x \boldsymbol{\varphi}_{j}^{h}-y \delta_{j}^{h}-2\left(\rho R_{j}^{* i}+\sigma R_{j}^{h}\right), \\
& \underset{v}{\mathcal{L}} R^{*}=-2\left[(n-2) y+\varphi x+\rho R^{*}+\sigma R\right] .
\end{aligned}
$$

If $r_{k j i}{ }^{h}$ is the tensor defined by (5.5), then we have

$$
\underset{v}{£} r_{k j i}^{h}=2\left(\rho r_{k j i}{ }^{h}+\sigma r_{k j i}^{*}{ }^{h}\right) .
$$

Now we define a tensor $s_{k j i}{ }^{h}$ by

$$
\begin{align*}
s_{k j i}{ }^{h} & =\delta_{j}^{h} R_{k i}+\varphi_{j}{ }^{h} R_{k i}^{*}+g_{k i} R_{j}^{h}+\boldsymbol{\varphi}_{k i} R_{j}^{* h} \tag{7.4}\\
& -\delta_{k}{ }^{h} R_{j i}-\boldsymbol{\varphi}_{k}{ }^{h} R_{j i}^{*}-g_{j i} R_{k}^{h}-\boldsymbol{\varphi}_{j i} R_{k}^{* h}
\end{align*}
$$

then it is pure, as known by the similarity between (7.3) and (7.4). Thus we get

$$
\begin{aligned}
& \underset{v}{f} s_{k j i}{ }^{n}=-\varphi \rho_{k j i}^{*}{ }^{n}-(n-4) \rho_{k j i}{ }^{n}-2 x r_{k j i}{ }^{n}-2 y r_{k j i}^{*}{ }^{n}, \\
& {\underset{v}{v}}_{\mathcal{L}} s_{k j i}^{*}{ }^{n}=-(n-4) \rho_{k j i}^{*}-\varphi \rho_{k j i}{ }^{n}-2 y r_{k j i}{ }^{n}-2 x r_{k j i}^{*} .
\end{aligned}
$$

From these equations we get

$$
\underset{v}{\mathcal{E}} C_{k j i}^{n}=0,
$$

where $C_{k j i}{ }^{h}$ is defined by

$$
\begin{aligned}
C_{k j i}^{n} & =R_{k j i}{ }^{n}+\alpha_{2} s_{k j i}{ }^{n}+\beta_{2} s_{k j i}^{*}{ }^{n} \\
& -\left(\alpha_{2} U^{*}+\beta_{2} U\right) r_{k j i}{ }^{n}-\left(\alpha_{2} U+\beta_{2} U^{*}\right) r_{k j i}^{*}{ }^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& U=U_{j i} g^{\prime \prime}=\beta_{1} R+\alpha_{1} R^{*}, \quad U^{*}=U_{j i}^{*} g^{j i}=\alpha_{1} R+\beta_{1} R^{*} \\
& \alpha_{2}=(n-4) /\left\{(n-4)^{2}-\phi^{2}\right\}, \quad \beta_{2}=-\varphi /\left\{(n-4)^{2}-\boldsymbol{\varphi}^{2}\right\} .
\end{aligned}
$$

We shall call $C_{k j i}{ }^{n}$ the product-conformal curvature tensor.
It is written also in the following form

$$
\begin{aligned}
C_{k j i}^{h}=R_{k j i}{ }^{n} & +\alpha_{2}\left\{s_{k j i}^{h}-\left(\alpha_{1} R+\beta_{1} R^{*}\right) r_{k j i}{ }^{h}-\left(\alpha_{1} R^{*}+\beta_{1} R\right) r_{k j i}^{*}\right\} \\
& \left.+\beta_{2}\left\{s_{k j i}^{*}\right\}-\left(\alpha_{1} R+\beta_{1} R^{*}\right) r_{k j i}^{*}{ }^{n}-\left(\alpha_{1} R^{*}+\beta_{1} R\right) r_{k j i}{ }^{h}\right\} .
\end{aligned}
$$

After some complicated calculations we get the following
THEOREM 14. In a space of separately constant curvature, the productconformal curvature tensor vanishes at any point.

BIBLIOGRAPHY

[1] LEGRAND, G., Sur les variétés à structure de presque-produit complexe, C. R. Paris (1956), 335-337.
[2] Legrand, G., Structure presque-hermitiennes au sens large, C. R. Paris (1956), 1392-1295.
[3] Tachibana, S., Analytic tensors and its generalization, Tòhoku Math. Jour., 12(1960).
[4] TASHIRO, Y., On projective transformations of Riemannian manifolds, Jour. Math. Soc. Japan, 11(1959), 196-204.
[5] Watker, A., Connexions for parallel distributions in the lagre, Quart. Jour. Oxford (1955), 301-308.
[6] Yano, K., Affine connexions in an almost product space, Kōdai Math. Sem. Rep., 11(1959), 1-24.
[7] Yano, K. And Bochner, S., Curvature and Betti numbers, Princeton (1953).
Ochanomizu University, Tokyo.

[^0]: 1) See the Bibliography at the end of the paper.
 2) As to the notations and the terminologies, we follow [3]. We agree to use the following ranges of indices throughout the paper $1 \leqq \lambda, \mu, \ldots \leqq p<n, p+1 \leqq a, b, \ldots \leqq p+q=n, \quad 1 \leqq i$, $j, k, \ldots, r, s, \ldots \leqq n$.
[^1]: 5) The tensor $\varphi_{j i}$ is a Riemannian metric tensor whose inverse is given by $\varphi^{j l}=\varphi_{r}^{r} g^{r}$. The scalar R^{*} is nothing but the scalar curvature with respect to the Riemannian metric $\varphi_{j i}$.
 6) In this section, p does not mean the dimension of $E(P)$.
[^2]: 7) Cf. Tashiro, Y. [4].
[^3]: 8) More generally, we may consider a trarsformation such that
 $t_{j i}{ }^{\boldsymbol{h}}=\sigma_{j} \delta_{i}{ }^{h}+\sigma_{i} \delta_{j}{ }^{h}+\rho_{j} \boldsymbol{l}_{i}{ }^{h}+\rho_{i} \rho j^{h}$.
 Ii v^{i} under consideration is decomposable, then we have $\sigma_{i}=\nu_{l}^{*}$.
