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Some theoretical results on the

Grouped Variables Lasso

Christophe Chesneau1 and Mohamed Hebiri2

Abstract: We consider the linear regression model with Gaussian error.

We estimate the unknown parameters by a procedure inspired from

the Group Lasso estimator introduced in [21]. We show that this

estimator satisfies a sparsity oracle inequality, i.e., a bound in terms

of the number of non-zero components of the oracle vector. We prove

that this bound is better, in some cases, than the one achieved by the

Lasso and the Dantzig selector.

Key words and phrases: Lasso, Group Lasso, Variable selection, Spar-

sity, Oracle Inequality, Penalized least squares.

AMS 2000 Subject Classifications: Primary: 62J05, 62J07, Secondary:

62H20, 62F30.

1 Introduction

We consider the linear regression model

yi = xiβ
∗ + εi, i = 1, . . . , n, (1.1)

where the design xi = (xi,1, . . . , xi,p) ∈ R
p is deterministic, β∗ = (β∗

1 , . . . , β∗
p)′ ∈ R

p

is the unknown parameter vector of interest and ε1, . . . , εn, are i.i.d. centered

Gaussian random variables with variance σ2. We wish to estimate β∗ in the sparse

case, i.e. when many of its components are equal to zero. If we define the covariates

ξj = (x1,j , . . . , xn,j)
′, j = 1, . . . , p, the sparsity of the model means that only a
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small subset of (ξj)j is relevant for explaining the response yi, i = 1, . . . , n. We are

mainly interested in the case where the number of the covariates p is much larger

than the sample size n. In such a situation, the classical methods of estimation

such as ordinary least squares are inconsistent. In the last decade, a wide variety of

procedures has been developed for estimation and variable selection under sparsity

assumption. Most popular procedures are of the form:

β̃ = Argmin
β∈Rp

{
‖Y − Xβ‖2

n + pen(β)
}

, (1.2)

where X = (x′
1, . . . , x

′
n)′, Y = (y1, . . . , yn)′, pen : R

p → R is a positive function

measuring the complexity of the vector β and, for any vector a = (a1, . . . , an)′,

‖a‖2
n = n−1

∑n
i=1 a2

i (we denote by 〈·, ·〉n the corresponding inner product in R
n).

When X is standardized, the Lasso procedure introduced in [18] is defined by

(1.2) with pen(β) = λn,p
∑n

i=1 |βi|, where λn,p denotes a tuning parameter. This

estimator is attractive as it performs both regression parameters estimation and

variable selection. In the literature, the theoretical and empirical properties of

the Lasso procedure have been extensively studied. See, for instance, [10], [17],

[11], [13], [23] and [22], among others. Recent extensions of the Lasso and their

performances can be found in [11], [16], [23], [24] and [19].

In this paper, we study a ”grouped” version of the Lasso procedure. It is

defined with a penalty of the form pen(β) = λn,p
∑L

l=1

√∑
j∈Gl

‖ξj‖2
nβj

2, where

the tuning parameter λn,p depends on n and on p. It can be viewed as a slight

modification of the Group Lasso procedure developed in [21]. For the sake of

clarity, we call our modified Group Lasso: Grouped Variables Lasso. We measure

its performance by considering a statistical approach derived from confidence balls.

We aim to find the smallest bound ϕn,p such that

P

(
‖Xβ̂ − Xβ∗‖2

n ≤ C ϕn,p

)
≥ 1 − un,p, (1.3)

where β̂ is the Grouped Variables Lasso estimator, un,p is a positive sequence of

the form n−αp−γ with α > 0, γ > 0 and C is a positive constant which does not

depend on n and p. The obtained rate ϕn,p depends only on n, on p and on an

index of sparsity of the model. From this point of view, the inequality (1.3) is a

Sparsity Oracle Inequality (SOI) for the Grouped Variable Lasso estimator. Such
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SOIs have already been investigated for other estimators ([5], [8], [14], [20] and

[6]). As a benchmark, we use the SOIs provided for the Lasso estimator [3] and

the Dantzig selector [2]. If we compare the corresponding ϕn,p, we remark that

the one achieved by the Grouped Variables Lasso is smaller than the one achieved

by the Lasso and the Dantzig selector. This illustrates the fact that, in some

situations, the Grouped Variables Lasso exploits the sparsity of the model more

efficiently than the Lasso and the Dantzig selector.

The rest of the paper is organized as follows. The Grouped Variables Lasso

estimator is described in Section 2. Section 3 presents the assumptions made on

the model. The theoretical performance of the considered estimator is investigated

in Section 4. The proofs are postponed to Section 5.

2 The Grouped Variables Lasso (GVL) esti-

mator

In this study, for any real number a, [a] denotes the integer part of a. For conve-

nience, we assume that p/[log p] is an integer. We define the Grouped Variables

Lasso (GVL) estimator by

β̂ = Argmin
β∈Rp




‖Y − Xβ‖2
n + 2

L∑

l=1

√∑

j∈Gl

w2
n,jβj

2




 , (2.1)

where L = p/[log p], for any j ∈ {1, ..., p},

wn,j = λn,p‖ξj‖n, λn,p = κσ
√

n−1 log(np), (2.2)

κ ≥ 2 and, for any l ∈ {1, . . . , L},

Gl =
{
k ∈ {1, . . . , p} : (l − 1)[log p] + 1 ≤ k ≤ l[log p]

}
. (2.3)

Note that G = (Gl)l is a partition of the set {1, . . . , p} such that, for any l ∈
{1, . . . , L}, Card(Gl) = [log p]. The GVL estimator is a slight modification of the

Group Lasso estimator developed in [21]. The only differences are the choice of

the blocks Gl and the fact that, in our setting, we do not assume that X ′
Gl

XGl
=
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ICard(Gl), where XGl
is the restriction of X on the block Gl. The length of each

block, Card(Gl) = [log p], is based on theoretical considerations. Further details

are given in Section 4. Recent developments concerning the Group Lasso method

can be found in [12] and [15].

For any real number a, we set (a)+ = max(a, 0). If X is the identity matrix

In (and, a fortiori, the model (1.1) is the standard Gaussian sequence model),

each component of the GVL estimator β̂ in the block Gl can be expressed in

the following form β̂i =
(
1 −

(
κσ

√
2n−1 log n

)
/
√∑

j∈Gl
yj

2
)

+
yi. In this case,

β̂ can be viewed as a slight modification of the blockwise Stein estimator. This

construction enjoys powerful theoretical properties in various statistical approaches

(oracle inequalities, (near) minimax optimality,...). See, for instance, [7].

3 Assumptions

Recall that X = (xi,j)i,j is the n × p design matrix and, for any j ∈ {1, . . . , p},
ξj = (x1,j , . . . , xn,j)

′. Let ρp = (ρp(j, k))j,k be the correlation matrix defined by

ρp(j, k) =
〈ξj , ξk〉n

‖ξj‖n‖ξk‖n
, (j, k) ∈ {1, . . . , p}2.

We now present three assumptions we need to establish a SOI for the GVL esti-

mator. They relate to the correlation matrix ρp:

− Assumption (A1). Consider the set S l
2 = {a = (aj)j∈Gl

∈ R
[log p];

∑
j∈Gl

a2
j ≤ 1 }.

There exists a constant C∗ ≥ 1 independent of n and of p such that

max
l=1,...,L

sup
a∈Sl

2




∑

j∈Gl

∑

k∈Gl

ajakρp(j, k)



 ≤ C∗.

The second assumption must be satisfied for a subset B ⊆ {1, . . . , L} to be specified

later.

− Assumption (A2)(B). The correlation matrix ρp satisfies

max
l∈B

max
m=1,...,L

√√√√
∑

j∈Gl

∑

k∈Gm
k 6=j

ρ2
p(j, k) ≤ (32)−1 Card(B)−1.
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Remark 3.1 The condition in Assumption (A1) is equivalent to say that the

larger eigenvalue of the diagonal blocks of the matrix ρp (i.e. eigenvalues of the

correlation matrices restricted to covariates in the same group) is bounded by C∗.

Lemma 3.1 below determines a standard family of matrices satisfying Assump-

tion (A1).

Lemma 3.1 Let X = (xi,j)i,j be a n × p matrix and, for any j ∈ {1, . . . , p},
ξj = (x1,j , . . . , xn,j)

′. Suppose that, for any j, k ∈ {1, .., p}, we have

〈ξj , ξk〉n = rnzjzkb|j−k|,

where r = (rn)n is a sequence of real numbers, z = (zu)u denotes a positive

sequence and b = (bu)u denotes a sequence in l1(N) with b0 > 0. Then X satisfies

Assumption (A1) with C∗ = 1 + 2b−1
0 ‖b‖l1, where ‖b‖l1 =

∑p
j=1 |bj |.

Here are some comments on Assumption (A2)(B). In our study, Assumption (A2)(B)

only needs to be satisfied for a particular set B = ΘG ⊆ {1, . . . , L} (to be defined

in Subsection 4.1). This set characterizes the sparsity of the model. Note also

that Assumption (A2)(B) can be viewed as an extension of the ”local” mutual co-

herence condition considered by [4]. This ”local” mutual coherence condition has

been introduced by [9]. When we treat the case p ≥ n, such coherence condition

is standard as almost all SOIs provided in the literature need a similar condition.

Remark 3.2 For any two sets B1 and B2 such that B1 ⊆ B2 ⊆ {1, . . . , L}, As-

sumption (A2)(B2) implies Assumption (A2)(B1).

Remark 3.3 If B = {1, . . . , L} then Assumption (A2)(B) implies Assumption (A1)

with C∗ = 1 + (32)−1. This is a consequence of the Hölder inequality.

An example of a n × p matrix X = (xi,j)i,j satisfying Assumptions (A1) and

(A2)(B) for any B ⊆ {1, . . . , L}, is the one characterized by the equality 〈ξj , ξk〉n =

nνp−α|j−k|, with ν ∈ R and α ≥ (log(32)/ log p)+1. Here is a concise proof: Thanks

to Lemma 3.1, Assumption (A1) is satisfied for any constant C∗ ≥ 1 + 2p/(p − 1)

(for instance, C∗ = 4). Moreover, we have
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maxl=1,...,L maxm=1,...,L

√∑
j∈Gl

∑
k∈Gm

k 6=j

p−2α|j−k| ≤ p−α maxl=1,...,L Card(Gl) =

p−α+1([log p]/p) ≤ (32)−1L−1 ≤ (32)−1 Card(B)−1 and Assumption (A2)(B) is

satisfied.

When p ≤ n, Assumption (A2)(B) can replaced by the following:

− Assumption (A3). Consider the p × p Gram matrix Ψn defined by Ψn =
(
〈ξj , ξk〉n

)
j,k

. For any p ≥ 2, there exists a constant cp > 0 such that the

matrix Z defined by

Z = Ψn − cp diag(Ψn),

is positive semi-definite.

Assumption (A3) is the same as in [4, Assumption (A3)]. Further details can

be found in [4, Remarks 4-5]. Assumption (A3) is, for instance, always fulfilled

for positive matrices Ψn. It is important to notice that this assumption can be

helpful when the ”group mutual coherence” assumption is not satisfied; Assump-

tions (A2)(B) and (A3) can recover different types of design matrices.

4 Theoretical properties

In this section, we investigate some theoretical properties of the GVL estimator.

Notice that all the results include the case p ≥ n.

4.1 Main results

Here we provide SOIs acheived by the GVL estimator. These SOIs take advantage

of the group structure of the estimator. The key is the introduction of a group

sparsity set ΘG defined by:

ΘG =
{
l ∈ {1, . . . , L} : there exists an integer j0 ∈ Gl such that β∗

j0 6= 0
}

, (4.1)

where Gl is defined by (2.3). Such a set contains group indexes and characterizes

the sparsity of the model. Indeed, the ”sparser” the model is, the smaller the

sparsity index Card(ΘG) is. Proposition 4.1 below provides an upper bound for

the squared error of the GVL estimator. This bound brings into play the sparsity

index inferred by the group sparsity set ΘG.
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Proposition 4.1 We consider the linear regression model (1.1). Let Λn,p be the

random event defined by

Λn,p =




 max
l=1,...,L

√∑

j∈Gl

w−2
n,jV

2
j ≤ 2−1




 , (4.2)

where Vj = n−1
∑n

i=1 xi,jεi and wn,j is defined by (2.2). Let β̂ be the GVL esti-

mator defined by (2.1) and ΘG be the group sparsity set defined by (4.1). Suppose

that X satisfies Assumption (A2)(ΘG). Then, on Λn,p, we have

‖Xβ̂ − Xβ∗‖2
n ≤ C n−1 log(np)Card(ΘG), (4.3)

where C = 16κ2σ2.

The proof of Proposition 4.1 is based on the ’argmin’ definition of the estimator

β̂ and some technical inequalities. Theorem 4.1 below states that, under some

assumptions on X, the SOI (4.3) is true with high probability.

Theorem 4.1 We consider the linear regression model (1.1). Let β̂ be the GVL

estimator defined by (2.1) and ΘG be the group sparsity set defined by (4.1). Sup-

pose that X satisfies Assumptions (A1) and (A2)(ΘG). Then we have

P

(
‖Xβ̂ − Xβ∗‖2

n ≤ C n−1 log(np) Card(ΘG)
)
≥ 1 − un,p, (4.4)

where C = 16κ2σ2 and un,p = p(np)−(2−1κ−1)2/(2C∗), with C∗ is the constant ap-

pearing in Assumption (A1).

The proof of Theorem 4.1 uses Proposition 4.1 and a concentration inequality of

the form P(Λc
n,p) ≤ un,p, where Λc

n,p denotes the complementary of the set (4.2).

Corollary 4.1 below states that, when p ≤ n, Theorem 4.1 holds with Assump-

tion (A3) instead of Assumption (A2)(B).

Corollary 4.1 We consider the linear regression model (1.1). Let ΘG be the group

sparsity set defined by (4.1). Suppose that X satisfies Assumptions (A1) and (A3).

Then the GVL estimator (2.1) satisfies the inequality (4.4) with C = 16cp
−1κ2σ2,

where cp is the constant appearing in Assumption (A3).

The proof of Corollary 4.1 is similar to the proof of Proposition 4.1.
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4.2 Comparison with the Lasso and the Dantzig selec-

tor

A result similar to Theorem 4.1 has been proved for the Lasso estimator in [3],

and for the Dantzig selector in [6]. Moreover [2] stated that the squared error

of the Lasso and the Dantzig selector are equivalent up to a constant factor. In

these works, the authors provided similar SOIs. The main difference lies in the

sparsity index Card(ΘG). For both the Lasso estimator and the Dantzig selector,

it is replaced by Card(Θ∗), where Θ∗ = {j ∈ {1, . . . , p}; β∗
j 6= 0}. Since

Card(ΘG) ≤ Card(Θ∗),

Theorem 4.1 states that, with high probability, the GVL estimator can have a

smaller squared error than the Lasso estimator. This illustrates the fact that, in

some cases, the GVL estimator exploits better the sparsity of the model than the

Lasso estimator and the Dantzig selector. Moreover, Card(ΘG) can be asymptot-

ically significatively smaller than Card(Θ∗). For example, if p = n and the un-

known parameter vector β∗ = (β∗
1 , . . . , β∗

n)′ is defined by β∗ = (1, . . . , 1︸ ︷︷ ︸
log n

, 0, . . . , 0︸ ︷︷ ︸
n−log n

),

then Card(ΘG) = 1 whereas Card(Θ∗) = log n.

5 Proofs

Proof of Lemma 3.1. For the sake of simplicity in exposition and without loss

of generality, we work on the set G1 = {1, . . . , [log p]}. Let us notice that, for any

u ∈ G1, we have ‖ξu‖n = zu

√
rnb0. Therefore, for any (j, k) ∈ {1, . . . , p}2, we have

ρp(j, k) = b−1
0 b|j−k|. Hence

∑

j∈G1

∑

k∈G1

ajakρp(j, k)

= b−1
0

[log p]∑

j=1

[log p]∑

k=1

ajakb|j−k| =

[log p]∑

j=1

a2
j + 2b−1

0

[log p]∑

j=2

j−1∑

k=1

ajakbj−k

≤
[log p]∑

j=1

a2
j + b−1

0

[log p]∑

j=2

j−1∑

u=1

(a2
j + a2

j−u)bu.
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For any a ∈ S l
2, we have

∑[log p]
j=1 a2

j ≤ 1. Therefore

[log p]∑

j=2

j−1∑

u=1

a2
jbu =

[log p]∑

j=2

a2
j

j−1∑

u=1

bu ≤ ‖b‖l1

and
[log p]∑

j=2

j−1∑

u=1

a2
j−ubu =

[log p]−1∑

u=1

bu

[log p]∑

j=u+1

a2
j−u ≤ ‖b‖l1 .

Hence

sup
a∈Sl

2




∑

j∈G1

∑

k∈G1

ajakρp(j, k)



 ≤ (1 + 2b−1
0 ‖b‖l1) = C∗.

This inequality can easily be extended to any set Gl. Thus, the matrix X satisfies

Assumption (A1) with C∗ = 1 + 2b−1
0 ‖b‖l1 .

¤

Proof of Proposition 4.1. By definition of the penalized estimator (2.1), for

any β ∈ R
p, we have

‖Xβ̂ − Xβ∗‖2
n + 2

L∑

l=1

√∑

j∈Gl

w2
n,j β̂

2
j − 2

n

n∑

i=1

εixiβ̂

≤ ‖Xβ − Xβ∗‖2
n + 2

L∑

l=1

√∑

j∈Gl

w2
n,jβ

2
j − 2

n

n∑

i=1

εixiβ.

Therefore, taking β = β∗, we obtain the following inequality:

‖Xβ̂ − Xβ∗‖2
n ≤ 2

L∑

l=1




√∑

j∈Gl

w2
n,j(β

∗
j )2 −

√∑

j∈Gl

w2
n,j β̂

2
j





+
2

n

n∑

i=1

εixi

(
β̂ − β∗

)
. (5.1)
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Recall that Vj = n−1
∑n

i=1 xi,jεi and using the Hölder inequality, we have on the

event Λn,p

2

n

n∑

i=1

εixi

(
β̂ − β∗

)
= 2

L∑

l=1

∑

j∈Gl

Vj

(
β̂j − β∗

j

)

≤ 2
L∑

l=1

√∑

j∈Gl

w−2
n,jV

2
j

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2

≤
L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
. (5.2)

It follows from (5.1), (5.2) and the definition of the group sparsity set ΘG (see

(4.1)) that

‖Xβ̂ − Xβ∗‖2
n +

L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2

≤ 2
L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
+ 2

L∑

l=1




√∑

j∈Gl

w2
n,j(β

∗
j )2 −

√∑

j∈Gl

w2
n,j β̂

2
j





= 2
∑

l∈ΘG

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
+ 2

∑

l∈ΘG




√∑

j∈Gl

w2
n,j(β

∗
j )2 −

√∑

j∈Gl

w2
n,j β̂

2
j



 .

Therefore using the Minkowski inequality, we have

‖Xβ̂ − Xβ∗‖2
n +

L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
≤ 4

∑

l∈ΘG

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2

≤ 4
√

Card(ΘG)

√ ∑

l∈ΘG

∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
. (5.3)

Now, let us bound the term
∑

l∈ΘG

∑
j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
. By a simple decompo-

sition, we have

‖Xβ̂ − Xβ∗‖2
n =

∑

l∈ΘG

∑

j∈Gl

‖ξj‖2
n

(
β̂j − β∗

j

)2
+ n−1

n∑

i=1




∑

l 6∈ΘG

∑

j∈Gl

xi,j(β̂j − β∗
j )




2

+ R(ΘG), (5.4)
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where

R(ΘG) = 2
∑

l∈ΘG

∑

m6∈ΘG

∑

j∈Gl

∑

k∈Gm

〈ξj , ξk〉n (β̂j − β∗
j )(β̂k − β∗

k)

+
∑

l∈ΘG

∑

m∈ΘG
m6=l

∑

j∈Gl

∑

k∈Gm

〈ξj , ξk〉n (β̂j − β∗
j )(β̂k − β∗

k)

+
∑

l∈ΘG

∑

j∈Gl

∑

k∈Gl
k 6=j

〈ξj , ξk〉n (β̂j − β∗
j )(β̂k − β∗

k).

Note that R(ΘG) is such that

|R(ΘG)| ≤ 2
∑

l∈ΘG

L∑

m=1

∑

j∈Gl

∑

k∈Gm
k 6=j

| 〈ξj , ξk〉n | |β̂j − β∗
j | |β̂k − β∗

k|.

Moreover, since n−1
∑n

i=1

(∑
l 6∈ΘG

∑
j∈Gl

xi,j(β̂j − β∗
j )

)2
≥ 0, the equality (5.4)

implies that:

∑

l∈ΘG

∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2

≤
(
κσn−1

√
log(np)

)2
n
(
‖Xβ̂ − Xβ∗‖2

n − R(ΘG)
)

≤
(
κσn−1

√
log(np)

)2
n
(
‖Xβ̂ − Xβ∗‖2

n + |R(ΘG)|
)

≤
(
κσn−1

√
log(np)

)2
n
(
‖Xβ̂ − Xβ∗‖2

n

+2
∑

l∈ΘG

L∑

m=1

∑

j∈Gl

∑

k∈Gm
k 6=j

| 〈ξj , ξk〉n | |β̂j − β∗
j | |β̂k − β∗

k|
)
. (5.5)
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Let us set Πj,k = w−1
n,jw

−1
n,k 〈ξj , ξk〉n. The Cauchy-Schwarz inequality yields

∑

l∈ΘG

L∑

m=1

∑

j∈Gl

∑

k∈Gm
k 6=j

| 〈ξj , ξk〉n | |β̂j − β∗
j | |β̂k − β∗

k|

=
∑

l∈ΘG

L∑

m=1

∑

j∈Gl

∑

k∈Gm
k 6=j

|Πj,k|wn,jwn,k |β̂j − β∗
j | |β̂k − β∗

k|

≤
∑

l∈ΘG

L∑

m=1

√√√√
∑

j∈Gl

∑

k∈Gm
k 6=j

Π2
j,k

√∑

j∈Gl

∑

k∈Gm

w2
n,jw

2
n,k

(
β̂j − β∗

j

)2 (
β̂k − β∗

k

)2

≤ sup
l∈ΘG

sup
m=1,...,L

√√√√
∑

j∈Gl

∑

k∈Gm
k 6=j

Π2
j,k




L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2




2

= B(ΘG).

Combining (5.3), (5.5), the previous inequality and using an elementary inequality

of convexity, we obtain

‖Xβ̂ − Xβ∗‖2
n +

L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2

≤ 4n1/2
(
κσn−1

√
log(np)

) √
Card(ΘG)

√
‖Xβ̂ − Xβ∗‖2

n + 2B(ΘG)

≤ 4n1/2
(
κσn−1

√
log(np)

) √
Card(ΘG)

√
‖Xβ̂ − Xβ∗‖2

n

+ 4
√

2n1/2
(
κσn−1

√
log(np)

) √
Card(ΘG)B(ΘG). (5.6)

An application of Assumption (A2)(B), with B = ΘG yields

4
√

2n1/2
(
κσn−1

√
log(np)

)√
Card(ΘG)B(ΘG) ≤

L∑

l=1

√∑

j∈Gl

w2
n,j

(
β̂j − β∗

j

)2
.(5.7)

It follows from (5.6) and (5.7) that

‖Xβ̂ − Xβ∗‖2
n ≤ 4n1/2

(
κσn−1

√
log(np)

) √
Card(ΘG)‖Xβ̂ − Xβ∗‖n.

Therefore,

‖Xβ̂ − Xβ∗‖2
n ≤ 16n

(
κσn−1

√
log(np)

)2
Card(ΘG) = C n−1 log(np)Card(ΘG),

12



where C = 16κ2σ2. This ends the proof of Proposition 4.1.

¤

Proof of Theorem 4.1. We set vn,j =
√∑n

i=1 x2
i,j = n1/2‖ξj‖n. Thanks to

Proposition 4.1, it is enough to prove that

P



 max
l=1,...,L

√∑

j∈Gl

w−2
n,jV

2
j ≥ 2−1



 ≤ p(np)−(2−1κ−1)2/(2C∗).

We have

P



 max
l=1,...,L

√∑

j∈Gl

w−2
n,jV

2
j ≥ 2−1



 ≤
L∑

l=1

P




√∑

j∈Gl

w−2
n,jV

2
j ≥ 2−1





≤ (p/[log p]) max
l=1,...,L

P




√∑

j∈Gl

v−2
n,jV

2
j ≥ 2−1κσn−1

√
log(np)



 . (5.8)

In order to bound this last term, we introduce the Borell inequality. For further

details about this inequality, see, for instance, [1].

Lemma 5.1 (The Borell inequality) Let D be a subset of R and (ηt)t∈D be a

centered Gaussian process. Suppose that

E

(
sup
t∈D

ηt

)
≤ N and sup

t∈D
V ar(ηt) ≤ Q.

Then, for any x > 0, we have

P

(
sup
t∈D

ηt ≥ x + N

)
≤ exp(−x2/(2Q)).

Let us consider the set S l
2 defined by S l

2 = {a = (aj)j∈Gl
∈ R

[log p];
∑

j∈Gl
a2

j ≤ 1},
and the centered Gaussian process Z(a) defined by

Z(a) =
∑

j∈Gl

ajVjv
−1
n,j .

By an argument of duality, we have

sup
a∈Sl

2

Z(a) = sup
a∈Sl

2

∑

j∈Gl

ajv
−1
n,jVj =

√∑

j∈Gl

v−2
n,jV

2
j .
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In order to use Lemma 5.1, let us investigate the upper bounds for E(supa∈Sl
2

Z(a))

and supa∈Sl
2

V ar(Z(a)), in turn.

The upper bound for E(supa∈Sl
2

Z(a)). Since Vj ∼ N
(
0, σ2n−1‖ξj‖2

n

)
, the Cauchy-

Schwarz inequality yields

E( sup
a∈Sl

2

Z(a)) = E




√∑

j∈Gl

v−2
n,jV

2
j



 ≤
√∑

j∈Gl

v−2
n,jE(V 2

j )

=

√∑

j∈Gl

v−2
n,j(σ

2n−1‖ξj‖2
n) = σn−1

√
log p.

So, we set N = σn−1
√

log p.

The upper bound for supa∈Sl
2

V ar(Z(a)). We have

V ar(Z(a)) =
∑

j∈Gl

∑

k∈Gl

ajakv
−1
n,jv

−1
n,kE(VjVk),

with E(VjVk) = n−2
∑n

u=1

∑n
v=1 xu,jxv,kE(ǫuǫv) = σ2n−1 〈ξj , ξk〉n. This with As-

sumption (A1) imply

sup
a∈Sl

2

V ar(Z(a)) = σ2n−2 sup
a∈Sl

2




∑

j∈Gl

∑

k∈Gl

ajakρp(j, k)



 ≤ C∗σ
2n−2.

So, we set Q = C∗σ
2n−2.

Combining the obtained values of N and Q with Lemma 5.1, for any l ∈
{1, . . . , L}, we have

P




√∑

j∈Gl

v−2
n,jV

2
j ≥ 2−1κσn−1

√
log(np)





≤ P




√∑

j∈Gl

v−2
n,jV

2
j ≥ (2−1κ − 1)σn−1

√
log(np) + σn−1

√
log p





= P

(
sup
t∈D

ηt ≥ (2−1κ − 1)σn−1
√

log(np) + N

)

≤ exp
(
−(2−1κ − 1)2σ2n−2 log(np)/(2Q)

)
= (np)−(2−1κ−1)2/(2C∗). (5.9)
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Putting (5.8) and (5.9) together, we obtain

P



 max
l=1,...,L

√∑

j∈Gl

w−2
n,jV

2
j ≥ 2−1



 ≤ p(np)−(2−1κ−1)2/(2C∗) = un,p.

This ends the proof of Theorem 4.1.

¤
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