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We show that the ‘naive Bayes’ classifier which assumes independent covariates greatly outperforms

the Fisher linear discriminant rule under broad conditions when the number of variables grows faster

than the number of observations, in the classical problem of discriminating between two normal

populations. We also introduce a class of rules spanning the range between independence and arbitrary

dependence. These rules are shown to achieve Bayes consistency for the Gaussian ‘coloured noise’

model and to adapt to a spectrum of convergence rates, which we conjecture to be minimax.
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1. Introduction

It has long been appreciated in machine learning practice (see, for example Lewis 1998;

Domingos and Pazzani 1997) that in classification problems in which the number of

covariates is large, rules which use the evidently invalid assumption that the covariates are

independent often perform better than rules which try to estimate dependence between

covariates in the construction of the classifier. We were struck by this phenomenon in some

problems of texture classification (Levina, 2002), though, unfortunately, the context we were

working in was far too complicated for direct analysis. The same phenomenon has been

reported for microarray data (Dudoit et al., 2002), where ignoring correlations between

genes led to better classification results.

To study this practical success analytically, we decided to explore the power of two

classical classifiers, the Fisher linear discriminant function and the so-called ‘naive Bayes’

rule, which assumes independence in the simple context of the multivariate Gaussian model.

To understand what happens qualitatively, we let, in our asymptotics, both the dimension p

of the vector observations and the size of the training sample n to be large, with p quite

possibly much larger than n. We present our approach and results in Section 2. Our results
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are of two types. In Section 2 we show that, on the basis of a worst-case analysis, for large

p, naive Bayes can indeed greatly outperform the linear discriminant function. Section 3

points out the connection between the conditions that guarantee results of Section 2 and the

spectral density. The surprisingly good performance of naive Bayes led us to consider a

spectrum of rules spanning the range between assuming full independence and arbitrary

dependence. We present these rules in Section 4, where we also formulate the Bayes

consistency and minimax regret problems in the context of the coloured Gaussian noise

model. We show that, using modifications to our rules, we can adapt to a spectrum of rates

which we conjecture to be minimax. We conclude in Section 5 with a discussion of the

relation of our work to that of Greenshtein and Ritov (2004), and more generally, to the

criterion of ‘sparsity’ of the parameters – see Donoho et al. (1995). Details of the proofs of

necessary lemmas are given in Section 6.

2. Model and first results

Consider the problem of discriminating between two classes with p-variate normal

distributions N p(�0, �) and N p(�1, �). A new observation X is to be assigned to one of

these two classes. If �0, �1 and � are known then the optimal classifier is the Bayes rule:

�(X) ¼ 1 log
f 1(X)

f 0(X)
. 0

� �
¼ 1 ˜T��1(X� ��) . 0
� �

, (2:1)

where the class prior probabilities are assumed equal, f 0 and f 1 are the densities of

N p(�0, �) and N p(�1, �), respectively, and

˜ ¼ �1 � �0, �� ¼
1

2
(�0 þ �1):

If we have independent observations from the two classes Xi1, . . . , Xin(i ¼ 0, 1), and

estimators �̂�0, �̂�1 of the population means, then the quantities in (2.1) can be estimated by
^̃̃ ¼ �̂�1 � �̂�0, �̂�� ¼ 1

2
(�̂�1 þ �̂�0). � is estimated by the pooled estimate where the centring is at

the classical �̂�i ¼ Xi ¼ 1
n

Pn
k¼1Xik (for i ¼ 0, 1),

�̂� ¼ 1

2(n � 1)

X1

i¼0

Xn

k¼1

(Xik � Xi)
T(Xik � Xi):

Even though we assume equal sample sizes for convenience, all the results below extend

trivially to unequal sample sizes n0 and n1 as long as n0 ! 1, n1 ! 1, and

n0=(n1 þ n0) ! �, 0 , � , 1. If we naturally assume that � is the probability of a new

observation belonging to class 0, the rule is modified by replacing 0 in the indicator by

log(n0=n1).

By convention, we always view �0, �1 as points in l2 by adding 0s at the end.

Plugging all the parameter estimates directly into the Bayes rule (2.1) leads to the Fisher

rule (FR),

�F(X) ¼ 1 ^̃̃ T�̂��1(X� �̂��) . 0
� �

:
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Alternatively, assuming independence of components and replacing off-diagonal elements of

�̂� with zeros leads to a new covariance matrix estimate,

D̂D ¼ diag(�̂�),

and a different discrimination rule, the independence rule (IR),

�I(X) ¼ 1 ^̃̃ T D̂D�1(X� �̂��) . 0
� �

,

which is also known as naive Bayes. The first goal of this paper is to compare the

performance of these two rules as p ! 1, n ! 1, and p=n ! ª with 0 < ª < 1. We will

compare the rules in terms of their worst-case performance. Let

ˆ(c, k, B) ¼ (�0, �1, �) : ˜T��1˜ > c2,
�

k1 < ºmin(�) < ºmax(�) < k2,

�i 2 B, i ¼ 0, 1g,

where c, k1, and k2 are positive constants, ºmin(�), ºmax(�) are, respectively, the smallest and

the largest eigenvalues of �, and B is the compact subset of l2 given by

B ¼ Ba,d ¼ � 2 l2 :
X1
j¼1

a j�
2
j < d2

( )
:

Here, a j ! 1 and � ¼ (�1, �2, . . .). It is well known that B is a compact and that (see

Pinsker’s theorem in Johnstone 2002) if � is the identity, then for suitable r jn, depending only

on fa jg, the jth component of �i can be estimated by

�̂�ij ¼ (1 � r jn)þX ij, i ¼ 0, 1, (2:2)

and

max
ˆ

EŁk�̂�i � �ik2 ¼ o(1): (2:3)

The condition on eigenvalues guarantees that

ºmax(�)

ºmin(�)
< K ¼ k2

k1

:

Then both � and ��1 are not ill-conditioned. The condition ˜T��1˜ > c2 guarantees that the

Mahalanobis distance between the two populations is at least c, so that c is a measure of

difficulty of the classification problem. Let Ł ¼ (�0, �1, �). Assume henceforth that

X � N (�0, �). The symmetry of our rules makes the posterior probability of misclassification

if the mean of X is �0 the same as that under �1.

For a rule � and X � N (�0, �), define posterior error by

W (�, Ł) ¼ PŁ[�(X) ¼ 1jXik , i ¼ 0, 1, k ¼ 1 . . . n]

and the worst-case posterior error by

Wˆ(�) ¼ max
ˆ

W (�, Ł):
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Further, let

W (�, Ł) ¼ PŁ[�(X) ¼ 1]

be the misclassification error of �, and

Wˆ(�) ¼ max
ˆ

W (�, Ł)

be the worst-case error. For the two rules �F and �I, the posterior errors can easily be

computed as

W (�F, Ł) ¼ �(��( ^̃̃ , �̂�)),

W (�I, Ł) ¼ �(��( ^̃̃ , D̂D)),

where � ¼ 1 ��, � is the Gaussian cumulative distribution function, and

��(˜, M) ¼ ˜T M�1˜
2(˜T M�1�M�1˜)1=2

: (2:4)

The behaviour of these errors is complex and has been studied extensively for the case of

fixed p (for a review, see McLachlan 1992). It is well known that the rule �F is

asymptotically optimal for this problem, that is,

Wˆ(�F) ! �(c=2),

which is the Bayes risk, while Wˆ(�I) converges to something strictly greater than the Bayes

risk. If p . n, �F is not well defined since �̂��1 is not. We replace �̂��1 by �̂��, the Moore–

Penrose inverse, obtained by finding the subspace of R p spanned by the eigenvectors

�̂�1, . . . , �̂�n corresponding to non-zero eigenvalues º̂º1, . . . , º̂ºn of �̂� and then defining

�̂�� ¼ n�1
Xn

i¼1

1

º̂ºi

�̂�i�̂�
T
i :

Let �0 ¼ D�1=2�D�1=2 be the correlation matrix of X and let

K0 ¼ max
ˆ

ºmax(�0)

ºmin(�0)
:

Note that K0 < K2 since k1 < � ii < k2 for all i.

Theorem 1. (a) If p=n ! 1, then Wˆ(�F) ! 1
2
.

(b) If (log p)=n ! 0, then

lim sup
n!1

Wˆ(�I) ¼ �

ffiffiffiffiffiffi
K0

p

1 þ K0

c

� �
: (2:5)

Note that if the matrix has eigenvalues going to 0 or 1 as p ! 1, then K0 ! 1, and

lim supW (�I) ¼ 1
2
, so the worst case of the rule is no better than random guessing. However,

if � is a multiple of the identity so that K0 ¼ 1, then the bound gives the Bayes risk, as it

should since in this case the IR is asymptotically optimal.
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Remark. It is worth noting that even when ˜ and � are assumed known, the corresponding

IR does not lose much in comparison to the Bayes rule. This remains true for the original IR

under the conditions of Theorem 1 since then e2 below is the limiting risk of IR. To see that,

let

e1 ¼ �(��(˜, �)) ¼ �
1

2
(˜T��1˜)1=2

� �
,

e2 ¼ �(��(˜, D)) ¼ �
1

2

˜T D�1˜
(˜T D�1�D�1˜)1=2

 !

be the errors of the two rules when ˜, � and D ¼ diag(�) are known. If we write

˜0 ¼ D�1=2˜, then the efficiency of the IR relative to the FR is determined by the ratio r of

the arguments of �, where

r ¼ ��(˜, D)

��(˜, �)
¼ (˜T

0˜0)

[(˜T
0�0˜0)(˜T

0�
�1
0 ˜0)]1=2

: (2:6)

A bound on this quantity can be obtained from the Kantorovich inequality (quoted here from

Luenberger 1984): let Q be any positive definite symmetric p 3 p matrix. Then, for any

vector v,

(vTv)2

(vTQv)(vTQ�1v)
>

4aA

(a þ A)2

where a is the smallest eigenvalue of Q, and A is the largest. Applying this inequality to

(2.6), we obtain

r >
2
ffiffiffiffiffiffi
K0

p

1 þ K0

(2:7)

and the error of the IR can be bounded by

e1 < e2 < �
2
ffiffiffiffiffiffi
K0

p

1 þ K0

��1(e1)

� �
:

The actual loss in efficiency is not very large: Figure 1 presents plots of the bound as a

function of the Bayes risk e1 for several values of K0. For moderate K0, one can see that the

performance of the IR is comparable to that of the FR. Note that the bounds represent the

worst-case performance, so the actual results may be and in fact should typically be better. In

practice, K0 cannot be estimated reliably from data, since the estimated pooled correlation

matrix is only of rank 2(n � 1). The range of non-zero eigenvalues of the estimated

correlation matrix, however, does give one a rough idea about the value of K0. For instance,

in the leukaemia data set discussed in Dudoit et al. (2002), K0 � 30, so one can expect the

naive Bayes rule to perform reasonably well (and it does in fact perform much better than the

Fisher rule).

Before proceeding to the proof of Theorem 1, we state a necessary lemma, whose proof for
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� ¼ I appears, for instance, in Johnstone (2002). We establish this extension in Section 6. We

conjecture that Theorem 1 holds for B an arbitrary compact in l2.

Lemma 1. Suppose that B is a compact subset of l2 and yj ¼ � j þ n�1=2� j, j > 1,

where � p � (�1, . . . , � p)T is Gaussian with mean 0 covariance � p. Let ¸ ¼
f(�p, � p) : � 2 Ba,d , ºmax(� p) < k2 , 1g for k2 > 1. Then there exist �̂� ¼ (�̂�1, �̂�2, . . .)T

such that

maxfEŁk�̂� p � �pk2 : Ł ¼ (�, �) 2 ¸g ¼ o(1),

where �̂� p and �p follow the same convention. In fact,

maxfEŁk�̂� p � �pk2 : Ł 2 ¸g < k2 maxfE�k�̂�� �k2 : � 2 Ba,dg:

Proof of Theorem 1. We first prove (a). Suppose � ¼ I . Then (º̂º1, . . . , º̂ºn), (�̂�1, . . . , �̂�n) are
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Figure 1. The bound on the risk of the IR as a function of the Bayes risk. The numbers over the

curves show the value of K0.
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independent and �̂� j are identically distributed uniformly on the unit p-sphere. Moreover, ^̃̃ is

independent of the º̂ºi and �̂�i. We need to argue that when � ¼ I ,

�I( ^̃̃ , �̂��) !P 0: (2:8)

Write, using the spectral theorem,

�I( ^̃̃ , �̂��) ¼

Xn

i¼1

º̂º�1
i ( ^̃̃ , �̂�i)

2

Xn

i¼1

º̂º�2
i ( ^̃̃ , �̂�i)

2

 !1=2
:

Use Cauchy–Schwarz and divide the top and bottom by
Pn

i¼1( ^̃̃ , �̂�i)
2 to obtain

�I( ^̃̃ , �̂��) <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

( ^̃̃ , �̂�i)
2

s
:

Condition on ^̃̃ and take expectations inside the square root to obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n=p)k ^̃̃k2

q
.

Applying Lemma 1 to yj ¼ X ij, i ¼ 0, 1, gives k ^̃̃k2 !P k˜k2, and result (a) follows.

We now prove (b). We first argue that under the given condition,

max
1<i< p

j�̂��1
ii � ��1

ii j !P 0 (2:9)

uniformly on ˆ where �̂� � k�̂� ijk, � ¼ k� ijk. Since 0 , k1 < � ii < k2 , 1 for all � such

that Ł 2 ˆ, (2.9) follows from

max
1<i< p

j�̂� ii � � iij !P 0 (2:10)

uniformly on ˆ. But by Lemma 4 in Section 6,

P max
1<i< p

���� �̂� ii

� ii

� 1

���� > �

" #
< 2 pe�nc(�)

for c(�) . 0. Thus, again invoking � ii > k1 . 0, (2.10) follows.

Next, let �˜I be the rule �I with ^̃̃ replaced by the true ˜. By the monotonicity of � on

rays,

maxfW (�˜I , Ł) : Ł 2 ˆg ¼ maxf�(��(˜, D̂D)) : Ł 2 ˆ, ˜T��1˜ ¼ c2g: (2:11)

On the other hand,

W (�I, Ł) ¼ EŁ�(��( ^̃̃ , D̂D)),

where ^̃̃ ¼ �̂�1 � �̂�0 given by (2.2). We show in Lemma 5 that

max
ˆ

W (�I, Ł) ¼ maxfW (�I, Ł) : Ł 2 ˆ, c2 < ˜T��1˜ < f 2 , 1g (2:12)
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for some f 2 , 1. Therefore, in view of (2.11), to prove (2.5) we need only check two

things:

maxfj��( ^̃̃ , D̂D) ���(˜, ~DD)j : Ł 2 ˆ, c2 < ˜T��1˜ < f 2g ¼ o p(1), (2:13)

where ~DD denotes either D or D̂D, uniformly on B; and

minf��(˜, D) : Ł 2 ˆ, c2 < ˜T��1˜ < f 2g

¼ minf��(˜, D) : Ł 2 ˆ, ˜T��1˜ > c2g ¼
ffiffiffiffiffiffi
K0

p

1 þ K0

c: (2:14)

To see why this is sufficient to establish result (2.5), note first that by (2.12) we need only

consider WI on the set ~̂̂ where Ł 2 ˆ, c2 < ˜T��1˜ < f 2. Next, by (2.13), we can replace

�I in W by �˜I on ~̂̂. Replacing �I by �˜I in W implies that this replacement in W is also

permitted since 0 < � < 1. Then (2.11) permits us to consider W (�˜I , Ł) and hence

W (�˜I , Ł) just for Ł 2 ˆ, ˜T��1˜ ¼ c2. Again by (2.13), we can replace D̂D in �˜I by D.

Now, to verify the second equality in (2.14), note that

minf��(˜, D) : ˜T��1˜ ¼ c2g

¼ c

2
min

��(˜, D)

��(˜, �)
: ˜T��1˜ ¼ c2

� �
: (2:15)

But the ratio ��(˜, D)=��(˜, �) is invariant under � ! b� for any b . 0. We conclude

that

minf��(˜, D) : ˜T��1˜ ¼ c2g ¼ c

2
r,

where r is given by (2.7). Moreover, the bound (2.7) is sharp when all eigenvalues are equal,

which establishes (2.14).

To complete the proof of (2.5), we need only check (2.13). In view of (2.9) and Lemma

1, (2.13) will follow from (here k � k is the l2 or operator norm as appropriate)

j��( ^̃̃ , D̂D) ���(˜, D)j < C(k ^̃̃ �˜k þ kD̂D � Dk)

for k ^̃̃ �˜k < �1, kD̂D � Dk < �2 for �1, �2 small enough uniformly for Ł 2 ˆ,

c2 < ˜T��1˜ < f 2 with C depending on c, f , a only. This is equivalent to the Fréchet

derivatives of ��(˜T, DT) being uniformly bounded in a neighbourhood of (˜, D). We shall

not argue this here but prove a stronger result (Theorem 2) in Section 4. h

3. Connections to spectral density

If we think of �0 as the covariance of a stationary process f� tg, the condition on the

eigenvalues of the correlation matrix that ensures the good performance of the IR can be

related to the spectral density of the corresponding process. In an abuse of the notation, if

we write
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�0 ¼ k� ijki, j>1 ¼ k� ji � jjð Þki, j>1, (3:1)

then we can think of �0 as the correlation matrix for p ¼ 1, with correlations for finite p

obtained by taking the first p rows and columns of �0.

In this case, it is known (Grenander and Szegö 1984) that the � (m) have a spectral

representation

� (m) ¼ 1

2�

ð1
�1

eimªdF(ª)

for a finite measure F. F is absolutely continuous with density f which is in L2 if and only if

�m� 2(m) , 1 and

f (�) ¼ 1

2�

X1
m¼�1

eim�� (m) (3:2)

is the spectral density. Moreover,

ºmax(�0) ¼ sup
�

f (�),

ºmin(�0) ¼ inf
�

f (�):

In particular, any process with the spectral density bounded by positive constants

0 , M�1 < f (�) < M , 1, for all �, (3:3)

would have a covariance function that satisfies our constraints.

Note that � t ¼ X t=� t is the stationary process here, and not the original set of variables

X t, which are still allowed to have different variances. The assumption of stationarity is not

necessarily realistic for classification problems, but the connection to spectral density

provides a useful tool for investigating some examples below.

Example 1. Let fX tg be an ARMA(r, q) process defined by

�(B)X t ¼ Ł(B)Z t

where B is the shift operator,

�(z) ¼ 1 � �1z � . . . � �r z r, Ł(z) ¼ 1 þ Ł1z þ . . . Łqzq,

and fZ tg is a white noise process with variance � 2. Then as long as �(z) has no zeros on the

unit circle and no common zeros with Ł(z), X t has spectral density

f (�) ¼ � 2

2�

jŁ ei�ð Þj2

j� e�i�ð Þj2
,

which satisfies the constraint (3.3) whenever both �(z) and Ł(z) have no zeros on the unit

circle.

In particular, the AR(1) process, which corresponds to

�0 ¼ k� (ji � jj)ki, j>1 ¼ krji� jjki, j>1,
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has Ł(z) � 1, �(z) ¼ 1 � rz, jrj , 1, so for this form of covariance matrix the IR rule result

holds. In this case one can also compute

K ¼
sup
�

f (�)

inf
�

f (�)
¼ (1 þ r)2

(1 � r)2
:

Similarly, the MA(1) process, which corresponds to a tridiagonal correlation matrix with

� (1) ¼ r, jrj , 0:5, has �(z) � 1, Ł(z) ¼ 1 þ rz, so this type of covariance structure also

benefits from using the IR. Here also K ¼ (1 þ r)2=(1 � r)2. These examples should be

viewed primarily as motivational, though such covariance structures may occur in

classification of time series data or data generated by a stationary random field, which is a

reasonable model for some types of image data – in particular, for texture.

Example 2. A simple example where condition (3.3) is not satisfied is provided by the

correlation matrix

�0 ¼ k� ijk ¼ 1, if i ¼ j,

r, if i 6¼ j:

�

This corresponds to the process X t ¼ X 0 þ � t, f� tg white noise, for which the spectral

density does not exist. One can also check directly that the eigenvalues of its p 3 p

subsection are º1 ¼ . . . ¼ º p�1 ¼ 1 � r, º p ¼ 1 þ ( p � 1)r, so that ºmax(�0)=ºmin(�0) ! 1
as p ! 1 and the worst-case error of the IR is also 1

2
.

Necessary and sufficient conditions for the spectral density to be bounded between two

positive constants were given by Bradley (2002), in terms of what he called ‘linear

dependence coefficients’ of the process. While these conditions are not in general easy to

check, they may be useful in special cases.

4. The Gaussian ‘coloured’ noise model and Bayes consistency
and minimax regret

To motivate and justify rules which interpolate between �F and �I, we need an asymptotic

framework which permits us to make � p3 p converge as n ! 1. We make our discussion

more systematic. The Gaussian coloured noise model is given by (see, for example,

Johnstone 2002)

Xi ¼ �i þ n�1=2�, i ¼ 0, 1,

where �i 2 l2 and � ¼ (�1, �2, . . .) is a sequence of Gaussian variables with mean 0 and

cov(�a, �b) ¼ � ab, 1 < a < b , 1. Let � p be the upper p 3 p corner of �, that is,

kcov(�i, � j)k, 1 < i, j < p. We denote (a, b) �
P1

i¼1aibi for a ¼ (a1, a2, . . .) and b ¼
(b1, b2, . . .) and kak ¼

P1
i¼1a2

i as usual. Now � � k� ijk, 1 < i, j , 1, is an infinite-

dimensional matrix. Suppose � can be viewed as a linear operator from l2 to l2: if a 2 l2,
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�a ¼ b 2 l2 (4:1)

where bi ¼
P1

j¼1� ija j. This holds if and only if
P1

j¼1�
2
ij , 1 for all i. We assume that � is

bounded and has a bounded inverse, that is, for all a 2 l2,

(i) (a, �a) < Mkak2,

(ii) (a, �a) > M�1kak2,

for some M finite. Such a � is a Toeplitz operator, since it satisfies � ij ¼ � (ji � jj). If

O ¼ koijk1<i, j,1 is a linear operator from l2 to l2 operating as in (4.1), then its operator

norm is given by

kOk � supfkOak : kak ¼ 1g:

If O is symmetric (self-adjoint), oij ¼ o ji for all i, j, then it is well known that the spectrum

of O is real and discrete, º1(O), º2(O), . . . and

kOk ¼ sup
j

jº j(O)j ¼ maxfjºmax(O)j, jºmin(O)jg: (4:2)

It follows that, for � as above,

k�k ¼ ºmax(�) < M ,

k��1k ¼ ºmax(��1) ¼ º�1
min(�) < M : (4:3)

For a Toeplitz operator, one can show more than (4.3). We summarize the facts we need

below as Lemma 2, and refer to Grenander and Szegö (1984) for proof; see also Böttcher et

al. (1996).

Lemma 2. Suppose T is a linear operator from l2 to l2 which is self-adjoint and Toeplitz,

tij ¼ t(i � j), t( j) ¼ t(� j), all j:

If
P1

k¼0 t2(k) , 1, then

gT (x) ¼
X1

k¼�1
eikx t(k)

is in L2(��, �) and

kTk ¼ sup
x

jgT (x)j; (4:4)

and if T �1 is bounded, then

kT �1k ¼ inf
x
jgT (x)j

	 
�1
: (4:5)

Thus, if
P

k t2(k) , 1, conditions (i) and (ii) are equivalent to (3.3).

The class of Toeplitz operators corresponding to spectral densities satisfying (3.3) suggest

rules interpolating between �F and �I. We define �Id as the rule which replaces �̂� p by �̂�(d)
p

given below:
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Id R : �̂�(d)
p ¼ k~�� (d)

ab k p3 p, (4:6)

~�� (d)
ab ¼

~�� (b � a), ja � bj < d

0 otherwise,

(

~�� (k) ¼ ( p � k)�1
Xp�k

a¼1

�̂� a,aþk

( )
:

The rules Id R are natural if we assume that � p is the covariance matrix of p consecutive

observations from a moving average of order d þ 1. Let Ł ¼ (�0, �1, �), where �i range

over subsets of l2 and � over a subset of Toeplitz operators with spectral densities

satisfying (3.3) and smoothness restrictions. Let

Rˆ(�) ¼ Wˆ(�) ��
c

2

� �
,

the difference between the maximum and minimax risks, sometimes called the regret of �.

Let Rˆ � Rˆ(�Id n
), where we suppress dependence on p and n in Rˆ. Define

ˆr ¼ fŁ : �i 2 Ba,d , M�1 < f� < M , 1, (��1˜, ˜) > c2, k f
(r)
� k1 < M rg,

where f
(r)
� is the rth derivative of f�. Suppose that n�Æ is the rate for estimating � when � is

the identity (Gaussian white noise), that is,

maxfE�k�̂�� �k2 : � 2 Ba,dg � n�Æ, Æ , 1, (4:7)

and let

ª ¼ min Æ,
2r

2r þ 1

� �
:

Theorem 2. There exist d n ! 1 (dependent only on a, r) such that

Rˆr
� n�ª�(n), (4:8)

where �(n) ¼ O(logn).

We give d n below, and conjecture that n�ª�(n) in fact has the minimax property that

min
�

Wˆ(�) ��
c

2

� �
� n�ª�(n): (4:9)

Proof of Theorem 2. We will write ˜ p to signify the first p coordinates of ˜ 2 l2. We claim

that, for all Ł 2 ˆr with c2 < ˜T
p�

�1
p ˜ p < f 2,

j�� p
(˜�

p, ��p) ��� p
(˜ p, � p)j < Cfk˜�

p �˜ pk2 þ k��p � � pk2g, (4:10)

for all k˜�
p �˜ pk < �1, k��p � � pk < �2, for �1, �2 small enough and C depending on ˆr

and f 2 only. The bounds are valid for p ¼ 1 as well.
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This is equivalent to showing that, if D, D2 denote Fréchet derivatives,

(a) D�� p
(˜ p, � p) ¼ 0,

(b) supfjD2�� p
(˜�

p, ��p)j] : k˜�
p �˜ pk < �1, k��p � � pk < �2g < C , 1 for all Ł as

above.

Until we need them again, we shall drop the p subscripts.

To show (a), we expand the numerator of � as

(˜þ º1e)T(��1 þ º2 E)(˜þ º1e) ¼ ˜T��1˜þ 2º1e
T�T˜þ º2˜

T E˜þ O(º1 þ º2)2,

(4:11)

and the denominator of � as

(˜þ º1e)T(��1 þ º2 E)�(��1 þ º2 E)(˜þ º1e)

¼ (˜T��1˜þ 2º2˜
T E˜þ 2º1e

T��1˜) þ O(º1 þ º2)2)1=2

¼ (˜T��1˜)1=2(1 þ º1e
T��1˜þ º2˜

T E˜) þ O(º1 þ º2)2: (4:12)

Hence,

��(˜þ º1e, (��1 þ º2E)�1) ���(˜, �) ¼ (˜T��1˜)1=2O(º1 þ º2)2

and (a) follows.

For (b), it is clear that we need to bound terms appearing in (4.11) from above and in

(4.12) from below uniformly on the specified set for jº1j < �1, jº2j < �2, kek < 1,

kEk < 1. The upper bounds are straightforward. For instance,

[˜�]T E˜� < k˜�k2 < 2(k˜k2 þ �2
1)

< 2(k2 f 2 þ �2
1),

since k˜k2=k2 < ˜T��1˜ < f 2.

On the other hand,

ºmin([��]�1�[��]�1) ¼ 1

ºmax(����1��)
>

1

k��k2k��1k

>
k1

(k�k þ �2)2
>

k1

(k2 þ �2)2
:

Hence,

[˜�]T[��]�1�[��]�1[˜�] >
k1

(k2 þ �2)2
k˜�k2

>
k1

(k2 þ �2)2
(k˜k � �1)2 >

k1

(k2 þ �2)2
(c

ffiffiffiffiffi
k1

p
� �1)2, (4:13)

which is bounded away from 0 for �1 small. Claim (b) follows.

From (4.10), we see that
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jEŁ�(�� p
( ^̃̃ p, �̂�(d)

p )) � EŁ�(�� p
(˜ p, �(d)

p ))j

< C(EŁk ^̃̃ p �˜ pk21(k ^̃̃ p �˜ pk < �1) þ EŁk�̂�(d)
p � � pk21(k�̂� p � � pk < �2)

þ P[k ^̃̃ p �˜ pk > �1] þ P[k�̂�(d)
p � � pk > �2]): (4:14)

Let X kj denote the jth component of observation Xk , k ¼ 1, . . . , n. Write, taking � ¼ 0,

~�� (a) ¼ 1

n( p � a)

Xn

k¼1

Xp�a

j¼1

X kj X k( jþa) ¼
1

( p � a)

Xp�a

j¼1

X j X ( jþa),

where X j ¼ (1=n)
Pn

k¼1 X kj. We use Lemma 4 to bound, for a > 1, P[j~�� (a) � � (a)j > �].

We can apply Lemma 4 since (X k1, . . . X kp) are independent and identically distributed as

N (0, � p), and
ffiffiffi
n

p
(X 1, . . . , X p) are N (0, � p) as well.

By Lemma 4,

P[maxfj�̂� (a) � � (a)j : jaj < dg > �] < dmaxfP[j�̂� (a) � � (a)j > �] : jaj < dg

< dK1 exp �n( p � d)c1(�)f g

Suppose d < p=2. Then, for some � . 0, A , 1, � . 0, � > � > A=
ffiffiffiffiffiffi
np

p
,

dK1 expf�n( p � d)c1(�)g < e��np�2

(4:15)

since c1(�) > b1�2, for � < � sufficiently small.

Let

Vd � maxfj~�� (a) � � (a)j : jaj < dg:
By Lemma 6,

Vd < k�̂�(d)
p � �(d)

p k < (2
ffiffiffiffiffiffi
pd

p
þ 1)Vd : (4:16)

Therefore, by (4.16),

EŁk�̂�(d)
p � �(d)

p k21(k�̂�(d)
p � �(d)

p k < �) < 4 pd

ð�
0

�P[Vd > �] d�

< 4 pd
A2

2np
þ
ð1 ffiffiffiffiffiffiffiffi

A=np
p �e��np�2

d�

 !

< B1

d

n
, (4:17)

for some universal B1. On the other hand,

P[k�̂�(d)
p � �(d)

p k > �] < B2e�n� < B2

d

n
, (4:18)

for logn , �n. Concluding, we see from (4.14)–(4.18) and assumption (4.7) that if d < p=2,

then
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supfjEŁ(�(�� p
( ^̃̃ p, �̂�(d)

p )) ��(�� p
(˜ p, �(d)

p )j : c2 < ˜T��1˜ < f 2, Ł 2 ˆrg

< C max
d

n
, n�Æ

� �
: (4:19)

Now we appeal to Lemma 7, which yields that

k�(d)
p � � pk <

B log d

d r
, (4:20)

k� p � �k <
B log p

pr
: (4:21)

Therefore, if d ! 1, �̂�(d)
p satisfy the conditions of Lemma 5, and we can conclude that

Wˆr
(�Id) ¼ supfEŁ��� p

( ^̃̃ p, �̂�(d)
p ) : Ł 2 ˆr, c2 < ˜T

p�
�1˜ p < f 2g

þ O(P[k�̂�(d)
p � �(d)

p k > �]): (4:22)

Putting (4.19)–(4.22) together, we obtain that if d < p=2,

Wˆr
(�Id) ¼ sup �

1

2
(˜T

p�
�1
p ˜ p)1=2

� �
: ˜T

p�
�1
p ˜ p > c2

� �

þ O max
d

n
, n�Æ,

(log d)2r

d2r

� �� �

¼ �
c

2

� �
þ O(n�ª log n) (4:23)

by taking p sufficiently large, d ¼ [n(log n)2r]1=(2rþ1). The theorem follows. h

5. Discussion

Donoho et al. (1995) have remarked that the phenomenon of minimax performance in the

presence of large p can occur. By assuming ‘sparsity’, only a few parameters need to be

estimated. Most are nearly zero and should be estimated as zero. A similar phenomenon

appears to be occurring here, since the estimates �̂�(d)
p make most of the covariances 0.

However, the structure is rather different and clearly the stationary structure plays a major

role. We conjecture that other regularity features in the covariance structure more

appropriate in higher-dimensional settings, such as the texture case (Levina 2002), can also

be taken advantage of. Nevertheless, it is clear that such features can also be viewed as

‘sparsity’ in an appropriate representation. For instance, in our case, this corresponds to the

Fourier series representation of the spectral density and the implicit assumption that higher-

order Gaussian coefficients can be neglected. Greenshtein and Ritov (2004) propose to take
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advantage of the sparsity of ��1˜ in another way. Whether their methods will yield

minimax results in our context is unclear.

6. Proofs of necessary lemmas

Proof of Lemma 1 for � general. Note that in the case � ¼ I (Johnstone 2002),

�̂�i ¼ yi(1 � rin)þ (6:1)

where xþ ¼ max(x, 0) and

1

n

X1
i¼1

(1 � rin)2
þ ! 0,

max
X1
i¼1

(1 � (1 � rin)þ)2�2
i : � 2 B

( )
! 0:

For arbitrary � p, let [	ij] ¼ �1=2
p and estimate �i by (6.1). Then,

k�̂�� �k2 ¼
X1
i¼1

(1 � rin)2
þ
X1
j¼1

	ij� j

 !2

þ
X1
i¼1

(1 � (1 � rin)þ)2�2
i

where the � j are independent and identically distributed as N (0, 1=n). Thus,

Ek�̂�� �k2 ¼ 1

n

X1
i¼1

(1 � rin)2
þ
X1
j¼1

	2
ij þ

X1
i¼1

(1 � (1 � rin)þ)2�2
i :

Note that

max
i

Xp

j¼1

	2
ij ¼ max

i
max

Xp

j¼1

	ij� j

 !2

: k�k2 ¼ 1

8<
:

9=
;

¼ max max
i

Xp

j¼1

	ij� j

 !2

: k�k ¼ 1

8<
:

9=
;

< max
Xp

i¼1

Xp

j¼1

	ij� j

 !2

: k�k ¼ 1

8<
:

9=
;

< k2,

since k�1=2
p k ¼ k� pk1=2 < k

1=2
2 . The lemma follows. h

Lemma 3. Suppose 0 , º1 < ª1 < . . . < ª p < º2 , 1 and
P p

j¼1ª j ¼ p. Then, for a

suitable E . 0,
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M(�) ¼ max
Xp

j¼1

[log(1 � 2ª j s) þ 2sª j(�þ 1)] : 0 < s <
1

2º2

( )

> min
pº2

1E
2�2

2º3
2

,
p(1 � E)�

2º2

( )
:

Proof. Note that if 0 < x < 1 � E,

log(1 � x) þ x(�þ 1) > � x2

2E2
þ �x:

Therefore,

M(�) > max � v2

2E2

Xp

j¼1

ª2
j þ v�

Xp

j¼1

ª j : v <
1 � E
º2

( )
:

Substituting

v ¼ �
º1

º2

Xp

j¼1

ª j

Xp

j¼1

ª2
j

E2 <
�E2

º2

<
1 � E
º2

for � < (1 � E)=E2, we obtain

M(�) > �2 E
2º2

1

2º2
2

Xp

j¼1

ª j

 !2

Xp

j¼1

ª2
j

> �2 E
2

2

º2
1

º3
2

p:

On the other hand, for any E . 0,

M(�) > p log Eþ 1

º2

(1 � E)(�þ 1)

� �
>

p(1 � E)�
2º2

for � > 2º2(log E�1)(1 � E)�1 by taking s ¼ (1 � E)=(2º2). The lemma follows by taking E so

that 2º2(log E�1)(1 � E)�2 < E�2. h

Lemma 4. Let Z1, . . . , Zn be independent, identically distributed p-variate Gaussian with

mean 0 such that var(Z1) ¼ � ¼ k� (a, b)k p3 p, � (a, a) ¼ 1 for all a, and 0 , º1

< ºmin(�) < ºmax(�) < º2 , 1. Then

P

����Xn

i¼1

Xp

j¼1

(Z2
ij � 1)

���� . np�

" #
< expf�npc0(�, º1, º2)g:

Fisher’s linear discriminant and naive Bayes 1005



If, further, � (a, b) ¼ � (jb � aj), then, for all t,

P

����Xn

i¼1

Xp� t

j¼1

(Zij Zi( jþ t) � � (t))

���� . n( p � t)�

2
4

3
5 < K1 expf�n( p � t)c1(�, º1, º2)g:

Here, for m ¼ 0, 1,

cm(�, º1, º2) � minfam(º1, º2)�, bm(º1, º2)�2g,

and am, bm are positive functions.

Proof. We consider the case t ¼ 0 and general � first. By the spectral theorem,

Xn

i¼1

Xp

j¼1

Z2
ij ¼

Xn

i¼1

Xp

j¼1

ª jU
2
ij,

where º1 < ª1 < . . . < ª p < º2 are the eigenvalues of � and the Uij are independent

N (0, 1).

By Markov’s inequality,

P
Xn

i¼1

Xp

j¼1

ª jU
2
ij

" #
. np(�þ 1) < min

Yp

j¼1

(1 � 2ª j s)�1=2e�s(�þ1)

" #n

: jsj , 1

2º2

8<
:

9=
;:

Since
P p

j¼1ª j ¼ p by hypothesis, we can apply the bound of Lemma 3. Apply a similar

argument to

P �
Xn

i¼1

Xp

j¼1

(Z2
ij � 1) . np�

" #

and the first bound follows.

Now write

Xn

i¼1

Xp� t

j¼1

(Zij Zi( jþ t) � � (t))

¼ 1

2

Xn

i¼1

Xp� t

j¼1

f(Zij þ Zi( jþ t))
2 � 2(1 þ � (t)) � (Z2

ij � 1) � (Z2
i( jþ t) � 1)g:

Further, write the first term as the sum of two terms

Xn

i¼1

X
f(Zij þ Zi( jþ t))

2 � (1 þ � (t)) : j 2 I1g þ
Xn

i¼1

X
f(Zij þ Zi( jþ t))

2 � (1 þ � (t)) : j 2 I2g,

where j 2 I1 , j þ t 2 I2 and the cardinalities of I1 and I2 are approximately ( p � t)=2,

that is, differ by at most 1.

Consider the Gaussian vectors W
(1)
i , W

(2)
i corresponding to (Zij þ Zi( jþ t))

(2(1 þ � (t)))�1=2, j 2 I1, I2 respectively. Call either of these W. Then W has mean 0
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and variance covariance matrix of the form ˆ ¼ kª(i, j)k l3 l where l ¼ ( p � t)=2 or

( p � t þ 1)=2 and ( p � t � 1)=2 and ª(0) � 1.

The maximal eigenvalue of ˆ is given by

ºmax(ˆ) ¼ maxfvar(aTW) : kak2 ¼ 1g ¼ max var
Xl

j¼1

b jW j) :
Xl

j¼1

b2
j ¼ 1

8<
:

9=
;

< max [2(1 þ � (t)]�1var
Xl

k¼1

d k(Z1k þ Z1(kþ t))

 !
: k 2 I1 or I2,

Xl

k¼1

d2
k ¼ 1

( )

< [2(1 þ � (t))]�1max var
Xp

j¼1

b j Z1 j

 !
:
Xp

j¼1

b2
j ¼ 2

( )

¼ (1 þ � (t))�1ºmax(�) < (1 þ � (t))�1º2 <
º2

º1

,

since (1 þ � (t)) ¼ var((Z11 þ Z1 t)=
ffiffiffi
2

p
) > º1.

We obtain a new bound,

P
Xn

i¼1

Xp� t

j¼1

(Zij Zi( jþ t) � � (t)) . n( p � t)�

2
4

3
5

< P
Xn

i¼1

Xp� t

j¼1

(Z2
ij � 1) .

1

4
n( p � t)�

2
4

3
5

þ P
Xn

i¼1

Xp� t

j¼1

(Z2
i( jþ t) � 1) .

1

4
n( p � t)�

2
4

3
5

þ 2P
Xn

i¼1

Xl

j¼1

(W 2
ij � 1) .

1

8
n( p � t)�(1 þ � (t))�1

2
4

3
5,

where we treat Wij generally as components of independent vectors Wi. Now, use

(1 þ � (t))�1 > 1=º2. Apply the t ¼ 0 result to each of these three terms to obtain the general

result (after arguing similarly for the lower tail). h

Lemma 5. Suppose M̂M n is a sequence of symmetric positive definite matrices such that

uniformly on ˆ for some � . 0,

PŁ 0 , � < ºmin(M̂M n) < ºmax(M̂M n) <
1

�

� �
> 1 � rn,

where rn ! 0 and EŁk�̂�� �k2 ¼ O(rn) uniformly on ˆ. Then
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maxfEŁ�(��( ^̃̃ , M̂M n)) : Ł 2 ˆg

¼ maxfEŁ�(��( ^̃̃ , M̂M n)) : Ł 2 ˆ, c2 < ˜T��1˜ < f 2g þ O(rn)

for some f 2 , 1.

Proof. It is enough to show that, for any � . 0, f sufficiently large,

maxfEŁ�(�( ^̃̃ , M̂M)) : Ł 2 ˆ, ˜T��1˜ > f 2g < �þ O(rn):

But, evidently, if � < ºmin(M̂M) < ºmax(M̂M) < 1=�,

��( ^̃̃ , M̂M) >
�2ffiffiffiffiffi
k2

p k ^̃̃k > �2

ffiffiffiffiffi
k1

k2

r
( ^̃̃ T��1 ^̃̃ )1=2

> �2

ffiffiffiffiffi
k1

k2

r
(˜T��1˜)1=2 þ O(rn)

> �2

ffiffiffiffiffi
k1

k2

r
f þ O(rn):

The lemma follows. h

Lemma 6. Suppose M is a (2d þ 1) diagonal matrix which is symmetric, that is,

M ¼ kmabk p3 p,

mab ¼ 0, ja � bj . d,

mab ¼ mba:

Let kMk be the operator norm (M : l2 ! l2)

kMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ºmax(MMT)

p
Then, for 0 , d , p,

kMk < (2d þ 1)kMk1 < (2
ffiffiffiffiffiffi
pd

p
þ 1)kMk1,

where

kMk1 ¼ max
a,b

jmabj:

Proof. By symmetry, kMk ¼ max1<i< pjºi(M)j, where ºi(M), . . . , º p(M) are the eigenvalues

of M (real by symmetry). So kMk ¼ maxfsupkxk¼1x
T Mx, �infkxk¼1x

T Mxg. But
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jxT Mxj ¼
���� X
ja�bj<d

xaxb mab

����

< kMk1
Xd

k¼�d

Xp

i¼1

jxixiþk j

< (2d þ 1)kMk1 by Cauchy–Schwarz,

< (2
ffiffiffiffiffiffi
pd

p
þ 1)kMk1:

h

Lemma 7. (Kolmogorov’s theorem). Let

F ¼ f f : (��, �) ! R, k f (r)k1 < 1g:
If

f (x) ¼
X1

k¼�1
ak( f )eikx,

let

f n(x) ¼
Xn

k¼�n

ak( f )eikx:

Then

supfk f n � f k1 : f 2 Fg < Cr

log n

nr
:

Proof. See Theorem 1.1 in De Vore and Lorentz (1993, p. 334).
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