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Motivated by recent work on ordinal embedding (In Proceedings of the 27th Conference on Learning Theory

(2014) 40–67), we derive large sample consistency results and rates of convergence for the problem of

embedding points based on triple or quadruple distance comparisons. We also consider a variant of this
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1. Introduction

The problem of ordinal embedding, also called non-metric multidimensional scaling [4], consists

of finding an embedding of a set of items based on pairwise distance comparisons. Specifically,

suppose that δij ≥ 0 is some dissimilarity measure between items i, j ∈ [n] := {1, . . . , n}. We as-

sume that δii = 0 and δij = δji for all i, j ∈ [n]. These dissimilarities are either directly available

but assumed to lack meaning except for their relative magnitudes, or only available via compar-

isons with some other dissimilarities, meaning that we are only provided with a subset C ⊂ [n]4

such that

δij < δkℓ, ∀(i, j, k, ℓ) ∈ C. (1)

Note that the latter setting encompasses the former. Given C and a dimension d , the goal is

to embed the items as points p1, . . . , pn ∈ R
d in a way that is compatible with the available

information, specifically

δij < δkℓ ⇒ ‖pi − pj‖ ≤ ‖pk − pℓ‖, ∀(i, j, k, ℓ) ∈ C, (2)

where ‖ · ‖ denotes the Euclidean norm. The two most common situations are when all the

quadruple comparisons are available, meaning C = [n]4, or all triple comparisons are available,

meaning C = {(i, j, i, k) : i, j, k ∈ [n]}, which can be identified with [n]3. We emphasize that the

dissimilarities δij may not be available, but their ordering is, although only according to the set C.

In some situations, the dissimilarities may be available but cannot be considered a meaningful

measure of distance, making the direct use of methods for metric embedding inappropriate. This

problem has a long history surveyed in [27], with pioneering contributions from [18,19] and [15].

The main question we tackle here is that of consistency. Suppose that the items are in fact

points x1, . . . , xn ∈ R
d and δij = ‖xi − xj‖. Provided with a subset C = Cn of dissimilarity

comparisons as in (2), is it possible to reconstruct the original points in the large-sample limit
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n → ∞? Clearly, the reconstruction can only be up to a similarity transformation – that is, a trans-

formation f :Rd �→ R
d such that, for some λ > 0, ‖f (x)− f (y)‖ = λ‖x − y‖ for all x, y ∈ R

d ,

or equivalently, of the form f (x) = λR(x) + b where R is an orthogonal transformation and b is

a constant vector – since such a transformation leaves the distance comparisons unchanged. This

question is at the foundation of non-metric multidimensional scaling.

Early work only addressed the continuous case, where the x’s span a whole convex subset U ⊂
R

d . In that setting, the goal becomes to characterize isotonic functions on U , that is, functions

f : U �→ R
d satisfying

‖x − y‖ <
∥

∥x′ − y′∥
∥ ⇒

∥

∥f (x) − f (y)
∥

∥ ≤
∥

∥f
(

x′) − f
(

y′)∥
∥, ∀x, y, x′, y′ ∈ U. (3)

Shepard [20] argues that such functions must be similarities, and cites earlier work [3,22] dealing

with the case d = 1.

Only recently has the finite sample case been formally considered. Indeed, [14] prove a con-

sistency result, showing that if x1, . . . , xn ∈ U ⊂R
d , where U is a bounded, connected, and open

subset of Rd satisfying some additional conditions – for example, a finite union of open balls –

and C = [n]4, then in the large sample limit, it is possible to recover the x’s up to a similarity

transformation. We note that [14] focus on the strictly isotonic case, where the second inequality

in (3) is strict. Our first contribution is an extension of this consistency result for quadruple learn-

ing to triple learning where C = [n]3. In the process, we greatly simplify the arguments of [14]

and weaken the conditions on the sampling domain U . We note that [23] have partially solved

this problem by a reduction to the problem of embedding a nearest-neighbor graph. However,

their arguments are based on an apparently incomplete proof in [25], which is itself based on a

rather sophisticated approach. Our proofs are comparatively much simpler and direct.

Our second contribution is to provide rates of convergence, a problem left open by [14].

The last decade has seen a surge of interest in ordinal embedding, motivated by applications to

recommender systems and large-scale psychometric studies made available via the internet, for

example, databases for music artists similarity [9,16]. Sensor localization [17] is another possible

application. Modern datasets being large, all quadruple or triple comparisons are rarely available,

motivating the proposal of embedding methods based on a sparse set of comparisons [1,4,12,23].

Terada and Von Luxburg [23] study what they call local ordinal embedding, which they define as

the problem of embedding an unweighted K-nearest neighbor (K-NN) graph. With our notation,

this is the situation where C = {(i, j, k) : δij ≤ δi(K) < δik}, δi(K) being the dissimilarity between

item i and its K th nearest-neighbor. Terada and Von Luxburg [23] argue that, when the items

are points x1, . . . , xn sampled from a smooth density on a bounded, connected, convex, and open

subset U ⊂ R
d with smooth boundary, then K = Kn ≫ n2/(2+d)(logn)d/(2+d) is enough for

consistency. Our third contribution is to consider the related situation where C = {(i, j, k, ℓ) :
δij < δkℓ and max(δij , δik, δiℓ) ≤ δi(K)}, which provides us with the K-NN graph and also all

the quadruple comparisons between the nearest neighbors. In this setting, we are only able to

show that Kn ≫ √
n logn is enough.

Beyond local designs, which may not be feasible in some settings, [12] consider the problem

of adaptively (i.e., sequentially) selecting triple comparisons in order to minimize the number of

such comparisons and yet deduce all the other triple comparisons. They consider a few methods,

among which a non-metric version of the landmark MDS method of [8]. Less ambitious is the
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problem of selecting few comparisons in order to consistently embed the items when these are

points in a Euclidean space. Our fourth contribution is to show that one can obtain a consistent

embedding with a landmark design based on ann queries, where an is any diverging sequence.

Moreover, the embedding can be computed in (expected) time ζ(an)n, for some function ζ :
R+ �→R+.

The rest of the paper is organized as follows. In Section 2, we state our theoretical results and

prove the simpler ones. We then gather the remaining proofs in Section 3. Section 4 concludes

the paper with a short discussion.

2. Theory

In this section, we present our theoretical findings. Most proofs are gathered in Section 3.

We already defined isotonic functions in (3). Following [14], we say that a function f : U ⊂
R

d �→ R
d is weakly isotonic if

‖x − y‖ < ‖x − z‖ ⇒
∥

∥f (x) − f (y)
∥

∥ ≤
∥

∥f (x) − f (z)
∥

∥, ∀x, y, z ∈ U. (4)

Obviously, if a function is isotonic (3), then it is weakly isotonic (4). Weak isotonicity is in fact

not much weaker than isotonicity. Indeed, let P be a property (e.g., ‘isotonic’), and say that a

function f : U ⊂ R
d �→ R

d has the property P locally if for each x ∈ U there is r > 0 such that

f has property P on B(x, r)∩U , where B(x, r) denotes the open ball with center x and radius r .

Lemma 1. Any locally weakly isotonic function on an open U is also locally isotonic on U .

Proof. This is an immediate consequence of [14], Lemma 6, which implies that a weakly iso-

tonic function on B(x, r) is isotonic on B(x, r/4). �

Suppose we have data points x1, . . . , xn ∈R
d . Define

�n = {x1, . . . , xn}, � =
⋃

n≥1

�n = {xn : n ≥ 1}. (5)

Let δij = ‖xi − xj‖ and suppose that we are only provided with a subset Cn ⊂ [n]4 of distance

comparisons as in (1). To an (exact) ordinal embedding p : [n] �→ R
d – which by definition

satisfies (2) – we associate the map φn : �n �→ R
d defined by φn(xi) = pi for all i ∈ [n]. We

crucially observe that, in the case of all quadruple comparisons (Cn = [n]4), the resulting map φn

is isotonic on �n; in the case of all triple comparisons (Cn = [n]3), φn is only weakly isotonic

on �n, instead. In light of this, and the fact that the location, orientation and scale are all lost

when only ordinal information is available, the problem of proving consistency of (exact) ordinal

embedding reduces to showing that any such embedding is close to a similarity transformation

as the sample size increases n → ∞. This is exactly what [14] do under some assumptions.
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2.1. Ordinal embedding based on all triple comparisons

Our first contribution is to extend the consistency results of [14] on quadruple learning to triple

learning. Following their presentation, we start with a result where the sample is infinite, which

is only a mild generalization of [14], Theorem 3.

Theorem 1. Let U ⊂ R
d be bounded, connected and open. Suppose � is dense in U and con-

sider a locally weakly isotonic function φ : � �→ R
d . Then there is a similarity transformation S

that coincides with φ on �.

The proof is largely based on that of [14], Theorem 3, but a bit simpler; see Section 3.1.

We remark that there can only be one similarity with the above property, since similarities

are affine transformations, and two affine transformations of Rd that coincide on d + 1 affine

independent points are necessarily identical.

In this theorem, the set � is dense in an open subset of Rd , and therefore infinite. In fact, [14]

use this theorem as an intermediary result for proving consistency as the sample size increases. In

fact, most of their paper is dedicated to establishing this, as their arguments are quite elaborate.

We found a more direct route by ‘tending to the limit as soon as possible’, based on Lemma 2

below, which is at the core of the Arzelà–Ascoli theorem.

For the remaining of this section, we consider the finite sample setting:

U ⊂R
d is bounded, connected and open,

�n = {x1, . . . , xn} ⊂ U is such that � := {xn : n ≥ 1} is dense in U , (6)

and φn : �n �→ Q ⊂R
d is a function with values in a bounded set Q.

In the context of (6), we implicitly extend φn to �, for example, by setting φn(x) = q for all

x ∈ � \ �n, where q is any fixed point in Q, although the following holds for any extension.

Lemma 2. Consider �n ⊂ R
d finite and φn : �n �→ Q ⊂ R

d , where Q is bounded. Then there

is N ⊂N infinite such that φ(x) := limn∈N φn(x) exists for all x ∈ � :=
⋃

n �n.

This is called the diagonal process in [13], Problem D, Chapter 7. Although the result is clas-

sical, we provide a proof for completeness.

Proof of Lemma 2. Without loss of generality, suppose �n = {x1, . . . , xn}. Let N0 = N. Since

(φn(x1) : n ∈ N0) ∈ Q and Q is bounded, there is N1 ⊂ N0 infinite such that limn∈N1
φn(x1)

exists. In turn, since (φn(x2) : n ∈ N1) is bounded, there is N2 ⊂ N1 infinite such that

limn∈N2
φn(x2) exists. Continuing this process – which formally corresponds to a recursion –

we obtain · · · ⊂ Nk+1 ⊂ Nk ⊂ · · · ⊂ N1 ⊂ N0 = N such that, for all k, Nk is infinite and

limn∈Nk
φn(xk) exists. Let nk denote the kth element (in increasing order) of Nk and note that

(nk : k ≥ 1) is strictly increasing. Define N = {nk : k ≥ 1}. Since {np,p ≥ k} ⊂ Nk , we have

limn∈N φn(xk) = limn∈Nk
φn(xk), and this is valid for all k ≥ 1. �
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Corollary 1. Consider the setting (6) and assume that φn is weakly isotonic. Then (φn) is se-

quentially compact for the pointwise convergence topology for functions on � and all the func-

tions where it accumulates are similarity transformations restricted to �.

The corresponding result ([14], Theorem 4) was obtained for isotonic (instead of weakly iso-

tonic) functions and for domains U that are finite unions of balls, and the convergence was

uniform instead of pointwise. For now, we provide a proof of Corollary 1, which we derive as a

simple consequence of Theorem 1 and Lemma 2.

Proof of Corollary 1. Lemma 2 implies that (φn) is compact for the pointwise convergence

topology. Let φ be an accumulation point of (φn), meaning that there is N ⊂ N infinite such

that φ(x) = limn∈N φn(x) for all x ∈ �. Take x, y, z ∈ � such that ‖x − y‖ < ‖x − z‖. By

definition, there is m such that x, y, z ∈ �m, and therefore ‖φn(x) − φn(y)‖ ≤ ‖φn(x) − φn(z)‖
for all n ≥ m. Passing to the limit along n ∈ N , we obtain ‖φ(x) − φ(y)‖ ≤ ‖φ(x) − φ(z)‖.

Hence, φ is weakly isotonic on � and, by Theorem 1, it is therefore the restriction of a similarity

transformation to �. �

It is true that ([14], Theorem 4) establishes a uniform convergence result. We do the same

in Theorem 2 below, but with much simpler arguments. The key are the following two results

bounding the modulus of continuity of a (resp. weakly) isotonic function. We note that the second

result (for weakly isotonic functions) is very weak but sufficient for our purposes here. For � ⊂
V ⊂ R

d , define δH (�,V ) = supy∈V infx∈� ‖y − x‖, which is their Hausdorff distance. We say

that (yi : i ∈ I ) ⊂ R
d is an η-packing if ‖yi − yj‖ ≥ η for all i �= j . We recall that the size of

the largest η-packing of a Euclidean open ball of radius r is of order exactly (r/η)−d . For a set

V ⊂R
d , let diam(V ) = supx,y∈V ‖x − y‖ be its diameter and let

ρ(V ) = arg sup
r>0

{

∃v ∈ V : B(v, r/2) ⊂ V
}

, (7)

which is the diameter of a largest ball inscribed in V .

Everywhere in the paper, d is fixed, and in fact implicitly small as we assume repeatedly that

the sample (of size n) is dense in a full-dimensional domain of Rd . In particular, all the implicit

constants of proportionality that follow depend solely on d .

Lemma 3. Let V ⊂ R
d be open. Consider � ⊂ V and set ε = δH (�,V ). Let ψ : � �→ Q be

isotonic, where Q ⊂R
d is bounded. There is C ∝ diam(Q)/ρ(V ), such that

∥

∥ψ(x) − ψ
(

x′)∥
∥ ≤ C

(∥

∥x − x′∥
∥ + ε

)

, ∀x, x′ ∈ �. (8)

Proof. The proof is based on the fact that an isotonic function transforms a packing into a pack-

ing. Take x, x′ ∈ � such that ξ := ‖ψ(x) − ψ(x′)‖ > 0, and let η = ‖x − x′‖. Since V is open it

contains an open ball of diameter ρ(V ). Let y1, . . . , ym be an (η+3ε)-packing of such a ball with

m ≥ C1(ρ(V )/(η + ε))d for some constant C1 depending only on d . Then let x1, . . . , xm ∈ �

such that maxi ‖yi − xi‖ ≤ ε. By the triangle inequality, for all i �= j we have ‖xi − xj‖ ≥
‖yi − yj‖ − 2ε ≥ η + ε > ‖x − x′‖. Because ψ is isotonic, we have ‖ψ(xi) − ψ(xj )‖ ≥ ξ , so
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that ψ(x1), . . . ,ψ(xm) is a ξ -packing. Therefore, there is a constant C2 depending only on d

such that m ≤ C2(diam(Q)/ξ)d . We conclude that ξ ≤ (C2/C1)
1/d(diam(Q)/ρ(V ))(η + ε). �

For V ⊂ R
d and h > 0, let V h = {x ∈ V : ∃y ∈ V s.t. x ∈ B(y,h) ⊂ V }. We note that V h is

the complement of the h-convex hull of V c := R
d \ V – see [6] and references therein.

Lemma 4. In the context of Lemma 3, if ψ is only weakly isotonic, then there is C ∝ diam(Q),

such that for all h > 0,

∥

∥ψ(x) − ψ
(

x′)∥
∥ ≤ C

(
∥

∥x − x′∥
∥/h +

√

ε/h
)1/d

, ∀x ∈ � ∩ V h,∀x′ ∈ �. (9)

Proof. Assume that V h �=∅, for otherwise there is nothing to prove. Take x ∈ �∩V h and x′ ∈ �

such that ξ := ‖ψ(x) − ψ(x ′)‖ > 0, and let η = ‖x − x′‖. Because ψ is bounded, it is enough to

prove the result when η, ε < h/2. Let y ∈ V be such that x ∈ B(y,h) ⊂ V . There is y′ ∈ B(y,h)

such that y ∈ [xy ′] and ‖x − y′‖ ≥ 2h/3. Define u = (y′ − x)/‖y′ − x‖. Let z0 = x, and for

j ≥ 1, define zj = zj−1 + (η + 5jε)u. Let k ≥ 0 be maximum such that
∑k

j=1(η + 5jε) < h/2.

Since k satisfies kη + 5k2ε ≥ h/2, we have k ≥ min(h/(4η),
√

h/(10ε)). By construction, for all

j ∈ [k], zj ∈ [xy′] and B(zj ,2ε) ⊂ B(y,h). Let x−1 = x′, x0 = x and take x1, . . . , xk ∈ � such

that maxj ‖xj − zj‖ ≤ ε. By the triangle inequality, for j = 2, . . . , k,

‖xj − xj−1‖ ≥ ‖zj − zj−1‖ − 2ε ≥ ‖zj−1 − zj−2‖ + 3ε ≥ ‖xj−1 − xj−2‖ + ε,

which implies by induction that

‖xj − xj−1‖ ≥ ‖x1 − x0‖ + ε ≥ ‖z1 − z0‖ = η + 5ε >
∥

∥x − x′∥
∥.

By weak isotonicity, this implies that ‖ψ(xj )−ψ(xj−1)‖ ≥ ‖ψ(x)−ψ(x′)‖ = ξ . We also have,

for any i, j ∈ [k] such that 1 ≤ i ≤ j − 2,

‖xj − xi‖ ≥ ‖zj − zi‖ − 2ε ≥ ‖zj − zj−1‖ + η + 5ε − 2ε ≥ ‖xj − xj−1‖ + η + ε.

By weak isotonicity, this implies that ‖ψ(xj ) − ψ(xi)‖ ≥ ‖ψ(xj ) − ψ(xj−1)‖ for all 0 ≤ i <

j ≤ k. Consequently, (ψ(xj ) : j ∈ [k]) forms a ξ -packing of Q. Hence, k ≤ C′(diam(Q)/ξ)d ,

for some constant C′. We conclude with the lower bound on k. �

From this control on the modulus of continuity, we obtain a stronger version of Corollary 1.

Theorem 2. Under the same conditions as Corollary 1, we have the stronger conclusion that

there is a sequence (Sn) of similarities such that, for all h > 0, maxx∈�n∩Uh ‖φn(x)−Sn(x)‖ →
0 as n → ∞. If in fact each φn is isotonic, then this remains true when h = 0.

We remark that when U is a connected union of a possibly uncountable number of open balls of

radius at least h > 0, then U = Uh. This covers the case of a finite union of open balls considered

in [14]. We also note that, if U is bounded and open, and ∂U has bounded curvature, then there

is h > 0 such that U = Uh. This follows from the fact that, in this case, U c has positive reach
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[10], and is therefore h-convex when h is below the reach by1
 [6], Proposition 1. Moreover, our

arguments can be modified to accommodate sets U with boundaries that are only Lipschitz, by

reasoning with wedges in Lemma 4.

Theorem 2 now contains ([14], Theorem 4), and extends it to weakly isotonic functions and to

more general domains U . Overall, our proof technique is much simpler, shorter, and elementary.

Define εn = δH (�n,U), which quantifies the density of �n in U . Because �n+1 ⊂ �n and �

is dense in U , we have εn ց 0 as n → ∞.

Proof of Theorem 2. Let φ be an accumulation point of (φn) for the pointwise convergence

topology, meaning there is N ⊂ N infinite such that φ(x) = limn∈N φn(x) for all x ∈ �. We

show that, in fact, the convergence is uniform.

First, suppose that each φn is isotonic. In that case, Lemma 3 implies the existence of a constant

C > 0 such that ‖φn(x) − φn(x
′)‖ ≤ C(‖x − x′‖ + εn) for all x, x′ ∈ �n, and for all n. Passing

to the limit along n ∈ N , we get ‖φ(x) − φ(x′)‖ ≤ C‖x − x′‖ for all x, x′ ∈ �. (In fact, we

already knew this from Corollary 1, since we learned there that φ coincides with a similarity, and

is therefore Lipschitz.) Fix ε > 0. There is m such that εm ≤ ε. Then there is m′ ≥ m such that

maxi∈[m] ‖φn(xi) − φ(xi)‖ ≤ ε for all n ∈ N with n ≥ m′. For such an n, and x ∈ �n, let i ∈ [m]
be such that ‖x − xi‖ ≤ εm. By the triangle inequality,

∥

∥φn(x) − φ(x)
∥

∥ ≤
∥

∥φn(x) − φn(xi)
∥

∥ +
∥

∥φn(xi) − φ(xi)
∥

∥ +
∥

∥φ(xi) − φ(x)
∥

∥

≤ C
(

‖x − xi‖ + εn

)

+
∥

∥φn(xi) − φ(xi)
∥

∥ + C‖xi − x‖
≤ C(εm + εn) + ε + Cεm ≤ (3C + 1)ε.

Since x ∈ � is arbitrary and ε can be taken as small as desired, this shows that the sequence

(φn : n ∈ N) convergences uniformly to φ over (�n : n ∈ N).

When the φn are only weakly isotonic, we use Lemma 4 to get a constant C > 0 depending on

diam(Q) and h > 0 such that ‖φn(x) − φn(x
′)‖ ≤ C(‖x − x′‖ + √

εn)
1/d for all x ∈ �n ∩ Uh

and all x′ ∈ �n, and for all n. Passing to the limit along n ∈ N , we get ‖φ(x) − φ(x′)‖ ≤
C‖x − x′‖1/d for all x, x′ ∈ �. (In fact, ‖φ(x) − φ(x′)‖ ≤ C‖x − x′‖ for all x, x′ ∈ � from

Corollary 1, as explained above.) The rest of the arguments are completely parallel. We conclude

that (φn : n ∈ N) convergences uniformly to φ over (�n ∩ Uh : n ∈ N).

Let S denote the similarities of R
d . For any functions φ,ψ : � �→ R

d , define δn(φ,ψ) =
maxx∈�n∩Uh ‖φ(x) − ψ(x)‖, and also δn(φ,S) = infS∈S δn(φ,S). Our end goal is to show that

δn(φn,S) → 0 as n → ∞. Suppose this is not the case, so that there is η > 0 and N ⊂N infinite

such that δn(φn,S) ≥ η for all n ∈ N . By Corollary 1, there is N1 ⊂ N and S ∈ S such that

S(x) = limn∈N1
φn(x) for all x ∈ �. As we showed above, the convergence is in fact uniform

over (�n ∩Uh : n ∈ N1), meaning limn∈N1
δn(φn, S) = 0. At the same time, we have δn(φn, S) ≥

δn(φn,S) ≥ η. We therefore have a contradiction. �

1This proposition is stated for compact sets (which is not the case of Uc) but easily extends to the case where set is

closed with compact boundary.



1670 E. Arias-Castro

2.2. Rates of convergence

Beyond consistency, we are able to derive convergence rates. We do so for the isotonic case, that

is, the quadruple comparison setting. Recall that εn = δH (�n,U).

Theorem 3. Consider the setting (6) with φn isotonic. There is C depending only on (d,U), and

a sequence of similarities Sn such that maxx∈�n ‖φn(x)−Sn(x)‖ ≤ C diam(Q)εn. If U = Uh for

some h > 0, then C = C′/diam(U) where C′ is a function of (d,h/diam(U),ρ(U)/diam(U)).

The proof of Theorem 3 is substantially more technical than the previous results, and thus

postponed to Section 3. Although [14] are not able to obtain rates of convergence, the proof

of Theorem 3 bares resemblance to their proof technique, and in particular, is also based on a

result of [2] on the approximation of ε-isometries; see Lemma 18. We will also make use of a

related result of [24] on the approximation of approximately midlinear functions; see Lemma 17.

We mention that we know of a more elementary proof that only makes use of [2], but yields a

slightly slower rate of convergence.

We note that there is a constant c depending only on d such that εn ≥ cn−1/d . This is because

U being open, it contains an open ball, and this lower bound trivially holds for an open ball. And

such a lower bound is achieved when the xi ’s are roughly regularly spread out over U . If instead

the xi ’s are i.i.d. uniform in U , and U is sufficiently regular – for example, U = Uh for some

h > 0 – then εn = O(log(n)/n)1/d , as is well-known. This would give the rate, and we do not

know whether it is optimal, even in dimension d = 1.

Remark. We are only able to get a rate in
√

εn for the weakly isotonic case. We can do so by

adapting of the arguments underlying Theorem 3, but only after assuming that U = Uh for some

h > 0 and resolving a few additional complications.

2.3. Ordinal embedding with local comparisons

Terada and Von Luxburg [23] consider the problem of embedding an unweighted nearest-

neighbor graph, which as we saw in the Introduction, is a special case of ordinal embedding.

Their arguments – which, as we explained earlier, seem incomplete at the time of writing –

indicate that K = Kn ≫ n2/(2+d)(logn)d/(2+d) is enough for consistently embedding a K-NN

graph.

We consider here a situation where we have more information, specifically, all the distance

comparisons between K-nearest-neighbors. Formally, this is the situation where

Cn =
{

(i, j, k, ℓ) : δij < δkℓ and {j, k, ℓ} ⊂ NKn(i)
}

,

where NK(i) denotes the set of the K items nearest item i. If the items are points �n =
{x1, . . . , xn} ⊂ R

d , an exact ordinal embedding φn is only constrained to be locally weakly iso-

tonic as we explain now. We start by stating a standard result which relates a K-NN graph to an

r-ball graph.
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Lemma 5. Let U ⊂R
d be bounded, connected and open, and such that U = Uh for some h > 0.

Sample x1, . . . , xn i.i.d. from a density f supported on U with (essential) range in (0,∞) strictly.

There is a constant C such that, if K := [nrd ] ≥ C logn, then with probability tending to 1,

NeighK/2(xi) ⊂
{

xj : ‖xj − xi‖ ≤ r
}

⊂ Neigh2K(xi), ∀i ∈ [n],

where NeighK(xi) denotes the set of the K points in {xj : j ∈ [n]} nearest xi .

The proof is postponed to Section 3 and only provided for completeness. Therefore, assuming

that K ≥ C logn, where C is the constant of Lemma 5, we may equivalently consider the case

where

Cn =
{

(i, j, k, ℓ) : δij < δkℓ and max(δij , δik, δiℓ) < rn
}

,

for some given rn > 0. An exact embedding φn : �n �→ R
d in that case is isotonic on �n ∩

B(x, rn) for any x ∈ �n. We require in addition that

∥

∥x − x′∥
∥ < rn ≤

∥

∥x† − x‡
∥

∥ ⇒
(10)

∥

∥φn(x) − φn

(

x′)∥
∥ ≤

∥

∥φn

(

x†
)

− φn

(

x‡
)
∥

∥, ∀x, x′, x†, x‡ ∈ �n.

This is a reasonable requirement since it is possible to infer it from Cn. Indeed, for k, ℓ ∈ [n], we

have δkℓ < rn if, and only if, (k, k, k, ℓ) ∈ Cn or (ℓ, ℓ, ℓ, k) ∈ Cn. (Here we assume that δii = 0

for all i and δij > 0 if i �= j , as is the case for Euclidean distances.) We can still infer this even

if the quadruples in Cn must include at least three distinct items. Indeed, suppose k, ℓ ∈ [n] are

such that there is no i such that (i, k, i, ℓ) ∈ Cn or (i, ℓ, i, k) ∈ Cn, then (a) δik = δiℓ for all i such

that max(δik, δiℓ) < rn, or (b) δkℓ ≥ rn. Assume that rn ≥ Cεn with C > 0 sufficiently large, so

that situation (a) does not happen. Conversely, if (k, ℓ) is such that δkℓ < rn, then when (a) does

not happen, there is i such that (i, k, i, ℓ) ∈ Cn or (i, ℓ, i, k) ∈ Cn.

Theorem 4. Consider the setting (6) and assume in addition that U = Uh for some h > 0, and

that φn is isotonic over balls of radius rn and satisfies (10). There is a constant C > 0 depend-

ing only on (d,h,ρ(U),diam(U),diam(Q)) and similarities Sn such that maxx∈�n ‖φn(x) −
Sn(x)‖ ≤ Cεn/r2

n .

Assume the data points are generated as in Lemma 5. In that case, we have εn = O(log(n)/

n)1/d and Theorem 4 implies consistency when rn ≫ (log(n)/n)1/d . By Lemma 5, this corre-

sponds to the situation where we are provided with comparisons among Kn-nearest neighbors

with Kn ≫ √
n logn. If the result of [23] holds in all rigor, then this is a rather weak rate. Initially,

we were hopeful to prove that Kn ≫ logn is enough for consistency, but even that we were not

able to show.

2.4. Landmark ordinal embedding

Inspired by [12], we consider the situation where there are landmark items indexed by Ln ⊂ [n],
and we are given all distance comparisons from any point to the landmarks. Formally, with triple
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comparisons, this corresponds to the situation where

Cn =
{

(i, j, k) ∈ [n] × L2
n : δij < δik

}

.

If the items are points �n = {x1, . . . , xn} ⊂ R
d , an exact ordinal embedding φn is only con-

strained to be weakly isotonic on the set of landmarks and, in addition, is required to respect the

ordering of the distances from any point to the landmarks. The following is an easy consequence

of Theorem 2.

Corollary 2. Theorem 2 remains valid in the landmark triple comparisons setting (meaning with

φn as just described) as long as the landmarks become dense in U .

Jamieson and Nowak [12] study the number of triple comparisons that are needed for exact

ordinal embedding. With a counting argument, they show that at least Cn logn comparisons are

needed, where C is a constant depending only on d . If we only insist that the embedding respects

the comparisons that are provided, then Corollary 2 implies that a landmark design is able to be

consistent as long as the landmarks become dense in U . This consistency implies that, as the

sample size increases, an embedding that respects the landmark comparisons also respects all

other comparisons approximately. This is achieved with O(nℓ2
n + ℓ3

n) triple comparisons, where

ℓn := |Ln| is the number of landmarks, and the conditions of Corollary 2 can be fulfilled with

ℓn → ∞ at any speed, so that the number of comparisons is nearly linear in n.

Proof of Corollary 2. We focus on the weakly isotonic case, where we assume that U = Uh for

some h > 0. Let �n = {xl : l ∈ Ln} denote the set of landmarks. Since �n becomes dense in U ,

meaning ηn := δH (�n,U) → 0, by Theorem 2, there is a sequence of similarities Sn such that

ζn := maxx∈�n ‖φn(x) − Sn(x)‖ → 0. Now, for x ∈ �n, let x̃ ∈ �n such that ‖x − x̃‖ ≤ ηn. We

have

∥

∥φn(x) − Sn(x)
∥

∥ ≤
∥

∥φn(x) − φn(x̃)
∥

∥ +
∥

∥φn(x̃) − Sn(x̃)
∥

∥ +
∥

∥Sn(x̃) − Sn(x)
∥

∥. (11)

The first term is bounded by Cη
1/2d
n by Lemma 4, for some constant C. The middle term is

bounded by ζn. For the third term, express Sn in the form Sn(x) = βnRn(x) + bn, where βn ∈R,

Rn is an orthogonal transformation, and bn ∈ R
d . Take two distinct landmarks x†, x‡ ∈ �n such

that ‖x† −x‡‖ ≥ diam(U)/2, which exist when n is sufficiently large. Since ‖Sn(x
†)−Sn(x

‡)‖ =
βn‖x† − x‡‖ ≥ βn diam(U)/2 and, at the same time,

∥

∥Sn

(

x†
)

− Sn

(

x‡
)∥

∥ ≤
∥

∥Sn

(

x†
)

− φn

(

x†
)∥

∥ +
∥

∥φn

(

x†
)

− φn

(

x‡
)∥

∥ +
∥

∥φn

(

x‡
)

− Sn

(

x‡
)∥

∥

≤ ζn + diam(Q) + ζn ≤ 2 diam(Q), eventually,

we have βn ≤ β̄ := 4 diam(Q)/diam(U). Hence, the third term on the RHS of (11) is bounded

by β̄ηn. Thus, the RHS of (11) is bounded by Cη
1/2d
n + ζn + β̄ηn, which tends to 0 as n → ∞.

This being valid for any x ∈ �n, we conclude. �

We remark that at the very end of the proof, we obtained a rate of convergence as a function

of the density of the landmarks and the convergence rate implicit in Theorem 2. This leads to the
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following rate for the quadruple comparisons setting, which corresponds to the situation where

Cn =
{

(i, j, k) ∈ [n] × L2
n : δij < δik

}

∪
{

(i, j, k, ℓ) ∈ L4
n : δij < δik

}

.

Here, φn is constrained to be isotonic on the set of landmarks and, as before, is required to respect

the ordering of the distances from any data point to the landmarks.

Corollary 3. Consider the setting (6) in the landmark quadruple comparisons setting (meaning

with φn as just described). Let �n denote the set of landmarks and set ηn = δH (�n,U). There is

a constant C > 0 and a sequence of similarities Sn such that maxx∈�n ‖φn(x) − Sn(x)‖ ≤ Cηn.

Proof. The proof is parallel to that of Corollary 2. Here, we apply Theorem 3 to get ζn ≤ C0ηn.

This bounds the second term on the RHS of (11). The first term is bounded by C1ηn by Lemma 3,

while the third term is bounded by β̄ηn as before. (C0,C1 are constants.) �

Computational complexity. We now discuss the computational complexity of ordinal embedding

with a landmark design. The obvious approach has two stages. In the first stage, the landmarks

are embedded. This is the goal of [1], for example. Here, we use brute force.

Proposition 1. Suppose that m items are in fact points in Euclidean space and their dissimilari-

ties are their pairwise Euclidean distances. Then whether in the triple or quadruple comparisons

setting, an exact ordinal embedding of these m items can be obtained in finite expected time.

Proof. The algorithm we discuss is very naive: we sample m points i.i.d. from the uniform dis-

tribution on the unit ball, and repeat until the ordinal constraints are satisfied. Since checking

the latter can be done in finite time, it suffices to show that there is a strictly positive proba-

bility that one such sample satisfies the ordinal constraints. Let Xm denote the set of m-tuples

(x1, . . . , xm) ∈ B(0,1) that satisfy the ordinal constraints, meaning that ‖xi − xj‖ < ‖xk − xℓ‖
when (i, j, k, ℓ) ∈ C. Seeing Xn as a subset of B(0,1)m ⊂R

dm, it is clearly open. And sampling

x1, . . . , xm i.i.d. from the uniform distribution on B(0,1) results in sampling (x1, . . . , xm) from

the uniform distribution on B(0,1)m, which assigns a positive mass to any open set. �

In the second stage, each point that is not a landmark is embedded based on the order of its

distances to the landmarks. We quickly mention the work [7], who develops a convex method

for performing this task. Here, we are contented with knowing that this can be done, for each

point, in finite time, function of the number of landmarks. For example, a brute force approach

starts by computing the Voronoi diagram of the landmarks, and iteratively repeats within each

cell, creating a tree structure. Each point that is not a landmark is placed by going from the root

to a leaf, and choosing any point in that leaf cell, say its barycenter.

Thus, if there are ℓ landmarks, the first stage is performed in expected time F(ℓ), and the sec-

ond stage is performed in time (n − ℓ)G(ℓ). The overall procedure is thus computed in expected

time F(ℓ) + (n − ℓ)G(ℓ).
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Remark 1. The procedure described above is not suggested as a practical means to perform

ordinal embedding with a landmark design. The first stage, described in Proposition 1, has fi-

nite expected time, but likely not polynomial in m. For a practical method, we can suggest the

following:

1. Embed the landmarks using the semidefinite [1] (which solves a semidefinite program) or

the method of [23] (which uses an iterative minimization-majorization strategy).

2. Embed the remaining points using the method of [7] (which solves a quadratic program).

We cannot provide any theoretical guarantees for this method.

3. More proofs

In this section, we gather the remaining proofs and some auxiliary results. We introduce some

additional notation and basic concepts. For z1, . . . , zm ∈ R
d , let Aff(z1, . . . , zm) denote their

affine hull, meaning the affine subspace they generate in R
d . For a vector x in a Euclidean space,

let ‖x‖ denote its Euclidean norm. For a matrix M ∈ R
p×q , let ‖M‖ denote its usual operator

norm, meaning, ‖M‖ = max{‖Mx‖ : ‖x‖ ≤ 1} and ‖M‖F =
√

tr(M⊤M) its Frobenius norm.

Regular simplexes. These will play a central role in our proofs. We say that z1, . . . , zm ∈R
d , with

m ≥ 2, form a regular simplex if their pairwise distances are all equal. We note that, necessarily,

m ≤ d + 1, and that regular simplexes in the same Euclidean space and with same number of

(distinct) nodes m are similarity transformations of each other – for example, segments (m = 2),

equilateral triangles (m = 3), tetrahedron (m = 4). By recursion on the number of vertices, m, it

is easy to prove the following.

Lemma 6. Let z1, . . . , zm form a regular simplex with edge length 1 and let μ denote the

barycenter of z1, . . . , zm. Then ‖μ − zi‖ =
√

(m − 1)/2m, and if z, z1, . . . , zm form a regular

simplex, then ‖z − μ‖ =
√

(m + 1)/2m. (In dimension m, there are exactly two such points z.)

3.1. Proof of Theorem 1

We assume d ≥ 2. See [14] for the case d = 1. We divide the proof into several parts.

Continuous extension. Lemma 4 implies that φ is locally uniformly continuous. Indeed, take

x0 ∈ � and let r > 0 such that B(x0, r) ⊂ U and φ is weakly isotonic on B(x0, r) ∩ �. Applying

Lemma 4 with V = B(x0, r) and � = �∩B(x0, r) – so that δH (�,V ) = 0 because � is dense in

V – and noting that V r = V , yields a constant Cr > 0 such that ‖φ(x)−φ(x′)‖ ≤ Cr‖x −x′‖1/d ,

for all x, x′ ∈ � ∩ B(x0, r). Being locally uniformly continuous, we can uniquely extend φ to

a continuous function on U , also denoted by φ. By continuity, this extension is locally weakly

isotonic on U .
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Isosceles preservation. Sikorska and Szostok [21] say that a function f : V ⊂ R
d → R

d pre-

serves isosceles triangles if

‖x − y‖ = ‖x − z‖ ⇒
∥

∥f (x) − f (y)
∥

∥ =
∥

∥f (x) − f (z)
∥

∥, ∀x, y, z ∈ V.

In our case, by continuity, we also have that φ preserves isosceles triangles locally. Indeed, for the

sake of pedagogy, let u ∈ U and r > 0 such that B(u, r) ⊂ U and φ is weakly isotonic on B(u, r).

Take x, y, z ∈ B(u, r/2) be such that ‖x −y‖ = ‖x −z‖. For t ∈ R, define zt = (1− t)x + tz. Let

t > 1 such that zt ∈ B(u, r). Because ‖x − y‖ < t‖x − z‖ = ‖x − zt‖, we have ‖φ(x)−φ(y)‖ ≤
‖φ(x)−φ(zt )‖. Letting t ց 1, we get ‖φ(x)−φ(y)‖ ≤ ‖φ(x)−φ(z)‖ by continuity of φ. Since

y and z play the same role, the converse inequality is also true, and combined, yield an equality.

Midpoint preservation. Let V ⊂ R
d be convex. We say that a function f : V �→ R

d preserves

midpoints if

f

(

x + y

2

)

= f (x) + f (y)

2
, ∀x, y ∈ V.

We now show that φ preserves midpoints, locally. Kleindessner and Von Luxburg [14] also do

that, however, our arguments are closer to those of [21], who make use of regular simplexes. The

important fact is that a function that preserves isosceles preserves regular simplexes. Let u ∈ U

and r > 0 such that B(u, r) ⊂ U and φ preserves isosceles on B(u, r). Take x, y ∈ B(u, r/2),

and let μ = (x +y)/2. Let z1, . . . , zd form a regular simplex with barycenter μ and side length s,

and such that ‖x − zi‖ = s for all i. In other words, x, z1, . . . , zd forms a regular simplex placed

so that μ is the barycenter of z1, . . . , zd . By symmetry, y, z1, . . . , zd forms a regular simplex also.

By Lemma 6, we have ‖zi −μ‖/‖x −μ‖ =
√

(d − 1)/(d + 1), so that z1, . . . , zd ∈ B(μ, r/2) ⊂
B(u, r), by the triangle inequality and the fact that ‖x−μ‖ < r/2. Hence, φ(x),φ(z1), . . . , φ(zd)

and φ(y),φ(z1), . . . , φ(zd) are regular simplexes. If one of them is singular, so is the other one, in

which case φ(x) = φ(y) = φ(μ). Otherwise, necessarily φ(x) is the symmetric of φ(y) with re-

spect to Aff(φ(z1), . . . , φ(zd)); the only other possibility would be that φ(x) = φ(y), but in that

case we would still have that φ(zi) = φ(x) for all i ∈ [d], since ‖x−zi‖/‖x−μ‖ =
√

2d/(d + 1)

by Lemma 6 – implying that ‖x − zi‖ < ‖x − y‖ – and φ is weakly isotonic in that neighbor-

hood. So assume that φ(x) is the symmetric of φ(y) with respect to Aff(φ(z1), . . . , φ(zd)). For

a ∈ {x, y,μ}, ‖a − zi‖ is constant in i, and therefore so is ‖φ(a) − φ(zi)‖, so that φ(a) belongs

to the line of points equidistant to φ(z1), . . . , φ(zd). This implies that x, y,μ are collinear. And

because ‖μ − x‖ = ‖μ − y‖, we also have ‖φ(μ) − φ(x)‖ = ‖φ(μ) − φ(y)‖, so that φ(μ) is

necessarily the midpoint of φ(x) and φ(y).

Conclusion. We arrived at the conclusion that φ can be extended to a continuous function on

U that preserves midpoints locally. We then use the following simple results in sequence: with

Lemma 7, we conclude that φ is locally affine; with Lemma 8, we conclude that φ is in fact affine

on U ; and with Lemma 9, we conclude that φ is in fact a similarity on U .

Lemma 7. Let V be a convex set of a Euclidean space and let f be a continuous function on V

with values in a Euclidean space that preserves midpoints. Then f is an affine transformation.
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Proof. This result is in fact well known, and we only provide a proof for completeness. It suffices

to prove that f is such that f ((1 − t)x + ty) = (1 − t)f (x) + tf (y) for all x, y ∈ V and all

t ∈ [0,1]. Starting with the fact that this is true when t = 1/2, by recursion we have that this

is true when t is dyadic, meaning, of the form t = k2−j , where j ≥ 1 and k ≤ 2j are both

integers. Since dyadic numbers are dense in [0,1], by continuity of f , we deduce the desired

property. �

Lemma 8. A locally affine function over an open and connected subset of a Euclidean space is

the restriction of an affine function over the whole space.

Proof. Let U be the domain and f the function. Cover U with a countable number of open balls

Bi, i ∈ I such that f coincides with an affine function fi on Bi . Take i, j ∈ I distinct. Since U is

connected, there must be a sequence i = k1, . . . , km = j , all in I , such that Bks ∩ Bks+1
�= ∅ for

s ∈ [m − 1]. Since Bks ∩ Bks+1
is an open set, we must have fks = fks+1

, and this being true for

all s, it implies that fi = fj . �

Lemma 9. An affine function that preserves isosceles locally is a similarity transformation.

Proof. Let f be an affine function that preserves isosceles in an open ball. Without loss of

generality, we may assume that the ball is B(0,2) and that f (0) = 0 (so that f is linear). Fix

u0 ∈ ∂B(0,1) and let a = ‖f (u0)‖. Take x ∈ R
d different from 0 and let u = x/‖x‖. We have

‖f (x)‖/‖x‖ = ‖f (u)‖ = ‖f (u) − f (0)‖ = ‖f (u0) − f (0)‖ = ‖f (u0)‖ = a. Hence, ‖f (x)‖ =
a‖x‖, valid for all x ∈ R

d , and f being linear, this implies that f is a similarity. �

3.2. Auxiliary results

We list here a number of auxiliary results that will be used in the proof of Theorem 3.

The following result is a perturbation bound for trilateration, which is the process of locating

a point based on its distance to landmark points. For a real matrix Z, let σk(Z) denote its kth

largest singular value.

Lemma 10. Let z1, . . . , zd+1 ∈ R
d such that Aff(z1, . . . , zd+1) =R

d and let Z denote the matrix

with columns z1, . . . , zd+1. Consider p,q ∈ R
d and define ai = ‖p − zi‖ and bi = ‖q − zi‖ for

i ∈ [d + 1]. Then

‖p − q‖ ≤ 1

2

√
dσd(Z)−1 max

i

∣

∣a2
d+1 − a2

i − b2
i + b2

d+1

∣

∣ ≤
√

dσd(Z)−1 max
i

∣

∣a2
i − b2

i

∣

∣.

Proof. Assume without loss of generality that zd+1 = 0. In that case, note that ad+1 = ‖p‖
and bd+1 = ‖q‖. Also, redefine Z as the matrix with columns z1, . . . , zd , and note that the first d

singular values remain unchanged. Since Aff(z1, . . . , zd+1) =R
d , there is α = (α1, . . . , αd) ∈ R

d

and β = (β1, . . . , βd) ∈ R
d such that p =

∑

i∈[d] αizi = Zα and q =
∑

i∈[d] βizi = Zβ . For p,

we have a2
i = ‖p−zi‖2 = ‖p‖2 +‖zi‖2 −2z⊤

i Zα for all i ∈ [d], or in matrix form, Z⊤Zα = 1
2
u,
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where u = (u1, . . . , ud) and ui = a2
d+1 − a2

i + ‖zi‖2. Similarly, we find Z⊤Zβ = 1
2
v, where

v = (v1, . . . , vd) and vi = b2
d+1 − b2

i + ‖zi‖2. Hence, we have

∥

∥Z⊤(p − q)
∥

∥ =
∥

∥Z⊤Zα − Z⊤Zβ
∥

∥ = 1

2
‖u − v‖ = 1

2

√

∑

i∈[d]

(

a2
d+1 − b2

d+1 − a2
i + b2

i

)2

≤ 1

2

√
d max

i

∣

∣a2
d+1 − a2

i − b2
i + b2

d+1

∣

∣ ≤
√

d max
i

∣

∣a2
i − b2

i

∣

∣.

Simultaneously, ‖Z⊤(p − q)‖ ≥ σd(Z)‖p − q‖. Combining both inequalities, we conclude. �

For η ∈ [0,1), we say that z1, . . . , zm ∈ R
d form an η-approximate regular simplex if

min
i �=j

‖zi − zj‖ ≥ (1 − η)max
i �=j

‖zi − zj‖.

Lemma 11. Let z1, . . . , zm form an η-approximate regular simplex with maximum edge length λ

achieved by ‖z1 −z2‖. There is a constant Cm and z′
1, . . . , z

′
m ∈ Aff(z1, . . . , zm) with z′

1 = z1 and

z′
2 = z2 and forming a regular simplex with edge length λ, such that maxi ‖z′

i − zi‖ ≤ λCmη.

Proof. By scale equivariance, we may assume that λ = 1. We use an induction on m. In what

follows, Cm,C′
m,C′′

m, etc., are constants that depend only on m. For m = 2, the statement is

trivially true. Suppose that it is true for m ≥ 2 and consider an η-approximate regular simplex

z1, . . . , zm+1 ∈ R
d with maximum edge length 1. By changing d to m if needed, without loss

of generality, assume that Aff(z1, . . . , zm+1) = R
d . In that case, z1, . . . , zm is an η-approximate

regular simplex with maximum edge length achieved by ‖z1 − z2‖ = 1, and by the inductive

hypothesis, this implies the existence of z′
1, . . . , z

′
m ∈ A := Aff(z1, . . . , zm) with z′

1 = z1 and

z′
2 = z2 and forming a regular simplex of edge length 1, such that maxi∈[m] ‖z′

i − zi‖ ≤ Cmη for

some constant Cm. Let p be the orthogonal projection of zm+1 onto A. Before continuing, let

P be the set of such p obtained when fixing z′
1, . . . , z

′
m and then varying zi ∈ B(z′

i,Cmη) for

i ∈ [m] and zm+1 among the points that make an η-approximate regular simplex with z1, . . . , zm.

Let μ′ be the barycenter of z′
1, . . . , z

′
m and note that μ′ ∈ P . Now, set δ = ‖zm+1 − p‖. By the

Pythagoras theorem, we have ‖p − zi‖2 = ‖zm+1 − zi‖2 − δ2, with 1 − η ≤ ‖zm+1 − zi‖ ≤ 1, so

that 0 ≤ 1− δ2 −‖p − zi‖2 ≤ 2η. By the triangle inequality, |‖p − z′
i‖−‖p − zi‖| ≤ ‖zi − z′

i‖ ≤
Cmη, so that

∣

∣

∥

∥p − z′
i

∥

∥

2 − ‖p − zi‖2
∣

∣ =
∣

∣

∥

∥p − z′
i

∥

∥ − ‖p − zi‖
∣

∣

(∥

∥p − z′
i

∥

∥ − ‖p − zi‖
)

≤
∥

∥zi − z′
i

∥

∥

∥

∥zi − z′
i

∥

∥

≤ Cmη(2 + Cmη) ≤ C′
mη,

using the fact that ‖p − zi‖ ≤ ‖zm+1 − zi‖ ≤ 1. Hence,

P ⊂
{

q :
∥

∥q − z′
i

∥

∥

2 = 1 − δ2 ± C′′
mη,∀i ∈ [m]

}

.

Since μ′ ∈ P , we must therefore have ‖p − z′
i‖2 = ‖μ′ − z′

i‖2 ± 2C′′
mη. By Lemma 10, this im-

plies that ‖p − μ′‖ ≤
√

m − 1σ−1
m−1([z′

1 · · · z′
m])2C′′

mη =: C′′′
mη. Let z′

m+1 be on the same side of
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A as zm+1 and such that z′
1, . . . , z

′
m, z′

m+1 form a regular simplex. Note that μ′ is the orthogonal

projection of z′
m+1 onto A. By the Pythagoras theorem, applied multiple times, we obtain the

following. First, we have

∥

∥z′
m+1 − zm+1

∥

∥

2 =
∥

∥z′
m+1 − μ′ + μ′ − p + p − zm+1

∥

∥

2

=
∥

∥z′
m+1 − μ′∥

∥

2 − 2
(

z′
m+1 − μ′)⊤

(zm+1 − p) + ‖p − zm+1‖2 +
∥

∥μ′ − p
∥

∥

2

=
(∥

∥z′
m+1 − μ′∥

∥ −
∥

∥p − zm+1

∥

∥

)2 +
∥

∥μ′ − p
∥

∥

2
,

because z′
m+1 − μ′ and zm+1 − p are orthogonal to A, and therefore parallel to each other and

both orthogonal to μ′ − p. For the second term, we already know that ‖μ′ − p‖ ≤ C′′′
mη, while

the first term is bounded by (2C′′
m + 2)2η2 since, on the one hand,

∥

∥z′
m+1 − μ′∥

∥

2 =
∥

∥z′
m+1 − z′

1

∥

∥

2 −
∥

∥μ′ − z′
1

∥

∥

2 = 1 −
∥

∥μ′ − z′
1

∥

∥

2

while, on the other hand,

‖p − zm+1‖2 = ‖zm+1 − z1‖2 − ‖p − z1‖2 = 1 ± 2η − ‖p − z1‖2,

and we know that ‖μ′ − z′
1‖2 = ‖p − z1‖2 ± 2C′′

mη. Hence, we find that ‖z′
m+1 − zm+1‖2 ≤

C2
m+1η

2 for some constant Cm+1 function of m only. This shows that the induction hypothesis

holds for m + 1. �

Lemma 12. There are constants Cm,C′
m > 0 such that, if z1, . . . , zm form an η-approximate

regular simplex with maximum edge length λ, then σm−1([z1 · · · zm]) ≥ λCm(1 − C′
mη).

Proof. By scale equivariance, we may assume that λ = 1. By Lemma 11, there is a constant

C′′
m and z′

1, . . . , z
′
m ∈ Aff(z1, . . . , zm) forming a regular simplex with edge length 1 such that

maxi ‖z′
i − zi‖ ≤ C′′

mη. By Weyl’s inequality ([11], Corollary 7.3.8), σm−1(Z) ≥ σm−1(Z
′) −

‖Z − Z′‖. On the one hand, σm−1(Z
′) is a positive constant depending only on m, while on the

other hand, ‖Z − Z′‖ ≤ ‖Z − Z′‖F =
√

∑

i ‖zi − z′
i‖2 ≤ √

mC′′
mη. �

Lemma 13. Let z1, . . . , zm form an η-approximate regular simplex with maximum edge length λ

and barycenter μ. Let p ∈ Aff(z1, . . . , zm) and define γ = maxi ‖p − zi‖2 − mini ‖p − zi‖2.

There is a constant Cm ≥ 1 depending only on m such that ‖p − μ‖ ≤ Cmλγ when η ≤ 1/Cm.

Proof. By scale equivariance, we may assume that λ = 1. By Lemma 10, we have

‖p − μ‖ ≤ 1

2

√
m − 1σ−1

m−1

(

[z1 · · · zm]
)

max
i

∣

∣‖p − zm‖2 − ‖p − zi‖2
∣

∣.

By Lemma 12, there is a constant C′
m such that σ−1

m−1([z1 · · · zm]) ≤ C′
m when η ≤ 1/C′

m. And

we also have maxi |‖p − zm‖2 − ‖p − zi‖2| ≤ γ . From this, we conclude. �
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Lemma 14. Let ψ : � �→ Q be isotonic, where �,Q ⊂ R
d . Let v ∈ R

d and r > 0, and set

ε = δH (�,B(v, r)). There is C ∝ diam(Q)/r such that, for all x, x′, x†, x‡ ∈ � with x, x′ ⊂
B(v,3r/4) and for all η ∈ (0, r/4 − 2ε),

∥

∥x − x′∥
∥ =

∥

∥x† − x‡
∥

∥ ± η ⇒
∥

∥ψ(x) − ψ
(

x′)∥
∥ =

∥

∥ψ
(

x†
)

− ψ
(

x‡
)
∥

∥ ± C(η + ε). (12)

Proof. Let ξ = ‖x − x′‖ and ξ† = ‖x† − x‡‖. Suppose that ξ < η + 2ε, which implies that ξ† <

2η + 2ε. In that case, Lemma 3 – where the constant there is denoted here by C1 ∝ diam(Q)/r –

yields ‖ψ(x) − ψ(x′)‖ ≤ C1(ξ + ε) ≤ C1(η + 3ε) and, similarly, ‖ψ(x†) − ψ(x‡)‖ ≤ C1(2η +
3ε). This proves (12). Henceforth, we assume that ξ ≥ η + 2ε.

First assume that ξ > ξ†. In that case, we immediately have ‖ψ(x) − ψ(x′)‖ ≥ ‖ψ(x†) −
ψ(x‡)‖. For the reverse, let yt = (1 − t)x + tx′, and note that ‖yt − x‖ = tξ . Take t = 1 −
(η + 2ε)/ξ and note that t ∈ [0,1], so that yt ∈ [xx′] ⊂ B(v, r), and therefore there is x⋆ ∈ �

such that ‖x⋆ − yt‖ ≤ ε. We have ‖x⋆ − x‖ ≤ ‖yt − x‖ + ‖x⋆ − yt‖ ≤ ξ − η − ε < ξ†, so that

‖ψ(x) − ψ(x⋆)‖ ≤ ‖ψ(x†) − ψ(x‡)‖. Applying the triangle inequality and Lemma 3, we then

have

∥

∥ψ(x) − ψ
(

x⋆
)
∥

∥ ≥
∥

∥ψ(x) − ψ
(

x′)∥
∥ −

∥

∥ψ
(

x′) − ψ
(

x⋆
)
∥

∥

≥
∥

∥ψ(x) − ψ
(

x′)∥
∥ − C1

(
∥

∥x′ − x⋆
∥

∥ + ε
)

,

with ‖x′ − x⋆‖ ≤ ‖x′ − yt‖ + ‖yt − x⋆‖ ≤ η + 3ε.

When ξ < ξ†, we choose t = 1 + (η + 2ε)/ξ . Because x, x′ ⊂ B(v,3r/4), we still have yt ∈
B(v, r) because of the constraint on η. The remaining arguments are analogous.

When ξ = ξ†, repeating what we just did both ways and with η = 0 yields the result. �

Lemma 15. Consider ψ : � �→ R
d isotonic, where � ⊂ R

d . Let V denote the convex hull of �.

Set ε = δH (�,V ) and c = diam(ψ(�))/5 diam(�). Then ‖ψ(x) − ψ(x′)‖ ≥ c‖x − x′‖ for all

x, x′ ∈ � such that ‖x − x′‖ ≥ 4ε.

Proof. We first prove that, if c > 0 and η ≥ 4ε are such that ‖ψ(x) − ψ(x′)‖ ≤ cη for all x, x′ ∈
� with ‖x − x′‖ < η, then diam(ψ(�)) < c(4 diam(�) + η). Indeed, take x, x′ ∈ �. Let u =
(x′ − x)/‖x′ − x‖ and L = ‖x − x′‖, and define yj = x + sju where sj = j (η − 3ε) for j =
0, . . . , J := ⌊L/(η − 3ε)⌋, and then let sJ+1 = L. By construction, yj ∈ [xx′] ⊂ V , with y0 = x

and yJ+1 = x′. Let xj ∈ � be such that ‖xj − yj‖ ≤ ε, with x0 = x and xJ+1 = x′. By the

triangle inequality, ‖xj+1 − xj‖ ≤ ‖yj+1 − yj‖ + 2ε = sj+1 − sj + 2ε < η. Hence,

∥

∥ψ(x) − ψ
(

x′)∥
∥ ≤

J
∑

j=0

∥

∥ψ(xj ) − ψ(xj+1)
∥

∥ ≤ (J + 1)cη ≤ c
Lη

η − 3ε
+ cη < c

(

4 diam(�) + η
)

,

since η − 3ε ≥ η − 3η/4 = η/4 and L ≤ diam(�).

Now assume that ψ is isotonic and suppose that ‖ψ(x)−ψ(x ′)‖ < c‖x −x′‖ for some x, x′ ∈
� such that η := ‖x − x′‖ ≥ 4ε. Then we have ‖ψ(x†) − ψ(x‡)‖ ≤ cη when x†, x‡ ∈ � satisfy

‖x† − x‡‖ < η. We just showed that this implies that diam(ψ(�)) < c(4 diam(V ) + η), and we

conclude using the fact that η ≤ diam(�). �
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The following result is on 1-nearest neighbor interpolation.

Lemma 16. Let � be a subset of isolated points in V ⊂ R
d and set ε = δH (�,V ). For any

function ψ : � �→R
d , define its 1-nearest neighbor interpolation as ψ̂ : V �→ R

d as

ψ̂(y) = 1

|N�(y)|
∑

x∈N�(y)

ψ(x), N�(y) := arg min
x∈�

‖x − y‖. (13)

Consider the modulus of continuity of ψ , which for η > 0 is defined as ω(η) = sup{‖ψ(x) −
ψ(x′)‖ : x, x′ ∈ �,‖x − x′‖ ≤ η}. Then the modulus of continuity of ψ̂ , denoted ω̂, satisfies

ω̂(η) ≤ ω(η + 2ε). Moreover, for any y, y′ ∈ V and any x, x′ ∈ � such that ‖x − y‖ ≤ ε and

‖x′ − y′‖ ≤ ε,
∥

∥ψ̂(y) − ψ̂
(

y′)∥
∥ =

∥

∥ψ(x) − ψ
(

x′)∥
∥ ± 2ω(2ε).

Proof. Fix η > 0 and take y, y′ ∈ V such that ‖y − y′‖ ≤ η. We have ‖x − y‖ ≤ ε for all

x ∈ N�(y) and ‖x′ − y′‖ ≤ ε for all x′ ∈ N�(y′), so that ‖x − x′‖ ≤ ‖y − y′‖ + 2ε for all such

x and x′, by the triangle inequality. Therefore,

∥

∥ψ̂(y) − ψ̂
(

y′)∥
∥ ≤ sup

{
∥

∥ψ(x) − ψ
(

x′)∥
∥ : x ∈ N�(y), x′ ∈ N�

(

y′)}

≤ sup
{∥

∥ψ(x) − ψ
(

x′)∥
∥ : x, x′ ∈ �,

∥

∥x − x′∥
∥ ≤ η + 2ε

}

= ω(η + 2ε).

Since this is true for all y, y′ ∈ V such that ‖y − y′‖ ≤ η, we conclude that ω̂(η) ≤ ω(η + 2ε).

For the second part of the lemma, we have

∥

∥ψ̂(y) − ψ̂
(

y′)∥
∥ =

∥

∥ψ(x) − ψ
(

x′)∥
∥ ±

∥

∥ψ̂(y) − ψ(x)
∥

∥ ±
∥

∥ψ̂
(

y′) − ψ
(

x′)∥
∥,

where the second term is bounded by

∥

∥ψ̂(y) − ψ(x)
∥

∥ ≤ sup
{
∥

∥ψ(x̃) − ψ(x)
∥

∥ : x̃ ∈ N�(y)
}

≤ sup
{∥

∥ψ(x̃) − ψ(x)
∥

∥ : ‖x̃ − x‖ ≤ 2ε
}

≤ ω(2ε),

using the fact that ‖x̃ − x‖ ≤ ‖x̃ − y‖ + ‖y − x‖ ≤ 2ε, and similarly for the third term. �

Let V ⊂ R
d be convex. In our context, we say that f : V �→ R

d is η-approximately midlinear

if
∥

∥

∥

∥

f

(

x + y

2

)

− 1

2

(

f (x) + f (y)
)

∥

∥

∥

∥

≤ η, ∀x, y ∈ V.

Lemma 17. Let V ⊂ R
d be star-shaped with respect to some point in its interior. There is a

constant C depending only on V such that, for any η-approximately midlinear function f : V �→
R

d , there is a affine function T :Rd �→R
d such that supx∈V ‖f (x) − T (x)‖ ≤ Cη.
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Note that, if V is a ball, then by invariance considerations, C only depends on d .

Proof of Lemma 17. This is a direct consequence of [24], Theorem 1.4. �

We say that f : V ⊂R
d �→ R

d is an ε-isometry if

‖x − y‖ − ε ≤
∥

∥f (x) − f (y)
∥

∥ ≤ ‖x − y‖ + ε, ∀x, y ∈ V.

For a set V ⊂R
d , define its thickness as

θ(V ) = inf
{

diam
(

u⊤V
)

: u ∈R
d ,‖u‖ = 1

}

.

Recalling the definition of ρ in (7), we note that θ(V ) ≥ ρ(V ), but that the two are distinct in

general.

Lemma 18. Let V ⊂ R
d be compact and such that θ(V ) ≥ η diam(V ) for some η > 0. There is

a constant C depending only on d such that, if f : V �→ R
d is an ε-isometry, then there is an

isometry R : Rd �→ R
d such that maxx∈V ‖f (x) − R(x)‖ ≤ Cε/η.

Proof. This is a direct consequence of [2], Theorem 3.3. �

Lemma 19. Let T : Rd �→ R
d be an affine function that transforms a regular simplex of edge

length 1 into an η-approximate regular simplex of maximum edge length λ > 0. There is a con-

stant C, depending only on d , and an isometry R, such that ‖T (x) − λR(x)‖ ≤ Cλη for all

x ∈ B(0,1).

Proof. By invariance, we may assume T is linear and that the regular simplex is formed by

0, z1, . . . , zd and has edge length 1. Letting wi = T (zi), we have that 0,w1, . . . ,wd form an

η-approximate regular simplex of maximum edge length λ := maxi ‖wi‖. Lemma 11 gives 0,

w′
1, . . . ,w

′
d forming a regular simplex of edge length λ such that maxi ‖wi − w′

i‖ ≤ C1λη for

some constant C1. Let R be the orthogonal transformation such that R(zi) = w′
i/λ for all i ∈

[d]. We have ‖T (zi) − λR(zi)‖ = ‖wi − w′
i‖ ≤ C1λη for all i. In matrix notation, letting Z :=

[z1 · · · zd ], we have

‖T Z − λRZ‖ ≤ ‖T Z − λRZ‖F =

√

√

√

√

d
∑

i=1

‖T zi − λRzi‖2

≤
√

d max
i∈[d]

‖T zi − λRzi‖ ≤
√

dC1λη.

At the same time, ‖T Z − λRZ‖ ≥ ‖T − λR‖/‖Z−1‖ with ‖Z−1‖ = 1/σd(Z) = 1/σd([0z1 · · ·
zd ]) being a positive constant depending only on d . Hence, ‖T − λR‖ ≤ (

√
d/σd(Z))C1λη =:

C2λη. �
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Lemma 20. Suppose that S1, S2 : Rd �→ R
d are two affinities such that maxx∈B(y,r) ‖S1(x) −

S2(x)‖ ≤ η for some y ∈R
d and r > 0. Then ‖S1(x)−S2(x)‖ ≤ 2η‖x −y‖/r +η for all x ∈ R

d .

Proof. By translation and scale invariance, assume that y = 0 and r = 1. Let Li = Si − Si(0).

For x ∈ B(0,1), we ‖L1(x) − L2(x)‖ ≤ ‖S1(x) − S2(x)‖ + ‖S1(0) − S2(0)‖ ≤ 2η. Hence, for

x ∈ R
d , ‖L1(x) − L2(x)‖ ≤ 2η‖x‖, which in turn implies that ‖S1(x) − S2(x)‖ ≤ ‖L1(x) −

L2(x)‖ + ‖S1(0) − S2(0)‖ ≤ 2η‖x‖ + η. �

3.3. Proof of Theorem 3

Without loss of generality, we may assume that Dn := diam(φn(�n)) ≥ 1. Indeed, suppose that

Dn < 1, but different from 0, for otherwise φn is a degenerate similarity and the result follows.

Let φ̃n = D−1
n φn, which is isotonic on �n and satisfies diam(φ̃n(�n)) = 1. If the result is true

for φ̃n, there is a similarity S̃n such that maxx∈�n |φ̃n(x) − S̃n(x)| ≤ Cεn for some constant C.

(We implicitly assume that the set φn(�n) contains the origin, so that φ̃n(�n) remains bounded.)

We then have maxx∈�n |φn(x) − Sn(x)| ≤ CDnεn ≤ Cεn, where Sn := DnS̃n is also a similarity.

Let r = ρ(U), so that there is some u⋆ such that B(u⋆, r) ⊂ U . Let �n = �n ∩ B(u⋆, r/2)

and δn = diam(φn(�n)). Let w be any unit-norm vector and define y± = u⋆ ± (r/2 − εn)w. Let

x± ∈ �n be such that ‖x± − y±‖ ≤ εn. Necessarily, x± ∈ �n because the distance from y± to

∂B(u⋆, r/2) exceeds εn. Note that ‖x− − x+‖ ≥ r1 := r − 4εn. By isotonicity,

∥

∥φn(x) − φn

(

x′)∥
∥ ≤

∥

∥φn(x−) − φn(x+)
∥

∥ ≤ δn, whenever
∥

∥x − x′∥
∥ < r1. (14)

Let y1, . . . , yK be a (r1/3)-packing of U , so that K ≤ C(diam(U)/r)d for some constant C > 0.

Let xik ∈ �n be such that ‖xik − yk‖ ≤ εn, so that U ⊂
⋃

k∈[K] B(yk, r1/3) ⊂
⋃

k∈[K] B(xik , r2),

where r2 := r1/3 + εn. Let zk = xik for clarity. Take x, x′ ∈ �n. Because U is open, it is path-

connected, so there is a continuous curve γ : [0,1] �→ U such that γ (0) = x and γ (1) = x ′.
Let k0 ∈ [K] be such that x ∈ B(zk0

, r2) and s0 = 0. Then for j ≥ 0, let sj+1 = inf{s >

sj : γ (s) /∈
⋃

l∈[j ] B(zkl
, r2)}, and let kj+1 ∈ [K] be such that ‖zkj+1

− γ (sj+1)‖ ≤ εn. Let

J = min{j : sj+1 = ∞}, which is indeed finite. By construction, ‖zkj
− zkj+1

‖ ≤ 2r2 < r1

when εn < r/10. By (14), we have ‖φn(zkj
) − φn(zkj+1

)‖ ≤ δn. Thus, by the triangle in-

equality, ‖φn(x) − φn(x
′)‖ ≤ Jδn ≤ Kδn. This being true for all x, x′ ∈ �n, this prove that

δn ≥ Dn/K ∝ Dn(diam(U)/r)−d .

1-NN interpolation. Let φ̂n denote the 1-NN interpolation of φn as in (13). We claim that there is

a C⋆
0 ∝ Dn/r and c⋆

0 ∝ (diam(U)/r)−dDn/r such that φ̂n satisfies the following properties: for

all y, y′, y†, y‡ ∈ U ,

∥

∥φ̂n(y) − φ̂n

(

y′)∥
∥ ≤ C⋆

0

(
∥

∥y − y′∥
∥ + εn

)

, (15)
∥

∥y − y′∥
∥ <

∥

∥y† − y‡
∥

∥ − 4εn ⇒
(16)

∥

∥φ̂n(y) − φ̂n

(

y′)∥
∥ ≤

∥

∥φ̂n

(

y†
)

− φ̂n

(

y‡
)∥

∥ + C⋆
0εn,
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and also

∥

∥φ̂n(y) − φ̂n

(

y′)∥
∥ ≥ c⋆

0

∥

∥y − y′∥
∥ − C⋆

0εn,
(17)

if y, y′ ∈ B(u⋆, r/2) satisfy
∥

∥y − y′∥
∥ ≥ 10εn,

and

∥

∥y − y′∥
∥ =

∥

∥y† − y‡
∥

∥ ± η ⇒
∥

∥φ̂n(y) − φ̂n

(

y′)∥
∥ =

∥

∥φ̂n

(

y†
)

− φ̂n

(

y‡
)∥

∥ ± C⋆
0(η + εn),

(18)

if y, y′ ∈ B(u⋆, r/2), εn < r/120 and 0 ≤ η ≤ r/5.

Indeed, let x, x′, x†, x‡ ∈ �n such that ‖x − y‖,‖x′ − y′‖,‖x† − y†‖,‖x‡ − y‡‖ ≤ εn.

For (15), we start by applying Lemma 16 to get

∥

∥φ̂n(y) − φ̂n

(

y′)∥
∥ =

∥

∥φn(x) − φn

(

x′)∥
∥ ± 2ωn(2εn)

≤ ωn

(
∥

∥x − x′∥
∥

)

+ 2ωn(2εn) ≤ ωn

(
∥

∥y − y′∥
∥ + 2εn

)

+ 2ωn(2εn),

where ωn is the modulus of continuity of φn. We then use Lemma 3, which gives that ωn(η) ≤ Cη

for all η and some C ∝ Dn/r , to get ωn(‖y − y′‖ + 2εn) ± 2ωn(2εn) ≤ C(‖y − y′‖ + 6εn).

For (16), we first note that ‖x − x′‖ < ‖x† − x‡‖ by the triangle inequality, which in turn im-

plies that ‖φn(x) − φn(x
′)‖ ≤ ‖φn(x

†) − φn(x
‡)‖ since φn is isotonic. We then apply Lemma 16

to get that ‖φ̂n(y) − φ̂n(y
′)‖ ≤ ‖φ̂n(y

†) − φ̂n(y
‡)‖ + 4ωn(2εn), and conclude with Lemma 3 as

for (15).

For (17), we may apply Lemma 15 with �n. Let V be the convex hull of �n, so that V ⊂
B(u⋆, r/2). Let z be a point in that ball. If z �= u⋆, let w = (u⋆ − z)/‖u⋆ − z‖, and if z = u⋆, let w

be any unit-norm vector. Define z′ = z + εnw and notice that the distance from z′ to ∂B(u⋆, r/2)

exceeds εn. Therefore, if x ∈ �n is such that ‖z′ − x‖ ≤ εn, then necessarily, x ∈ �n. We then

note that ‖z − x‖ ≤ 2εn. We conclude that δH (�n,V ) ≤ 2εn. Since ‖x − x′‖ ≥ ‖y − y′‖ −
2εn ≥ 4(2εn), we get that ‖φn(x)−φn(x

′)‖ ≥ c‖x−x′‖, with c := diam(φn(�n))/5 diam(�n) ≥
δn/5r . We then apply Lemma 16 to obtain ‖φ̂n(y) − φ̂n(y

′)‖ ≥ c‖x − x′‖ − 2ωn(2εn) ≥ c‖y −
y′‖ − 2(c + C)εn, using Lemma 3 as for (15).

For (18), note that x, x′ ∈ B(u⋆, r/2 + εn) ⊂ B(u⋆,3r/4), and ‖x − x′‖ = ‖x† − x‡‖ ± (η +
4εn) by the triangle inequality. By Lemma 14 – where the constant there is denoted here by

C′ ∝ Dn/r – this implies that

∥

∥φn(x) − φn

(

x′)∥
∥ =

∥

∥φn

(

x†
)

− φn

(

x‡
)
∥

∥ ± C′(η + εn)

when η+4εn < r/4−2εn, which is true when εn < r/120 and η ≤ r/5. We then apply Lemma 16

together with Lemma 3, as for (15).

CASE d = 1. This case is particularly simple. Note that U is a bounded open interval of R.

We show that the function φ̂n is approximately midlinear on U . Take x, y ∈ U and define μ =
(x + y)/2. By the fact that φ̂n takes its values in R, and (18), we have

∣

∣

∣

∣

1

2

(

φ̂n(x) + φ̂n(y)
)

− φ̂n(μ)

∣

∣

∣

∣

= 1

2

∣

∣

∣

∣φ̂n(x) − φ̂n(μ)
∣

∣ −
∣

∣φ̂n(y) − φ̂n(μ)
∣

∣

∣

∣ ≤ C⋆
0εn/2,
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when εn/r is small enough. Hence, φ̂n is (C⋆
0εn)-approximate midlinear on U . By the result of

[24], namely Lemma 17, there is C ∝ 1 – since U is a ball – and an affine function Tn such that

maxy∈U |φ̂n(y) − Tn(y)| ≤ CC⋆
0εn. Since all affine transformations from R to R are (possibly

degenerate) similarities, we conclude.

CASE d ≥ 2. For the remaining of this subsection, we assume that d ≥ 2.

Approximate midlinearity. We show that there is a constant C such that φ̂n is locally Cεn-

approximately midlinear. Take x, y ∈ B(u⋆, r/4), and let μ = (x + y)/2. Let t > 0 be a constant

to be set large enough later.

If ‖x − y‖ ≤ tεn, then by (15), φ̂n(x), φ̂n(y) ∈ B(φ̂n(μ),C⋆
0(t/2 + 1)εn), so that

∥

∥

∥

∥

φ̂n(μ) − 1

2

(

φ̂n(x) + φ̂n(y)
)

∥

∥

∥

∥

≤ C⋆
0(t/2 + 1)εn.

Therefore, assume that ‖x − y‖ ≥ tεn. Let z1, . . . , zd be constructed as in the proof of Theo-

rem 1. By construction, both x, z1, . . . , zd and y, z1, . . . , zd form regular simplexes, and μ is the

barycenter of z1, . . . , zd . By Lemma 6, for any i �= j ,

‖zi − μ‖ =
√

(d − 1)/2d‖zi − zj‖ =
√

(d − 1)/2d
√

2d/(d + 1)‖x − μ‖ ≤ ‖x − y‖/2,

which coupled with the fact that x, y ∈ B(u⋆, r/4) yields that zi ∈ B(u⋆, r/2) for all i. Now, let

z0 = x. By (18), we have mini �=j ‖φ̂n(zi) − φ̂n(zj )‖ ≥ maxi,j ‖φ̂n(zi) − φ̂n(zj )‖ − C⋆
0εn. Let

cd =
√

d/(2d + 2). By (17) and Lemma 6,

∥

∥φ̂n(zi) − φ̂n(zj )
∥

∥ ≥ c⋆
0‖zi − zj‖ − C⋆

0εn = c⋆
0cd‖x − y‖ − C⋆

0εn ≥
(

c⋆
0cd t − C⋆

0

)

εn.

Hence, assuming t ≥ 2C⋆
0/c⋆

0cd , we have mini �=j ‖φ̂n(zi) − φ̂n(zj )‖ ≥ (1 − η)maxi,j ‖φ̂n(zi) −
φ̂n(zj )‖, where η := 2C⋆

0/(c⋆
0cd t). In that case, φ̂n(x), φ̂n(z1), . . . , φ̂n(zd) form a η-approximate

regular simplex. By symmetry, the same is true of φ̂n(y), φ̂n(z1), . . . , φ̂n(zd).

Define λ = ‖φ̂n(x) − φ̂n(y)‖. By Lemma 6, ‖zi − zj‖ = cd‖x − y‖ < ‖x − y‖ − 4εn when

t > 4/(1 − cd), since ‖x − y‖ ≥ tεn and cd < 1. By (16), this implies that ‖φ̂n(zi) − φ̂n(zj )‖ ≤
λ + C⋆

0εn. By (17), λ ≥ (c⋆
0t − C⋆

0)εn, so that λ + C⋆
0εn ≤ 2λ since we already assumed that

t ≥ 2C⋆
0/c⋆

0cd > 2C⋆
0/c⋆

0.

For a ∈ {x, y,μ}, ‖a − zi‖ is constant in i ∈ [d]. Therefore, by (18), mini ‖φ̂n(a) − φ̂n(zi)‖ ≥
maxi ‖φ̂n(a) − φ̂n(zi)‖ − C⋆

0εn. Define ξa as the orthogonal projection of φ̂n(a) onto the affine

space A := Aff(φ̂n(z1), . . . , φ̂n(zd)) and let δa = ‖φ̂n(a) − ξa‖. By the Pythagoras theorem, we

have ‖ξa − φ̂n(zi)‖2 = ‖φ̂n(a) − φ̂n(zi)‖2 − δ2
a . In particular,

max
i

∥

∥ξa − φ̂n(zi)
∥

∥

2 − min
i

∥

∥ξa − φ̂n(zi)
∥

∥

2 = max
i

∥

∥φ̂n(a) − φ̂n(zi)
∥

∥

2 − min
i

∥

∥φ̂n(a) − φ̂n(zi)
∥

∥

2

≤ 2C⋆
0εn min

i

∥

∥φ̂n(a) − φ̂n(zi)
∥

∥ +
(

C⋆
0εn

)2 ≤ C1εn,

where C1 := 2C⋆
0Dn + C⋆

0r , once εn ≤ r . Let ζ denotes the barycenter of φ̂n(z1), . . . , φ̂n(zd).

Assume that t is sufficiently large that η ≤ 1/C2, where C2 ∝ 1 is the constant of Lemma 13.
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By that lemma, and the fact that φ̂n(z1), . . . , φ̂n(zd) form a η-approximate regular simplex of

maximum edge length bounded by λ, we have ‖ξa − ζ‖ ≤ C2λC1εn. Let L be the line passing

through ζ and perpendicular to A. We just proved that φ̂n(x), φ̂n(y), φ̂n(μ) are within distance

C3λεn from L, where C3 := C1C2.

Let ξ denote the orthogonal projection of φ̂n(μ) onto (φ̂n(x)φ̂n(y)). Since ‖x −μ‖ = ‖y −μ‖,

we can apply (18) to get

∣

∣

∥

∥ξ − φ̂n(x)
∥

∥

2 −
∥

∥ξ − φ̂n(y)
∥

∥

2∣
∣

=
∣

∣

∥

∥φ̂n(μ) − φ̂n(x)
∥

∥

2 −
∥

∥φ̂n(μ) − φ̂n(y)
∥

∥

2∣
∣

=
∣

∣

∥

∥φ̂n(μ) − φ̂n(x)
∥

∥ +
∥

∥φ̂n(μ) − φ̂n(y)
∥

∥

∣

∣ ×
∣

∣

∥

∥φ̂n(μ) − φ̂n(x)
∥

∥ −
∥

∥φ̂n(μ) − φ̂n(y)
∥

∥

∣

∣

≤ 4C⋆
0λεn,

using the fact that max(‖φ̂n(μ) − φ̂n(x)‖,‖φ̂n(μ) − φ̂n(y)‖) ≤ λ + C⋆
0εn ≤ 2λ, due to (16) and

‖x − μ‖ = ‖y − μ‖ = 1
2
‖x − y‖ < ‖x − y‖ − 4εn when t is large enough. By Lemma 13, we

then obtain ‖ξ − 1
2
(φ̂n(x)+ φ̂n(y))‖ ≤ C4λεn for some constant C4 ∝ C⋆

0 . In particular, recalling

that λ = ‖φ̂n(x) − φ̂n(y)‖, this implies that ξ ∈ [φ̂n(x)φ̂n(y)] when εn ≤ 1/2C4.

It remains to argue that φ̂n(μ) is close to ξ . We already know that φ̂n(x), φ̂n(y), φ̂n(μ)

are within distance C3λεn from L, and by convexity, the same must be true of ξ . Let M =
(φ̂n(x)φ̂n(y)) and θ =∠(L,M). Let PM denote the orthogonal projection onto M , when M is a

linear subspace. By Pythagoras theorem,

λ2 =
∥

∥φ̂n(x) − φ̂n(y)
∥

∥

2 =
∥

∥PL

(

φ̂n(x) − φ̂n(y)
)∥

∥

2 +
∥

∥PL⊥
(

φ̂n(x) − φ̂n(y)
)∥

∥

2

≤ (cos θ)2λ2 + (2C3λεn)
2,

implying that sin θ ≤ 2C2εn. Since ‖PL − PM‖ = sin θ and φ̂n(μ) − ξ is parallel to M , we also

have

∥

∥φ̂n(μ) − ξ
∥

∥

2 =
∥

∥PL

(

φ̂n(μ) − ξ
)
∥

∥

2 +
∥

∥PL⊥
(

φ̂n(μ) − ξ
)
∥

∥

2

≤ (sin θ)2
∥

∥φ̂n(μ) − ξ
∥

∥

2 + (2C3λεn)
2,

so that ‖φ̂n(μ) − ξ‖ ≤ 2C3λεn/ cos θ ≤ 2C3λεn/
√

1 − (2C3εn)2 ≤ C5λεn, for some constant

C5 ∝ C3, once C3εn is small enough.

We conclude that ‖φ̂n(μ) − 1
2
(φ̂n(x) + φ̂n(y))‖ ≤ (C4 + C5)λεn, by the triangle inequality.

Approximate affinity. We now know that φ̂n is Cεn-approximate midlinear on B(u⋆, r/4) for

some constant C ∝ C⋆
0(Dn + r) ∝ C⋆

0(diam(Q) + r). This implies, by the result of [24], that is

Lemma 17, that there is an affine function Tn such ‖φ̂n(x) − Tn(x)‖ ≤ C⋆
1εn for all x ∈ W , for

some constant C⋆
1 ∝ rC ∝ rC⋆

0(diam(Q) + r).

Approximate similarity. (Reinitialize the constants Ck, k ≥ 1.) We saw above that φ̂n transforms

the regular simplex z0(= x), z1, . . . , zd with height denoted h satisfying h ≥ tεn/2 into a η-



1686 E. Arias-Castro

approximate one, where η = 2C⋆
0/(c⋆

0cd t). In what follows, choose these points so that they are

all in B(u⋆, r/2) and the simplex has height h ≥ r/8. (From here on, reinitialize the variables

x, y,λ, etc.) We can then take t = r/4εn, yielding η = C1εn for a constant C1 ∝ C⋆
0/(c⋆

0r). By

the triangle inequality, we have

min
i �=j

∥

∥Tn(zi) − Tn(zj )
∥

∥ ≥ min
i �=j

∥

∥φ̂n(zi) − φ̂n(zj )
∥

∥ − 2C⋆
1εn

≥ (1 − C1εn)max
i �=j

∥

∥φ̂n(zi) − φ̂n(zj )
∥

∥ − 2C⋆
1εn

≥ max
i �=j

∥

∥Tn(zi) − Tn(zj )
∥

∥ −
(

4C⋆
1 + C1δn

)

εn.

By the triangle inequality and (17),

γn := max
i,j

∥

∥Tn(zi) − Tn(zj )
∥

∥ ≥ max
i,j

∥

∥φ̂n(zi) − φ̂n(zj )
∥

∥ − 2C⋆
1εn

≥ c⋆
0 max

i,j
‖zi − zj‖ − C⋆

0εn − 2C⋆
1εn ≥ c⋆

0r/8 −
(

C⋆
0 + 2C⋆

1

)

εn.

Hence, we find that Tn(z0), . . . , Tn(zd) form a C2εn-approximate regular simplex, where C2 :=
(4C⋆

1 + C1δn)/(c
⋆
0r/8 − (C⋆

0 + 2C⋆
1)εn). Note that its maximum edge length is bounded as fol-

lows:

γn ≤ max
i,j

∥

∥φ̂n(zi) − φ̂n(zj )
∥

∥ + 2C⋆
1εn ≤ δn + 2C⋆

1εn ≤ 2δn,

when 2C⋆
1εn ≤ δn. By Lemma 19, there is a constant C3 > 0 and an isometry R⋆

n, such that we

have maxx∈W ‖Tn(x) − λnR
⋆
n(x)‖ ≤ C3λnC2εn, where λn := γn/h. Because r/8 ≤ h ≤ r and

the bounds on γn above, there is a constant C⋆
2 ≥ 1 such that

1/C⋆
2 ≤ λn ≤ C⋆

2 . (19)

This implies that

∥

∥φ̂n(x) − λnR
⋆
n(x)

∥

∥ ≤
∥

∥φ̂n(x) − Tn(x)
∥

∥ +
∥

∥Tn(x) − λnR
⋆
n(x)

∥

∥

(20)
≤

(

C⋆
1 + C3C2C

⋆
2

)

εn =: C⋆
3εn.

Covering and conclusion. (Reinitialize the constants Ck, k ≥ 1.) Let u1 = u⋆ and let u2, . . . , uK ∈
U be such that u1, . . . , uK form a maximal (r/16)-packing of U . (The number 16 is not essential

here, but will play a role in the proof of Theorem 4.) Note that U = U1 ∪ · · · ∪ UK where

Uk := U ∩ B(uk, r/4), and note that U⋆ := U1 ⊂ U . For u,u′ ∈ Uk , there are w,w′ ∈ U⋆ such

that ‖w − w′‖ = ‖u − u′‖. Define φ̃n = φ̂n/λn. By (18), and then (19)–(20), we have

∥

∥φ̃n(u) − φ̃n

(

u′)∥
∥ =

∥

∥φ̃n(w) − φ̃n

(

w′)∥
∥ ± C⋆

0εn/λn

=
∥

∥w − w′∥
∥ ±

(

C⋆
0 + C⋆

3

)

εn/C⋆
2 =:

∥

∥w − w′∥
∥ ± C1εn.
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Let

ξ1 = min
k

θ(Uk)

diam(Uk)
, (21)

which is strictly positive. The result of [2], namely Lemma 18, gives a constant C2 ∝ ξ1 and an

isometry Rk such that maxu∈Uk
‖φ̃n(u) − Rk(u)‖ ≤ C2εn.

Let

ξ2 = 1

2
min

{

ρ(Uk ∩ Uk′) : Uk ∩ Uk′ �=∅
}

. (22)

Take k, k′ ∈ [K] such that Uk ∩ Uk′ �= ∅, so that there is u ∈ U such that B(u, ξ2) ⊂ Uk ∩ Uk′ .

Since

max
x∈B(u,ξ2)

∥

∥Rk(x) − Rk′(x)
∥

∥ ≤ max
x∈Uk∩U ′

k

∥

∥Rk(x) − φ̃n(x)
∥

∥ +
∥

∥φ̃n(x) − Rk′(x)
∥

∥

≤ max
x∈Uk

∥

∥Rk(x) − φ̃n(x)
∥

∥ + max
x∈Uk′

∥

∥φ̃n(x) − Rk′(x)
∥

∥ ≤ 2C2εn,

we have ‖Rk(x) − Rk′(x)‖ ≤ (2‖x − u‖/ξ2 + 1)2C2εn for all x ∈ R
d , by Lemma 20. Hence,

‖Rk(x) − Rk′(x)‖ ≤ (2 diam(U)/ξ2 + 1)2C2εn =: C3εn for all x ∈ U . If instead Uk ∩ Uk′ = ∅,

we do as follows. Since U is connected, there is a sequence k0 = k, k1, . . . , km = k′ in [K],
such that Uki

∩ Uki+1
�= ∅. We thus have maxx∈U ‖Rki

(x) − Rki+1
(x)‖ ≤ C3εn. By the triangle

inequality, we conclude that maxx∈U ‖Rk(x) − Rk′(x)‖ ≤ KC3εn for any k, k′ ∈ [K]. Noting

that R1 = R⋆
n (since U1 = U⋆), for any k ∈ [K] and x ∈ Uk ,

∥

∥φ̃n(x) − R⋆
n(x)

∥

∥ ≤
∥

∥Rk(x) − R1(x)
∥

∥ + C2εn ≤ (KC3 + C2)εn.

We conclude that, for any x ∈ U ,

∥

∥φ̂n(x) − λnR
⋆
n(x)

∥

∥ ≤ (KC3 + C2)λnεn ≤ (KC3 + C2)C
⋆
2εn =: C4εn. (23)

This concludes the proof when d ≥ 2.

A refinement of the constant. Assume now that U = Uh for some h > 0. Tracking the constants

above, we see that they all depend only on (d,ρ(U),diam(U),diam(Q)), as well as ξ1 and ξ2

defined in (21) and (22), respectively. We note that diam(Uk) ≤ r and ρ(Uk) ≥ min(r/2, h) by

Lemma 21, so that ξ1 ≥ min(r/2, h)/r . To bound ξ2, we can do as we did at the beginning of

this section, so that at the end of that section, we can restrict our attention to chains k0, . . . , km

where ‖ukj
− ukj+1

‖ ≤ 2r/16 = r/8. To be sure, fix k, k′ ∈ [K] and let γ : [0,1] �→ U be a curve

such that γ (0) = uk and γ (1) = uk′ . Define s0 = 0 and then sj+1 = inf{s > sj : ‖γ (s) − ukj
‖ >

r/16}, and let kj+1 ∈ [K] be such that ‖γ (sj+1) − ukj+1
‖ ≤ r/16, which is well-defined since

(uk, k ∈ [K]) is a (r/16)-packing of U . We then have

‖ukj
− ukj+1

‖ ≤
∥

∥ukj
− γ (sj )

∥

∥ −
∥

∥γ (sj+1) − ukj+1

∥

∥ ≤ r/16 + r/16 = r/8.

We can therefore redefine ξ2 in (22) as 1
2

min{ρ(Uk ∩Uk′) : ‖uk −uk′‖ ≤ r/8}. Because U = Uh,

for each k ∈ [K], there is vk such that uk ∈ B(vk,min(r/16, h)) ⊂ U . By the triangle inequality,
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B(vk,min(r/16, h)) ⊂ Uk′ when ‖uk − uk′‖ ≤ r/8, so that ξ2 ≥ min(r/16, h). So we see that

everything depends on (d,h,ρ(U),diam(U),diam(Q)). The second part of the theorem now

follows by invariance considerations.

3.4. Proof of Lemma 5

Let c = ess infU f and C = ess supU f , which by assumption belong to (0,∞). Fix i ∈ [n] and

let Ni = #{j �= i : ‖xj − xi‖ ≤ r}. For j �= i, pi(j) := P(‖xj − xi‖ ≤ r) =
∫

B(xi ,r)
f (u)du. For

an upper bound, we have

pi(j) ≤ C Vol
(

B(xi, r) ∩ U
)

≤ C Vol
(

B(xi, r)
)

= Cζdrd =: Q,

where Vol denotes the Lebesgue measure in R
d and ζd is the volume of the unit ball in R

d . Hence,

P(Ni > 2(n − 1)Q) ≤ P(Bin(n − 1,Q) > 2(n − 1)Q) ≤ e−(n−1)Q/3 by Bennett’s inequality for

the binomial distribution. By the union bound, we conclude that maxi Ni ≤ 2(n − 1)Q with

probability at least 1−ne−(n−1)Q/3, which tends to 1 if nrd ≥ C0 logn and C0 > 0 is sufficiently

large.

For a lower bound, we use the following lemma.

Lemma 21. Suppose U ⊂R
d is open and such that U = Uh for some h > 0. Then for any x ∈ U

and any r > 0, B(x, r) ∩ U contains a ball of radius min(r, h)/2. Moreover, the closure of that

ball contains x.

Proof. By definition, there is y ∈ U such that x ∈ B(y,h) ⊂ U . We then have B(x, r) ∩ U ⊃
B(x, r) ∩ B(y,h), so it suffices to show that the latter contains a ball of radius min(r, h)/2. By

symmetry, we may assume that r ≤ h. If ‖x − y‖ ≤ r/2, then B(x, r/2) ⊂ B(y,h) and we are

done. Otherwise, let z = (1 − t)x + ty with t := r/2‖x − y‖ ∈ (0,1), and note that B(z, r/2) ⊂
B(x, r) ∩ B(y,h) and x ∈ ∂B(z, r/2). �

Now that Lemma 21 is established, we apply it to get

pi(j) ≥ c Vol
(

B(xi, r) ∩ U
)

≥ cζd

(

min(r, h)/2
)d =: q.

Hence, P(Ni < (n − 1)q/2) ≤ P(Bin(n − 1, q) < (n − 1)q/2) ≤ e−(6/7)(n−1)q . By the union

bound, we conclude that mini Ni ≥ (n−1)q/2 with probability at least 1−ne−(6/7)(n−1)q , which

tends to 1 if nrd ≥ C1 logn and C1 > 0 is sufficiently large. (Recall that h is fixed.)

3.5. More auxiliary results

We list here a few additional of auxiliary results that will be used in the proof of Theorem 4.

For V ⊂R
d and x, x′ ∈ V , define the intrinsic metric

δV

(

x, x′) = sup
{

L : ∃γ : [0,L] �→ V, 1-Lipschitz, with γ (0) = x, γ (L) = x ′},
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where γ is 1-Lipschitz if ‖γ (s) − γ (t)‖ ≤ |s − t | for all s, t ∈ [0,L]. If no such curve exists,

set δV (x, x′) = ∞. The intrinsic diameter of V is defined as sup{δV (x, x′) : x, x′ ∈ V }. We note

that, if L := δV (x, x′) < ∞, then there is a curve γ ⊂ V̄ with length L joining x and x′. Recall

that a curve with finite length is said to be rectifiable. See [5] for a detailed account of intrinsic

metrics.

For U ⊂R
d and h > 0, let U⊖h = {x ∈ U : B(x,h) ⊂ U}. This is referred to as an erosion (of

the set U ) in mathematical morphology.

Lemma 22. If U ⊂ R
d is open and connected, then for each pair of points x, x′ ∈ U , there is

h > 0 and a rectifiable curve within U⊖h joining x and x′.

Proof. Take x, x′ ∈ U . By taking an intersection with an open ball that contains x, x′, if needed,

we may assume without loss of generality that U is bounded. Since every connected open set

in a Euclidean space is also path-connected [26], Example 2.5.13, there is a continuous curve

γ : [0,1] �→ U such that γ (0) = x and γ (1) = x ′. A priori, γ could have infinite length. However,

γ (≡ γ ([0,1])) is compact. For each t ∈ [0,1], let r(t) > 0 be such that Bt := B(γ (t), r(t)) ⊂ U .

Since γ ⊂
⋃

t∈[0,1] Bt , there is 0 ≤ t1 < · · · < tm ≤ 1 such that γ ⊂
⋃

j∈[m] Btj . Since γ is

connected, necessarily, for all j ∈ [m − 1] there is sj ∈ [tj , tj+1] such that γ (sj ) ∈ Btj ∩ Btj+1
.

Let s0 = 0 and sm = 1. Then [γ (sj )γ (sj+1)] ⊂ Btj+1
⊂ U for all j ∈ 0, . . . ,m − 1, and therefore

the polygonal line defined by x = γ (s0), γ (s1), . . . , γ (sm−1), γ (sm) = x′ is inside
⋃

j∈[m] Btj ⊂
U⊖r where r := minj∈[m] r(tj ) > 0. By construction, this polygonal line joins x and x′, and is

also rectifiable since it has a finite number of vertices. �

Lemma 23. Suppose U ⊂ R
d is bounded, connected, and such that U = Uh for some h > 0.

Then there is h‡ > 0 such that, for all h′ ∈ [0, h‡], the intrinsic diameter of U⊖h′
is finite.

Proof. Let V = U⊖h. By assumption, for all x ∈ U , there is y ∈ V such that x ∈ B(y,h) ⊂ U .

In particular, U ⊃ V �=∅.

Let V1 be a connected component of V . Pick y1 ∈ V1 and note that B1 := B(y1, h) ⊂ U by

definition, and also B1 ⊂ V1 because B1 is connected. Let ζd be the volume of the unit ball in

R
d . Since the connected components are disjoint and each has volume at least ζdhd while U has

volume at most ζd(diam(U)/2)d , V can have at most ⌈(diam(U)/2h)d⌉ connected components,

which we now denote by V1, . . . , VK . Pick yk ∈ Vk for each k ∈ [K]. Applying Lemma 22, for

each pair of distinct k, k′ ∈ [K], there is a rectifiable (i.e., finite-length) path γk,k′ ⊂ U joining

yk and yk′ . By Lemma 22, the length of γk,k′ , denoted Dk,k′ , is finite, and there is hk,k′ > 0 such

that γk,k′ ⊂ U⊖hk,k′ . Let D‡ = maxk,k′∈[K] Dk,k′ and h‡ = mink,k′∈[K] hk,k′ .

We now show that each connected component Vk has finite diameter in the intrinsic metric

of V ′ := U⊖h/2. Since Vk is bounded, there is x1, . . . , xm ∈ Vk such that Vk ⊂
⋃

j∈[mk] Qj ,

where Qj := B(xj , h/2) ⊂ V ′. Take any x, x′ ∈ Vk . Let j, j ′ ∈ [mk] be such that x ∈ Qj and

x′ ∈ Qj ′ . Since Vk is connected, there is a sequence j = j0, j1, . . . , jSk
= j ′ ∈ [mk] such that

Qjs ∩Qjs+1
�=∅ for all s = 0, . . . , Sk . Choose zs ∈ Qjs ∩Qjs+1

and let z0 = x and zSk
= x′. Then

[zszs+1] ⊂ Qjs+1
for all s. Let L be the polygonal line formed by z0, . . . , zSk

. By construction,

L ⊂
⋃Sk

s=0 Qjs ⊂ V ′, it joins x and x′, and has length at most (Sk + 1)2h. Hence, δV ′(x, x′) ≤
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(Sk + 1)2h ≤ 2(mk + 1)h. This being valid for all x, x′ ∈ Vk , we proved that Vk has diameter at

most Dk := 2(mk + 1)h in the intrinsic metric of V ′. Let D⋆ = maxk∈[K] Dk .

Now take h† ∈ [0, h‡] and any x, x′ ∈ U⊖h† . Let y, y′ ∈ V be such that x ∈ B(y,h) and

x′ ∈ B(y′, h). Let k, k′ ∈ [K] be such that y ∈ Vk and y′ ∈ Vk′ . There are curves γ, γ ′ ⊂ V ′ of

length at most D⋆ such that γ joins y and yk , while γ ′ joins y′ and yk′ . We then join yk and yk′

with γk,k′ All together, we have the curve [xy] ∪ γ ∪ γk,k′ ∪ γ ′ ∪ [y′x′], which joins x and x′,
lies entirely in U⊖h† , and has length bounded by h + D⋆ + D‡ + D⋆ + h =: D. And this is true

for any pair of such points. �

Lemma 24. Suppose that S1, S2 : Rd �→ R
d are two affinities such that maxj ‖S1(zj ) −

S2(zj )‖ ≤ ε, where z0, . . . , zd form in a η-approximate regular simplex with minimum edge

length at least λ. There is C > 0 depending only on d such that, if η ≤ 1/C, then ‖S1(x) −
S2(x)‖ ≤ Cε‖x − z0‖/λ + ε for all x ∈ R

d .

Proof. Note that this is closely related to Lemma 20. By translation and scale invariance, assume

that z0 = 0 and λ = 1. Let Li = Si − Si(0). We have ‖L1(zj ) − L2(zj )‖ ≤ ‖S1(zj ) − S2(zj )‖ +
‖S1(0) − S2(0)‖ ≤ 2ε. Let Z denote the matrix with columns z1, . . . , zd . In matrix notation, we

have

∥

∥(L1 − L2)Z
∥

∥

F
=

√

∑

j

∥

∥(L1 − L2)zj

∥

∥

2 ≤ 2
√

dε.

We also have ‖(L1 −L2)Z‖F ≥ ‖(L1 −L2)Z‖ ≥ σd(Z)‖L1 −L2‖, and by Lemma 12, σd(Z) =
σd([z0,Z]) ≥ 1/C1 when η ≤ 1/C1, where C1 depends only on d . In that case, ‖L1 −L2‖ ≤ C2ε

for another constant C2. Equivalently, for x ∈ R
d , ‖L1(x) − L2(x)‖ ≤ C2ε‖x‖, which in turn

implies that ‖S1(x) − S2(x)‖ ≤ ‖L1(x) − L2(x)‖ + ‖S1(0) − S2(0)‖ ≤ C2ε‖x‖ + ε. �

3.6. Proof of Theorem 4

Because φn is bounded independently of n, we may assume without loss of generality that

C0εn ≤ rn and C0rn ≤ h for all n, where C0 ≥ 1 will be chosen large enough later on.

Take y ∈ U and let �y = �n ∩ B(y, rn) and Qy = φn(�y). We first show that there is

C1 ∝ diam(Q)/ρ(U) such that, for any y ∈ U , diam(Qy) ≤ C1rn. For this, we mimic the

proof of Lemma 3. Take x, x′ ∈ �y such that ξ := ‖φn(x) − φn(x
′)‖ = diam(Qy). Let u

be such that B(u,ρ(U)) ⊂ U . Let y1, . . . , ym be an (rn + 2εn)-packing of B(u,ρ(U)) with

m ≥ A1(ρ(U)/rn)
d for some A1 ∝ 1. Then let {xis : s ∈ [m]} ⊂ �n be such that maxs∈[m] ‖ys −

xis ‖ ≤ εn. By the triangle inequality, for all s �= t , we have ‖xis − xit ‖ ≥ ‖ys − yt‖ − 2εn ≥
rn > ‖x − x′‖. By (10), we have ‖φn(xis ) − φn(xit )‖ ≥ ξ , so that φn(xi1), . . . , φn(xim) form

a ξ -packing. Therefore, m ≤ A2(diam(Q)/ξ)d for some A2 ∝ 1. We conclude that ξ ≤
(A2/A1)

1/d(diam(Q)/ρ(U))rn =: C1rn.

We apply Theorem 3 to Uy := B(y, rn) and �y . With the fact that δH (�y,Uy) ≤ 2εn – as

we saw in the proof of (17) – and invariance considerations, we obtain a constant C ∝ 1 and

a similarity Sy such that maxx∈�y ‖φn(x) − Sy(x)‖ ≤ C(diam(Qy)/rn)εn ≤ CC1εn =: C2εn.

(Note that all the quantities with subscript y depend also on n, but this will be left implicit.)
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Fix y⋆ ∈ U⊖rn . For x ∈ �n, there is y ∈ U⊖rn such that x ∈ Uy . Assume γ is parame-

terized by arc length and let h‡ be given by Lemma 23 and let D denote the intrinsic di-

ameter of U⊖h‡ . Then assuming rn ≤ h‡, there is a curve γ ⊂ U⊖rn of length L ≤ D join-

ing y⋆ and y. Let y0 = y⋆, yj = γ (jrn) for j = 0, . . . , J := ⌊L/rn⌋, and then yJ+1 = y. We

have maxz∈Uyj
∩Uyj+1

‖Syj
(z) − Syj+1

(z)‖ ≤ 2C2εn by the triangle inequality. We also have

ρ(Uyj
∩ Uyj+1

) ≥ rn, because ‖yj − yj+1‖ ≤ rn. Let vj be such that B(vj , rn/2) ⊂ Uyj
∩ Uyj+1

.

Fix j and let vj,0, . . . , vj,d denote a regular simplex inscribed in the ball B(vj , rn/4). Let

λn ∝ rn denote its edge length. Then let xj,0, . . . , xs,d ∈ �n be such that maxk ‖xj,k − vj,k‖ ≤
εn. When C0 is large enough, xj,0, . . . , xj,d ∈ B(vj , rn/2) by the triangle inequality. More-

over, maxk,l ‖xj,k − xj,l‖ ≤ λn + 2εn, as well as mink �=l ‖xj,k − xj,l‖ ≥ λn − 2εn. When C0

is large enough, Fj := {xj,0, . . . , xj,d} is therefore an η-approximate regular simplex, with

η ∝ εn/rn, and minimum edge length ∝ rn. Now, since maxk ‖Syj
(xj,k)−Syj+1

(xj,k)‖ ≤ 2C2εn,

by Lemma 24, for all z ∈ R
d , ‖Syj

(z) − Syj+1
(z)‖ ≤ CC2εn‖z − xj,0‖/rn + 2C2εn for some

C ∝ 1, assuming εn/rn ≤ 1/C. In particular, by the fact that ‖x − xj,0‖ ≤ diam(U), this gives

‖Syj
(x) − Syj+1

(x)‖ ≤ C3εn/rn for some C3 ∝ diam(U)C2. Hence,

∥

∥Sy⋆(x) − Sy(x)
∥

∥ ≤ (J + 1)C3εn/rn ≤ C4εn/r2
n,

since J ≤ L/rn ≤ D/rn.

This being true for any arbitrary x ∈ �n, we conclude that

max
x∈�n

∥

∥φn(x) − Sy⋆(x)
∥

∥ ≤ C4εn/r2
n + C2εn ≤ C5εn/r2

n .

4. Discussion

This paper builds on [14] to provide some theory on ordinal embedding, an important problem

in multivariate statistics (aka unsupervised learning). We leave open two main problems:

• What are the optimal rates of convergence for ordinal embedding with all triple and quadru-

ple comparisons?

• What is the minimum size of K = Kn for consistency of ordinal embedding based on the

K-nearest neighbor distance comparisons?

We note that we only studied the large sample behavior of exact embedding methods. In partic-

ular, we did not discuss or proposed any methodology for producing such an embedding. For this,

we refer the reader to [1,4,23] and references therein. In fact, the practice of ordinal embedding

raises a number of other questions in terms of theory, for instance:

• How many flawed comparisons can be tolerated?
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