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Preamble
Dr. Luis Escobar asked me to provide a joint re-

view of the submissions by Stephens et al. (2019, this 
issue) and Peterson et al. (2019, this issue) to this 
debate. I pulled thoughts together, but by the time I 
sent them, he had received other reviews and made 
an editorial decision. However, he felt my perspec-

tive might nevertheless warrant publishing as a com-

mentary alongside these two pieces. My review was 
of the original submissions, which are now appearing 
with minor, mainly cosmetic changes. I have edited 
the text of my review only lightly, and added a few 
additional thoughts and pertinent references. Neither 
group of authors has seen my commentary, and so I 
am responsible for any omissions or lapses in inter-
pretation.

Introduction
The basic bone of contention between the two 

contributions, by Stephens et al. and Peterson et al., 
is whether or not one can make inferences about 
interactions among species based on spatial pat-
terns of co-occurrence (or not). This is of course a 
long-standing issue in ecology, going back at least to 
the ‘assembly rule and null model debate’ that raged 
in the 1970s and 80s (e.g., Diamond 1975, Connor 
and Simberloff 1983; see Sanderson and Pimm 2015, 
for a review of this debate). In this commentary, I 
first briefly summarize the central points of the two 
papers, and then note points on which I disagree with 
each of them. I note at the outset that I respect all the 
authors.

Stephens et al.

Stephens et al.’s paper has a grandeur about it, 
as it deals with issues such as the meaning of ‘in-

teractions,’ not just in ecology and biogeography, 
but more generally across the sciences. They make 
particular reference to physics and the four funda-

mental forces of nature, and define an interaction to 
exist if the spatial positions of two objects of study 
differ from a null expectation, across an ensemble of 
observations. They reflect briefly on the relationship 

between niche concepts and interactions, and touch 
on the issue of direct vs. indirect interactions. The 
bulk of the paper is devoted to developing a metric 
of co-occurrence, called epsilon, with a focus on bi-
nary information (presence/absence), and a Bayesian 
framework for making inferences about interactions. 

They champion the use of a software platform 
(SPECIES), and present intriguing examples. One 
of these is for the bobcat (Lynx rufus) in Mexico, in 
which they argue that including information about 
other mammals greatly increased the predictive pow-

er of a distributional model. They then summarize 
previous work they have done on zoonoses, where 
the problem is to identify vectors and hosts associat-
ed with a particular pathogen. I read the manuscript 
with interest, and found their approach and examples 
intriguing, if not entirely convincing, for reasons laid 
out below. 

Peterson et al.

Peterson et al. argue that patterns of co-occur-
rence shed no light at all on underlying process. They 
point out that large and poorly understood sampling 
biases exist in the kind of biodiversity data that Ste-

phens et al. use. They provide some specific critiques 
of the metrics and the notation used by Stephens et 
al. They then examine the example of co-occurrences 
of trogons and scarab beetles across Mexico, using 
the methodology of Stephens et al., and find exam-

ples of tight co-occurrence (or non-co-occurrence). 
Still, nothing in the natural history of these taxa sug-

gests either strong mutualisms or competition. They 
likewise examine two taxa for which independent 
evidence of interactions exists – desert rodents, and 
felid cats. In the former case, the epsilon of Stephens 
et al. indicates positive interactions, yet experiments 
show negative interactions. In the latter case, differ-
ent results emerge from different databases. Finally, 
Peterson et al. walk through some examples from 
epidemiology, suggesting caution in the inference of 
interaction from co-occurrence data, as assessed by 
the Stephen et al. epsilon metric.
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Discussion
Stephens et al. define interactions in terms of 

co-occurrence, and then try to identify interactions 
from data on spatial distributions. They use an anal-
ogy with physics to understand ecology (in their Box 
1), and state that fundamental interactions in physics 
are ‘direct’, whereas other interactions are ‘indirect’. 
They note that the fundamental data of physics are 
not just positions, but rather changes in positions 
over time, e.g., orbits in astronomy. Spatiotempo-

ral data—i.e., trajectories—provide much stronger 
information about presumptive causes of physical 
phenomena, than just spatial pattern data. The clas-

sical celestial mechanics of Isaac Newton focused 
on planetary orbits, i.e., spatiotemporal data, not the 
static patterns of the stars. In Newtonian mechanics, 
if the initial conditions of non-interacting particles 
happened to have them arranged in some spatially 
correlated pattern with equal velocities and trajecto-

ries pointing in the same direction, with equal forces 
acting on them, as time goes on, the spatial correla-

tion structure will remain unchanged. In other words, 
static measures of co-occurrence in a snapshot could 
reflect the imprint of history and shared responses 
of the particles to their physical environments, not 
ongoing interactive processes. This general issue is 
recognized by the authors, I think, but ends up some-

what lost in the flow of the paper, which focuses on 
analyses of static spatial patterns, not dynamical spa-

tiotemporal patterns. All of these remarks have an-

alogues in ecology. When available, spatiotemporal 
data provide much more powerful insights into pro-

cesses than do static spatial data.
Moreover, interactions in particle physics do not 

consist just of changes in spatial position. The weak 
force for instance can flip the ‘flavor’ of quarks—im-

portant in processes such as beta nuclear decay, in 
which a neutron is converted to a proton. This is not 
a trivial process—it powers the stars. In other words, 
interactions in physics change state variables, not 
just spatial positions. Again, this point holds in ecol-
ogy, as well.

Stephens et al. include a paragraph touching on 
population genetics. Their use of terms like ‘epis-

tasis’ and ‘linkage’ unfortunately deviates from 
accepted usage of population genetics. However, 
leaving this terminological issue aside, it is worth 
noting that there are protocols in molecular popula-

tion genetics that do analyze static patterns to infer 
a process—in particular, natural selection (e.g., the 

McDonald-Kreitman test for detecting the presence 
of selection on amino acid sequences, see Ch. 6 in 
Charlesworth and Charlesworth 2010) The authors 
also refer to text-mining protocols in linguistics, 
such as inferences about syntax or semantics from 
positions of words in sentences. Deciphering ancient 
languages requires interpreting ‘interactions’ among 
script elements arranged in a linear spatial pattern. 
These analogies with other disciplines do suggest 
that useful information about causal processes may 
be buried in static ecological patterns. However, such 
inferences rely not just on pattern analysis, but also 
on prior knowledge about processes (e.g., how living 
languages work). 

There are challenges in executing the Stephens 
et al. approach in ecology, beyond those mentioned 
by Peterson et al. Unlike physical forces, ecologi-
cal interactions are often context dependent. For in-

stance, the qualitative sign of an indirect interaction 
of two prey species via a shared predator depends 
on (among other factors) whether or not that preda-

tor is constrained in its numerical response by high-

er-order predators. Such constraints could prevent 
the occurrence of apparent competition (Holt and 
Bonsall 2017), and turn the indirect interaction from 
(-,-) to (+,+). Quantitatively, even without a change 
in interaction sign, the impact of species A on spe-

cies B depends on the abundance of species A, so 
mere co-occurrence is at best a crude assay of the 
strength of their interaction. In addition, interactions 
depend upon abiotic conditions (Dunson and Travis 
1991) and networks of interactions can vary along 
environmental gradients (Pellissier et al. 2018). 
Hence, considerable contingencies likely exist in the 
strength and even signs of interspecific interactions, 
implying spatial and temporal variability in interac-

tions among many species. The protocol of Stephens 
et al., however, seems to assume that interactions are 
fixed (if I understand it correctly). 

Ecologists by and large recognize the inherent 
difficulty in inferring interactions from descriptive 
data, and many authors are actively engaged in de-

veloping methods to do so, while recognizing the 
difficulties (e.g., Cazellas et al. 2015; Sander et al. 
2017). Stephens et al., however, do not engage with 
that literature, nor do they attempt to relate their pro-

posed measure or definition of interaction to other 
metrics of interaction strength that are used widely in 
the ecological literature (see, e.g., Novak et al. 2016). 
This linkage might be a goal in future developments 
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of their methodology. Metrics of interactions should 
be linked to basic population dynamics—what is the 
effect of individuals of species A on per capita birth, 
death, movement, and stage transition rates of indi-
viduals of species B? This information might lead to 
changes in spatial relationships, but not always. A 
well-mixed chemostat for instance by definition rap-

idly destroys any spatial structure of the populations 
it contains, but there can be (for example) strong 
resource competition among algal species because 
one competitor reduces the mean-field abundance of 
a shared resource needed by another. Under a giant 
canopy tree, spatial locations of each individual in 
a cluster of understory herbs may be driven by mi-
croenvironmental germination requirements, but the 
rate of their individual growth and ultimate seed pro-

duction may be governed by light competition with 
that tree. This point matters at larger spatial scales, 
because seed production and dispersal are required 
by the herb for colonization of empty sites. Nonethe-

less, the interspecific interaction need not be reflect-
ed in local spatial patterns under the dominant light 
competitor at all; instead, the interaction alters the 
internal states of the herbs. 

One issue largely ignored by Stephens et al. is 
the importance of background spatial structure in the 
environment, and spatial autocorrelation. Imagine 
two species that do not interact but that have distinct 
responses across a gradient, with one species more 
prevalent at one end, and the other species at the oth-

er. Using the metric of Stephens et al. one would (I 
think) conclude there was a negative interaction at 
play—but this conclusion would be incorrect. There 
needs to be attention paid to spatial autocorrela-

tion and related issues. Bar-Massada and Belmaker 
(2017) showed for tree species in the United States 
that co-occurrence varied across gradients, and con-

clude that pairwise analyses of co-occurrence (and 
thus, interactions) are scale-dependent. 

Peterson et al. crisply lay out several problems 
in the Stephens et al. protocol. However, I do think 
some of their categorical claims need to be quali-
fied. One point about ‘inference’ is that inference is 
not ‘either/or.’ One can have a tentative inference, a 
weak inference, a reasonably convincing inference, 
and even a strong and nearly irrefutable inference. 
Clearly, the latter is best, but that does not mean the 
former are worthless. So when Peterson et al. state 
“… patterns of co-incidence and non-co-incidence 
are no indication of the processes causing them” (cit-

ing Bell 2005), I think that that is too strong a con-

clusion. In conjunction with other information about 
a system (e.g., natural history), such patterns can pro-

vide some indication that something is going on. 
Scientific inferences should when possible draw 

on a wide array of evidence, not just single sources, 
which sometimes can be quite convincing. Both sets 
of authors refer to the celebrated dispute back in the 
1970s between Jared Diamond on the one hand, and 
individuals like Dan Simberloff and Ed Connor, on 
the other, about inferring competition between spe-

cies based on distributional patterns. Neither paper 
refers, however, to the recent, incisive book by Sand-

erson and Pimm, Patterns in Nature (2015), which 
reviews that entire debate, and lays out more sophis-

ticated versions of null models than were used in the 
past. Sanderson and Pimm provide a reasonably con-

vincing case that some classic examples of checker-
board distributions of related species, and distribu-

tions along gradients, indeed reflect competition. The 
precise specification and analysis of appropriate null 
models is crucial—and non-trivial. 

If one could not use patterns of co-occurrence 
over time to make tentative inferences about causal 
processes, most of paleoecology would become an 
intellectually derelict discipline. Wisz et al. (2013) 
cite many examples in which biotic interactions have 
large-scale, biogeographic consequences, many of 
which they drew from the paleontological record. 
The spread of Homo sapiens across the globe, along 
with our (alas) symbionts such as rats, have had huge 
consequences for the persistence and geographic 
ranges of (for instance) large-bodied and highly ed-

ible vertebrates, and particularly for flightless birds. 
Cases like this one of course involve not just patterns 
in spatial data, but spatiotemporal data (e.g., piles of 
moa bones in prehistoric sites of human habitation in 
New Zealand). 

One issue missing in this interchange is a thor-
ough consideration of time scales. A tight mutualism 
or asymmetric facilitation implies that species A can-

not be present over even a single generation without 
species B. This effect should be manifested in ongo-

ing interactions matching current distributions. By 
contrast, competition and predation can lead to elim-

ination of species co-occurrences—the interactions 
may all be in the past, not in the present (dubbed “the 
ghost of competition past” by Connell 1980). The 
point is that current distributions reflect not just cur-
rent interactions, but past interactions. Inferring in-
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teractions from current distributions requires paying 
attention to ecological memory, as well as drawing 
on other avenues of ecological understanding. 

There are known strong positive associations 
between species that surely have distributional con-

sequences. For instance, many epiphytic orchids 
cannot germinate and survive as seedlings without 
specific mycorrhizal fungal symbionts. There are 
ecological niche models for orchids in the literature, 
which successfully predict the distribution of orchid 
species based on climatic variables (along with bark 
and other habitat factors). However, it is a leap of 
faith to conclude that those models portray merely di-
rect ecophysiological responses of the orchid to those 
specific abiotic factors—they could equally well in-

volve responses of the orchid’s required symbiont. 
One problem in conservation of endangered orchids 
is that getting them to germinate and grow can be 
quite tricky, which apparently reflects problems in 
getting conditions ‘just right’ for the symbionts, as 
well as ensuring they are present in the first place. 
In this sense, a beautifully verified ecological niche 
model that uses only abiotic variables, might well 
have an underlying causal dynamic involving strong 
interspecific interactions. The protocol developed by 
Stephens et al. could potentially provide a valuable 
tool helping to sort among initial hypotheses about 
potential mutualist partners in a community, I think 
(given some prior natural history or trait data). 

The exercise by Peterson et al. relating distri-
butional data on trogons to scarabs is, at best, un-

derwhelming. One always has background hypoth-

eses at play (e.g., the debate between Diamond and 
Simberloff focused on biogeographically relevant 
and phylogenetically related bird taxa, which have 
similar diets and likely share parasites, and so argu-

ably might compete), but nothing is presented here to 
warrant this exercise. Looking at enough taxa, across 
enough situations, will surely reveal some ‘signifi-

cant’ associations. We all know that correlation need 
not imply causation, but certainly correlations can 
help to generate hypotheses. With respect to the bob-

cat, Stephens et al. provide a reasonably convincing 
exposition that their protocol improves understand-

ing the determinants of the distribution of this gen-

eralist predator. It would have been instructive for 
Peterson et al. to focus on that case study.

Peterson et al. then present as a case study two 
desert rodents, a Dipodomys and a Perognathus, and 
show they have positive epsilon values. However, 

prior experiments by Lemen and Freeman (1983, 
1986) had demonstrated (according to Peterson et 
al.) strong competition. This outcome would seem to 
be a clear indication that the Stephens et al. protocol 
is grossly misleading. However, I looked at these pa-

pers and note that Lemen and Freeman (1986, p. 390) 
in fact stated that “interference competition was pres-

ent but weak,” and cited studies by other authors, at 
other sites, not showing competition, or with variable 
results among sites. Lemen and Freeman also noted 
that there is a “great deal of overlap in food habitats 
and habitat preferences” (p. 395). So it is not surpris-

ing that at larger spatial scales, there might a positive 
association in the spatial distributions of these two 
species. 

The final set of case studies examined by Peter-
son et al. involve epidemiology. The Stephens et al. 
protocol seems to overpredict host-vector-pathogen 
interactions. This is an important criticism. However, 
the epsilon metric might still help refine the pool of 
possibilities for identifying likely suspects; whether 
or not such is the case is not clear from this critique. 
This is the sort of system in which the gold standard 
of demonstrating unequivocally interspecific interac-

tions—manipulative experiments—are likely either 
unfeasible or unethical. Still, it is important to reach 
sensible conclusions about what potential suite of 
vectors should be monitored by public health agen-

cies, and any tool that can help refine our Bayesian 
priors about this matter should be tried repeatedly 
until it is found to be wanting. A quote from a forth-

coming book by Ovaskainen and Abrego (in press) is 
apt here, however, with respect to inferring interac-

tions from such exercises: “The results from species 
association analyses should always be interpreted 
with caution, and in light of ecological knowledge on 
the study system.”

I want to make a final conceptual point, relevant 
to both species distribution models (SDMs) in gen-

eral, and the challenge of inferring interactions from 
static spatial data specifically. As Stephens et al. note, 
many authors use SDMs (correlative statistical mod-

els) to make inferences about species abiotic niches 
with no mention of biotic interactions, which in ef-
fect sweeps causal reasoning under the rug. Consider 
a thought experiment. A prey species has an intrinsic 
growth rate r that is a function of abiotic environ-

mental conditions e, formally described by r(e), and 
these conditions vary across a biogeographic region. 
The fundamental niche is that set of e for which 
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r(e) > 0. A generalist predator has uniform density 
P across that region and invariant per capita attack 
rates a; thus, the predator is not affected by our focal 
prey (i.e., that prey species suffers “incidental preda-

tion,” Schmidt 2004). When rare, the prey per capita 

growth rate is (1/N)dN/dt = r(e) - aP. The range of 
the prey will include those locations for which r(e) > 
aP. However, locations outside that range include not 
just sites with negative r(e), but also sites for which 
0 < r(e) < aP. A correlative SDM might be construct-
ed that does a perfect job of predicting the range, 
based solely on abiotic variables. However, it would 
be incorrect to conclude that only physiological fac-

tors cause the range limits, as removing predators in 
some locations would permit persistence otherwise 
impossible. 

Conversely, given that P is invariant, no correla-

tion can exist with the presence or absence of the prey 
species. From a statistical point of view, the predator 
is uninformative in ‘explaining’ the distribution of 
this prey species. In other words, one could not re-

veal this important interaction based purely on co-oc-

currence data, along the lines of the Stephens et al. 
protocol. In short, my point is that “the absence of a 
correlation need not imply an absence of causation.” 

Conclusions
It can be useful to have provocative papers pub-

lished, even if flawed, and even if we disagree with 
them. Both of these papers are provocative. All the 
points I made above about physics carry over to distri-
butional ecology. (i) The distinction between ‘direct’ 
and ‘indirect’ interactions depends on the fineness of 
resolution of information about causality. Interfer-
ence competition between terrestrial plants due to al-
lelopathy, for instance, can be represented as a direct 
interaction (e.g., in a Lotka-Volterra model), or as an 
indirect interaction mediated by the concentration of 
an allelopathic compound. (ii) For inferring interac-

tions, spatiotemporal data are much more insightful 
than purely spatial data. (iii) Patterns of co-occur-
rence reflect many factors such as initial conditions 
(viz., history) and responses to external (and possibly 
unmeasured) environmental factors, and interactions 
can occur that will not be reflected in co-occurrence 
data. (iv) Interactions should be expressed not just in 
spatial position, but in terms of all the state variables 
needed to capture the ‘forces’ driving dynamics of a 
system. Advances in remote sensing are leading to 
terabytes of data on the physiological states of plants 

across environments (Cavender-Bares et al. 2017), 
and such data should be mined by distributional ecol-
ogists addressing range limits, and community ecol-
ogists teasing out interactions. It also would be valu-

able for metrics such as the epsilon of Stephens et 
al. to be evaluated with ‘virtual ecologist’ approaches 
(see, e.g., Zurell et al. 2010, Ovoskainen and Abrego, 
in press), in which one creates virtual, spatially ex-

plicit communities and ecosystems, and then beats 
the hell out of them with reference to assessing the 
utility of proposed metrics or data analytic methods. 
These two papers contribute to the evolving dialogue 
about how best to link community ecology and dis-

tributional ecology.
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