
Some Thoughts on.Configuration Processes
David C. Brown
Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
dcb @ cs. wpi.edu, http ://www. wpi.edu/~dcb/

1. Definition
The most commonly used definition of the Configuration task was given by Mittal & Frayman [1989, p.
1396]:

"Given: (A) a fixed, pre-defmed set of components, where a component is described by a set of proper-
ties, ports for connecting it to other components, constraints at each port that describe the components
that can be connected at that port, and other structural constraints; (B) some description of the desired
configuration; and (C) possibly some criteria for making optimal selections."

"Build: One or more configurations that satisfy all the requirements, where a configuration is a set of
components and a description of the connections between the components in the set, or, detect inconsis-
tencies in the requirements."

For example, for problem of building a software system from modules, the components are a modules;
the ports are the variables which need values or provide values; the constraints are descriptions of the
number and types of values needed, or constraints about the compatibility of one module with another;
and the description of the desired configuration is the user’s description of what the software system is
supposed to do.

Mittal & Frayman [1989] point out that three important aspects of configuration are that:

¯ one cannot design new components during the configuration task;
¯ that each component is restricted in advance to only be able to "connect" to other certain compo-

nents in fixed ways (i.e., they can’t be modified to get arbitrary connectivity); and that
¯ the solution specifies both the components in the configuration as well as how they are related.

2. Inadequacy of Definition
There are some problems with this definition. Even though it is not appropriate to completely discuss
the issues here, we will give some indication of the problems.

Mittal & Frayman use the word "connect" throughout, probably influenced by the computer configura-
tion domain in which they were working. However, not every configuration has components that con-
nect. For example, the components may influence each other with fields, or they may touch but not in
any fixed position.

There is also an issue with "ports". It is hard to imagine where the ports are for some mechanical prob-
lems (e.g., gear pairs). This term is also very tied to the idea of configurations whose parts are linked
because something directly flows between them. It isn’t clear that must be true for all configurations.

Other important issues include at what level of abstraction the components are "predefined", and at
what level they must finish up, as well as whether all or just some of the components need to be used in
the configuration.

August 24, 1996 8:03 pm 75 1 of 9

From: AAAI Technical Report FS-96-03. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



3. Design versus Configuration
Design is a complex task that means different things to different people. Most "AI in Design" research-
ers and "Design Theory & Methodology" researchers consider design to have several logical phases
[Brown 1991]. These roughly correspond to the types of things that are being decided in that phase.
These types of decisions include the functionality, the type of device, the general types of components,
the configuration of types of components, the actual components, and the values of the attributes of
those components.

Thus Configuration is an ingredient of the complete design task. The distinction which is often made is
that a design task produces (i.e., generates, or synthesizes) components and values for attributes,
whereas a configuration task does not. Such distinctions are controversial. For example, if one allows
abstract components, there appears to be a need to specify them completely before a configuration can
be produced. Some researchers refer to the process of configuring and then fully specifying as "Config-
uration Design".

Some knowledge-based design systems claim to explicitly address configuration -- for example,
MICON [Birmingham 1992]. Others do not, despite having a strong flavor of it [Brown & Chan-
drasekaran 1989] [Steinberg 1989].

4. Ingredients of the Configuration Task
The configuration task can be "logically" divided into several subtasks. Components have to be
selected. They each need to be able to play a part in satisfying the requirements and must fit into the
(current partial) configuration. Once selected, they have to be placed into that configuration. We will
refer to that subtask as Association. Another logical subtask is Evaluation.

Thus:

where:

Configuration = Selection + Association + Evaluation

Selection = Choosing components

Association = Establishing logical relationships between components

Evaluation = Compatibility Testing + Goal Satisfaction Testing

The actual process used (i.e., the implementation) for a configuration system depends on how much
about each subtask is known in advance, on how much knowledge is used in each subtask, and on the
mix and order of these subtasks. This is explored in the next subsection.

The actual process used for a configuration system also.depends on whether knowledge from later sub-
tasks can be moved forward into earlier subtasks to prevent failures. For example:

Selection = Choosing Components + Compatibility Testing

It may be possible to ensure that orily compatible components are selected. This sort of "knowledge
compilation" process, where one piece of knowledge is compiled into another, has even been applied to
the Generate and Test method, so that components generated do not need to be tested, as the generator
(with the test compiled into it) only generates correct things [Mostow 1991].

In some cases:

Configuration = Selection + Association + Arrangement + Evaluation

where:

August 24, 1996 8:03 pm 76 2 of 9



Arrangement = Establishing specific relationships-

Examples of "logical relationships", used in Association, might be "next to", or "connected to". These
do not specify the exact placement of one component relative to the other. Specific relationships, used
in Arrangement, will precisely locate one component with respect to another or with respect to some
reference location.

If there is any doubt that these are different, imagine three pulleys placed in roughly a triangle, with a
rubber belt that fits over the outside of all three so that the belt is pulled tight. What has been described
here is a configuration.

Precise description of the positions of all three pulleys will constitute an arrangement (Figure 1). Mov-
ing a pulley towards another pulley produces another arrangement (Figure 2).

Many tasks which we casually refer to as "configuration" also include Arrangement. It is hard to imag-
ine Arrangement being done without at least an implicit Selection + Association. It may be appropriate
to consider tasks which we casually refer to as "arrangement" as Configuration tasks with the Arrange-
ment portion dominant. The Layout task can be thought of as Arrangement in 2D. Thus:

Layout = Arrangement-in-2D

Other authors have presented different analyses. For example, for a more fine-grained analysis, see
[Runkel et al 1992] and its references.

5. Approaches to Configuration

5.1. Introduction:
The issues that concern reuse in systems that use any sort of pre-existing unit (e.g., a software module)
are Indexing, Mapping, and Instantiating. Indexing is concerned with how to organize the modules so
that the right ones can be selected. Mapping is concerned with how to convert the task model (i.e., the
user’s requirements) to a configuration. Instantiating is concerned with how to produce a complete
description of a working system from the final configuration. A variety of techniques that address these
issues are presented below.

When considering Mapping, we often describe it in a state-space fashion, where states are transformed
to other states by Operators. States are incomplete, or partial, configurations. This is a rather "bottom-
up" approach to configuration, adding one component at a time. The mapping may be viewed in a "top-
down" fashion, where abstract descriptions of the configuration or parts of the configuration are
"refined" into more concrete descriptions. This is known as Refinement.

5.2. Modules/Components
For configuration to be a generally useful approach to building systems (of any kind), the modules/
components need to be reusable, the number not too large, and we have to ensure that we don’t have to
create new modules/components for each application that is built.

For software, a module is "reusable if it can be employed for several domains and tasks" [Klinker et al
1990], whereas a module is "usable" if a person who has limited programming skills can use it to build
a program for a task. An excellent survey of reuse in software engineering is given by Krueger [1989].

It is difficult to produce generic, abstract models of tasks around which libraries of modules could be
built. In some situations, it is likely that the many modules will be quite specific, and strongly fled to the
particular situations for which they were developed. This is a negative factor if systems to be config-
ured are going to be used in a wide variety of situations.

August 24, 1996 8:03 pm 77 3 of 9



Pulley

Figure 1: Configuration 1, Arrangement 1

~lley

t

Figure 2: Configuration 1, Arrangement 2

August 24, 1996 8:03 pm 78
4 of 9



In general, the more knowledge about a particular domain is encoded in a module, the more context-
dependent it is, and the less likely it is to be useful in some other domain [Brown 1992]. In the DIDS
system, for example [Runkel et al 1992], high reuse is obtained by having domain-neutral modules
(mechanisms) which use externally defined domain information.

The size of the modules/components used, i.e., grain size, is an important issue. The larger the module
the more likely it is to have strong requirements for which other modules it requires to have with it, and
the less flexible its use will be. However, large modules can be considered to be preconfigured smaller
modules. Therefore, less configuration needs to be done. Small modules will probably provide more
flexibility, but will require more configuration.

Another issue is the level of abstraction of the module. Obviously, an abstract module cannot be "exe-
cuted", as it will require "instantiating" -- i.e., being made specific. This observation also applies to
Templates as well (see below).

5.3. Experience and Knowledge

A key issue in the implementation of Configuration tasks is how much experience and knowledge is
available. Without these, given only a set of descriptions of the individual modules, the problem is one
of searching for combinations of modules that satisfy the requirements. With no extra knowledge there
is no way to guide the search.

Knowledge about the modules allows us to build structured descriptions about the configuration sys-
tem’s library of available modules, so that search is reduced. The structure allows us to relate groups of
modules, so that deciding that one isn’t suitable for inclusion in the configuration also decides that the
others, which are related, also aren’t suitable (i.e., pruning).

Research on building configuration systems has shown that they should include explicit, separate
knowledge about modules/components, as opposed to having module knowledge implicit in the control
strategy (e.g., hidden in search control rules).

Experience allows us to build previously discovered sub-configurations into the system. As these do not
need to be configured, search is further reduced. It can also allow us to add heuristic knowledge, which
may allow us to prefer one module over another in a particular situation (thus lowering the chance of
having to backtrack and remake this decision), or could allow us to do things in an order which led to
success previously.

5.4. Search
Almost any basic AI search technique could be used. Generate and Test could be used to "generate"
configurations and test them for satisfaction of the requirements. Means-ends analysis could be used to
try to reduce the difference between having no configuration, and having one that satisfies the require-
ments. As modules are added to the configuration, new differences emerge, and can be reduced. Heuris-
tic searches, such as A*, could be used, which search by using an evaluation function applied to partial
configurations, and use the best at every stage. Unfortunately, it isn’t always possible to evaluate the
quality of a partial configuration.

5.5. Constraints
It has been pointed out that design problems and configuration problems can be formulated as con-
straint reasoning problems. How easily this can be done depends on the exact nature of the problem.

If we know the pattern of connections, and have constraints on this pattern, but do not know the compo-
nents, then this is equivalent to a crossword puzzle. This is a standard example used to explain Con-

¯ August 24, 1996 8:03 pm 79 5 of 9



straint Satisfaction techniques. A Constraint Satisfaction Problem (CSP) occurs when one tries to find 
set of values for some variables which are related by constraints. CSP methods can be guided by knowl-
edge and heuristics.

However, usually, we do not know the pattern of connections, and as Frayman and Mittal point out
[1987], selection of components introduces new variables and new constraints [Mittal & Falkenhainer
1990]. Thus, configuration is a dynamic sequence of CSPs, a Dynamic CSP.

Constraints can also be used for checking compatibilities between choices. This would allow the com-
patibility of the ports of two components to be tested.

In general, whenever a decision (choice) is made, this will impose restrictions. These restrictions can 
represented by constraints. Constraints can be "posted" to (i.e., attached to) the things they restrict, 
that they can affect its subsequent use, such as its refinement. In some cases constraints can be "propa-
gated" through a configuration, so that it flows across relationships between components to affect other
components.

Constraints can be used to record decisions made which do not correspond to objects in the system.
They can describe something which must be true of subsequent choices. This can be used to restrict the
set of currently considered components, without deciding which. Frayman and Mittal refer to this as
partial choice [1987].

Partial choice, along with constraint posting, can be used to implement a least commitment strategy,
where choices are delayed, so that more information can be accumulated and premature decisions
(which may be wrong) can be avoided.

5.6. Hierarchies
Hierarchies -- abstraction hierarchies, generalization hierarchies, or taxonomies -- record groupings
between types of things that share common properties. The relationship between an object lower in the
hierarchy with one higher is that it is less abstract, that it is a type of the higher one, and that it has all
the properties of the higher one.

Abstraction is useful in problem-solving to implement a least-commitment strategy, to allow a top-
down strategy, to allow refinement guided by constraints, and to avoid the combinatorics produced by
considering excessive detail too early.

Refinement can easily be implemented by moving down the hierarchy, making decisions about which
more specific lower thing to choose. These choices can produce constraints. These constraints can lead
to more choices: hence, constraint-guided. Constraints attached to a node in an abstraction hierarchy
will restrict all the subnodes of that node. This hierarchy can be viewed as an OR tree, with alternative
refinements at every node.

The first form of abstraction hierarchy useful for configuration is the Component hierarchy. Specific
components can be grouped into types, and those types into Subtypes.

The second form of abstraction hierarchy useful for configuration is the Functional hierarchy. This pro-
vides a way of storing functions organized by type and abstractness.

In some systems, for example [Lee et al 1992], the two types of hierarchies are linked into one, with the
functional hierarchy leading to abstract component types, and eventually down to specific components.
This allows refinement to occur from function all the way to specific component, using the same tech-
nique.

Other hierarchies can be used to record parts and subparts, with an implicit "part-of" relation. This hier-

August 24, 1996 8:03 pm 80 6 of 9



archy shows the "decomposition" of a thing. It is often used to show alternative subparts. This leads to
an AND/OR tree, where the choice (OR) is between alternative decompositions (ANDs).

Part-subpart hierarchies can be used for both functions and for components. A particular decomposi-
tion, if selected, provides a preformed configuration.

This type of hierarchy can also be used to record the configuration, as each component selected is part-
of the configuration. In some systems, the resulting configuration is always a portion of the tree built
into the system. Thus the configuration can be recorded merely by marking that tree.

5.7. Templates

We will use the term template to refer to any preformed piece of configuration (i.e., from past experi-
ence). For convenience, we will call the things in the template "items". A template may associate func-
tional or structural items, or a blend. If the system uses hierarchies, these items will also appear as
nodes in the hierarchies. As with modules, templates can vary by size, by level of abstraction, and by
how domain specific they are.

A template can also indicate the preferred the order of refinement of the items in it. Consequently, it can
also take on some of the aspects of aplan -- i.e., a sequence of activities.

Systems that use templates vary in the way in which they use indexing to organize them. Templates are
usually associated with nodes in a hierarchy.

A template may just be an alternative representation for a decomposition. However, the template may
also include items which are not strictly part of the decomposition, but which are required by those
items.

The relationships between the items in a template depend on their level of abstraction and whether they
are of function or component type. They can include I/O relationships, connection, spatial relation-
ships, constraints that relate them, and, for software, control sequencing information (e.g., While
loops).

Structural templates (such as those used in MICON [Birmingham et al 1992]) can include abstract 
specific components related to indicate the structure of that piece of configuration. For example,
abstract electrical components might be wired together in the template. A functional template would
probably have much weaker spatial relationships, but could have quite specific I/O relationships.

At any point during the configuration process there may be alternative Templates available. Thus a
selection process is required. Preferences could be used to help select one over another [Frayman &
Mittal 1987]. Constraints may also be used to prune the set of alternatives. Incorrect selection may lead
to backtracking.

A more knowledge-intensive selection technique, such as that found in [Mittal & Araya 1989] or
[Brown & Chandrasekaran 1989], might include an evaluation of the suitability of each template, and
then selection from among the most suitable.

In some systems, the actual configuration task is controlled by a fixed sequence of tasks [McDermott
1982] [Birmingham & Siewiorek 1984]. Sometimes these tasks correspond to the top-level functional
decomposition of the system to be configured. While strictly these are Plans, they can be considered as
Task Templates. Skeletal plans are those which are slightly abstract and that require refinement.

5.8. Key Components
Mittal & Frayman [1989] point out that even if a particular function has been selected, there may still
be a variety of ways of putting together components (or even subfunctions) to achieve that functional-

August 24, 1996 8:03 pm 81 7 of 9



ity. To reduce the search space, they introduce the idea of Key Components. Thus if a "mapping from
each function Fi to components Ci that are key components in providing Fi" is available, then the search
for a configuration that provides Fi can be reduced.

The key component could correspond to a component which is (almost) always required. A more heu-
ristic interpretation is that a key component is an item in a template on which many other decisions
depend. This suggests that its correct choice should take priority.

7. Summary
We have discussed the definition of the configuration task, including some of its inadequacies; have
described the relationship between design and configuration; have outlined one view of the problem-
solving ingredients of configuration; and have presented an analysis of different approaches to imple-
menting the configuration task, such as hierarchies and templates.

8. References
W. P. Birmingham & D. P. Siewiorek, MICON: A Knowledge Based Single Board Computer Designer,
2]st Design Automation Conference, Vol. 1, 1984, pp. 565-571.

W. Birmingham, A. Gupta & D. Siewiorek, Automating the Design of Computer Systems: The MICON
Project, Jones & Bartlett Publishers, 1992.

D. C. Brown, Design, Encyclopedia of Artificial Intelligence, 2rid edn., (Ed) S.C.Shapiro, Wiley-Inter-
science, May 1991.

D. C. Brown, The Reusability of DSPL Systems, Proc. Workshop on Reusable Design Systems, Second
Int. Conf. on AI in Design, June 1992.

D. C. Brown & B. Chandrasekaran, Design Problem Solving: Knowledge Structures and Control Strat-
egies, Research Notes in Artificial Intelligence Series, Pitman Publishing, Ltd., London, England, May
1989.

F. Frayman & S. Mittal, COSSACK: A Constraints-Based Expert System for Configuration, In: KBES
In Engineering: Planning and Design, (Eds.) D.Sriram & B.Adey, Computational Mechanics Publica-
tions, 1987, pp. 143-166.

G. Klinker, C. Bhola, G. Dallemagne, D. Marques & J. McDermott, Usable and Reusable Programming
Constructs, Proceedings of 5th Knowledge Acquisition Workshop, AAAI, 1990. (Also in: Knowledge-
Acquisition, Vol.3, No.2, pp. 117-135).

C. W. Kreuger, Models of Reuse in Software Engineering, CMU-CS-89-188, 1989.

C-L. Lee, G. Iyengar & S. Kota, Automated Configuration Design of Hydraulic Systems, A/in Design
"92, ~_xl.) J.S.Gero, Kluwer Academic, 1992, pp.61-82.

J. McDermott, RI: a rule-based configurer of computer systems, Artificial Intelligence, Vol. 19, 1982,
pp. 39-88.

S. Mittal & A. Maya, A Knowledge-Based Framework for Design, IJCAI, Vol.1, 1989, pp. 856-864.

S. Mittal & F. Frayman, Towards a generic model of configuration tasks, IJCAI, Vol. 2, 1989, pp. 1395-
1401.

S. Mittal & B. Falkenhainer, Dynamic Constraint Satisfaction Problems, Proc. 8th Nat. Conf. on AI,
AAAI-90, 1990, pp. 25-32.

August 24, 1996 8:03 pm 82 8 of 9



J. Mostow, A Transformation Approach to Knowledge Compilation, In: Automating Software Design,
(Eds) Lowry & McCartney, MIT Press, 1991.

J. Runkel, W. Birmingham, T. Darr, B. Maxim & I. Tommelein, Domain Independent Design System:
Environment for Rapid Development of Configuration Design Systems, In: Artificial Intelligence in
Design ’92, (Ed.) J.S.Gero, Kluwer Academic Publishers, 1992, pp. 21-40.

L. Steinberg, Design as Refinement Plus Constraint Propagation: The VEXED Experience, IJCAI,
1989, pp. 830-834.

This paper is a revised version of part of a longer report, originally written in 1992, for Digital Equipment Corporation.

August 24, 1996 8:03 pm 83 9 of 9


