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Abstract—This article combines the features of a survey and a research paper. It presents
a review of some results obtained during the last decade in problems related to the dynamics
of branch and self-similar groups on the boundary of a spherically homogeneous rooted tree
and to the combinatorics and asymptotic properties of Schreier graphs associated with a group
or with its action. Special emphasis is placed on the study of essentially free actions of self-
similar groups, which are antipodes to branch actions. At the same time, the theme “free
versus nonfree” runs through the paper. Sufficient conditions are obtained for the essential
freeness of an action of a self-similar group on the boundary of a tree. Specific examples of
such actions are given. Constructions of the associated dynamical system and the Schreier
dynamical system generated by a Schreier graph are presented. For groups acting on trees,
a trace on the associated C∗-algebra generated by a Koopman representation is introduced,
and its role in the study of von Neumann factors, the spectral properties of groups, Schreier
graphs, and elements of the associated C∗-algebra is demonstrated. The concepts of asymptotic
expander and asymptotic Ramanujan graph are introduced, and examples of such graphs are
given. Questions related to the notion of the cost of action and the notion of rank gradient are
discussed.
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1. INTRODUCTION

The modern theory of dynamical systems studies systems defined by group actions, i.e., systems
of the form (G,X, µ), where the measure µ is invariant or at least quasi-invariant (semigroup actions
are also considered, but this subject is much less developed compared with group actions). The
theory also deals with topological dynamical systems of the form (G,X), where X is a topological
space and the group G acts by homeomorphisms (topological dynamics). An important class of
actions that are considered in modern dynamics is formed by the actions of countable groups,
among which a special role is played by the actions of finitely generated groups. The study of
rough properties (such as the structure of the partition into orbits) of the actions of countable
groups is closely related to the study of countable Borel partitions, while the latter direction is
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closely linked with modern studies in descriptive set theory (which traces its roots to the Russian
scientific school due to the pioneering works of N.N. Luzin and M.Ya. Suslin). The group aspect of
dynamical systems theory is also largely due to the Russian mathematical school and is associated
with the fundamental studies by N.N. Bogolyubov, I.M. Gel’fand, Yu.V. Linnik, M.L. Gromov,
G.A. Margulis, and other outstanding mathematicians. From among the Western school, we should
mention, first of all, the studies by J. von Neumann, H. Furstenberg, A. Connes, and R. Zimmer.

In the studies carried out until recently, the (essentially) free actions played a major role, while
nonfree actions appeared episodically. Among the first works that dealt with nonfree actions were
the studies by the present author [70, 72] and by Vershik and Kerov [185]; the results obtained by
the author in the early 1980s were mainly of an algebraic character (related to the geometric and
asymptotic directions in group theory) and gave rise to the theory of branch groups and self-similar
groups, whereas the studies by Vershik and Kerov were mainly related to representation theory and
concentrated around the analysis of the infinite symmetric group S(∞) and some other locally finite
groups. In the last decade, especially after the publications [87, 16], it has become clear that it is
important to study group actions on individual orbits for nonfree actions on measure spaces and
on topological spaces. This led to the study of Schreier graphs and orbital graphs (associated with
actions on orbits). At the same time, two years ago, Vershik put forward a new idea related to the
study of the so-called totally nonfree actions. It turned out that the approach of the present author
and Vershik’s approach have common points; in particular, branch-type actions are totally nonfree
(we will touch upon this question below). At the same time, dealing with nonfree actions for many
years, I realized the importance of free actions in the case of actions on the boundaries of rooted
trees. Therefore, in this paper I pay approximately equal attention to both types of actions and to
their relation to various topics.

Originally this paper was planned as a review of a certain range of problems concerning group
dynamics on rooted trees, the problems that were first considered about ten years ago in [79, 80, 16,
87, 95]. However, while writing this paper, I came up with new ideas, revealed new relations, and
the contours of new directions of investigations started to emerge. Therefore, the paper turned out
to be not a pure survey; it contains a lot of new observations and sketches. I devote the following
part of the Introduction to the brief description of my philosophy concerning group-action dynamics
and then list the contents of the sections of the paper.

There is a close relationship between noncommutative dynamical systems and operator algebras
(first of all, von Neumann algebras and C∗-algebras). Any action with a quasi-invariant measure
generates a unitary representation of a group; thus, the problems and methods of noncommutative
dynamics are often intertwined with the problems and methods of representation theory (which,
in turn, are intertwined with the problems and methods of the theory of operator algebras). It is
well known that the spectrum of a representation (i.e., its decomposition into irreducible ones) may
be either a pure point spectrum (i.e., it may contain only finite-dimensional subrepresentations), a
continuous spectrum (i.e., it may contain only infinite-dimensional subrepresentations), or a mixed
spectrum (i.e., it may contain both finite-dimensional and infinite-dimensional subrepresentations).
For the dynamics of a single automorphism (meaning an action of the cyclic group Z), it is well
known that an action with a pure point spectrum is isomorphic to a shift action on a compact
abelian group. This classical result by von Neumann and Halmos was generalized by Mackey [131],
who proved that faithful ergodic actions with invariant measure and pure point spectrum of a locally
compact topological group are isomorphic to the actions of this group on spaces of the form K/H
equipped with the image λ of the normalized Haar measure on K, where K is a compact topological
group that contains a subgroup isomorphic to the given group or its homomorphic image and H is
a closed subgroup of K.

In the classical situation of a single automorphism of a measure space, the discrete case (i.e.,
the case of a pure point spectrum) is considered trivial (or at least very simple). For the actions
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of noncommutative groups, the case of a pure point spectrum is not any simpler (and maybe even
more complicated) than the case of a continuous spectrum. Of special interest are the actions of
discrete groups G on homogeneous spaces K/P of profinite groups (i.e., when K is a compact totally
disconnected group). If such an action is faithful, then the group G is embeddable in a profinite
group and hence is residually finite (i.e., it has a large family of finite-index subgroups; namely, the
intersection of these subgroups is a trivial subgroup). Actually, residually finite groups give precisely
the class of groups that have a faithful action with an invariant measure and a pure point spectrum.
The Mackey realization of such an action on a homogeneous space K/H may lead to the case when
the group K is either connected (and then it is a Lie group), is totally disconnected (the profinite
case), or is of mixed type (i.e., it has a nontrivial connected subgroup such that the quotient by
this subgroup is totally disconnected). The case of connected K seems to be the simplest case and
is the most studied one. All of what is written in the few paragraphs above is well known. Less
known are the following facts.

It turns out that dynamical systems of the form (G,K/P, λ), G ≤ K, where K is a profinite
group, arise on a seemingly very different basis; namely, they are isomorphic to systems of the
form (G, ∂T, ν), where T is a spherically homogeneous rooted tree, ∂T is its boundary, G acts by
tree automorphisms, and ν is a uniform measure on the tree boundary (Theorem 2.9). The first
nontrivial actions of this type were considered in [70, 72, 99]; the results obtained there are more
related to algebra. The dynamical aspect was given greater attention in [80, 87, 16, 18, 142, 86]
and other papers, which initiated a number of new directions of research at the interface between
algebra, dynamical systems theory, holomorphic dynamics, theory of operator algebras, discrete
mathematics, and other fields of mathematics. Although the theory of actions on trees and their
various generalizations (such as R-trees, hyperbolic spaces, buildings, CAT(0)-spaces, etc.) has
long become a well-developed theory (an excellent example is given by the material of Serre’s
book Trees [168]), the study of actions on rooted trees has required new concepts and methods
and allowed one to reformulate many results related to the widely used group-theory operation
of taking the wreath product in geometric and dynamic terms. This fact has made it possible to
significantly extend the application domain of this operation (especially under its iteration) and to
better understand it. The concept of branch group introduced by the present author [80, 79] is
one of the key concepts related to the actions on rooted trees. In terms of dynamical systems, the
definition of a branch group looks as follows.

Definition 1.1. (a) A group G acts on a space (X,µ) with invariant measure in a weakly

branch way if there exists an increasing sequence {ξn}∞n=1 of finite G-invariant partitions of X that
tends to the partition into points and is such that the action of G is transitive on the set of atoms
of each partition ξn and, for any n and any atom A ∈ ξn, there exists an element g ∈ G acting
nontrivially on A and, at the same time, acting trivially on the complement Ac of A.

(b) An action (G,X, µ) belongs to a branch type if it is weakly branch and, in addition, for
any atom A of any of the partitions ξn, the subgroup ristG(A) < G consisting of elements that act
trivially on the complement Ac has finite index in the restriction stG(A)|A of the stabilizer stG(A)
of the set A to this set, provided that this subgroup is identified with the restriction ristG(A)|A.
A group is called a branch group if it has a faithful action of branch type.

Note that the definition of branch groups has never been presented in this form; instead, either
a purely algebraic definition or a geometric definition in the language of actions on rooted trees was
used [80, 19]. In Section 2, we present a geometric definition and prove that it is equivalent to the
one given above.

Branch (just-infinite) groups constitute one of the three subclasses into which the class of just-
infinite groups (i.e., infinite groups each proper quotient group of which is finite) is naturally split;
it is this fact that primarily determines the importance of branch groups in group theory.
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Another important class of groups that act on rooted trees is formed by self-similar groups, in
other words, groups generated by Mealy-type automata. Mealy-type automata are automata that
operate as transducers, or sequential machines; i.e., these are automata operating as synchronous
transducers of information that transmit, letter by letter, an input sequence of letters from a certain
alphabet into an output sequence. Invertible initial synchronous automata (more precisely, their
equivalence classes) constitute a group with a well-known (in informatics) operation of composition
of automata [56, 119]. This group depends on the cardinality of the alphabet; i.e., in fact, there
exists a sequence of groups that is indexed by positive integers (by the cardinality of the alphabet).

If we consider a more general class of automata, namely, the asynchronous automata, then, as
shown in [87], there is only one universal group, independent of the cardinality of the alphabet, in
which all groups of synchronous automata are embedded. In [87] this group was called the group
of rational homeomorphisms of the Cantor set. In addition to self-similar groups, it contains other
quite interesting subgroups, for example, the famous Thompson groups. A group is said to be self-
similar if it is isomorphic to a group generated by the states of a noninitial invertible synchronous
automaton.

The groups generated by finite automata (we call them strongly self-similar groups in this paper)
are specially distinguished. A simple example of a self-similar group is the infinite cyclic group,
which can be realized by the action of an odometer (also called an adding machine in the English-
language literature and often translated into Russian as a d-adic counter, where d is the cardinality
of the alphabet). The odometer acts in the space of right-infinite sequences of letters in an alphabet
of cardinality d ≥ 2 equipped with a uniform Bernoulli measure, or, equivalently, on the boundary
of a d-regular rooted tree (there is a generalization of the concept of odometer to the case when the
phase space is the Cartesian product of a sequence of various alphabets). This dynamical system
with discrete spectrum is well known in ergodic theory. A considerably more complex example of a
(strongly) self-similar group is given by a group G that was constructed by the author in [70] and
then studied in [72] and many other papers. The main properties of this group are the periodicity,
intermediate growth (between polynomial and exponential), and nonelementary amenability.

Self-similar groups, especially those possessing the branch property, form quite an interesting
class of groups related to many aspects of dynamical systems theory and other fields of mathematics.
The theory of iterated monodromy groups developed by Nekrashevych [142] has breathed new life
into holomorphic dynamics and found wide applications in the study of Julia sets and other fractal
objects [142].

Actions on rooted trees turned out to be useful for the theory of profinite groups, since any
profinite group with a countable base of open sets is embedded in the automorphism group (equipped
with the natural topology) of an appropriate rooted tree T . Moreover, if a group G acts transitively
on the levels of a tree (or, equivalently, its action on the boundary is ergodic), then the closure G in
Aut(T ), which is a profinite group, acts transitively on the boundary ∂T , and the uniform measure ν
becomes the image of the Haar measure on G. In this case, the dynamical system (G, ∂T, ν) is
isomorphic to the system (G,G/P, ν), where P = stG(ξ), ξ ∈ ∂T . As already mentioned, the
converse is also true; namely, any action with pure point spectrum of type (G,K/P, µ), where K is
a profinite group, is isomorphic to the action on the boundary of an appropriate rooted tree (which
can easily be verified by applying the construction of the action of a residually finite group on a
coset tree as described in the next section; see Theorem 2.9 there). Thus, in the Mackey theorem,
the profinite case corresponds to actions on rooted trees. Another argument in favor of rooted trees
is that, as noticed in [87], any compact homogeneous ultrametric space is isometric to the boundary
of a rooted tree with an appropriate metric on it (a weaker version of this statement is contained
in [59]).

When studying group actions, one usually assumes that the actions are essentially free, i.e., for
any nonidentity element of a group, the measure of the fixed point set is zero. One of the first
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attempts to draw attention to the case of actions that are not essentially free was made in [70]
and the following studies [72, 73, 99], which led to the concept of branch action and, accordingly,
branch group. Obviously, a weakly branch action is not essentially free. Paper [185] by Vershik
and Kerov was also one of the pioneering works on the use of actions that are not essentially free.
The importance of studying nonfree actions has recently been pointed out by Vershik in [184]. The
theme of the “free versus nonfree action” alternative runs through the larger part of our paper.

An important object that arises when studying actions that are not essentially free is an orbital
graph Γξ, ξ ∈ X, of an action (on the space X). The vertices of this graph are points of the orbit
and the edges correspond to transitions from one vertex to another under the action of a generator
(in this case, the edges are labeled by the respective generators). If the action is essentially free,
then such graphs are almost surely isomorphic to the Cayley graph constructed for the group by
means of the same system of generators. For actions that are not essentially free, the graphs Γξ are
almost surely nonisomorphic to the Cayley graphs but are isomorphic to Schreier graphs, i.e., to
graphs of the form Γ = Γ(G,H,A), where H ≤ G is a subgroup (corresponding to the stabilizer of
some boundary point) and A is a system of generators. The vertices of such a graph are left (one
may also consider right) cosets gH, and two vertices fH and gH are connected by an oriented edge
labeled by a generator a ∈ A if gH = afH. The Cayley graphs are obtained in this construction
when H is the trivial subgroup. Depending on the situation, one can consider various modifications
of the concept of a Schreier graph: one can make edges nonoriented, remove labels from them,
distinguish a vertex in a graph and consider it as a root, etc. According to the category chosen, it is
expedient to consider appropriate spaces of graphs with natural compact topology and speak of the
convergence of graphs in this topology. For example, a topology in the space of Cayley graphs was
first defined in [72] and used for studying group properties such as intermediate growth, impossibility
of presentations by a finite set of relations, Kolmogorov complexity of the word problem [74], etc.
Later, this topology and its variations were examined more carefully (first of all in [43]), and now it
plays a significant role in many investigations. Note that, in the much earlier work [42], Chabauty
introduced a topology on the set of closed subgroups of a locally compact group and applied it to
the study of lattices in such groups. The Chabauty topology is widely used in the studies of lattices
in Lie groups (see [158]). In terms of this topology one can also interpret topologies in the spaces
of Cayley graphs and Schreier graphs.

The first publications in which the authors realized the importance of studying Schreier graphs
that arise as orbital graphs of actions are [16, 87]. For example, the following simple but important
fact is borrowed from [87, Proposition 6.22].

Proposition 1.1 [87]. Let G be a finitely generated group that acts ergodically on a space

(X,µ) by transformations that preserve the measure µ (i.e., the measure µ is quasi-invariant). Then

the Schreier graphs of the action on orbits are µ-almost surely locally isomorphic to each other.

In this proposition the local isomorphism of two graphs means that, for any radius r and an
arbitrary vertex of any of the graphs, there exists a vertex of the other graph such that the neighbor-
hoods (subgraphs) of radius r around the chosen vertices in the two graphs are isomorphic. A similar
proposition is valid in the topological situation as well, but it requires the concept of a G-typical
point and a slight correction in the formulation of the proposition above; moreover, there are exam-
ples of graphs that are generic in the topological sense but are not generic in the metric sense [2].

Schreier graphs associated with the actions of self-similar groups and branch-type groups on the
levels and the boundary of a tree are important both for solving various problems of graph theory
and for studying asymptotic problems involving graphs and groups. These graphs model various
phenomena and reflect the complexity of many related problems. For example, the classical Tower
of Hanoi problem with four or more pegs is equivalent to calculating the distance between specific
vertices in these graphs and finding the shortest path between them in an algorithmic manner.
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See [91–93] for more details on this subject. There are a lot of questions that arise when studying
Schreier graphs; first of all, these questions are related to group theory and dynamical systems.
These are questions on the number of ends of the graphs, on the growth, amenability, and the
possibility to define the graph by a finite system of substitution rules, on the possibility of recon-
structing a system from a generic Schreier graph, on the asymptotic behavior of the first nonzero
eigenvalue of the discrete Laplace operator, on the spectrum of the discrete Laplace operator, on
the construction of expanders, on the asymptotic behavior of random walks, on the calculation of
the cost of actions and cost of groups, etc. Many of these questions are touched upon in the present
paper or in the references cited. One of the new results given below is the construction of asymptotic
expanders on the basis of finite automata (and on the basis of related self-similar groups). It is an
interesting open problem to find out whether these graphs are true expanders. Another circle of
questions related to the study of actions on rooted trees is the study of infinite decreasing chains
of finite-index subgroups in residually finite groups, in particular, the study of the rank gradient of
these subgroups [121, 5].

As already mentioned, actions on rooted trees and the problems of self-similar groups are mys-
teriously related to many questions of dynamical systems theory. These questions arise when
restricting the actions to Lyapunov stable attractors [87, Theorem 6.16]. They are related to
substitution dynamical systems (which arise when finding presentations of groups by generators
and relations) [129, 97, 14]. The description of invariant subsets of multidimensional rational map-
pings served as a basis for a new unexpected method of solution of the spectral problem for the
discrete Laplace operator [16]. Owing first of all to the studies of Nekrashevych, the theory of
iterated monodromy groups has led to significant changes in the strategy of studies on holomorphic
dynamics [142].

In Section 8, we propose a construction of a Schreier dynamical system: given a combinatorial
structure (a Schreier graph) or algebraic data (a pair consisting of a group and its subgroup), one
can use this construction to obtain a dynamical system. The examples presented in Section 8 show
that in many cases the original dynamical system can be recovered from this construction if one
takes the orbital graph of the action on a specific orbit as the Schreier graph, or if one considers
the stabilizer of a point of the phase space as a subgroup of the acting group.

In essence, all new results concerning the structure of the class of amenable groups, which was
introduced by von Neumann and independently by Bogolyubov, as well as the class of intermediate
growth groups (about which Milnor asked whether it is empty) have been obtained on the basis
of studying group actions on rooted trees. An original method for proving the amenability, called
a “Münchhausen trick,” was developed in [23, 109]. Various operator algebras associated with
actions on rooted trees (as well as with Cuntz algebras in some cases) were defined and studied
in [16, 141, 86]. It turned out that among these algebras there are both simple C∗-algebras and
algebras that can be approximated by finite-dimensional algebras, similar to residually finite groups.
The classical method known as the “Schur complement” found an unexpected application to these
algebras in [86]. This list of research directions related to actions on rooted trees is far from complete
but we stop here.

Now we briefly outline the contents of the paper. Section 2 is of preliminary character and
contains many definitions used in the paper. First of all, we define the main concepts related
to spherically homogeneous rooted trees and actions on them. We give a different (compared with
Definition 1.1) definition of branch groups and explain how to construct a rooted tree by a decreasing
chain of subgroups of finite index. We define just-infinite groups and hereditary just-infinite groups
and formulate a theorem describing the trichotomy of the structure of the class of just-infinite
groups. We give examples of groups and of their actions.

Section 3 is devoted to groups of automata and self-similar groups. We explain what wreath
recursions are. We give definitions of a contracting group and a self-replicating group.
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Section 4 is devoted to studying essentially free actions on the boundary of a tree. Abért and
Virág [6] proved that a randomly chosen action of a group with a finite number of generators on
a binary tree is free (moreover, the group itself is free). However, the explicit construction of an
essentially free action is, as a rule, a complicated problem. We present a number of conditions of
algebraic character that guarantee the freeness of an action and discuss the relationship between
the freeness of actions in the topological and metric senses. Although in the general case there is no
direct relation between topological freeness and freeness in the metric sense (i.e., with respect to a
measure), a remarkable fact is that for the actions of strongly self-similar groups the two concepts
are equivalent; this result was obtained by Kambites, Silva, and Steinberg [112].

In Section 5, we give specific examples of essentially free actions. We consider both the actions of
well-known groups, such as the lamplighter realized by a two-state automaton [95], and new actions,
and discuss an approach to finding out under what conditions a self-similar group acts essentially
freely. A certain role in this discussion is played by the Mikhailova subgroups of the direct product
of two copies of a free group.

In Section 6, we consider various topologies on the spaces of Schreier graphs and prove the Gross
theorem stating that any connected regular graph with even-degree vertices can be realized as a
Schreier graph of a free group.

In Section 7, we give examples of Schreier graphs related to self-similar groups. We define various
types of substitution rules and recursions for infinite sequences of finite graphs. The main objects
here are the Schreier graphs of the group G of intermediate growth and of the group called the
Basilica. The material of this section is mainly based on the publications [16, 142, 93, 31, 81, 48].

In Section 8, we describe a construction that starts with a dynamical system and yields an
associated dynamical system in the space of Schreier graphs or in the space of subgroups of a group.
This material correlates with some questions touched upon in [184]. In addition, we describe a
technique that allows one to construct an action of a group on a certain compact set by an infinite
Schreier graph of this group. This technique leads to interesting actions when the automorphism
group of the graph is small (for example, trivial). We show how this technique works in the
case of the group G and the Thompson group (for the latter we use the results of Vorobets [188]
and Savchuk [166]). An interesting fact exhibited in these examples is that on the metric level
a dynamical system is reconstructed by the Schreier graph, whereas on the topological level the
arising space and action are simple perturbations of the original phase space and an action on it. In
general, the approach proposed in this part of the paper to the study of dynamical systems should
have been called an orbit method in the dynamics of finitely generated groups, by analogy with
Kirillov’s orbit method in representation theory. We stress that while Kirillov’s orbit method is
mainly used in the representation theory of Lie groups, our approach applies to actions of countable
groups equipped with a discrete topology. In this section, we also emphasize the importance of
weakly maximal subgroups for the orbital approach to dynamical systems and present some results
from [16, 17] (most of which are known) that are related to this class of subgroups. We also
present E. Pervova’s nontrivial example of a weakly maximal subgroup of the intermediate growth
group G.

In Section 9, we discuss unitary representations of groups acting on trees and consider C∗-alge-
bras associated with these representations (we also touch upon von Neumann algebras). On one of
these C∗-algebras, we define a trace, which is called a recurrent (or self-similar) trace, and describe
some of its properties. Here we mainly use the results obtained in [16, 95, 141, 86, 184]. The
recurrent trace has additional useful properties in the case when a group is strongly self-similar.
For the intermediate growth group G, we give an explicit description of the values of the trace on
the elements of the group. We discuss some properties of the C∗-algebras under consideration. We
show that the weakly branch groups belong to the class of ICC (infinite conjugacy class) groups,
which possess infinite (nontrivial) conjugacy classes of elements.
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In Section 10, we consider questions related to random walks on groups and graphs, the spectral
properties of the discrete Laplace operator (or, equivalently, of the Markov operator related to a
random walk), as well as the Kesten spectral measure and the so-called KNS (Kesten–von Neumann–
Serre) spectral measure, which was introduced and examined in [16, 98]. Examples of a self-similar
essentially free action of a free rank 3 group and of the free product of three copies of an order 2
group and results on the recurrent trace are used for constructing asymptotic expanders. We
discuss various questions concerning the asymptotic behavior of infinite graphs and infinite covering
sequences of finite graphs.

Finally, in Section 11 we discuss questions related to the concept of the cost of actions of
countable groups and of countable Borel equivalence relations, as well as the concept of rank gradient
of infinite decreasing sequences of finite-index subgroups. This material is based on the studies
by G. Levitt, D. Gaboriau, M. Lackenby, M. Abért, and N. Nikolov. We discuss the problems
of amenability and hyperfiniteness of groups and equivalence relations and present classical results
associated with the names of H. Dye, J. Feldman, C. Moore, A. Connes, and B. Weiss. We introduce
the concepts of self-similar and self-replicating equivalence relations and show that the latter are
“cheap” in the sense of cost.

This paper is mainly a survey that summarizes the results of research carried out during the
last decade in a certain direction. However, it also presents some new observations. Moreover, the
paper formulates many open questions. I hope that this paper will stimulate further investigations
in the field of dynamics with a pure point spectrum, dynamics of actions on trees, and other related
fields of mathematics.

Since the paper is addressed to readers involved in different fields of mathematics, starting
from algebraists and ending with specialists (or beginners) in dynamical systems theory, theory of
operator algebras, and discrete mathematics, in many places I go into greater detail than I should
have to if the paper was addressed only to the reader involved in one specific field. Sometimes, I do
not consider it beneath me to remind an already introduced notion or an already formulated result.
I hope that the reader will not judge me harshly for this.

2. ACTIONS ON ROOTED TREES

Let m = {mn}∞n=1, mn ≥ 2, be a sequence of positive integers (called a branch index in what
follows) and Tm be a spherically homogeneous rooted tree defined by the sequence m. This tree
has a root vertex denoted by ∅, m1 vertices of the first level, m1m2 vertices of the second level,
and generally m1m2 . . . mn vertices of the nth level, n = 1, 2, . . . . Each vertex of level n has mn+1

“successors” situated at the next level and connected by an edge with this vertex. A clear idea
of a rooted tree is given by Fig. 2.1. Note that according to the tradition established in Russian
mathematics, a tree is depicted top down.

The norm of a vertex u (denoted by |u|) is the level to which this vertex belongs. When the
sequence m is constant, i.e., mn = d for some d ≥ 2 and any n, the tree Tm is called a regular

Fig. 2.1. A spherically homogeneous rooted tree.
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rooted tree of degree d or a d-regular tree and is denoted by Td. In what follows, we will usually
omit the word rooted and the branch index. An automorphism of a tree T is any bijection on the
vertex set that preserves the incidence relation of vertices and maps the root vertex to itself. The
automorphisms of a tree form a group Aut(T ) with respect to the operation of composition. An
arbitrary subgroup G ≤ Aut(T ) can be considered as a group acting faithfully (i.e., each nonidentity
element acts nontrivially) on T . One can also consider finite trees defined by finite sequences m,
and their automorphism groups; in particular, some of the arguments below may involve subtrees
of an infinite tree with vertices up to the nth level inclusive. In what follows, unless otherwise
stated, we will deal with infinite trees. For such trees, the concept of boundary ∂T (or the space
of ends) is defined; geometrically, this boundary can be viewed as consisting of geodesic paths in T
that connect the root vertex with infinity. On ∂T there is a natural topology, in which two paths
are close if their common beginning is large, and the greater the common beginning, the closer
the paths. This topology is naturally metrizable with the use of an arbitrary decreasing sequence
λ̄ = {λn}∞n=1 of positive numbers that tends to zero. The distance distλ̄(α, β), α, β ∈ ∂T , is equal
to λn if the sequences α and β diverge at the level n. The space (∂T,distλ̄) is an ultrametric
space, and Aut(T ) serves as its isometry group; moreover, as shown in [87, Proposition 6.2], the
above-described metric structure associated with a spherically homogeneous tree is a general model
of a homogeneous ultrametric space. If G < Aut(T ) is a subgroup, then the pair (G, ∂T ) is a
compact topological dynamical system (i.e., the group acts by homeomorphisms of the compact
set ∂T ), which will play an important role in what follows. This system can be made into a metric
dynamical system by adding an invariant probability measure, which will be discussed below.

Alternatively, the boundary can be described as follows. Let Xn, n = 1, 2, . . . , be alphabets of
cardinality |Xn| = mn with fixed orders on them, where m = {mn}∞n=1 is a branch index. The set
of nth-level vertices of the tree T = Tm is naturally identified with the set X1 × X2 × . . . × Xn,
on which a lexicographic order is introduced. This order is used when drawing the tree on a plane;
namely, the vertices on a level are arranged according to their order. The boundary ∂T is naturally
identified with the Tikhonov product

∏∞
n=1 Xn of the sets Xn, each of which is equipped with

a discrete topology. Thus, the boundary can be thought of as the space of infinite sequences of
symbols of the alphabets Xn (the nth term of a sequence belongs to the set Xn) equipped with the
topology of pointwise convergence. This description is simplified when the tree is regular. Then all
alphabets Xn can be assumed to coincide, and the boundary is the space of right-infinite sequences
of letters in this alphabet. As a topological space, the boundary ∂T is homeomorphic to the Cantor
perfect set. Naturally, ∂T is a metrizable compact set and, as mentioned above, possesses a family
of metrics dλ̄ parameterized by decreasing sequences λ̄ = {λn}∞n=1 of positive numbers that tend to
zero. Any such metric is an ultrametric, is invariant under the action of the whole group Aut(T ),
and induces the Tikhonov topology on the boundary.

To study the dynamics of actions on the boundary, it is relevant to introduce a uniform prob-
ability measure ν on the boundary. This measure is defined on the σ-algebra of Borel sets by its
values on cylindrical sets of the form Cu, where u is a vertex and Cu consists of geodesic paths that
connect the root vertex with infinity and pass through u. If |u| = n, then ν(Cu) = 1/(m1 . . . mn).
Alternatively, the measure ν can be defined as ν =

⊗∞
n=1 νn, where νn is the uniform measure on

the alphabet Xn, provided that the boundary is represented as ∂T =
∏∞

n=1 Xn. The measure ν is
invariant with respect to the whole automorphism group of the tree; therefore, it is also invariant
with respect to the action of any subgroup of Aut(T ). When the action (G,T ) is spherically
transitive, this is a unique invariant probability measure; this follows from Proposition 4.1 (see
below). Throughout the paper, we will keep the notation ν exclusively for this measure and call it
a uniform measure on the boundary of the tree.

Denote by τ the shift in the space of right-infinite sequences that serve as a branch index (i.e.,
applying τ to a sequence means removing the first term of this sequence). The tree Tm consists
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of m1 copies of the tree Tτ(m) that are connected by edges with the root vertex. Accordingly, the
group Aut(T ) is isomorphic to the semidirect product

(
Aut(Tτ(m))× . . .×Aut(Tτ(m))

)
⋊ Sym(m1) (2.1)

of the product of m1 copies of the automorphism group of the subtree Tτ(m) and the symmetric
group Sym(m1) acting on this product by permutations of the factors. This semidirect product is
often called a permutational wreath product and is denoted here as Aut(Tτ(m)) ≀perm Sym(m1). An
arbitrary automorphism g ∈ Aut(Tm) can be represented as

g = (g1, . . . , gm1)σ, (2.2)

where σ ∈ Sym(m1) and gi ∈ Aut(Tτ(m)), i = 1, . . . ,m1. The elements gi are called sections (or
projections) of the element g at vertices of the first level. By induction on the level, one defines
sections gu of the element g at an arbitrary vertex u. Denote by Tu a (complete) subtree of the
tree T with origin at vertex u, which serves as the root of the subtree. Throughout this paper, we
will use the following notations: xy = y−1xy and [x, y] = x−1y−1xy.

Definition 2.1. Let G be a group acting by automorphisms on a rooted tree T , u be a vertex
of this tree, and Tu be the subtree with root vertex u.

(a) The stabilizer of u is the subgroup stG(u) = {g ∈ G : g(u) = u}.
(b) The nth-level stabilizer stG(n) is defined as the intersection of the stabilizers of all vertices

of this level (i.e., it is a subgroup consisting of elements that fix all vertices of the nth level).

(c) The rigid stabilizer of u is a subgroup ristG(u) in G that consists of automorphisms g ∈ G
acting trivially on the complement of the subtree Tu.

(d) The nth-level rigid stabilizer ristG(n) is a subgroup in G generated by the rigid stabilizers
of all vertices of the nth level.

Since the rigid stabilizers of vertices of the same level commute with each other, the nth-level
rigid stabilizer ristG(n) is the (inner) direct product of the rigid stabilizers of the nth-level vertices:

ristG(n) = 〈ristG(v) : |v| = n〉 =
∏

v : |v|=n

ristG(v). (2.3)

Note that the stabilizer of a vertex is a subgroup of finite index, the stabilizer of a level is a
normal subgroup of finite index, the rigid stabilizer of a level is a normal subgroup, and the rigid
stabilizer of a vertex is a subnormal subgroup of degree 1 (namely, a normal subgroup in stG(n),
where n is the level of the vertex). The rigid stabilizers of a vertex or level may be trivial, in
contrast to the stabilizers of vertices and levels, which always have finite index and are therefore
nontrivial if the group is infinite and acts faithfully. In what follows, unless otherwise stated, we
will consider only actions of groups by automorphisms on rooted trees and the induced actions on
the boundaries of the trees.

Definition 2.2. (a) An action of a group G on a spherically homogeneous tree T (henceforth
denoted as (G,T )) is said to be spherically transitive if it is transitive on each level of the tree.

(b) An action (G,T ) is of branch type if it is spherically transitive and the rigid stabilizer
ristG(n) has finite index in G for any n ≥ 1.

(c) An action (G,T ) is of weakly branch type if it is spherically transitive and the rigid stabilizer
ristG(n) is infinite for any n (equivalently, for any vertex v of the tree, the rigid stabilizer ristG(v)
is nontrivial).
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(d) An action (G,T ) is of weakly nonbranch type if, starting from a certain level, the rigid
stabilizers are trivial.

(e) An action (G,T ) is of nonbranch type if the rigid stabilizers of all levels are trivial.

(f) An action (G,T ) is of diagonal type if, for any n and arbitrary g ∈ stG(n), either all
sections gv at the vertices v of the nth level are nonidentity elements or all of them are equal to the
identity element (i.e., g is the identity element).

(g) An action of a group is said to be locally trivial if there exists a vertex v such that stG(v)
acts trivially on the subtree Tv with root at the vertex v. If there is no such a vertex, then the
action is said to be locally nontrivial.

Remark 2.1. In the case of a self-similar group (self-similar groups will be defined in the next
section) acting on a binary tree, the action is locally nontrivial if and only if the rigid stabilizer
ristG(1) of the first level is trivial.

In some publications, the condition of spherical transitivity in the definitions of branch and
weakly branch actions is omitted. However, we will stick to our (original) definition. Below we will
prove the equivalence between the definitions of branch and weakly branch actions and Definition 1.1.

It is obvious that the levels of a tree are invariant under an arbitrary automorphism preserving
the root vertex; therefore, the spherical transitivity is the strongest possible transitivity condition
for actions on rooted trees. In this case, a group, acting on itself by conjugations, transitively
permutes the stabilizers (respectively, the rigid stabilizers) of vertices on each level. Therefore, if
an action is spherically transitive, then (2.3) contains a product of isomorphic groups.

In Section 4, we discuss topologically free and essentially free actions on the boundary of a tree.
Obviously, the topological or essential freeness implies that the action is not of weakly branch type.
The converse is not true, which follows, for example, from the results of [40].

The following proposition is useful for verifying the transitivity of an action on the levels.

Proposition 2.1. Let G ≤ Aut(T ). Then G acts transitively on the levels if and only if

(a) G acts transitively on the first level of the tree, and, for some vertex u of the first level, the

stabilizer stG(u) acts transitively on the levels of the subtree Tu;

(b) for any n ≥ 1, the group G acts transitively on the n-th level of the tree, and, for some

vertex v, |v| = n, the stabilizer stG(v) acts transitively on the subtree Tv.

The proof is almost obvious. For details we refer the reader to [80, Lemma A].

Definition 2.3. (a) A group G is said to be a branch group if it has a faithful spherically

transitive action of branch type.

(b) G is said to be a weakly branch group if it has a faithful spherically transitive action of
weakly branch type.

The automorphism group Aut(T ) is an example of a branch group because the rigid stabilizer
of any vertex u coincides with Aut(Tu). However, this group is not finitely generated even as a
topological group, because the abelianization of this group is an elementary 2-group of infinite
rank (below we will discuss the structure of a profinite group on Aut(T )). Soon we will give
examples of finitely generated groups of branch type; the main such example is the group G =
〈a, b, c, d〉 generated by four transformations of the interval [0, 1] that preserve the Lebesgue measure
(Example 2.3). We will also point out another extremal property of nonfree actions that correlates
with Definition 1.10 of a finite-type action from Zalesskii’s paper [196].

The class of branch groups is important due to the fact that branch groups make up one of
three subclasses into which the class of just-infinite groups (i.e., infinite groups any of whose proper
quotient groups is finite) is naturally partitioned. A more detailed account of this will be given below.
The concept of weakly branch group has emerged as a generalization of the concept of branch group,
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because it turned out that many statements on the general properties of branch groups can be proved
under a more general assumption of weak branching. Examples of such statements are the Abért
theorem on the absence of nontrivial identities in weakly branch groups [1] and the proposition that
these groups have no faithful finite-dimensional representations, which was established by Delzant
and the present author (as pointed out by Abért in a paper1 of 2006).

Vershik [184] introduced the concept of extremely nonfree action; in one of the variants of its
definition, an action is extremely nonfree if the stabilizers of points of a full-measure subset of the
space on which the group acts are pairwise different. The following proposition immediately implies
that weakly branch actions are extremely nonfree.

Proposition 2.2. Let G be a group acting on a tree T in a weakly branch way. Then, for any

two different points ζ and η of the boundary ∂T, the stabilizers stG(ζ) and stG(η) are different.

Proof. Let us apply the following lemma, which was first proved in [17].

Lemma 2.3. Let G be a group acting on a rooted tree T in a weakly branch way, u be a vertex

of the tree, and ξ be a point of the boundary that passes through u. Then the orbit of the point ξ
under the action of the group ristG(u) is infinite.

Proof. Since ristG(u) is a nontrivial subgroup, it acts nontrivially on some vertex v situated
under u. Let g(v) = w, w �= v, g ∈ ristG(u), and let u′ be a vertex that belongs to the path ξ
and to the same level as v. According to Proposition 2.1, the stabilizer stG(u) acts transitively
on the subtree Tu. Let h ∈ stG(u) and h(u′) = v. Then gh(u′) �= u′ and gh ∈ ristG(u). Thus,
the orbit ristG(u)(ξ) consists of at least two points. Applying similar arguments to the vertex u′

and its images under the action of ristG(u), below each of these vertices we find at least a pair
of vertices belonging to the ristG(u)-orbit of the point ξ; thus, ristG(u)(ξ) consists of at least four
points. Continuing this argument by induction, we arrive at the desired conclusion. �

Let v be a vertex that belongs to η but does not belong to ζ. Then stG(η) contains ristG(v).
At the same time, according to Lemma 2.3 and the fact that G is a weakly branch group, the
ristG(v)-orbit of the point η is infinite; therefore, stG(ζ) �= stG(η). �

In [184] Vershik also introduced the concept of totally nonfree action. Let (G,X,B, µ) be an
action of a group G on a Lebesgue space (X,B, µ) with continuous measure; if the sigma algebra
generated by the sets of fixed points of the elements of the group coincides with the whole sigma
algebra B, then the action is said to be totally nonfree. In the general case, totally nonfree actions
constitute a narrower class of actions compared with extremely nonfree actions (to see this, it suffices
to notice that according to another definition an action is extremely nonfree if the mapping ΨG

defined in [184] is monomorphic). However, for countable groups these two concepts coincide.
It turns out that weakly branch actions satisfy this more restrictive condition as well; this is

proved by applying the same Lemma 2.3. It would be interesting to find out what actions of
nonbranch type belong to the class of totally nonfree actions.

Theorem 2.4. Suppose that an action (G,X, µ) of a group G belongs to a weakly branch type.

Then this action is totally nonfree.

Proof. In view of Corollary 2.7 proved below, we can assume that the action is defined on the
boundary of a tree T ; i.e., we deal with a system of the form (G, ∂T, ν). Let us prove that for any
vertex v the cylindrical set Cv belongs to the sigma algebra generated by the sets of fixed points
of the elements of the group. For an arbitrary element g ∈ ristG(v), the set Fix(g) of fixed points
contains the complement Cc

v of this set. We argue that

Cv =
⋃

g∈ristG(v)

Fixc(g). (2.4)

1M. Abért, “Representing Graphs by the Non-commuting Relation,” Publ. Math. 69 (3), 261–269 (2006).
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Indeed, the inclusion Cv ⊇
⋃

g∈G Fixc(g) is obvious. If the complement Uv = Cv \
⋃

g∈ristG(v) Fixc(g)
is not empty, take ξ ∈ Uv. The path ξ obviously passes through the vertex v, and the inclusion
ξ ∈ Uv implies that ξ ∈ Fix(g) for any g ∈ ristG(v). However, this contradicts Lemma 2.3. �

Theorem 2.5. Suppose that an action (G, ∂T ) of a countable group G on the boundary of a

rooted tree is of weakly branch type. Then it is totally nonfree (in the topological sense).

The proof is similar to the proof of Theorem 2.4, and we omit it.

In essence, weakly branch actions appear in Theorem 3 in Rubin’s paper [162], which gives
sufficient conditions under which a topological space can be reconstructed from its group of home-
omorphisms.

Now we prove the equivalence of the two definitions of a branch group.

Theorem 2.6. (a) Definition 1.1 of a branch group is equivalent to Definition 2.3(a).

(b) The same is true for the definition of a weakly branch group.

Proof. Let us prove the more difficult part (a) of the theorem. Suppose that a branch group G
acts faithfully and in a branch way on a spherically homogeneous tree T . Then the system (G, ∂T, ν)
satisfies the conditions of Definition 1.1 if we take the partition into cylindrical sets Cv corresponding
to the vertices of the nth level as ξn. Indeed, since G is a branch group, the rigid stabilizer ristG(n)
has finite index in G and, hence, in stG(n) for any n. We have a chain of embedded subgroups of
finite index,

ristG(n) < stG(n) < stG(v), (2.5)

where v is an arbitrary nth-level vertex. The restriction ristG(n)|Tv to the subtree Tv coincides
with the restriction ristG(v)|Tv (and the corresponding restriction homomorphism ρv : ristG(v) →
ristG(v)|Tv , g → gv is an isomorphism). This implies that the action (G, ∂T, ν) belongs to a branch
type according to Definition 1.1.

Conversely, if the group G is defined by an action (G,X, µ) satisfying the conditions of Defi-
nition 1.1, we construct a spherically homogeneous tree T whose vertices are in one-to-one corre-
spondence with the atoms of the partition ξn (the root vertex corresponds to the trivial partition
consisting of a single atom, the entire space X), and two vertices A ∈ ξn and B ∈ ξn+1 are connected
by an edge if B ⊂ A. The action of the group on the set of atoms of the partition ξn induces an action
on the vertex set of the nth level, and these actions are consistent so that one obtains a faithful
spherically transitive action of G on the constructed tree (because the sequence of partitions ξn

tends to the partition into points). Here we have an isomorphism (G,X, µ) ≃ (G, ∂T, ν). The fact
that the rigid stabilizer ristG(A) has finite index in stG(A)|Tv for any atom A implies that the first
two subgroups in (2.5) have finite index in stG(v) and, hence, also in G. Thus, G is a branch group
in the sense of Definition 2.3(a). �

While proving this theorem, we have also proved

Corollary 2.7. An arbitrary action (G,X, µ) of weakly branch type is isomorphic to an action

of the form (G, ∂T, ν) for an appropriate spherically transitive tree T .

Below we give examples of groups and their actions on a regular (namely, on a binary) tree; in
these examples the groups are defined by recurrent relations. This method for defining groups will
be used throughout the paper. It corresponds to the representation of an element in the form (2.2),
but also employs the self-similarity of a regular tree, which allows one to identify sections (acting
on subtrees) with automorphisms of the entire tree. In the next section, we interpret this method
for defining groups in the language of automata and define the class of self-similar groups. All
the examples given below present self-similar groups. When discussing these groups, we sometimes
refer to the properties that will be defined only in the subsequent sections. The reader may omit
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appropriate places and return to them later, or, conversely, look into Sections 3 and 4, where these
concepts are defined.

Example 2.1 (infinite cyclic group Z generated by an odometer, or by a dyadic shift). Define
an automorphism α of a binary tree by recurrent relations on the set of vertices represented by
dyadic binary sequences:

α(0w) = 1w, α(1w) = 0α(w), (2.6)

w ∈ {0, 1}∗. Here {0, 1}∗ denotes the set of finite sequences (we will also use the term words) over
the alphabet {0, 1}. Note that in the recurrent relations that define this automorphism (as well
as other automorphisms defined below by recurrent relations), the sequence w can be assumed to
run through the set of right-infinite sequences over the alphabet {0, 1} (i.e., the set of points of the
boundary ∂T ).

In this example, the group Z is represented as a group generated by the automorphism α,
which is called an adding machine in the English-language literature (in the Russian literature, it
is translated as a dyadic odometer or a dyadic shift) because, under the natural identification of
infinite dyadic sequences with the corresponding integer 2-adic numbers, the transformation α turns
into the operation of adding unity. The odometer transformation is also defined for an arbitrary
finite alphabet of cardinality ≥ 2. It is obvious that the above action of Z is topologically and
essentially free.

The following is one of the basic examples illustrating essentially free actions.

Example 2.2 (the lamplighter group, or the group of dynamical configurations in the termi-
nology of V. Kaimanovich and A.M. Vershik, L). This is a solvable group of derived length 2 (i.e.,
a metabelian group) well known in group theory, which is defined as the semidirect product

(⊕

Z

Z2

)
⋊ Z (2.7)

(Z2 is a group of second order) in which the generator of the active factor Z acts on the direct sum
by a right shift by one step; in other words, L is isomorphic to the wreath product Z2 ≀ Z. This is
an infinitely presented group of exponential growth that plays an important role in geometric group
theory (see, for example, [100, 137]). The importance of this group and its multidimensional analogs
for the random walk theory was demonstrated by Vershik and Kaimanovich in [111]. In this paper
we will use the shorter name lamplighter, which is conventional in the Western literature. In [95],
the lamplighter was realized as a self-similar group generated by a two-state automaton over the
alphabet {0, 1}. Namely, L is isomorphic to the group generated by two automorphisms a and b of
a binary tree that are defined via the recurrent relations

a(0w) = 1a(w), a(1w) = 0a(w), b(0w) = 0a(w), b(1w) = 1b(w), (2.8)

w ∈ {0, 1}∗, or by the automaton defined by the Moore diagram shown in Fig. 3.1, which is described
in Section 3, where we discuss such diagrams.

The realization of the lamplighter as a self-similar group was used in [95] to calculate the spectral
measure of the Markov operator on L (spectral measures are discussed in Section 10), which, in
turn, made it possible to answer in [84] the question of Atiyah [10] as to whether there exist compact
manifolds with noninteger l2 Betti number. For our study, this example is important because the
action is essentially free (which played a significant role in calculating the spectral measure in [95]).
This is in fact the first nontrivial example of an essentially free action on a rooted tree.

Example 2.3 (torsion branch group of intermediate growth). This group was first considered
in [70] as a simple example of an infinite finitely generated 2-group and was later analyzed in many
papers, including [78, 71, 80, 72, 90].
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Fig. 2.2. Transformations of an interval that generate the group G.

Let us define four automorphisms a, b, c, and d of a binary tree by the recurrent relations

a(0w) = 1w, b(0w) = 0a(w), c(0w) = 0a(w), d(0w) = 0w,

a(1w) = 0w, b(1w) = 1c(w), c(1w) = 0d(w), d(1w) = 1b(w),
(2.9)

w ∈ {0, 1}∗, and denote by G the group generated by these automorphisms. Originally this group was
defined as a group generated by four transformations a, b, c, and d of the interval [0, 1] from which
dyadic rational points are removed (we do not change the notation of generators deliberately because
the new generators correspond to the old ones under a natural isomorphism that arises when dyadic
irrational points of the interval are identified with the corresponding binary sequences). These
transformations are defined in Fig. 2.2, where the letter P over an interval denotes the permutation
of the two halves of the interval and the letter I denotes the identity transformation.

The group G is a torsion branch group (i.e., each element g ∈ G has a finite order; in the present
case, the order has the form 2n, n = n(g)); moreover, G has intermediate growth between polynomial
and exponential. In other words, if we denote by γ(n) the growth function of G, i.e., the number
of elements that can be represented as products of at most n generators, then this function grows
faster than any polynomial but slower than any exponential (λ)n, λ > 1 [71, 72]. The group G acts
on the tree in a branch way and is therefore a branch group [80].

Notice another extremal property of nonfree actions; namely, it is clear from the definition of
the group G that the whole space of sequences Ω = {0, 1}N is a union of the sets of fixed points of
the generators b, c, and d. In [196, Definition 1.10], an action of a group on a set Y is called an
action of finite type if Y is a union of the sets of fixed points of a finite set of nonidentity elements
of the group. In our example, the set on which the group acts (namely, Ω) has the cardinality of
the continuum; however, one can easily construct an action of G on the set of integers Z such that
this action simulates the action (G,Ω) and Z, as before, is a union of the sets of fixed points of the
generators b, c, and d. To this end, we should imitate the structure of a binary tree by partitioning Z

into cosets with respect to the subgroups 2nZ, n = 1, 2, . . . , and construct an action of G on Z that
mimics the action of G on a binary tree. (For example, a acts by the permutation of neighboring
even and odd numbers 2i and 2i + 1, i ∈ Z, b acts on even numbers as a acts on Z (if one identifies
2i with i), while on odd numbers it acts as c, etc.)

Example 2.4. The group B = 〈a, b〉, called the Basilica, is defined by the relations

a(0w) = 0w, a(1w) = 1b(w), b(0w) = 1w, b(1w) = 0a(w), (2.10)

where w ∈ {0, 1}∗.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 273 2011



SOME TOPICS IN THE DYNAMICS OF GROUP ACTIONS 79

Fig. 2.3. The Julia set of the polynomial z2 − 1.

The action of B on a binary tree belongs to the weakly branch type. The group B is weakly branch
but not branch, because some of its quotients are not virtually abelian (while any proper quotient
group of a branch group is virtually abelian [80]). The group got its name due to the similarity of
the limit space (shown in Fig. 2.3) of Schreier graphs associated with B to the reflection in water of
Saint Mark’s Basilica in Venice. This is one of the most well-known self-similar groups in view of
the fact that it is isomorphic to the iterated monodromy group of the quadratic polynomial x2 − 1.
The theory of iterated monodromy groups and their relation to self-similar groups is the subject of
monograph [142] by Nekrashevych, who is mainly responsible for the development of this theory.

Example 2.5 (the Baumslag–Solitar group). The Baumslag–Solitar group BS(1, 3) = 〈x, y :
x−1yx = y3〉 is a representative of one of the most popular (in combinatorial group theory) series
of groups BS(1, n) = 〈x, y : x−1yx = yn〉. The map x → b, y → b−1a establishes an isomorphism
between BS(1, 3) and the group generated by three automorphisms of a binary tree that are defined
by the recurrent relations

a(0w) = 1c(w), b(0w) = 0a(w), c(0w) = 0b(w),

a(1w) = 0b(w), b(1w) = 1c(w), c(1w) = 1a(w).
(2.11)

As is shown in [22], the solvable Baumslag–Solitar groups BS(1, n) can be represented as self-
similar groups for any integer n; note that BS(1, 3) can be defined as a self-similar group in a
considerably different way compared with that described here (see Section 4 for more details on this
subject).

All the groups presented above are self-replicating groups (see the definition in the next section).
Consider an example of a non-self-replicating action.

Example 2.6 (free group F3 of rank 3). The relations

a(0w) = 0b(w), b(0w) = 1a(w), c(0w) = 1c(w),

a(1w) = 1b(w), b(1w) = 0c(w), c(1w) = 0a(w)
(2.12)

define a group isomorphic to F3; this statement was conjectured by S. Sidki and proved by Yaroslav
and Mariya Vorobets [186]. The action is transitive on the levels and essentially free, which follows
from the results formulated below (for example, from Proposition 4.11, or Proposition 4.12 together
with Corollary 9.8). However, this is not a self-replicating action, which can easily be verified by
calculating the generators of the first-level stabilizer and projecting them onto the left subtree T0

of the binary tree T .

Example 2.7 (the group C2 ∗ C2 ∗ C2). The group C2 ∗ C2 ∗ C2 (C2 is a group of order 2)
can be realized by the Bellaterra automaton, which has number 846 in the Atlas of self-similar
groups [35]. This automaton got its name from the locality (near Barcelona, Spain) where it was
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identified by my students E. Muntyan and D. Savchuk as an automaton generating the above-
mentioned free product (the relevant proof can be found, for example, in [142, Theorem 1.10.3]).
The generators satisfy the following recurrent relations:

a(0w) = 0c(w), b(0w) = 0b(w), c(0w) = 1a(w),

a(1w) = 1b(w), b(1w) = 1c(w), c(1w) = 0a(w).
(2.13)

The class of groups acting faithfully on rooted trees coincides with the class of residually finite
groups, i.e., groups such that, for an arbitrary nonidentity element, there exists a homomorphism
into a finite group such that the image of this element is different from the identity. Indeed, if a
group G acts faithfully on a tree T , then it is approximated by a sequence of finite groups G/stG(n),
n ≥ 1. The reverse implication results from the following proposition.

Proposition 2.8. Every finitely generated residually finite group has a faithful spherically

transitive action of nonbranch type on a spherically homogeneous rooted tree. More precisely, the

following assertions are valid.

(i) Let {Hn}∞n=1, H1 = G, be a decreasing sequence of finite-index subgroups in a group G with

trivial core (i.e., the only normal subgroup contained in the intersection
⋂∞

n=1 Hn is trivial). Let

mn = [Hn :Hn+1] be the sequence of values of the indices of the subgroups. Then there exist a rooted

tree Tm with branch index m = {mn}∞n=1 and a canonically defined faithful action of the group G
on it.

(ii) If {Hn}∞n=1 is a sequence of normal subgroups, then the construction of the action in (i)
leads to a nonbranch action. Moreover, the stabilizer of any vertex in this case coincides with the

stabilizer of the level to which the vertex belongs.

Proof. (i) Let us construct a rooted tree T in which the nth-level vertices are left cosets
with respect to the nth subgroup and two vertices gHn and fHn+1 are connected by an edge if
gHn ⊃ fHn+1. The action of the group G on this set by left multiplication induces an action on
the vertex set of the tree T ; this action preserves the incidence of vertices and is faithful since the
core of the sequence is trivial. The subgroup Hn is the stabilizer of the vertex Hn, and

⋂
g∈G Hg

n is
the nth-level stabilizer. It is also obvious that the action is transitive on the levels.

Now, let us prove (ii). First, notice that, replacing each term of the sequence by the intersection
of its conjugations by all elements of the group G (there are only a finite number of these conju-
gations), one can make it so that the sequence from (i) consists of normal subgroups (recall that
a residually finite group always has a decreasing sequence of normal subgroups of finite index with
trivial intersection). If Hn are normal subgroups, then Hn = stG(n) in the previous construction.

The action constructed in (i) is of nonbranch type. Indeed, since the action is transitive on the
levels, it suffices to show that for any n ≥ 1 the rigid stabilizer of some nth-level vertex is trivial.
Take vn = 1 ·Hn as a vertex of the nth level, and let g ∈ G, g /∈ Hn. Suppose that 1 �= f ∈ stG(vn),
i.e., f ∈ Hn. Then fgHn = gHn for any g ∈ G, and thus f ∈ stG(n); i.e., the stabilizer of the
vertex coincides with the stabilizer of its level. Suppose that the rigid stabilizer ristG(u) of some
vertex u = gHn of the nth level is nontrivial, 1 �= f ∈ ristG(u), and an element h ∈ G satisfies
hHn �= gHn. Then, for any k, k ≥ n, the vertex hHk (situated under hHn) is fixed for f ; hence,
f ∈ stG(k), and since this is valid for any k ≥ n and the intersection of the stabilizers is trivial, we
arrive at a contradiction. �

Definition 2.4. The tree constructed when proving this theorem is called a coset tree.

Thus, any residually finite group has a nonbranch action. At the same time, by no means every
residually finite group has a branch (or even a weakly branch) action, since this requires the presence
of nontrivial commutation relations.
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In this paper, we mainly consider the actions of abstract groups. However, the set of the topics
presented also makes sense and is important for the theory of profinite groups (i.e., compact totally
disconnected topological groups or, which is the same, projective limits of finite groups), and we
will sometimes briefly discuss some questions related to profinite groups (one can learn about the
theory of these groups, for example, in books [54, 192]).

If a tree T is infinite, then Aut(T ) is naturally an infinite profinite group; namely, it is the
projective limit of the sequence {Aut(T[n])}∞n=1, where T[n] is the subtree defined by vertices up to
the nth level inclusive. In this case, the topology is defined by the system of neighborhoods st(n),
n ≥ 1, consisting of the stabilizers of the levels. Two automorphisms are close in this topology if
their actions coincide up to the nth level inclusive, where n is large. This topology is metrizable,
and Aut(T ) has a countable base of open sets. The sequence {st(n)}n≥1 is called the principal

congruence sequence.

In the theory of actions on rooted trees and various problems of its applications, it is of interest
to study closed subgroups of the profinite group Aut(T ). This interest is motivated by the facts
that every profinite group with a countable base of open sets is embedded in Aut(T ) under an
appropriate choice of the tree T , and that quite often the properties of an abstract self-similar
group are connected with the properties of its closure in Aut(T ). For profinite groups, one can
introduce, in a similar way, the notions of branch group and self-similar group and consider the
types of actions that were defined above for abstract groups (Definition 2.2). These issues are
discussed, in particular, in [3, 79, 80, 82, 153, 6, 1, 13] and other publications.

An efficient method for analyzing an abstract group G is to consider its profinite completion Ĝ
and to study the properties of this completion and the dynamics of the action of G on Ĝ by left
translations. This action is viewed as a dynamical system with an invariant measure (the Haar
measure). When the pair (G,T ) possesses the congruence property with respect to the principal
sequence of subgroups stG(n), n = 1, 2, . . . , the profinite completion Ĝ is isomorphic to the closure G
in Aut(T ). When the action is transitive on the levels, the action of G on the boundary of the tree
is isomorphic to the action of G on the homogeneous space G/P , where the subgroup P is the
stabilizer of a boundary point (the choice of the point does not matter). It would be interesting to
find out what faithful actions of a residually finite group with pure point spectrum are isomorphic
to the actions by translations on the homogeneous space of the profinite completion. At least, the
following proposition holds.

Theorem 2.9. Suppose that (G,X, µ) is a dynamical system with a pure point spectrum, where

G is a countable group acting faithfully on X by transformations preserving the probability mea-

sure µ, and the system (G,X, µ) is isomorphic to a system (G′,K/P, λ), where K is a profinite

group and G′ is a group isomorphic to G under an isomorphism ϕ : G→ G′ (one of the cases of the

Mackey theorem [131] mentioned in the Introduction). Then there exist a spherically homogeneous

rooted tree T and an embedding φ : G→ Aut(T ) such that the following isomorphism of dynamical

systems holds:

(G,X, µ) ≃ (ϕ(G),K/P, λ) ≃ (φ(G), ∂T, ν),

where ν is a uniform measure on the boundary of the tree.

Proof. Since the group is countable, the profinite group K has a countable base of open sets
and any closed subgroup is the intersection of a sequence of open subgroups (see, for example, [192,
Proposition 0.3.3]). In particular, the subgroup P can be represented as P =

⋂∞
n=1 Pn, where

{Pn}∞n=1 is a decreasing sequence of open subgroups. Using this sequence, we construct a coset
tree T in the same way as in the proof of Proposition 2.8 (obviously, this tree is of type Tm for
an appropriate branch index m). Associating a point gP of the space K/P with a boundary point
ξ ∈ ∂T specified by the condition ξ ∈ gPn, n = 1, 2, . . . , defines a homeomorphism from K/P
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onto ∂T that maps the action of G on K/P to the corresponding action on the boundary and the
measure µ to ν. �

If G is a regularly branch group (see Definition 3.5 below), then the closure G is described
by a finite number of local prohibitions on its action, as demonstrated in [81, 175]. This fact
is a noncommutative analog of an ergodic-theory phenomenon associated with the concept of a
finite-type translation, when the phase space of a symbolic system is described by a finite set of
prohibitions. Therefore, group actions on a regular tree that are defined by a finite set of prohibitions
should be called actions of finite type. Let us explain this idea in more detail. Any automorphism
of a rooted tree T can be identified with a coloring of vertices of the tree with the elements of
appropriate symmetric groups (namely, a vertex u of level n can be labeled by an arbitrary element
of the symmetric group Sym(mn+1); such a coloring is called a portrait of the automorphism). If
the tree T is regular of degree d, then the set of such colorings is a configuration space on the
vertex set V = V (T ) with values in Sym(d), i.e., the space Sym(d)V equipped with the Tikhonov
topology. In this approach, the elements of the group Aut(T ) are identified with elements of the set
Sym(d)V . If we introduce a set of local prohibitions, i.e., for every vertex u, we declare that some
colorings of the tree Tu of depth k, where k is a preassigned number, are inadmissible, then, under
the condition that the set of admissible colorings (considered as tree automorphisms) is closed with
respect to the operation of composition and makes up a group, we obtain a closed subgroup of the
group Aut(T ).

The simplest example of this kind of prohibitions is a prohibition on the set of elements of a
symmetric group that can be used for labeling vertices. In other words, the choice of a subgroup
H < Sym(d) defines a subgroup GH < Aut(T ) whose elements are in bijection with elements of
the set HV . For example, as H, one can take a cyclic subgroup of order d (which acts by cyclically
permuting the edges emanating from an arbitrary vertex). If d = p is a prime number, then the
group thus obtained is a Sylow p-subgroup in Aut(T ). If H = Alt(d) is the alternating group,
then we obtain another interesting example of a group, which we denote by Alt(T ). The profinite
group Alt(T ), just as Aut(T ), is a branch group and is isomorphic to the infinite iterated wreath
product of copies of the group Alt(d). For d ≥ 5, this group is finitely generated as a topological
group (moreover, it is 2-generated, and the set of pairs of elements that generate this group has
a positive measure; i.e., two randomly chosen elements of this group generate it with positive
probability [29]). Bondarenko [32] found necessary and sufficient conditions for the infinite iterated
permutational wreath product of copies of a finite transitive group of permutations, considered as
a profinite group, to be topologically finitely generated.

However, even in the case of prohibitions of depth 2, a group defined by prohibitions may not
be finitely generated as a topological group [175, 176]. Note that the closure of the intermediate
growth group G is defined by prohibitions of depth 4, and it is quite possible that in the case of a
binary tree (i.e., when d = 2) there do not exist any topologically finitely generated groups defined
by prohibitions of depth k < 4. It is the group G that in fact prompted the present author to
introduce the concept of a group of finite type.

Let us introduce two more concepts related to abstract group theory (one of these concepts has
already been mentioned above).

Definition 2.5. (1) A group G is said to be just-infinite if it is infinite while any of its proper
quotient groups is finite.

(2) A group is said to be hereditary just-infinite if it is residually finite and any finite-index
subgroup is just-infinite (obviously, “finite-index subgroup” in this definition can be replaced by
“normal subgroup of finite index”).

Any infinite finitely generated group can be mapped by a homomorphism onto a just-infinite
group. In other words, the following proposition is valid.
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Proposition 2.10 [79]. Let G be finitely generated and infinite. Then there exists an H ⊳ G
such that G/H is a just-infinite group.

Proof. Consider the partially ordered (by inclusion) set N of normal subgroups of infinite
index of the group G. This set is nonempty (the trivial subgroup belongs to N ). Let us show that
any chain in N has a maximal element that belongs to N . Suppose the contrary: let Hα be a chain
consisting of normal subgroups of infinite index in G. Let H =

⋃
α Hα. It is obvious that H is a

normal subgroup and a maximal element for the chain Hα. Suppose that H does not belong to N ,
i.e., H has finite index in G. Then H is a finitely generated group and, hence, coincides with Hα

for some α. A contradiction. �

Thus, if one faces the problem of constructing an infinite finitely generated group possessing a
certain property P that is preserved under homomorphisms, then it is natural to try to construct
such an example in the class of just-infinite groups, because if such an example exists, then it exists
in this class as well.

Just-infinite groups generalize, in a sense, the class of simple groups and occupy a kind of
intermediate position between finite and infinite groups. The following theorem, which was derived
in [80] from Wilson’s results [191], elucidates the algebraic meaning of the concept of a branch
group. The role of this concept in problems of dynamical systems theory is discussed in [80, 87, 81].

Theorem 2.11. Let G be a just-infinite group. Then either G is a branch group or there exists

a finite-index subgroup H ≤ G isomorphic to a finite power Km of some group K that is either a

hereditary just-infinite group or a simple group.

We should warn the reader that the concept of hereditary just-infinite group adopted in the
present paper differs from that used by Wilson in [193] (namely, he did not assume the residual
finiteness of groups).

3. GROUPS OF AUTOMATA AND SELF-SIMILAR ACTIONS

Now we consider a narrower class of actions on regular rooted trees, namely, the actions defined
by invertible initial Mealy-type automata. The groups defined by such actions are called groups
of automata. An especially important subclass of the class of groups of automata is given by
self-similar groups.

Let X be a finite alphabet consisting of d letters. The set X∗ of all finite words over X is
identified with the vertex set of a d-regular rooted tree, which we denote by Td, T (X), or T if it
is clear what alphabet is meant (the empty word corresponds to the root vertex). For any word
v ∈ X∗ and an arbitrary letter x ∈ X, the vertices v and vx are neighbors in Td, and this defines the
edge set. Usually, we will consider alphabets of the form {1, 2, . . . , d} or {0, 1, . . . , d−1}. Important
is the case of a prime number d, and a special role is played by the binary alphabet {0, 1}, which is
associated with a binary rooted tree. A d-regular tree Td is an example of a spherically homogeneous
tree Tm and corresponds to the case when the branch index m is a constant sequence: mn = d,
n = 1, 2, . . . .

The group Aut(X∗) of all automorphisms of the tree X∗ has the structure of an infinite iterated

permutational wreath product ≀i≥1

permSym(d) (since Aut(X∗) ∼= Aut(X∗) ≀perm Sym(d), where the
symmetric group Sym(d) acts naturally by permutations on the first level of a tree, which con-
sists of vertices numbered by elements of X). This gives a convenient means of representing the
automorphisms in Aut(X∗) as

g = (g0, g1, . . . , gd−1)σg (3.1)

(this relation is analogous to (2.2)). Here g0, g1, . . . , gd−1 are the automorphisms induced by the
automorphism g on the subtrees growing from the first-level vertices, and σg is a permutation of
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the first-level vertices that is induced by this element (in other words, σg(x) = g(x), where x is an
arbitrary vertex of the first level). The automorphisms gi = g|i are called sections (or projections)
of the automorphism g at the first-level vertices.

The concept of section is generalized to an arbitrary vertex as follows. For any vertex u ∈ X∗,
the section g|u at u is the automorphism induced by the element g on the subtree Tu starting at
the vertex u. This automorphism g|u is uniquely defined by the relation g(uw) = g(u)g|u(w), which
holds for any word w ∈ X∗. The multiplication of automorphisms expressed in the form (3.1) is
performed as follows. If h = (h0, h1, . . . , hd−1)σh, then

gh =
(
gσh(0)h0, . . . , gσh(d−1)hd−1

)
σgσh.

Definition 3.1. An action of a group G ≤ Aut(T ) is said to be self-similar if every section
g|u of any element g ∈ G belongs to the group G under the canonical identification of Tu with T .

Self-similar actions can also be defined in the following equivalent manner.

Definition 3.2. An action of a group G of automorphisms of a tree T is said to be self-similar

if, for any element g ∈ G and any x ∈ X, there exist h ∈ G and y ∈ X such that the following
equality holds for an arbitrary w ∈ X∗:

g(xw) = yh(w). (3.2)

Definition 3.3. A group is said to be self-similar if it has a faithful self-similar action. A group
is said to be strongly self-similar if it has a faithful self-similar action and a finite system of generators
that is closed with respect to the operation of transition from an element to its section.

A convenient means of defining a self-similar group G generated by automorphisms gi, i ∈ I, is
given by wreath recursions (or recurrent relations). They have the form

gi =
(
w1(g1, . . . , gn, . . .), . . . , wd(g1, . . . , gn, . . .)

)
σgi , (3.3)

where wi, i ∈ I, are some words in the alphabet {g±1
n } (in other words, elements of the corresponding

free group of rank |I|). If the group is strongly self-similar, then the system of relations (3.3) is
finite. By an appropriate choice of generators, the words wi in (3.3) can be taken of length ≤ 1
and in the positive alphabet of generators (i.e., each wi is either an empty word representing the
identity or a word of length 1 representing a generator gj , j = j(i)). This form of recurrent relations
corresponds to representing a group by a Mealy-type automaton as described below.

These relations describe the action of every generator gi on the first level, as well as the action of
its sections in terms of the same set of generators. Iterating these relations and “unwinding” them,
one can derive ordinary (from the viewpoint of the combinatorial group theory) relations between
the generators (namely, one can find words, in the alphabet of generators and their inverse elements,
that define the identity element).

There exists a canonical embedding

Ψ: stG(1) →֒ G×G× . . .×G (3.4)

(d factors) defined as

g
Ψ�→ (g|0, g|1, . . . , g|d−1).

Iterating Ψ, we obtain a sequence of embeddings

Ψn : stG(n) →֒ Gdn
(3.5)

(in the last expression, the right-hand side denotes the direct product of dn copies of the group G).
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Definition 3.4. Let K,K0, . . . ,Kd−1 be subgroups of a self-similar group G that acts on a
tree T . We will say that K geometrically contains the product K0× . . .×Kd−1 and use the notation

K0 × . . .×Kd−1 � K

if K0 × . . .×Kd−1 ≤ Ψ(stG(1) ∩K).

Definition 3.5. Let G be a self-similar group of automorphisms of a tree T that acts tran-
sitively on the levels of the tree and K be a nontrivial subgroup of G. The group G is called a
regularly weakly branch group over K if

K × . . .×K � K.

If, in addition, the index of K in G is finite, then we say that the group G is regularly branch over K.

The meaning of this definition is that the group K is co-self-similar ; i.e., placing arbitrary
elements of the group K at the vertices of an arbitrary finite set Y of mutually orthogonal vertices
(i.e., Tu ∩ Tv = ∅, u, v ∈ Y , u �= v) and making these elements act on the subtrees with roots
at these vertices, we obtain an automorphism of the entire tree (acting trivially outside the union⊔

u∈Y Tu) that belongs to the group K. Note that a co-self-similar subgroup of a self-similar group
may not be self-similar. The property of co-self-similarity of a finite-index subgroup in a self-similar
group G is useful and allows one to solve various problems related to the group G (for the group G,
examples of application of co-self-similar groups are given in [81]).

Note that if G is a regularly branch group, then G is also a branch group because

Ψn(stG(n)) ≥ Ψn(ristG(n)) ≥ Kdn

is a subgroup of finite index in Gdn
and so ristG(n) is a subgroup of finite index in G.

Definition 3.6. (a) A self-similar group G is said to be self-replicating (the terms recurrent

group, self-reproducing group, and fractal group are also used in the literature) if, for any vertex
u ∈ X∗, the map ϕu : stG(u) → G defined by the relation ϕu(g) = gu (recall that gu is the section
of g at u) is an epimorphism.

(b) A self-similar group G is said to be strongly self-replicating if the projection of the stabilizer
stG(1) to an arbitrary vertex coincides with the entire group G.

Obviously, in the first part (a) of this definition, it suffices to restrict the consideration to
vertices of the first level because the property of self-reproducibility extends to the other vertices
automatically. If an action is transitive on the levels, then it suffices to check the property of self-
reproducibility for any specific vertex of the first level. It is also clear that condition (b) implies
that the projection of the stabilizer stG(n) of any level n to an arbitrary vertex of this level is the
entire group G. The group G is an example of a strongly self-replicating group.

In the study of self-similar groups, an important role is played by contracting groups defined
below. These groups possess many useful properties. For example, for these groups, there ex-
ists a branch algorithm for solving the word problem (which solves this problem in polynomial
time [72, 163]), and the so-called limit space and limit solenoid [142] are defined; these objects give
additional means for studying groups, as demonstrated in many papers by Nekrashevych and in
his monograph [142]. In the definition, we use the standard (in group theory) concept of length

of an element of a group with respect to a system of its generators; the length of an element is
the minimal length of the word that represents this element as a product of generating elements of
the group and their inverses. Recurrent relations for the generators of a self-similar group in the
case when |wi| ≤ 1 (i.e., when a group is given by an automaton presentation as will be discussed
below) obviously imply that the length of an element does not increase when passing to projections.
Contracting groups possess a stronger property.
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Definition 3.7. A strongly self-similar group G is said to be contracting if there exist constants
λ, 0 < λ < 1, and C such that, for any element g ∈ G, the length (with respect to the system of
generators defined by wreath recursions of type (3.3)) of the section gu at an arbitrary first-level
vertex u of the tree satisfies the following upper estimate:

|gu| < λ|g| + C.

If

|g| > C/(1− λ),

then the lengths of all projections of the first level (and hence of other levels as well) are strictly less
than the length of the original element. There exists only a finite set of elements (contained in the
ball of radius C/(1−λ)) whose lengths do not decrease when passing to projections. This set serves
as a kind of core of the group, because, when one describes the action of an arbitrary element on a
tree in terms of its projections at vertices of level n for sufficiently large n, everything is ultimately
reduced to the elements of the core. The concept of contracting group can also be introduced in a
wider context of self-similar groups. In this case, a self-similar group G acting on a regular rooted
tree is said to be contracting if there exists a finite set (core) such that, for any element g ∈ G, there
exists a level for which all projections of the element g to the vertices of this level belong to the
core. A minimal set possessing this property is called a nucleus. It is easily seen that for strongly
self-similar groups this definition of contractibility is equivalent to the one given above.

Historically, the first example of a contracting self-similar group was the group G. For this group,
the constants λ and C are equal to 1/2 and 1, respectively, and the nucleus is N = {1, a, b, c, d}.

An alternative language in which it is convenient to deal with self-similar groups is the language
of automata. Here we mean Mealy-type automata; a convenient means of describing these automata
is the Moore diagrams. The theory of such automata is presented, for example, in [119] (we also
recommend the introductory part of paper [35] for preliminary acquaintance with the subject, as well
as the survey article [87], in which the basic information is presented for a wider class of automata
(transducers), namely, for asynchronous automata). Paper [87] also contains detailed information
on the groups of automata that was available at the time of writing.

Definition 3.8. A Mealy-type automaton is defined as a quadruple (Q,X, π, λ), where Q is a
set called the set of states, X is a finite alphabet, π : Q × X → Q is a map called the transition
function, and λ : Q ×X → X is a map called the output function. If the set of states Q is finite,
then the automaton is said to be finite.

An automaton thus defined is said to be noninitial. Denote it by A. An initial automaton is
obtained from a noninitial one by choosing a certain state q ∈ Q as the initial state. An initial
automaton with initial state q is denoted byAq = (Q,X, π, λ, q). It can be interpreted as a sequential
machine (or transducer), i.e., an information processing machine. Namely, given a word w ∈ X∗,
an automaton acts on it as follows. It reads the first letter x in the word w and, depending on this
letter and on the state q, outputs a letter λ(q, x) ∈ X and changes its internal state to π(q, x). This
new state defines the action of the automaton on the remaining part of the word w, which proceeds
in the same manner. In other words, having read the next letter of the word w at the input, the
automaton immediately outputs a letter defined by the input letter and the current state (according
to the function λ), and then goes over to the next state according to the command of the transition
function π. The automaton thus defined belongs to the class of synchronous automata (i.e., for any
input symbol, an output symbol immediately appears at the output).

The output function λ can be extended to a function λ : Q × X∗ → X∗; for fixed q, this map
preserves the length of words and is consistent with taking the beginnings (prefixes) of words. Thus,
each state q of the automaton defines a map (which is also denoted by q) from X∗ to X∗ according
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to the relation q(w) = λ(q, w). We pay special attention to the case when the map λ(q, ·) is a
permutation on X for any q ∈ Q; then the map q : X∗ → X∗ is invertible and hence (in view of
the consistency of the action on prefixes) defines an automorphism of the tree X∗. In this case,
the automaton Aq is said to be invertible. A noninitial automaton A is invertible if all initial
automata Aq, q ∈ Q, are invertible. In what follows, we will consider only invertible automata,
although the study of semigroups generated by noninvertible automata is also of interest [21].

Two initial Mealy automata Aq and Bs with the same alphabet X are said to be equivalent if
they define the same map on the set of words X∗ (or, which is the same in the case of invertible
automata, define the same automorphism of the tree T (X)). Two noninitial automata A and B
are equivalent if, for any state q of the automaton A, there exists a state s of the automaton B
such that the automata Aq and Bs are equivalent and, conversely, for any state of the automaton B,
there exists a state of the automaton A such that the corresponding initial automata are equivalent.
For any finite automaton, there exists a minimal automaton (i.e., an automaton with the minimum
number of states) that is equivalent to it; the minimal automaton is unique up to equivalence.
There exists a classical minimization algorithm for finite automata [119], which was generalized to
asynchronous automata in [87].

On the set of initial automata, the operation of composition of automata is defined. This
operation corresponds to the operation of composition of the respective maps of the set X∗ (or the
respective tree automorphisms); i.e., the transformation defined by a composition of two automata
is the composition of the transformations defined by these automata. The formal definition is as
follows. The composition of automata Aq = (Q,X, π, λ, q) and Bs = (S,X, µ, ρ, s) is an automaton
C(q,s) with the set of states Q× S, the initial state (q, s), and the transition function γ and output
function δ defined as follows:

γ((r, t), x) = (π(r, x), µ(t, λ(r, x))), δ((r, t), x) = ρ(t, λ(r, x)).

The composition of automata is consistent with the equivalence of automata (i.e., replacing
the automata in a composition by equivalent ones, we obtain an automaton equivalent to the
composition of the original automata). Thus, the equivalence classes of invertible initial automata
form a group with respect to the operation of composition (in what follows, we will omit the word
“class”). This group is isomorphic to the automorphism group of the tree T (X) and is denoted by
GA(X). The composition of finite automata is a finite automaton with the number of states equal
to the product of the numbers of states of the factors (such an automaton may be equivalent to an
automaton with a smaller number of states; therefore, after applying the formal rule of composition,
one usually applies the procedure of minimization).

For each invertible initial automaton Aq, there exists an initial automaton A−1
q inverse to it,

which defines a transformation of sequences that is the inverse of the transformation defined by
the automaton Aq (thus, after minimization, the compositions Aq ◦ A−1

q and A−1
q ◦ Aq are trivial

automata, which define the identity transformation). In the language of Moore diagrams (which
will be discussed soon), when edges are labeled by pairs of alphabet symbols (input–output), the
automaton A−1

q is obtained from the automaton Aq by reversing the orientations of all edges (without
changing the labels) and preserving the state q as an initial one.

If A is a noninitial invertible automaton, then A−1 is a noninitial automaton obtained from A by
reversing the orientations of the edges in the same way as above. For each state of the automaton A,
there is a state of the inverse automaton A−1 such that the corresponding initial automata are
inverses of each other in the sense of the composition operation.

The group of all invertible initial automata contains the subgroup FGA(X) ⊂ GA(X) of finite
invertible automata. This subgroup is isomorphic to a certain countable subgroup of the group
Aut(T (X)), namely, to the group of tree automorphisms defined by finite automata, and depends
on the cardinality of the alphabet X. An embedding of the alphabet in a larger alphabet defines an
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embedding of the corresponding groups of automata. Therefore, there exists an increasing sequence
of groups of automata indexed by positive integers.

If we also consider asynchronous automata (as suggested, for example, in [87]), then there exists
only one (universal) group of finite invertible asynchronous automata, denoted by Q in [87], that
does not depend on the cardinality of the alphabet (if we consider only alphabets of cardinality > 1)
and contains all the groups FGA(X), |X| = 2, 3, . . . . This group (called the group of rational

homeomorphisms of the Cantor set) is of greatest interest; however, efficient methods for studying
this group have not yet been found, and very little is known about it. In particular, it is not known
whether or not this group is finitely presented; moreover, it is even not known whether or not it
is finitely generated. The only known thing is that the automorphism groups of cellular automata
are embedded in this group and that it contains the famous Thompson group F (as well as simple
Thompson groups and the Thompson–Higman groups), which will be touched upon in Section 8.
Note that the groups FGA(X) and GA(X) are not finitely generated because they can be mapped
by a homomorphism onto an elementary 2-group of infinite rank.

An important property of the group Q is that the word problem is solvable in this group.
Namely, to find out if a product of finite invertible asynchronous automata is the identity element
in the group Q, one should multiply the automata using the method described in [87] for calculating
the composition of asynchronous automata (it generalizes the classical method of composition of
automata in the synchronous case) and then minimize the product using the minimization algorithm
for asynchronous automata described in [87] (which again generalizes the classical minimization
algorithm for synchronous automata). In particular, the word problem is solvable in each of the
groups FGA(X) and, hence, in each finitely generated subgroup of the group of finite automata. It
is still unknown whether the isomorphism problem for groups generated by finite (synchronous or
asynchronous) automata is solvable; however, the recent result of Z. Šunić and E. Ventura shows
that the conjugacy problem may be unsolvable [177]. At the same time, for many groups generated
by automata, for example for the group G, the conjugacy problem is sometimes solvable even by a
polynomial algorithm in nonobvious situations [123, 161, 81, 130].

Definition 3.9. Let A be a noninitial invertible automaton. Each state of A defines an auto-
morphism of a tree T . The group generated by all such automorphisms (i.e., by the automorphisms
defined by the initial automata Aq, q ∈ Q) is called the automaton group defined by A.

The class of automaton groups coincides with the class of self-similar groups. Indeed, an action
on X∗ of an arbitrary element g of a self-similar group G can be represented as an automaton
map Aq, where the states of the automaton A are in bijection with the sections gw, w ∈ X∗, and
the transition and output functions are defined by relations (3.1); namely, π(g|u, x) = g|ux and
λ(g|u, x) = g|u(x) for any u ∈ X∗.

Of special interest are self-similar groups defined by a finite automaton (i.e., groups generated
by all states of one finite noninitial automaton). We call them strongly self-similar groups (it is
these groups that are called self-similar in some publications).

A convenient illustrative means for defining automata are Moore diagrams. Such a diagram is
an oriented graph whose vertex set is identified with the set of automaton states Q and, for each
vertex q ∈ Q and each letter x ∈ X, there exists an oriented edge connecting q with π(q, x); this
edge is labeled by the pair (x|λ(q, x)) (often the parentheses are omitted and the separating vertical
line is replaced by a comma or another separating mark; often multiple edges between two vertices
are replaced by a single edge with a multiple lable). Examples of such diagrams are given by the
diagrams shown in Figs. 3.1 and 3.2.

The automata defined by these diagrams generate the lamplighter group mentioned in the pre-
ceding section and the free product of three copies of an order 2 group, respectively (i.e., the groups
from Examples 2.2 and 2.7).
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Fig. 3.1. Automaton generating the group L.
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Fig. 3.2. Bellaterra automaton.
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Fig. 3.3. Automaton generating IMG(z2 + i); σ = (0, 1) ∈ Sym(2).
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Fig. 3.4. Automaton generating the group G; σ = (0, 1) ∈ Sym(2).

Recall that for an invertible automaton and any of its states q ∈ Q, the map λ(q, ·) : X → X is
a permutation of the alphabet. Therefore, it is often convenient to describe the output function by
labeling the states of the automaton with the respective elements of the symmetric group Sym(X)
and keeping the first part of the label (which describes the transition function) on the edges, as
shown in Figs. 3.3 and 3.4a (Fig. 3.4 represents the same automaton in two ways). For the states
labeled by the identity element, the label is sometimes omitted (as is the case for the automaton
shown in Fig. 3.3), or the symbol e is used to denote the identity element of the symmetric group
Sym(d) (as in Fig. 3.4a).

The automata shown in Figs. 3.1–3.4, generate the lamplighter group, the Bellaterra group, the
iterated monodromy group IMG(z2 + i) of the map z → z2 + i (for the iterated monodromy groups,
see [18, 142]), and the intermediate growth group G, respectively.
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The groups defined by finite automata are objects of greatest interest; however, these groups are
hard to analyze. One of the natural problems arising when studying these groups is the problem of
their classification in the class (m,n) consisting of groups generated by m-state invertible automata
over an n-letter alphabet, m,n ≥ 2 (at least for small values of the parameters m and n). This
problem is easily solved for the class (2, 2) (see [87], where it is shown that there exist six such
groups, namely, {1}, Z/2Z, Z/2Z ⊕ Z/2Z, Z, the infinite dihedral group D∞, and the lamplighter
group). The classes (3, 2) and (2, 3) have much higher degree of complexity and contain at most
115 and 139 groups, respectively [35, 139]. To date, the class (3, 2) of groups has been studied in
much more detail compared with the class (2, 3).

4. FREE ACTIONS ON THE BOUNDARY

In this section, we focus our attention on the actions on a rooted tree that induce free (in the
topological or metric sense) actions on the boundary ∂T of the tree.

However, before passing to the consideration of free actions, we recall some concepts related to
dynamical systems and formulate an important proposition. An action (G,X) (G is a group and
X is a topological space) is minimal if it has no nonempty proper closed subsets (in other words,
the closure of the orbit of any point is equal to the entire space X). A dynamical system (G, ∂T ) is
topologically transitive if, for any two open sets U, V ⊂ X, there exists an element g ∈ G such that
gU ∩V �= ∅. For separable metric spaces, this is equivalent to the existence of a point with a dense
orbit. Finally, the unique ergodicity means the uniqueness of an invariant probability measure. The
unique ergodicity implies ergodicity. Many of the definitions given below (as well as some of the
propositions) make sense for actions on general topological spaces; however, we will mainly restrict
ourselves to actions on the boundary of a rooted tree.

Proposition 4.1 [87, Proposition 6.5]. If a group acts on a spherically homogeneous tree, then

the following conditions are equivalent :

(i) The action is spherically transitive.

(ii) The dynamical system (G, ∂T ) is minimal.

(iii) The dynamical system (G, ∂T ) is topologically transitive.

(iv) The dynamical system (G, ∂T, ν) is ergodic.

(v) The measure ν is a unique invariant σ-additive probability measure.

Recall that the uniform measure ν on the boundary of a tree was defined in Section 2.

We restrict ourselves to the proof of the equivalence of conditions (i) and (iv) and refer the
reader to [87] for all the details.

Proof. Indeed, if for some level there exists a proper nonempty invariant subset U of its
vertices, then the union

⋃
u∈U Cu of the corresponding cylinders yields a nontrivial invariant subset

of the boundary.

There are at least two natural methods for proving the converse statement. One can apply the
Lebesgue density theorem and use a G-invariant metric of the form dλ̄ on the boundary and the
fact that under the action of the group elements the images of a ball Bx(δ) of radius δ centered at a
point x are also balls of the same radius and either are disjoint or coincide with each other (see [87,
Proposition 6.5] for details). One can also consider, as suggested in [81], a unitary representation π
of the group G in the Hilbert space H = L2(∂T, ν); the representation is defined by the action
of G on the boundary by the transformations (π(g)f)(x) = f(g−1x), which preserve the measure ν.
The ergodicity of the dynamical system (G, ∂T, ν) is equivalent to the fact that the G-invariant
functions in H are constant. Denote by Hn the subspace of dimension m1 . . . mn in H generated
by the characteristic functions of cylindrical sets Cw: |w| = n. Then the spaces Hn, n = 1, 2, . . . ,
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form an increasing system of subspaces whose union is dense in H. The spaces Hn are invariant
with respect to π, and the restrictions πn = π|Hn are isomorphic to permutation representations
for the actions of G on levels. Since the action on levels is transitive, only constant functions are
invariant for the representations πn. Assuming that f ∈ H is a nonconstant invariant function
and expanding it (as an element of the Hilbert space) in a sum

∑∞
i=0 fi (corresponding to the

decomposition H = C⊕⊕∞
i=1 H⊥

n , where H⊥
n = Hn⊖Hn−1 and the first term H0 = C corresponds

to constant functions), we arrive at a contradiction. �

Let G be a countable group acting on a complete metric space X. Denote by X− the set of
points with nontrivial stabilizer and by X+ the set of points with trivial stabilizer.

Definition 4.1. 1. The action (G,X) is said to be absolutely free if all points have trivial
stabilizer.

2. The action (G,X) is said to be relatively free if there exists at least one point with trivial
stabilizer.

3. The action (G,X) is topologically free if X− is a meager set (i.e., it can be represented as a
countable union of nowhere dense sets).

4. Suppose that the action (G,X) has a G-invariant (not necessarily finite) Borel measure µ.
The system (G,X, µ) is said to be essentially free if µ(X−) = 0.

For countable groups, the concepts of topological freeness and essential freeness can be formu-
lated in terms of the sets of fixed points of individual elements (namely, for any 1 �= g ∈ G, the set
Fix(g) is meager or has measure 0, respectively).

In what follows, we will use the terminology introduced mainly for the case of actions on rooted
trees; however, notice that below we sometimes deal with general topological spaces. So, suppose
given a faithful action of an infinite countable group G on a rooted tree T , ξ ∈ ∂T . Denote by
stG(ξ) the stabilizer of a point ξ on the boundary of the tree, by Fix(g), as above, the set of g-fixed
points of the boundary, by (∂T )+ the set of points with trivial stabilizer (we will call these points
free points), and by (∂T )− its complement.

The following concept proves useful for constructing examples of free actions.

Definition 4.2. For a vertex u of a tree, the subgroup trivG(u) consisting of elements that
fix u and act trivially on the subtree Tu is called the trivializer of the vertex u.

Thus, an action is locally nontrivial (see Definition 2.2) if and only if the trivializers of all vertices
are trivial.

Proposition 4.2. The action of a countable group on the boundary of a tree is topologically

free if and only if it is locally nontrivial.

Proof. Indeed, if the action is topologically free and we assume that trivG(u) �= 1, then all
points of the boundary that belong to the cylindrical set Cu have a nontrivial stabilizer; hence,
Cu ⊂ (∂T )−; however, since Cu is an open set, we arrive at a contradiction.

Now, suppose that the action is not topologically free. The set of points with nontrivial sta-
bilizers can be represented as a union

⋃
1�=g∈G Fix(g). Hence, for some g ∈ G, g �= 1, the set

Fix(g) contains an open subset and, hence, also contains a certain cylindrical set Cu. In this case,
g ∈ trivG(u), which proves that the trivializer trivG(u) is nontrivial. �

The following statement is a corollary of the proposition proved above and of the fact that the
uniform measure on the boundary is uniformly “distributed” over this boundary. This statement
also follows from a more general proposition (see Corollary 4.10).

Corollary 4.3. A spherically transitive essentially free action on the boundary of a tree is

topologically free.
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It is obvious that the absolute freeness of an action implies other types of freeness formulated
in Definition 4.1, which in turn imply the faithfulness of the action; however, there exist faithful
actions that have no free orbit. For example, the group G from Example 2.3 acts nonfreely on each
of its orbits. This follows from the fact that G is a contracting self-similar group; for such groups,
it is shown in [16, 17] that each orbit has polynomial growth. Since the growth of the group G
is intermediate between polynomial and exponential, the action on orbits is nonfree. In [87], the
authors raised the problem of constructing an ergodic action on a rooted tree for which the Schreier
graphs (which will be considered in the subsequent sections) generic in the topological sense would
differ from the Schreier graphs generic in the metric sense. Such an example can be derived from [28];
in an explicit form it was constructed in [2]. Moreover, in [2] there is a construction of a free group
acting on a rooted tree such that the action is free in the topological sense (i.e., a generic Schreier
graph is a Cayley graph) but not free in the metric sense. However, there are no such examples for
actions of strongly self-similar groups because of the following theorem established by Kambites,
Silva, and Steinberg on the basis of the results and methods of [95].

Theorem 4.4 [112, Theorem 4.2]. For strongly self-similar groups (i.e., groups defined by

finite automata), any topologically free action is essentially free.

Proof. For the proof of this theorem, see Corollary 9.8 below. �

The following simple proposition will be useful in Section 5 for proving the essential freeness of
some actions.

Proposition 4.5. For strongly self-similar groups acting on a binary tree, the action is essen-

tially free if and only if the rigid stabilizer of the first level is trivial.

Proof. Indeed, if ristG(1) �= 1, then, obviously, the action is not essentially free. By Propo-
sition 4.2, the essential freeness is equivalent to local nontriviality. Let u be a vertex with the
minimum level that has a nontrivial trivializer trivG(u) in G and 1 �= g ∈ trivG(u). Let v be the
vertex preceding the vertex u in the tree. Then the section gv is nontrivial (since |u| is minimal)
and belongs to ristG(1). �

The following proposition is proved in a similar way.

Proposition 4.6. Let G be a strongly self-similar group acting on a regular rooted tree T .

Then the action (G, ∂T, ν) is essentially free if and only if the trivializers of all first-level vertices

are trivial.

Proof. If the trivializer of some first-level vertex is nontrivial, then, obviously, the action is
not essentially free. Suppose that, conversely, the action is not essentially free. By Proposition 4.2
and Theorem 4.4, the action is locally trivial. Let u be a minimum-level vertex that has a nontrivial
trivializer trivG(u) in G, and 1 �= g ∈ trivG(u). Let v be the vertex preceding the vertex u in
the tree. Then the section gv is nontrivial (since |u| is minimal), belongs to G, and belongs to the
trivializer of some first-level vertex. �

Remark 4.1. A similar proposition holds without the assumption of strong self-similarity of
a group provided that the essential freeness is replaced by the topological freeness.

For an automorphism defined by a finite initial automaton Aq on a homogeneous tree, the set
of fixed boundary points can be described algorithmically and has a transparent structure. Let us
describe this set.

We will assume that an automaton Aq defined over a d-letter alphabet X is minimal and
defines a nonidentity tree automorphism. Denote by Fix(q) the set of fixed boundary points of the
transformation defined by the automaton Aq. In order for Fix(q) to be nonempty, it is necessary
that the state q in the Moore diagram of the automaton be labeled by the identity element e.
Suppose that Aq has a state t that defines the identity automorphism of the tree (i.e., a state t
such that it is labeled by the identity element e of the symmetric group and one cannot leave it by
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means of the transition map in the automaton because all edges emanating from t in the Moore
diagram also end in t; obviously, if there is such a state in a minimal automaton, then it is unique).
Denote by R the set consisting of words that define paths in the Moore diagram which lead from q
to t and pass only through the states labeled by the identity element. Denote by F the set of states
of the automaton Aq that are labeled by e but are different from the state t (recall that q ∈ F ).
Let L be the set of words in the alphabet X of the automaton that define paths starting in the
state q and passing only through the states in F . Introduce the following subtree T ′ of the d-regular
tree defined by the alphabet X. The subtree T ′ consists of all vertices defined by the words in L
and of all intermediate vertices and edges connecting them with the root vertex. Let ∂T ′ be the
boundary of the tree T ′. It is a closed subset of the boundary ∂T and is nonempty if and only if
the Moore diagram of the automaton Aq contains at least one cycle all of whose states lie in the
set F . The languages R and L are regular (according to the classical classification of Chomsky of
formal languages, see [104]) languages defined by the acceptor automaton obtained from the Moore
diagram of the automaton Aq by a simple reconstruction.

Proposition 4.7. The set of fixed points can be decomposed into a disjoint union

Fix(q) = ∂T ′ ⊔
⊔

w∈R
Cw

(where, as before, Cw stands for the cylindrical set defined by a word w).

Recall that for actions on the boundary of a tree, the minimality is equivalent to the topological
transitivity by Proposition 4.1.

Proposition 4.8. Suppose that an action of a countable group G on a complete metric space X
is minimal and the stabilizer stG(x) is trivial for some point x ∈ X. Then the action is topologi-

cally free.

Proof. To prove this proposition, we need the following concept.

Definition 4.3. Let X be a topological G-space.

(α) For an element g ∈ G, a point x ∈ X is said to be g-typical if either gx �= x or g acts trivially
in some neighborhood of the point x.

(β) A point x ∈ X is said to be G-typical (or simply typical) if it is g-typical for any ele-
ment g ∈ G.

As before, denote by X+ the set of free points (points with trivial stabilizer), by Og the set of
g-typical points, and by O the set of G-typical points, and let Ng = X \Og. Then it is easily seen
that Og is an open dense set, and hence O =

⋂
g∈G Og is the intersection of a countable number of

open dense sets. We argue that the inclusion O ⊆ X+ holds. Indeed, suppose that some point y ∈ O
has a nontrivial stabilizer. Let f ∈ stG(y), f �= 1. Let us show that an arbitrary neighborhood Uy

of the point y contains a point that can be moved by the element f (i.e., it is not f -fixed); this
leads to a contradiction. Thus, y /∈ Of in this case.

Let x be a point from the hypothesis of the proposition. In view of the minimality, the orbit of
the point x is dense and G acts freely on this orbit. Let z be a point of the orbit Gx that belongs
to Uy. Then fz �= z, and since such a point exists in any neighborhood of the point y, we arrive at
a contradiction. Thus, the complement of X+ is a meager set. The proposition is proved. �

While proving the above proposition, we have also proved

Corollary 4.9 [87, Proposition 6.20]. The set of G-typical points of a countable group is

comeager (i.e., its complement is meager).

Corollary 4.10. For minimal actions of a countable group G on complete metric spaces, the

essential freeness with respect to at least one G-invariant measure µ implies the topological freeness.
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Proof. Indeed, in the case of an essentially free action, the set of points with trivial stabilizer
has full measure; hence this set is nonempty, and it remains to apply Proposition 4.8. �

It follows from the results of Abért and Virág obtained in [6] that m, m ≥ 2, randomly taken
automorphisms of a rooted tree generate a free group that acts essentially freely on the boundary
with respect to the uniform measure. Moreover, in [3], Abért and Elek developed a method that
allows one to construct a continuum of pairwise weakly inequivalent free actions for a wide class of
groups, including free groups and groups with Kazhdan’s T-property. Some conditions of algebraic
character that guarantee the topological freeness of specific actions on the boundary of a tree have
been announced by Abért in a number of his talks. Below we present a few conditions of algebraic
character that we could find; in some cases, these conditions may coincide with Abért’s conditions.

Definition 4.4. 1. We say that a group G has the property of hereditary nontriviality of

intersections if, for any subgroup H ≤ G of finite index, the intersection K∩L of any two nontrivial
normal subgroups K,L � H is nontrivial (this is equivalent to the fact that any subgroup H ≤ G
of finite index is not a subdirect product of two nontrivial groups).

2. We say that a group G is hereditary free of finite normal subgroups if any subgroup of finite
index in G does not contain nontrivial finite normal subgroups.

Proposition 4.11. Suppose that a countable group G acts faithfully and spherically transitively

on a rooted tree T and that at least one of the following conditions is satisfied :

(1) G is torsion-free and possesses the property of hereditary nontriviality of intersections ;

(2) G is hereditary free of finite normal subgroups ;

(3) the tree T is binary, and G has the property of hereditary nontriviality of intersections ;

(4) G is a hereditary just-infinite group (see Definition 2.5).

Then the action (G, ∂T ) is topologically free.

Proof. 1. Let us prove that each of the sets Fix(g), g �= 1, is nowhere dense and thus (∂T )− =⋃
g∈G, g �=1 Fix(g) is meager.

Suppose that this is not so, and let, for some element g ∈ G, g �= 1, the set of fixed points
Fix(g) (which is closed) contain a neighborhood Ux of some point x ∈ ∂T . Then there exists a
vertex u such that the cylindrical set Cu is contained in Ux. In this situation, the element g fixes
the vertex u and acts trivially on the subtree Tu. Consider the trivializer trivG(u). The intersection
Ku = trivG(u) ∩ stG(n), n = |u|, is nontrivial since the group trivG(u) is infinite (g ∈ trivG(u) and
g is an element of infinite order), whereas stG(n) is a subgroup of finite index in G. It is easily seen
that Ku is a normal subgroup in stG(n).

Since the group G acts transitively on the levels, for every nth-level vertex v one can similarly
define a normal subgroup Kv < stG(n), which consists of elements acting trivially on the subtree Tv .
The subgroup Kv is conjugate to Ku in G. Since G has the property of hereditary nontriviality of
intersections, for any vertices v and w, |v| = |w| = n, the intersection Kv,w = Kv ∩Kw is nontrivial
and is a normal subgroup in stG(n). For a subset E of the set of nth-level vertices, denote by
KE the subgroup in stG(n) that consists of elements acting trivially on the union of subtrees Te,
e ∈ E. We have shown that for sets E of cardinality 1 or 2 the subgroup KE is a nontrivial normal
subgroup in stG(n). However, the intersection of any such groups is again a nontrivial normal
subgroup in stG(n), and, arguing by induction on the cardinality of E, we conclude that KLn is a
nontrivial group, where Ln is the set of nth-level vertices, which contradicts the faithfulness of the
action of G.

2. The proof of this case is similar to that of the previous case. Since the trivializer trivG(u)
is a normal subgroup in stG(u), it is infinite. Further, the proof repeats the arguments of the
preceding part.
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3. If the tree is binary, then the stabilizer of the first level coincides with the stabilizer of each of
the two vertices of the first level. Take a minimum-level vertex u such that the trivializer trivG(u)
is nontrivial. Since G acts faithfully, u is not a root vertex. Let v be the vertex preceding the
vertex u in the tree, |u| = n, and w be a neighboring vertex for v that belongs to the same level
as u (i.e., |w| = n). Let us replace in our arguments the pair (G,T ) by (Gv , Tv), where Gv is the
restriction of the action of stG(v) to the subtree Tv (note that the group Gv may not act faithfully
on Tv, but Gv acts transitively on the levels of the tree Tv by virtue of Proposition 2.1, which gives
necessary and sufficient conditions for the action of a group G to be transitive). The trivializers
trivG(u) and trivG(w) are conjugate in Gv and are normal subgroups in the subgroup Mv ≤ Gv

of index 2 that stabilizes the vertices u and w. Since Gv has finite index in G, Mv also has finite
index in G. Therefore, the intersection Ru,w = trivG(u)∩ trivG(w) is nontrivial and is contained in
the trivializer trivG(v). We have obtained a contradiction to the assumption that the level of the
vertex u is minimal.

4. Let G be hereditary just-infinite. If the trivializer trivG(u) is different from 1 for some
vertex u, then trivG(u) is a nontrivial normal subgroup in stG(u) and hence has finite index in
stG(u). Then the action of the group stG(u) is nontransitive on the levels of the subtree Tu, which
contradicts the transitivity of the action of G. �

Here is another condition of algebraic character that guarantees the topological freeness of an
action.

Proposition 4.12. Let p be a prime number and a sequence m = {mn}∞n=1 defining a branch

index consist of powers of the number p. Suppose that a countable group G acts faithfully and

spherically transitive on Tm and, for each n and each nth-level vertex w, any element of the group

acts on the set of edges emanating from w by powers of the cyclic permutation of order mn+1.

Suppose that all abelian subgroups in G are cyclic. Then the action (G, ∂T ) is topologically free.

Before proving this proposition, notice that the condition on the abelian subgroups in the propo-
sition is automatically satisfied if G is a torsion-free Gromov hyperbolic group.

Proof. Suppose the contrary, and let 1 �= g ∈ trivG(u) for some vertex u. It is obvious that u is
a nonroot vertex. Take u with the minimum norm |u|, and let v be a predecessor of u, Gv = stG(v),
and Gv = Gv|Tv be the restriction of Gv to the subtree Tv (the kernel of the homomorphism
Gv → Gv is the trivializer trivG(v)). The group Gv , just as its homomorphic image Gv, acts
spherically transitively on the subtree Tv. The element g fixes v, and its projection ḡ to the
subtree Tv stabilizes all first-level vertices of this tree. Let L = {w1, . . . , wc, . . . , wq} be the set of
first-level vertices of the tree Tv and ḡ = (gw1 , . . . , gwc , . . . , gwq) be a decomposition of the element ḡ
into projections at the first-level vertices; here the index c corresponds to the vertex u, and q = mk+1

denotes the number of first-level vertices of the tree Tv, where k is the level of the vertex v in the
tree T ; let q = pl. In view of the minimality of |u|, the element ḡ can be assumed to be nontrivial.
The projection gwc is the identity element.

Denote by E the nonempty subset consisting of vertices x for which the corresponding projec-
tion gx is trivial. In addition to the assumption that |u| is minimal and ḡ is nonidentity, we require
that the element g should be chosen so that the cardinality |E| is maximal (in this case, obviously,
E �= L). Suppose that a ∈ Gv acts on the first level of the subtree Tv by a cyclic permutation σ of
order q = pl (such an element exists in view of the spherical transitivity of the action of Gv on Tv),
and ā is the projection of a onto this subtree. Then the conjugate element ḡā has σ−1(E) as the
set of vertices in L with trivial projections. Consider the commutator f = [g, ga] and its projection
f̄ = [ḡ, ḡā] ∈ Gv. Since f has at least |E ∪ σ−1(E)| > |E| identity components in the decomposition,
we have f = 1; i.e., g and ga commute. Hence, by virtue of the hypothesis of the proposition, there
exists an element h ∈ Gv such that g, ga ∈ 〈h〉 with h ∈ stGv(1) because h ∈ 〈g, ga〉. Let g = hi

and ga = hj .
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Let h̄ be the projection of h onto Tv. Then h̄ ∈ stGv
(1) and h̄ = (h1, . . . , hq). Let F be the

set of identity coordinates of this vector and F c be its complement. Suppose that F c ∩ E �= ∅.
Then i = pt for some positive t. Similarly, if F c ∩ σ−1(E) �= ∅, then j = pr for some r. If both
above intersections are nontrivial, then, assuming that t ≥ r, we find that the element ḡā = h̄j ,
represented as a vector, has identity components at the vertices from the set E ∪ σ−1(E), which
contains E as a proper subset. This contradicts the assumption of the maximality of |E|.

Suppose that F c∩E = ∅. Then F ⊇ E, and the equality F = E holds in view of the maximality
of |E|. In this case, the set σ−1(E) of identity components of the element ḡā = hj contains the
set E and does not coincide with it, a contradiction. The case of F c ∩ σ−1(E) = ∅ is considered
similarly. �

5. EXAMPLES OF ESSENTIALLY FREE ACTIONS

We begin this section with a few specific examples of essentially free actions of strongly self-
similar groups and end it with the discussion of the strategy of classification of all essentially free
actions of strongly self-similar groups acting on a binary tree. The first two examples, modulo the
algebraic result behind them that identifies the groups generated by the respective automata, are a
simple application of the general results obtained in the previous section.

Example 5.1. We begin with an example of the free rank 3 group F3 realized as the group
generated by the automaton shown in Fig. 5.1.

This automaton, with number 2240 in the classification of groups generated by three-state
automata (see [35]), was constructed by Aleshin in [7] along with another five-state automaton B
with the aim of generating the free group F2 by the initial automata Aq and Bs for appropriate
states q and s. Unfortunately, in [7] Aleshin presented only a scheme of proof.

A complete proof, involving new ideas and techniques compared with the lemmas formulated
in [7], was published by M. Vorobets and Ya. Vorobets [186], who proved not only that Aq and Bs

indeed generate a group isomorphic to F2, but also that G(A) ≃ F3, i.e., that the states of the
automaton A are independent with respect to the operation of composition of automata. Later
on, they constructed infinite series of automata that generate free groups of different ranks [187].
Note that prior to the publication of [186] free groups of some (sufficiently high) ranks were realized
as self-similar automaton groups by Glasner and Mozes [68]. In addition to the difference in the
scheme of the proofs of propositions in these papers, an important difference in the realization of
free groups by automata in them lies in the fact that the states of automata in [68] define not only
basis elements but also their inverses, whereas in [186] different states of an automaton correspond
to different basis elements.

Since a noncommutative free group obviously satisfies both the condition of hereditary nontriv-
iality of intersections and the condition of hereditary freeness of finite subgroups, it follows from
Proposition 4.11 that any self-similar spherically transitive action of this group is topologically free.
However, in this example the action is not absolutely free, because the stabilizers of some points are
nontrivial (for example, Ya. Vorobets pointed out (in a private communication) that the stabilizer

a
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0 00, 1
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σ
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Fig. 5.1. The Aleshin automaton.
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of the point 1∞ is an infinitely generated group). It would be interesting to describe, for this and
the next example, all boundary points with nontrivial stabilizer as well as the stabilizers of these
points themselves. It would also be interesting to find a realization of the free group of rank ≥ 2
as a strongly self-similar group acting absolutely freely on the boundary of an appropriate tree (if
such a realization exists).

Example 5.2. The second interesting example of an essentially free action is given by the
Bellaterra automaton, which is shown in Fig. 3.2 and has number 846 in the classification in [35].
This automaton generates the free product C2 ∗ C2 ∗ C2 of three copies of an order 2 group. The
relevant result was obtained by my students E. Muntyan and D. Savchuk, and its proof can be
found in [142, p. 25].

Since this group obviously satisfies both conditions of Definition 4.4, it follows from Proposi-
tion 4.11 that the group C2 ∗ C2 ∗ C2 realized by the automaton in Fig. 3.2 acts essentially freely
on the boundary of a binary tree.

The realizations of F3 and C2 ∗C2 ∗ C2 by finite automata will allow us to effectively construct
(in Section 10) sequences of asymptotic expanders, which will be defined below.

Example 5.3. Now, consider the group L from Example 2.2, which is realized by the automa-
ton in Fig. 3.1 and is called the lamplighter group. The lamplighter group acts on a tree essentially
freely, as was first shown in [95] with the help of relatively complex (though useful for some problems)
arguments. In particular, it was found in [95] that if the stabilizer of some boundary point of the
binary tree is nontrivial for the action of the group L defined by the automaton in Fig. 3.1, then
this stabilizer is an infinite cyclic group (see Proposition 4 in [95]).

In [87], the authors proposed a more algebraic approach to the analysis of the action of L on a
tree. Recall that the generators corresponding to the states a and b of the automaton satisfy the
recurrent relations a = (a, b)σ and b = (a, b), which imply that the element c = b−1a = σ is an
involution and a simplest finitary (i.e., acting nontrivially only in a neighborhood of the root vertex)
automorphism that permutes the two vertices of the first level and acts trivially on the subtrees
that grow from these vertices.

Denote by α and γ the standard generators of the lamplighter defined as the wreath product
Z2 ≀ Z. Namely, α ∈⊕

Z
Z2 is defined by the relation

α = (0, . . . , 0, 0, 1, 0, 0, . . .),

where the group of order 2 is represented in the additive form and consists of elements 0 and 1; the
only nonzero component of the vector that defines α occupies the zeroth coordinate, while γ is the
generator of the infinite cyclic group that plays the role of the active group in the wreath product.
Then the map α→ c, γ → b induces an isomorphism between the group represented by the wreath
product Z2 ≀ Z and the group generated by the automaton. It is easily seen that the elements b
and c act on the boundary points (i.e., on infinite binary sequences) as follows:

b(x1x2x3 . . .) = (x1 + x2)(x2 + x3)(x3 + x4) . . . ,

c(x1x2x3 . . .) = (x1 + 1)x2x3 . . .

(addition is modulo 2). Consider the ring R = Z2[[t]] of formal power series over a two-element
field. The elements of the ring are in natural bijection with the elements of the boundary of the
tree (namely, a formal series is associated with a binary sequence of its coefficients).

Under such an identification, the generators of the lamplighter act by transformations of the
ring R as φα : F (t) → F (t) + 1 and φγ : F (t) → (1 + t)F (t); hence, the lamplighter acts on the
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ring R by transformations of the form

F (t)→ (1 + t)mF (t) +
∑

s∈Z

ks(1 + t)s, ks ∈ Z2,

and this action is conjugate to the lamplighter’s action defined by the automaton in Fig. 3.1 on the
boundary of the tree.

Hence we can easily infer that for the relation g(F (t)) = F (t) to hold for some nonidentity ele-

ment g of the group L and some series F (t), the series F (t) should represent a rational function U(t)
V (t) ,

where U(t) and V (t) are polynomials of the form U(t) = (1 + t)n1 + (1 + t)n2 + . . . + (1 + t)nk and
V (t) = 1 + (1 + t)l with integer n1, n2, . . . , nk and l. Thus, for almost every point (more precisely,
for all points except for a countable number of them), the stabilizer is trivial. It is shown in [145]
that the stabilizer is nontrivial if the boundary point is strictly periodic (i.e., if it has the form
www . . . for some binary word w); hence, the stabilizer is an infinite cyclic group.

Example 5.4. Our next example is the Baumslag–Solitar group BS(1, 3) = 〈x, y | xy = x3〉.
Bartholdi and Šuniḱ developed a general approach to the realization of groups in the whole family
BS(1, n), n ∈ Z, n �= ±1, of Baumslag–Solitar groups (and even for a more general class of groups
that are ascending HNN extensions of abelian groups) as self-similar groups [22]. For simplicity,
here we consider only the case of n = 3. Consider the ring Z2 of integer 2-adic numbers and three
affine transformations on it: a(x) = 3x, b(x) = 3x+1, and c(x) = 3x+2. Then the transformations
x = a and y = ab−1 satisfy the relation xy = x3, and, as shown in [22], the group isomorphism
〈a, b, c〉 ≃ 〈x, y〉 ≃ BS(1, 3) holds. Identifying the elements of the ring Z2 with the binary sequences
of coefficients of the expansion in powers of two, we find that the transformations a, b, and c act on
binary sequences in a self-similar way; namely, the following recurrent relations hold:

a = (a, b), b = (a, c)σ, c = (b, c).

Thus, we obtain a realization of the group BS(1, 3) as a group generated by a three-state automaton
over a binary alphabet. This automaton has number 2083 in [35]. The inverse automaton (which,
obviously, also generates the same group) has number 924 in the same paper.

These automata define an essentially free action of the group BS(1, 3) on the boundary of the
tree, which follows immediately from the affine representation of the group BS(1, 3) by transforma-
tions of the ring of 2-adic numbers (each such transformation has at most one fixed point).

It is interesting that in [35] the Baumslag–Solitar group is also represented by automaton 870;
however, the action defined by this representation on the boundary is not apparently conjugate to
the action defined by automata 924 and 2083. Therefore, the essential freeness of this action is not
backed by the arguments presented above. However, now we will show that in fact this action is
also essentially free.

Example 5.5. The recurrent relations defined by the Moore diagram of automaton 870 in [35]
are as follows:

a = (c, b)σ, b = (a, c), c = (b, a)

(note that, in contrast to [35], we write an element of the symmetric group Sym(2) on the right
rather than on the left). The first-level stabilizer of the group G = G(A870) ≃ BS(1, 3) is generated
by the following elements:

s1 = b = (a, c), s2 = c = (b, a), s3 = a2 = (cb, bc),

s4 = aba−1 = (c, bab−1), s5 = aca−1 = (cac−1, b);
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this, in particular, implies that the group BS(1, 3) in this realization is a self-replicating group (since
the projections of the elements s1, s2, and s3 yield the set {a, b, cb} of generators of the group).
Applying the Nielsen transformations to this set, we transform it into

t1 = (a, c) = b = s1,

t2 = (b, a) = c = s2,

t3 = (c, ab−1c) = ac−1ba−1b = s−1
5 s4s1,

t4 = (1, ac−1ab−1) = ca−1ba−1 = s2s
−1
3 s4,

t5 = (1, ab−1cba−1b−1) = ac−1ba−1bab−1a−1 = s−1
5 s4s1s

−1
4 .

If at least one of the elements α = ac−1ab−1 or β = ab−1cba−1b−1 was nonidentity, then this
would contradict the essential freeness of the action of generators on the boundary. However, in
fact these elements are equal to the identity element. Indeed, the following relations are valid:

α = (ca−1ba−1, 1) = (αba−1
, 1),

β = (1, ba−1bab−1c−1) = (1, γ),

γ = (ab−1cba−1b−1, 1) = (β, 1),

which imply that α, β, γ = 1.

Let us apply Proposition 4.5 in order to prove the triviality of ristG(1). Let φ : a → c, b → a,
c→ ab−1c (so that φ maps the left projections of the elements s1, s2, and s3 to the right projections).
The map φ extends to an automorphism of the whole group G. Indeed, as shown in [35], the relations
c = ab−1a and µb = µ3 with µ = b−1a = a−1c are valid; these relations imply that the group G is
in fact 2-generated and isomorphic to the group BS(1, 3) (one can easily verify that this group has
no additional relations). Using the Tietze transformations (see [128]), one can easily show that φ
extends to an epimorphism of G to itself; this, in view of the Hopf property of the group BS(1, 3)
(which follows from the fact that this group is residually finite), implies that in fact φ extends to
an automorphism. Hence, any element g of the stabilizer stG(1) has the form g = (h, φ(h)), h ∈ G,
which shows that the first-level rigid stabilizer is trivial and, hence, the action of the group BS(1, 3)
is essentially free.

The method used in the above example for proving the essential freeness of the action can also
be applied to other examples of actions on a binary tree for which the isomorphic type of the group
is known (hence, one can determine whether a map defined on the set of generators extends to an
automorphism of the entire group). Namely, if G is a strongly self-similar group acting on a binary
tree, with a set of generators A = {a1, . . . , am}, then the method consists in the following. First,
we calculate generators sj, j ∈ J (where J is a finite set of indices), of the first-level stabilizer
by using, say, the Reidemeister–Schreier method (see [128]). We represent these generators as

pairs sj = (s
(0)
j , s

(1)
j ) using the recursions induced by the Moore diagrams of the automaton that

defines the group. Consider sj and these pairs as elements of a free group FA and of the direct
product FA × FA, respectively, where A is an alphabet that is in bijection with the states of the
automaton (i.e., with the generators of the group G). Applying the Nielsen transformations to
these generators, we turn them into a set of generators {tj , j ∈ J} whose projection onto the first
coordinate is Nielsen reduced (see [128]); i.e., it starts with a Nielsen set of generators bk, k ∈ K, of
some subgroup H ≤ FA and is extended by a sequence of identity elements. If G is a self-replicating
group, then H = FA and (possibly, after the application of additional Nielsen transformations) the

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 273 2011



100 R.I. GRIGORCHUK

set {tj , j ∈ J} takes the form

t1 = (a1, w1), . . . , tm = (am, wm), tm+1 = (1, r1), . . . , tm+l = (1, rl),

where m + l = |J |.
Suppose that the elements w1, . . . , wm generate the entire free group FA (this condition holds

in many examples from the Atlas of self-similar groups, whose development was initiated in [35]).
Then the map φ : ai → wi, i = 1, . . . ,m, defines an automorphism of the free group Fm = FA.
If φ is the identity automorphism, then the subgroup generated by elements of the above type in
the direct product Fm × Fm is a subgroup of the form that was used by Mikhailova [138] to prove
that the inclusion problem for direct products of free groups is algorithmically unsolvable. Even if
φ �= 1, we will call the subgroups generated by elements of the above type Mikhailova subgroups
(obviously, this is in fact the same class of subgroups as in the case of φ = 1). If at least one of the
elements ri is different from the identity element, then ristG(1) �= 1 and the action is not essentially
free. Suppose that all ri are identity elements. In this case, we say that the definition of the group G
by a finite automaton belongs to the diagonal type (this is consistent with Definition 2.2(f)). This
condition does not depend on how the pairs of elements are reduced to the Mikhailova form by the
Nielsen transformations.

Proposition 5.1. Suppose that G is a strongly self-similar group acting on a binary tree and

having a first-level stabilizer that can be reduced by the Nielsen transformations to the diagonal type.

Let φ be the above-constructed automorphism of the free group FA. Then the action is essentially

free if and only if φ induces an automorphism of the group G.

Proof. If φ does not induce an automorphism, then this means that stG(1) contains an element
of the form (g, φ(g)), g = 1, φ(g) �= 1, and thus the action is not essentially free. If φ induces an
automorphism of G, then any element of stG(1) has the form (g, φ(g)), and the equality g = 1
implies the equality φ(g) = 1. Thus, ristG(1) = 1, and, applying Proposition 4.5, we obtain the
assertion. �

The verification of the fact that φ induces an automorphism of G is obviously equivalent to
the verification of whether φ translates the defining relations of the group G into defining relations.
Indeed, in this case φ induces a homomorphism of the group G into itself; by the Hopf property (i.e.,
any proper quotient group is not isomorphic to the group itself) of finitely generated residually finite
groups, φ is in fact an isomorphism. If the presentation of the group by generators and relations is
known, then usually such a verification does not face any difficulties. If the presentation is unknown
and, moreover, the isomorphic type of the group is unknown, then serious complications may arise
in verifying the essential freeness of the action.

It is desirable to have a classification of all groups in the classes (2, 3), (3, 2), and (2, 4) of groups
acting essentially freely on the boundary of a binary tree. For the classes (2, 3) and (3, 2), this must
be a relatively simple problem; however, for the class (2, 4), the problem may turn out to be much
more difficult.

6. SCHREIER GRAPHS

Some of the first applications of Schreier graphs (or orbital Schreier graphs) to the analysis of
the properties of dynamical systems were proposed in [106, 87, 16, 40]. The recent paper [83] gives
another example of usefulness of Schreier graphs in ergodic theory and related problems. There are
some nuances in the approach to defining a graph and in the methods for studying its properties;
therefore, we first describe the main terminology and conventions to which we will adhere.

We will consider only locally finite graphs, denoting them by uppercase Greek letters, mainly
by Γ. Such a graph consists of a pair (V,E), where V is the vertex set and E is the edge set,
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together with a map δ : E → (V × V )/≍, where ≍ is the equivalence relation that identifies the
pairs (u, v) and (v, u) (i.e., an edge is associated with an unordered pair of vertices, the endpoints
of the edge). In this case, u and v are said to be adjacent vertices (which is denoted as u ∼ v),
and an edge e is said to connect these vertices. We will also say that the edge e is incident to
the vertices u and v, while the vertices u and v are incident to the edge e. We admit loops (i.e.,
edges with coinciding endpoints) and multiple edges (i.e., the number of edges connecting two
vertices may be greater than 1). In the literature on graph theory, such graphs are usually called
multigraphs, but we will omit the prefix “multi.” The graphs are visualized as diagrams that are
geometric representations (realizations) of graphs. In this case the edges are visually represented as
arcs (curves homeomorphic to a closed interval) on the plane or in the space. A path in a graph is
a sequence of edges in which the starting point of the next edge coincides with the endpoint of the
preceding edge. The combinatorial length of a path is the number of edges in it; i.e., the length of
an edge is assumed to be 1. One can also introduce more complex metrics on a graph, but we will
not do this here.

A graph is said the be connected if any two vertices in it are connected by a path. For each vertex
v ∈ V , the concept of degree deg(v) is defined. By this is meant the number of edges incident to v.
We will assume that a loop attached to a vertex v contributes number 2 to the multiplicity. In some
cases (for example, when a graph is a Schreier graph of a group generated by elements of order 2),
it is convenient to assume that loops make a contribution of 1 to the degree (as, for example, in
Example 7.1, considered below, of Schreier graphs associated with the group G, which is generated
by four involutions). Below, when defining Schreier graphs, we will specify what contribution to
the degree is made by loops.

Up to this point, we have dealt with nonoriented graphs. However, along with nonoriented
graphs, sometimes we will consider oriented graphs. An oriented graph is a graph in which an
arbitrary edge e ∈ E is defined by an ordered pair of vertices (α(e), β(e)), the first of which plays
the role of the starting point, and the second, the endpoint of the edge. Thus, every edge has
a beginning and an end (which coincide when the edge is a loop). Visually, the orientation is
described by the choice of direction on each edge represented by an arc in a geometric realization
of a graph.

In the oriented case, each loop makes a unit contribution to the degree of a vertex. Of greatest
interest for us (both in the oriented and nonoriented cases) is the class of regular graphs, i.e., graphs
in which all vertices have the same degree equal to a number d ≥ 3. Obviously, the cases of regular
graphs of degrees 1 and 2 are rather simple to analyze, while the study of regular graphs of degree 3
has actually the same order of complexity as the study of higher degree graphs.

The next class of graphs that we are going to discuss is colored graphs. By a colored graph
we mean an oriented or nonoriented graph whose edges are labeled by letters of a finite alphabet.
Graphically, this is implemented by labeling edges with appropriate letters. If the letters correspond
to colors, then we can assume that the edges are colored in the corresponding way and use color
diagrams in the geometric realization of a graph.

An important example of a colored oriented graph is a Cayley graph Γ(G,A) of a finitely
generated group G generated by a set A = {a1, . . . , am}. The vertex set of the graph is identified
with the set of elements of the group, and the edges are given by ordered pairs (g, ag), g ∈ G, a ∈ A
(the order of a pair of vertices (g, ag) determines which vertex of the edge is the starting point and
which is the endpoint). Thus, the generators serve as labels of edges, and the corresponding alphabet
that describes formally the set of labels is the alphabet A. The above-described Cayley graph is a
left Cayley graph (because the left multiplication by the generators is used when constructing this
graph). A right Cayley graph is defined in a similar way. The group G acts by right multiplications
on the sets of vertices and edges of the left Cayley graph; in this case the right multiplication by
an arbitrary element g ∈ G defines an automorphism of the graph Γ(G,A). Thus, the Cayley
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graph is vertex-transitive (i.e., its automorphism group acts transitively on the vertex set). The
Cayley graph is homogeneous of degree 2m, where m is the number of generators, if we consider the
graph as a nonoriented graph, and homogeneous of degree m if we consider it as an oriented graph.
This graph depends on the group and on the system of generators; however, its rough properties
such as the number of ends, amenability, growth, etc., are independent of the choice of generators.
Formally speaking, the notation Γ(G,A) should be supplemented with a symbol indicating which
(left or right) Cayley graph is meant; however, one usually does not do so (but settles this from the
very beginning). Often, when studying Cayley graphs, one removes the orientation and coloring by
generators. In this case, the asymptotic properties of the group are still reflected in the asymptotic
properties of the graph, but the information about the algebraic properties is largely lost. It
may turn out that nonisomorphic groups have isomorphic (nonoriented and noncolored) Cayley
graphs [36, 100]. The study of groups with the use of the language of Cayley graphs and other
geometric tools (van Kampen diagrams, boundaries, etc.) is the subject of geometric group theory;
the foundations of this theory can be found in books [128, 100, 137].

A generalization of the concept of Cayley graph is a Schreier graph, which we will now define.
Suppose that, in addition to a group G with a system of generators A, a subgroup H ≤ G is defined.
The vertex set of a Schreier graph (G,H,A) consists of the left cosets gH, while the edges are given
by ordered pairs (gH, agH), a ∈ A, supplemented with the label a. The graph thus defined is a left
Schreier graph. A right Schreier graph is defined in a similar way. Note that when a generator a ∈ A
is an involution (i.e., a2 = 1), each edge labeled by this generator should be assumed nonoriented
and the corresponding arrow indicating the orientation of the edge in the graphical representation
of the graph should be omitted. So, we have thus defined oriented Schreier graphs (which are in
fact partially oriented when there are elements of order 2 among the generators). If we remove
the orientation of edges in a Schreier graph, we obtain a nonoriented Schreier graph. However, one
should bear in mind that in the nonoriented variant of a Schreier graph the loops that are labeled
by a noninvolution make a contribution of 2 to the degree of the relevant vertex, while those labeled
by an involution make a contribution of 1.

In contrast to Cayley graphs, there does not exist a natural action of the base group G by
automorphisms on Schreier graphs; moreover, there are examples of Schreier graphs with trivial
automorphism group. However, there is a natural action of the base group on the vertex set (by left
multiplication in the case of a left Schreier graph), which will be used in Section 8 for constructing
a dynamical system by a graph. Obviously, the Schreier graphs (just as the Cayley graphs) are
connected and homogeneous of degree 2m, where m is the number of generators, if there are no
involutions among them and one ignores the orientation of edges. If there are involutions and one
follows the above agreement on the contribution of loops to the degree of vertices, then the degree of
vertices is i+2j, where i is the number of involutions and j is the number of noninvolutions among
generators. Note that a different (but essentially equivalent) definition of Schreier graphs that is
based on the Serre approach to the definition of graphs can be found in [87]. In many questions
related to the study of the asymptotic behavior of graphs and groups, it is expedient to deal with
rooted graphs, i.e., with graphs (Γ, o) one of whose vertices (denoted here by o) is distinguished
as the initial vertex. Choosing an initial point o, one can measure the distance from o to other
points and thus determine a sequence of balls in a graph with center at o, the growth function of
the graph γΓ(n), which counts the number of vertices situated at a distance ≤n from o, and so on.
One may initiate a random walk on a graph with initial position at o and with transitions from
a current position to neighboring positions along edges emanating from the current position with
equal probabilities (the random walk thus defined is called a simple random walk) and analyze its
asymptotic properties.

Schreier graphs are closely related to orbital graphs (or action graphs). Namely, suppose that
a finitely generated group G with a system of generators A acts on a set X. An orbital graph
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Γ = Γ(G,X,A) of the action is a graph whose vertices are given by the elements of X and two
vertices x, y ∈ X are connected by an oriented edge labeled by letter a ∈ A if y = a(x). It is obvious
that the action graph is connected if and only if the action is transitive. An orbital graph Γx, x ∈ X,
is a subgraph of the action graph whose vertices are points of the orbit G(x). The orbital graph is
connected.

Often, when studying the asymptotic properties of graphs, one needs to use the natural topology
in the space of connected regular rooted graphs. This topology was first used in [72] when studying
the algebraic properties of intermediate growth groups and later in [94] in connection with random
walks. The base of open sets in this topology is given by the sets B(Γ,o)(n) consisting of rooted
graphs such that the subgraph with the set of vertices situated at distance ≤n from the distinguished
vertex and with the induced set of edges is isomorphic to the similarly defined subgraph in (Γ, o).
We will denote the space of d-regular rooted graphs with the above-mentioned topology by Xd.
Similar notation will be used for the space of 2m-regular rooted nonoriented Cayley graphs XCay

2m

and 2m-regular rooted nonoriented Schreier graphs X Sch
2m (G) of an m-generated group G (whose

generators do not contain involutions), respectively. One can also consider similar spaces of Cayley
and Schreier graphs in the situation when there are involutions among the generators (one just
should introduce special notations). If the argument G in X Sch

2m (G) is missing, then the free group Fm

of rank m is implied (which is a universal object in the category of m-generated groups).

All the spaces introduced are metrizable totally disconnected topological spaces. The distance
can be defined, for example, by the relation d((Γ1, o1), (Γ2, o2)) = 2−n, where n is the greatest
positive integer such that the neighborhoods of the points o1 and o2 (subgraphs) of radius n in
the graphs (Γ1, o1) and (Γ2, o2) are isomorphic. Instead of the sequence {2−n}, one can take any
other decreasing sequence of positive numbers that tends to zero. One can also consider the spaces
X≤d of rooted graphs of degree ≤ d and similar spaces for the case of oriented graphs or graphs
with coloring by the symbols of a finite alphabet. All the spaces introduced are compact totally
disconnected separable spaces. Recall that the concept of the Cantor–Bendixson rank is defined for
complete separable metric spaces (which are also called Polish spaces).

Problem 6.1. What is the Cantor–Bendixson rank of each of the above spaces?

This question is of special interest for the space of Cayley graphs.

Each of the spaces of graphs considered can be equipped with a probability measure, and the
typical properties of graphs with respect to this measure can be studied. The choice of a measure may
be suggested by a range of questions to be considered; however, it seems that the most natural choice
is given by measures obtained as limit points in the weak topology of a sequence of measures µn,
where µn is any discrete measure for which all cylindrical sets defined by a subgraph-neighborhood
of radius n around the distinguished point have the same measure 1/ln, where ln is the number of
such neighborhoods for a given type of graphs.

Benjamini and Schramm [27] proposed an interesting approach to constructing measures in
spaces of graphs. Namely, given a sequence {Γn}∞n=1 of finite graphs, they suggested considering
an associated sequence of measures µn, where µn is a uniform probability measure concentrated on
rooted graphs (Γn, v) with v running through the vertex set of the graph Γn. Although this is not
mentioned in [27], it is expedient to identify (Γn, v) and (Γn, w) if they are isomorphic as rooted
graphs. Any limit point (in the weak topology) of the sequence {µn}∞n=1 will be a measure in the
space of graphs, and this measure will be invariant under the replacement of the root (i.e., the
distinguished vertex) of the graph with any other vertex. A similar operation is applied in Section 8
in order to construct a Schreier dynamical system.

When a measure is defined, one can speak of random graphs. Although random graphs have
been studied extensively enough, it seems that the proposed model of random regular graphs has
not yet been considered in detail. However, a uniform measure on the set of finite regular graphs
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has long been studied [194, 136]. It seems likely that a probabilistic model for infinite regular graphs
can be obtained by a passage to the limit from the model for finite graphs (which, however, may face
problems in the case of Cayley graphs). A brief discussion of questions related to the probabilistic
model in the space XCay

2m can be found in [81].

Kaimanovich observed [107, 108, 110] that the space of rooted graphs is equipped with a natural
equivalence relation that arises when the root is carried to another vertex; therefore, one can consider
measures invariant with respect to this equivalence relation. Kaimanovich referred to the result-
ing random graphs as stochastically homogeneous. For Schreier graphs, stochastic homogeneity is
equivalent to the fact that the corresponding measure is invariant under the group action. The
condition of stochastic homogeneity can also be interpreted in terms of stationary measures for the
corresponding simple random motion on the equivalence classes (cf. Sections 8 and 11).

For the spaces XCay
2m and X Sch

2m , there exists another natural method (equivalent to the previous

one) for introducing topology. Namely, to define a Cayley graph Γ ∈ XCay
2m is the same as to define a

pair (G,A), where A is an ordered system of generators of the group G, which is in turn equivalent to
defining a triple (Fm, N,A′), where Fm is a free group with ordered basis A′, which is in bijection with
the set A, and N is a normal subgroup in Fm such that G is isomorphic to the quotient group Fm/N
under an isomorphism that maps the image of the basis A′ to A and preserves the order of generators.

Consider a two-point set {0, 1} with the discrete topology and raise it to the power Fm (i.e.,
consider the Cartesian product Y =

∏
Fm
{0, 1} with the Tikhonov topology). To an arbitrary

subset E in Fm there corresponds a point in the space Y that is the characteristic function of E.
Let Z ⊂ Y be the subset consisting of points corresponding to normal subgroups. Then the
subset Z with the topology induced from Y is homeomorphic to the space XCay

2m . Analogously, the
subset S ⊂ Y consisting of points corresponding to subgroups in Fm with the induced topology is
homeomorphic to the space X Sch

2m . This follows from the fact that the Schreier graph Γ(G,H,A)
of a group G with m generators is isomorphic to a Schreier graph of the free group of rank m.
Indeed, representing G as a quotient group of the free group Fm and taking the preimage H
of the subgroup H under the canonical homomorphism, we find that the graphs Γ(G,H,A) and
Γ(Fm,H,A′) are isomorphic (A′ is a system of generators of the free group that are projected to A
under the canonical homomorphism).

For an arbitrary countable group G, one can similarly define a space Y(G) of subgroups of the
group G. In Section 8, we consider the actions of groups by conjugations on spaces of this type and
the duals of these actions (in the case of finitely generated groups) on the spaces of rooted Schreier
graphs.

The space XCay
2m , which was first defined in [72] and then studied in [43] and [44], has been

examined in considerable detail, although there are still many unsolved problems. It is known that
this space has a closed subset without isolated points (i.e., a subset homeomorphic to the Cantor
perfect set) that consists (except for a countable subset) of intermediate growth groups and has
a dense Gδ subset consisting of periodic groups. The groups with Kazhdan’s T-property form an
open subset in this space [170]. The so-called limit groups (also called totally freely approximable
groups in the Russian literature), which were first defined by G. Baumslag and then studied by
V.N. Remeslennikov, O. Kharlampovich, A. Myasnikov, Z. Sela, and others, are the limits of free
groups in the space XCay

2m , as proved in [44]. For the present, almost nothing is known about the
space X Sch

2m . The properties of the space Xd, at least for even values of d, are largely related to the
properties of the space X Sch

2m in view of the fact that every nonoriented 2m-regular graph can be
transformed (by adding an orientation and labels of edges) into a Schreier graph of a free group.
Below we will prove a relevant statement (Theorem 6.1).

Note that in the same way as this was done in [94], we can also consider the spaces Yn, n =
2, 3, . . . , of inhomogeneous graphs the degree of whose vertices is bounded from above by a number
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n ≥ 2, as well as the inductive limit Y of these spaces. In particular, the convergence in the
spaces Yn was used in [94] to prove some statements on the spectra of limit graphs and spectral
measures.

The theorem stating the realizability of a regular graph as a Schreier graph of a free group,
which we will now present, has been proved by Gross in the case of finite graphs (its proof is given
in Lubotzky’s paper [126]). The fact that its proof can be adapted to the infinite case was pointed
out in de la Harpe’s book [100, p. 83].

Theorem 6.1. Let Γ be a connected nonoriented 2m-regular graph. Then there exists a sub-

group H ≤ Fm of the free group Fm with basis A such that the Schreier graph Γ(Fm,H,A) with

removed labels and orientation is isomorphic to the graph Γ.

To prove this theorem, we need the following lemma.

Lemma 6.2. Every finite nonoriented 2m-regular graph ∆ possesses a 2-factor (i.e., a 2-reg-
ular subgraph with the same vertex set as ∆).

Proof. Let us prove that ∆ has a subgraph that is a union of pairwise disjoint cycles. We
will prove this by joint induction on the parameters m, m ≥ 1, and n, the latter being the number
of vertices in the graph. The cases of m = 1 or n = 1 are trivial. If the graph is disconnected,
then we can apply the induction hypothesis. Therefore, we will assume that ∆ is connected. Since
the degree of each vertex is an even number, there exists an Eulerian cycle, i.e., a closed path γ
in the graph that passes through each edge precisely once. Note that the standard theorem on an
Eulerian cycle is proved for graphs without multiple edges and loops. However, this theorem is also
valid for multigraphs if we assume that the loops contribute multiplicity 2 to the degree of a vertex.
Indeed, first, loops can be removed (if there is an Eulerian cycle for a graph with removed loops,
then it is obvious how to construct such a cycle in the graph with loops). Next, if there are multiple
edges, then each of them can be “doubled” by adding a vertex that divides this edge into halves.
As a result of this procedure, we obtain a graph without multiple edges (and without loops) and
such that the degree of each vertex is even. This graph has an Eulerian cycle, which induces in an
obvious way an Eulerian cycle on the original graph.

Let us transform γ into an oriented path by arbitrarily choosing the direction of motion along it.
This defines an orientation of edges of the graph ∆. Then the number of edges entering each vertex
is m, and the same number of edges emanate from the vertex. Let us construct a new graph ∆̃
by performing a “surgery” at each vertex v ∈ V (∆); the surgery consists in splitting the vertex v
into two components v− and v+. The edges entering v turn into edges that enter v−, while the
edges leaving v turn into edges that leave v+. The vertex set of the graph ∆̃ is partitioned into two
disjoint subsets V − and V + that consist of “sinks” and “sources,” respectively; only pairs of vertices
that belong to different parts of this partition may be connected by edges (the arrows point from a
source to a sink). The graph ∆̃ is bipartite (i.e., its vertex set is divided into two disjoint subsets,
and no pair of vertices in the same subset is connected by an edge) and, by Hall’s theorem, has a
perfect matching, i.e., a set of edges such that each vertex of the graph is incident to one and only
one edge. Choosing one of such matchings, we construct a 2-factor on ∆. To this end, we begin the
construction from an arbitrary vertex u ∈ ∆ and choose an edge that emanates from this vertex
and corresponds to an edge from the perfect matching of the graph ∆̃. Let u1 be the endpoint of
this edge. Take an edge that emanates from u1 and belongs to the already constructed 1-factor,
and so on. Since the graph is finite, in a finite number of steps we return to one of the points that
has already been passed. If it turned out that this was not the initial point, then we would arrive at
a contradiction with the properties of perfect matching. Thus, we have constructed in ∆ a closed
cycle δ1 that does not pass more than once through any vertex. If there is a vertex that does not
belong to δ1, then we apply the same procedure to it as that for u. We obtain a cycle δ2 that has
no common vertices with δ1 and passes through every vertex at most once. Proceeding in this way,
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we partition the vertex set of the graph into pairwise disjoint subsets that are the vertex sets of
disjoint cycles passing through each of their vertices precisely once. It is this partition that defines
a 2-factor. Note that we have obtained, in addition, an oriented 2-factor. �

Proof of Theorem 6.1. If the Schreier graph is finite, then we apply the lemma proved and
construct for it a 2-factor δ1 that is oriented by our construction (a nonoriented factor can always be
transformed into an oriented by an arbitrary choice of orientation on each cycle of the factor). Let
A = {a1, . . . , am}. Let us supplement the edges of the factor δ1 with the letter a1 and remove them
from our graph Γ (which we denote by ∆ = ∆1 to apply induction). We obtain a (2m− 2)-regular
graph ∆2 for which there exists an oriented 2-factor δ2, whose edges we label by the letter a2.
Proceeding in the same way, we obtain a chain of subgraphs ∆i, i = 1, 2, . . . ,m, and 2-factors δi.
The union of edges of these 2-factors coincides with the set of all edges of the graph ∆, and the
edges of δi are labeled by the symbol ai. The labeling obtained determines on ∆ the structure of
a Schreier graph of a free group (because a graph labeled by the elements of the basis A of a free
group is a Schreier graph of this group if and only if exactly one edge labeled by symbol a ∈ A
enters and leaves each vertex and this is true for every generator a ∈ A).

The case of an infinite graph requires additional arguments. The idea is to approximate such
a graph by finite graphs, introducing appropriate labelings on them, and then apply a diagonal
process. This is formalized as follows.

An oriented graph Γ labeled by symbols of a set of generators A is called a pre-Schreier graph
of degree m = |A| if, for every symbol a ∈ A and each vertex v of the graph, there exist at most one
edge that enters v and is labeled by a and at most one edge that emanates from v and is labeled
by a. Such labelings are said to be admissible. Every finite graph the degrees of whose vertices are
not greater than 2m can be extended to a finite 2m-regular graph. Indeed, if there are two different
vertices u and v whose degrees are less than 2m, then, connecting them by an edge, we increase the
degrees of these vertices by 1. Let us repeat this operation until no such a pair of vertices remains.
If there is only one such vertex, then its degree must be an even number. Adding the necessary
number of loops (each of which increases the degree of the vertex by 2) to this vertex, we obtain a
2m-regular graph.

Let Γ = ∆ be an infinite 2m-regular graph, and let {∆n}∞n=1 be a sequence of finite subgraphs,
where ∆n consists of vertices situated at a distance of at most n from the initial vertex (which
can be chosen arbitrarily from the very beginning) and those edges in ∆ both of whose endpoints
belong to ∆n. On each of the graphs ∆n, we introduce an orientation and label the edges by
elements of the set A, making the graph into a pre-Schreier graph of degree m. We construct
an infinite rooted tree M whose elements are pairs (∆n, R), where R is an admissible labeling of
the graph ∆n, the root vertex corresponds to the graph ∆0 consisting of a single vertex, and two
pairs (∆n, R) and (∆n+1, Q) are connected by an edge if the restriction of Q to ∆n yields the
labeling R. Since every finite graph has only a finite number of admissible labelings, the tree M
is locally finite, and since each of the graphs ∆n has at least one appropriate labeling, the tree is
infinite. By Koenig’s theorem, there exists an infinite path in M that connects the root vertex with
infinity. It is this path that determines a labeling on the entire graph ∆ that is consistent with the
labelings on all the graphs ∆n simultaneously, thus making ∆ into a Schreier graph. The theorem
is proved. �

In spite of the fact that a Schreier graph is not usually vertex-transitive and, moreover, often
has a rather small automorphism group, the realization of a regular graph as a Schreier graph of
some group often brings a kind of (in a sense, hidden) symmetry to the structure of the graph,
which allows one to apply algebraic methods or even the methods of the theory of operator algebras
to its analysis, as it was done in [16, 86].
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7. SUBSTITUTION RULES FOR GRAPHS
AND EXAMPLES OF SCHREIER GRAPHS

In this section, we consider a number of examples of Schreier graphs that are constructed by
means of automaton groups (i.e., self-similar groups). As repeatedly discussed above, these groups
act by automorphisms on a d-regular rooted tree. Therefore, for every n = 1, 2, . . . , one can
construct a graph Γn defined by the action on the corresponding level n and thus obtain a sequence
of graphs {Γn}. This is a covering sequence; namely, Γn+1 covers Γn in the sense of graph theory
(which corresponds to the covering in the topological sense if one deals with nonoriented noncolored
graphs). Indeed, it is easily seen that the projection map that takes an (n + 1)th-level vertex to
its nth-level predecessor induces a covering of the graph (edges are projected to edges and labels
to labels). This construction can be applied to an arbitrary finitely generated group acting on any
rooted spherically homogeneous tree. When the action is transitive on the levels, the graph Γn is
isomorphic to the Schreier graph Γ(G, stG(u), A), where u is a point of the nth level. In addition to
the sequence of finite graphs {Γn}∞n=1, with the action of a group on an infinite rooted tree T one
naturally associates the graph of the action on the boundary ∂T of the tree. If the group is finite or
countable, then this graph is decomposed into an uncountable union of connected components Γξ,
ξ ∈ ∂T , where Γξ is the orbital graph for the action on the orbit of a point ξ; the graph Γξ is
isomorphic to the Schreier graph Γ(G, stG(ξ), A). We will call the graph Γ(G, stG(ξ), A) a boundary
Schreier graph.

When the action is transitive on the levels, there exists a close relationship between the sequence
{Γn} and the boundary Schreier graphs. Let ξ ∈ ∂T , {un}∞n=1 be the sequence of vertices of the
path ξ, P = stG(ξ), and Pn = stG(un). Then {Pn} is a decreasing sequence, and the following
relation obviously holds:

P =

∞⋂

n=1

Pn. (7.1)

Proposition 7.1. The relation

(Γ(G,P,A), P ) = lim
n→∞

(Γ(G,Pn, A), Pn) (7.2)

holds in the sense of the topology of the space X Sch
2m .

Proof. Note that the neighborhood of the Schreier graph Γ(G,P,A) of radius n with center
at an arbitrary vertex is determined by this vertex and the set of words of length ≤ 2n over the
alphabet A that define the elements of the subgroup P . By virtue of (7.1), for any k, there
exists an N such that, for n ≥ N , the sets of words of length ≤ 2k that define the elements in
the subgroups P and Pn coincide. Hence, the graphs Γ(G,P,A) and Γ(G,Pn, A), n ≥ N , have
isomorphic neighborhoods of radius k with centers at the distinguished vertices represented by the
cosets P and Pn of the identity element, which was to be proved. �

We will write relation (7.2) in the abridged form Γξ = limn→∞ Γn, omitting the indication of
distinguished points. The questions about the structure of the graphs Γn and Γξ, the asymptotic
properties of the covering sequence {Γn}∞n=1 and the infinite graphs Γξ, and, in particular, their
spectral properties are important for solving many problems.

The sequence {Γn}∞n=1 associated with a finite automaton (i.e., defined by the action of a strongly
self-similar group with the set of generators that corresponds to the set of states of the finite au-
tomaton) is a recurrently defined sequence; i.e., it is defined by the first graph Γ1 and a substitution
rule that describes how to obtain the graph Γn+1 from the graph Γn. Let us give a formal definition.

Definition 7.1. Let {Γn}∞n=1 be a sequence of finite Schreier graphs associated with a group G
generated by a set A and acting on a regular rooted tree defined by an alphabet X = {x1, . . . , xm}.
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The sequence {Γn}∞n=1 is recurrent if there exists a rule according to which every edge (u, v, a),
u, v ∈ Xn, v = a(u), a ∈ A, of the graph Γn and every symbol x ∈ X define an edge (ux,wy, a),
with some y ∈ X and some w ∈ Xn, of the graph Γn+1 so that the graph obtained from Γn by this
substitution applied to all edges is isomorphic to the graph Γn+1, and this is valid for any n.

In this definition, we have fibbed a little because we have not defined what the rule means.
Nevertheless, taking this definition on trust, we prove the following proposition.

Proposition 7.2. For any finite automaton, the sequence {Γn} is recurrent.

Proof. The proof of this proposition is obvious. The automaton defines self-similarity relations
a(xu) = ya′(u), x, y ∈ X, a, a′ ∈ A, u ∈ X∗, of the form (3.2), which show that if w = a′(u), then
yw = a(xu). �

The above definition of when the sequence {Γn}∞n=1 is recurrent is in fact equivalent to the fact
that the sequence of graphs is generated by a finite automaton, and then by the rule one means
the rule of action on the sequences that is involved in the definition of a Mealy automaton. The
definition of a recurrent sequence of graphs can be extended by including partially defined Mealy
automata, i.e., automata such that some of their states may not recognize some of the symbols
at the input (or chains of symbols; i.e., here we mean asynchronous automata, the algebraic and
algorithmic theory of which is discussed in [87]). The definition of the sequence {Γn}∞n=1 of oriented
graphs in this case is corrected as follows. The set of vertices that serve as the starting points of
edges is the set of words W of length n over the alphabet of the automaton that are recognized by
at least one state q, while the set of vertices U that serve as the endpoints of edges consists of words
that are the images of the words W in the first set under the action of states that recognize W . In
this case, the corresponding edges (W,U) are colored with the state that translates W into U .

In our view, the definition of sequences {Γn}∞n=1 of regular graphs by a finite invertible Mealy
automaton is the most efficient method for describing complicated graphs. Even rather simple
automata with a small number of states can generate very complicated sequences of finite graphs
and infinite graphs that are the limits of finite graphs. At the same time, it is worth mentioning
that the software implementation of such graphs does not require any tricks and that computers,
depending on their memory capacity and speed, can construct the graph Γn for a given finite
automaton and number n and store this graph in their memory. In particular, in this way one can
construct asymptotic expanders considered in Section 10 and, possibly, even real expanders if the
answer to Problem 10.1 will turn out to be positive.

Now we are going to discuss another, more conventional, method for obtaining sequences of finite
graphs by means of iterative procedures, namely, by iterating a graph substitution. This approach
has long been used, since the time of construction of graphs associated with fractals known under
the name of Sierpinski triangle or diamond fractal, and including relatively recent “inventions” such
as pentagon graphs [156]. The idea is as follows.

Given a graph Γ, one can construct a new graph R(Γ) by replacing some subgraphs in Γ with
more complex graphs using a certain substitution rule R. Here some variations are possible. The
simplest type of substitutions, which was considered, for example, by Previte in [155, 156], belongs
to the class of vertex substitution rules. For example, a substitution R can be defined by a finite
set (H1, ∂H1), . . . , (Hm, ∂Hm) of finite graphs Hi with distinguished subsets ∂Hi of vertices, called
boundary vertices. In this case, it is assumed that the following two conditions are satisfied:

(1) Hi is symmetric with respect to ∂Hi in the sense that every permutation of the set ∂Hi can
be realized by an automorphism of the graph Hi;

(2) |∂Hi| �= |∂Hj | for i �= j, where | · | denotes the cardinality of a set.

A vertex v of a graph Γ is said to be replaceable if its degree is equal to |∂Hi| for some i. The rule R
acts on Γ as follows. The graph R(Γ) is obtained from Γ by replacing each replaceable vertex v
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with a graph Hi for which |∂Hi| = deg(v). The vertex v itself is removed, while the edges incident
to it are connected (no matter how, because of the symmetry) with the boundary vertices of a copy
of the graph Hi, which is thus “attached” to Γ, and this procedure is applied to each replaceable
vertex. If a substitution rule R is defined, then, starting from any graph H = H0 (axiom), one
can construct a sequence {Hn}∞n=1, where Hn+1 = R(Hn), n = 0, 1, . . . , which may turn out to be
finite in case of inappropriate rule and initial graph; however, in the typical case, this is an infinite
sequence of graphs that has interesting asymptotic and combinatorial properties [155, 156]. One
may also consider more complex local substitution rules in which not only vertices but also edges,
and even more complicated subgraphs, are involved in the substitution.

Let us describe a more general scheme of local recurrent rules. Suppose given two finite disjoint
alphabets A and B. Consider graphs whose edges are colored with letters in the alphabet A and
vertices are colored with words in the set B∗ of words over the alphabet B. Different edges may
have the same labels, whereas vertices ought to have different labels. Denote the category of such
graphs by WR.

A local rule R consists of a finite set of pairs (∆,Ξ) of graphs whose edges are colored with
letters of the alphabet A (however, the vertices have no labels), a pair of maps ϕ,ψ that will be
described below, and a local surgery rule. The latter rule means an arbitrary rule that allows one
to uniquely replace, in a given graph Γ ∈ WR, any inclusion of ∆ into Γ by Ξ, by performing a
local surgery according to this rule. The graphs ∆ are called templates, and Ξ, duplicates. To every
vertex v ∈ V (∆), the map ϕ assigns a subset of vertices ϕ(v) ⊂ V (Ξ), and each vertex u in ϕ(v) is
additionally equipped with a letter xu in the alphabet B. In addition, ϕ(v) ∩ ϕ(u) = ∅ if v �= u,
and

⋃
v∈V (∆) ϕ(v) = V (Ξ). If the label of a vertex v in the graph Γ was w ∈ B∗, then, after the

surgery, each of the vertices u of the image ϕ(v) is labeled by xw, where x = xu ∈ B is the symbol
corresponding to this vertex in the surgery rule. The map ψ assigns to each edge e ∈ E(∆) a subset
of the set of edges E(Ξ). It is assumed that ψ(e) ∩ ψ(e′) = ∅ if e �= e′,

⋃
e∈E(∆) ψ(e) = E(Ξ), and

each edge in ψ(e) is equipped with a label from A, which becomes a label of this edge after the
surgery. The surgery is performed by simultaneously replacing all inclusions of templates in Γ with
the respective duplicates. The graph obtained from Γ by the local rule is denoted by R(Γ). The
substitution rule should satisfy the condition that if the inclusions of two templates in a graph have a
nonempty intersection, then the surgery rule is consistent on the common part. One can complicate
the procedure by introducing one more alphabet C (disjoint from A and B) for additional labels of
some vertices of the graphs. The vertices labeled by symbols from C are called key (or boundary)
vertices. If a graph Γ has key labels, then key labels may also appear in the templates and their
duplicates. After the surgery, the graph will also have key vertices, to which one should apply a
local surgery according to an additional instruction (for example, one may need to add loops at
these vertices).

Starting from a graph Γ0 (axiom) and applying a local rule R, one can construct a sequence
{Γn}∞n=1, n = 1, 2, . . . , where Γn+1 = R(Γn). In interesting cases, this should be an infinite sequence
with (as a rule, exponentially) growing size of the graphs. Having constructed the sequence {Γn}∞n=1,
n = 1, 2, . . . , depending on the situation and the aims, one may forget about labels (or a part of
them) and delete them, thus obtaining an ordinary sequence of graphs. It is obvious that Previte’s
scheme of constructing graphs (see above) is included in this more general scheme. Here we avoid a
rather burdensome condition that the templates should be symmetric. The proposed scheme works
well for the Schreier graphs generated by bounded automata (see Definition 7.2 below), which will
be demonstrated in examples below. It can be additionally complicated by making the description
of the substitution periodic with some period k. Thus, in fact, one deals with k substitution rules
R1,R2, . . . ,Rk and applies them consecutively in cyclic order. The simplest type of substitution
rules is when templates are given only by the vertices and edges of graphs. The examples given
below belong precisely to this type of substitutions.
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The second approach to constructing a sequence of graphs {Γn}∞n=0 consists in applying global

substitution rules, which will be denoted by S. In this case, just as above, three disjoint alphabets
A, B, and C are used; as in the case of local rules, A is used for the labels of edges, the words in B∗

are used for the labels of vertices, and the letters in C are used to label key (boundary) vertices. Let
d be the number of letters in the alphabet B. The graph Γ0 (axiom) is assumed to be given, and the
construction of the whole sequence starts from this graph. Moreover, for any pair (x, y), x, y ∈ C,
a graph Θx,y is defined that may either be empty or consist of one or two vertices and some set (of
cardinality ≤ |B|) of edges colored with letters from the alphabet A. We will call the graphs Θx,y

bridges in view of the role they play in the construction. For n ≥ 0, the graph Γn+1 is obtained from
the graph Γn in the following way. Take a disjoint union of d copies Γn,x, x ∈ B, of the graph Γn,
which we temporarily denote by Γn+1; the vertices of these copies acquire labels of the form vx,
x ∈ B, if the corresponding vertex in Γn has label v ∈ B∗. After that, following the instruction given
by the rule S, a local surgery is performed in the neighborhoods of key vertices depending on their
C-colors (for example, a loop is removed). Then, again according to the instruction defined by S,
for every pair u, v of key vertices that have labels x and y from C and belong to different copies
of Γn, the graph Θx,y is attached to Γn+1. The key vertices at which the graphs Θx,y with more
than one vertex are attached cease to be key vertices. The other key vertices remain key as before;
however, the C-colors of these vertices are changed according to the instruction. This completes
the construction of the graph Γn+1. Thus, formally Γn+1 = S(Γn) = Sn(Γ0). Having constructed
the sequence {Γn}∞n=0, depending on the situation and the aims, one may delete all the labels (or
only a part of them). If one does not need a one-to-one correspondence between the vertices of the
graph Γn and the words of length n over the alphabet B, then one may not care about the coloring
of vertices by words from B∗ and choose more complicated bridge graphs Θx,y (i.e., with more
than two vertices); however, in the latter case one should label a pair of key (boundary) vertices in
each of these graphs, equipping them with labels from the alphabet C, and, when attaching Θx,y

to Γn+1, should follow the convention that the key vertices to be identified have identical labels.
Again, just as in the local rule, the procedure can be complicated by admitting the periodicity of
the construction rule with some period k.

Note that one of the most significant differences between the description of local and global rules
for constructing graphs is that in the local case we write a symbol x ∈ B on the left of the label of
a vertex, whereas in the global rule we write the same symbol on the right.

This approach to the construction of graphs on the basis of global substitution rules, just as the
local approach, goes back to the studies on fractal theory. With the classical fractals such as the
Sierpinski triangle, the Koch fractal, or the diamond fractal [65], one usually associates a sequence
of graphs that approximates these fractals. To generalize these and other examples, the concepts
of a finitely branched self-similar fractal and a sequence of finite graphs associated with this fractal
have been introduced (see the studies by Kigami, Barlow, Strichartz, Nekrashevych, Teplyeaev, and
others [117, 12, 174, 182, 146]). The fact that many fractal sets can be represented as boundaries
of naturally arising Gromov hyperbolic graphs, which provides new means for analyzing them, was
first pointed out by Kaimanovich [108].

A new turn in the theory of fractals and the associated self-similar graphs was due to the
application of the ideas and methods of the theory of self-similar groups, which was initiated by the
present author, Gupta and Sidki, Sushchansky, Nekrashevych, Bartholdi, and other mathematicians,
as well as the related theory of iterated monodromy groups, developed mainly by Nekrashevych [142,
18], and the theory of limit spaces associated with contracting self-similar groups [142]. This
gave a new insight into classical objects such as Julia sets and provided a new approach to the
approximation of these objects by discrete objects such as graphs and even cell complexes [144].

As repeatedly discussed, an important role in the study of dynamical systems is played by the
results that describe the typical properties of a graph. One of the results of this kind is the recent

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 273 2011



SOME TOPICS IN THE DYNAMICS OF GROUP ACTIONS 111

aaaa

aa

a

aa

aa

a

a

a

b

bbb

b

b

b

b b

b

b

b b

bb

b

b b

bb

c

c

c

c

c

c c

c

c

c

c

c

c

cc

cc

c

c c

cc

d

d

ddd dd

dd d d

dd

d
d

ddd

d

d

d
ddd

dd

0 1

00 0110 11

000 001010 011100 101110 111

Fig. 7.1. Orbital graphs of action on levels 1, 2, and 3 of a tree and their “ruled” representation.

result of I. Bondarenko, D. D’Angeli, and T. Nagnibeda stating that the number of ends in a typical
Schreier graph for the action of a self-similar group on the boundary of a tree is fixed (and thus is
an invariant of the dynamical system) [34].

After all these discussions, now it is time to present specific examples.

Example 7.1. We begin with the group G of intermediate growth, whose generators a, b, c,
and d have order 2 (and thus make a contribution of 1 to the degree of a vertex of a Schreier graph
if this vertex is mapped into itself under the action of a generator). The Schreier graphs Γ1, Γ2,
and Γ3 associated with the first three levels of a tree are shown in Fig. 7.1, and the local substitution
rules are demonstrated by the diagrams in Figs. 7.2 and 7.3. Infinite Schreier graphs are shown in
Figs. 7.4 and 7.5; they are shown in two variants: without and with the labels of edges. Below we
examine the properties of these graphs in greater detail; meanwhile we describe a global substitution
rule for this case.

To construct Γn+1 from Γn, we first construct two copies Γn,0 and Γn,1 of the graph Γn by
adding a symbol 0 or 1 to the right of the label of each vertex. If n = 3m + 1, we remove the loops
labeled by symbols b and c at the vertices 1n−100 and 1n−101 in Γn,0 and Γn,1, respectively, and
replace them by edges with labels b and c that connect the vertices 1n−100 and 1n−101. Similarly,
if n = 3m + 2, we replace loops with labels b and d at the vertices 1n−100 and 1n−101 by two edges
that have the same labels and connect the same vertices. Finally, if n = 3m, we apply the same
procedure for the pair of symbols c, d. The procedure described is periodic with period 3. The role
of the alphabet A in this example is played by the set of generators {a, b, c, d}, and B = {0, 1}. We
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did not use the third alphabet C; however, we could also consider it, say, by setting C = {R,W}
and assigning a label R to the left vertex 0 of the graph Γ1 (we assume that the axiom corresponds
to the value n = 1) and a label W to the right vertex. Then the rule prescribes that one should
remove loops at the key vertices with label R in the copies Γn,0 and Γn,1 and connect these vertices
by a pair of edges, equipping the latter by labels according to the above description (and adhering
to the periodicity). At the same time, the key vertices labeled by symbol W remain key vertices,
but the first of them (namely, 1n−10) changes its label to R.

This example, as well as other examples related to a group G̃ that envelopes G and to the
Gupta–Sidki 3-group [99], was first considered in [16].

Theorem 7.3. (a) Two boundary points ξ = {un}∞n=1 and ζ = {vn}∞n=1, un, vn ∈ {0, 1}, of the

binary tree lie in the same orbit of the group G if and only if there exists an n0 such that un = vn

for all n ≥ n0.
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(b) The sequence {Γn}∞n=1 of finite Schreier graphs of the group G with the system of generators

a, b, c, d is substitutional and is described by the above local and global substitution rules. In the

graph Γn drawn in the plane as a linear graph, as shown in Fig. 7.1, the extreme vertices 0n and 1n

occupy positions with numbers pn and 2n, respectively, where pn = 1
3(2n − 1) if n is even and

pn = 1
3(2n + 2) if n is odd.

(c) There exist only two types of infinite nonoriented noncolored Schreier graphs for the group G
with the system of generators a, b, c, d. They are shown in Figs. 7.4 and 7.5 and have one and two

ends, respectively. The graph Γξ has one end if and only if the point ξ belongs to the orbit of the

point 1∞.

(d) The graphs Γξ, ξ ∈ ∂T, are pairwise nonisomorphic (as oriented colored graphs).

Proof. (a) According to the recurrent relations (2.9), the action of any generator on an arbi-
trary sequence of symbols changes at most one symbol. Therefore, it is obvious that if two infinite
sequences lie in the same orbit, then, starting from some place, they should coincide. Suppose,
conversely, that n is the place starting from which the sequences ζ and η coincide, and u and v,
u �= v, are their initial segments of length n (which are different). By induction on n we prove that
the sequences lie in the same orbit. Let u = u1, . . . , un and v = v1, . . . , vn, un �= vn. If u1 �= v1,
then, acting on ζ by the generator a, we can make it so that the first symbols coincide. Now, let
u1 = v1. By the induction hypothesis, there exists an element g that maps {un}∞n=2 to {vn}∞n=2.
Since G is a self-replicating group (Definition 3.6), the section Gu1 of the stabilizer of the vertex u1

is equal to the copy of the group G acting on the subtree Tu1 . In other words, for any element
g ∈ G, there exists an element h ∈ G such that the relation h(u1w) = u1g(w) holds for any sequence
w ∈ {0, 1}N = ∂T . Hence, there also exists an element h that maps ζ to η.

(b) Let u and v be vertices of the nth level of the tree and a(u) = v. Recall that a changes
the first symbol of any nonempty sequence to the opposite; the elements b and c act on a sequence
of the form 0w according to the relations b(0w) = 0a(w) and c(0w) = 0a(w), and on a sequence
of the form 1w according to the relations b(1w) = 1c(w) and c(1w) = 1d(w); finally, the action of
the element d is defined by the relations d(0w) = 0w and d(1w) = 1b(w). This implies that the
graph on the four vertices 0u, 1u, 0v, and 1v that appears in the substitution rule illustrated in
Fig. 7.2 is a subgraph of the graph Γn+1, and this part of the graph corresponds to an edge in Γn

that connects the vertices u and v and is labeled by the generator a. In exactly the same way,
the recurrent relations between generators define the correspondence shown in Fig. 7.3 between the
edges labeled by the generators b, c, and d in the graphs Γn and Γn+1. Thus, we have established
the local substitution rule.

The character of the local substitution relations shows that the graphs Γn have the structure
of a linear chain of length 2n (more precisely, they are isomorphic to such a structure) and that,
at the nth iteration step, the vertex 1n of the tree occupies the rightmost position, i.e., it has
number 2n. To find the position of the vertex 0n in the linear structure, we will call the arrangement
of vertices of the graph Γn drawn as a linear chain a nonstandard order. If the (n − 1)th-level
vertices are arranged in the nonstandard order v1, . . . , v2n−1 , then, in view of the substitution rules,
the nonstandard order on the set Vn of nth-level vertices is defined by the sequence 1v1, 0v1, 0v2,
1v2, . . . , 1v2n−1−1, 0v2n−1−1, 0v2n−1 , 1v2n−1 . Thus, pn = 2pn−1 if n is even and pn = 2pn−1 − 1 if n
is odd; this leads to the formulas given in the formulation of the theorem. The global substitution
rule also becomes obvious.

(c) With a boundary point ξ represented by a path consisting of vertices un, n ≥ 1, one can
associate a sequence {(Γn, un)}∞n=1 of finite rooted Schreier graphs. If the position of the current
point un (the root) in the representation of the graph Γn as a linear chain is at a distance tending
to infinity as n→∞ from the left and right boundaries, then we obtain in the limit a linear graph
with two ends; otherwise, we obtain a linear graph with one end. If the sequence representing a
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boundary point contains infinitely many symbols 0, then, according to the substitution rule, each
next symbol 0 shifts the vertices at least by one away from the boundaries (but the distance cannot
increase more than twice) upon every application of the substitution. Thus, we conclude that in the
limit the distinguished vertex turns out to be situated at an infinite distance from both ends of the
graph. If the symbol 0 is encountered in the sequence ξ a finite number of times, then, starting from
some number k, all of its symbols are 1. Then, for any n, the vertex un in the graph Γn is located
at a distance of at most 2k from the right end; i.e., in the limit we obtain a graph with one end,
and the reference point ξ is situated at distance ≤ 2k from the rightmost vertex, which corresponds
to the point 1∞. In fact, the location of the distinguished point in the graph Γξ with one end can
be exactly calculated by the prefix Uk consisting of the first k symbols of the sequence ξ.

(d) This assertion of the theorem follows from Proposition 2.2. �

Remark 7.1. Assertion (a) of the theorem proved shows that the decomposition into orbits
of the action of the group G is a cofinal equivalence relation, which plays an important role in
the theory of countable Borel equivalence relations [113]. We touch upon the issue of countable
decompositions in Section 11.

After removing the labels of edges in the graph Γ shown in Fig. 7.4, we obtain a graph associated
with a one-dimensional lattice (at least Z acts on this graph by automorphisms and this action is
cocompact). However, being equipped with labels, this is a rather complicated graph that allows
one to completely reconstruct the group G, which is itself a group with rather complicated structure
and properties. Indeed, to find out whether a word W = W (a, b, c, d) defines the identity element
in the group G, one should check whether any path defined by the word W with beginning at an
arbitrary vertex of the graph is closed. This follows from the fact that, for any point ξ ∈ ∂T and
its stabilizer P = Pξ, the intersection

⋂
g∈G P g is trivial. Indeed, every nontrivial normal subgroup

in G has finite index (the property of maximal minimality), and the action on the levels of a binary
tree is transitive.

Consider a few more examples of substitution rules for Schreier graphs.

Example 7.2. The following example is of interest for a number of reasons. On the one hand,
it is related to the Sierpinski triangle, and the corresponding sequence of graphs {Γn}∞n=1 may
serve as a discrete approximation of this classical fractal. However, it differs from the standard
approximation sequence used for studying the Sierpinski fractal by approximation techniques. The
graphs Γn (a clear idea of which is given by Fig. 7.6) are called Pascal graphs, because they can be
described combinatorially by a recursive procedure similar to the construction of Pascal’s triangle.

On the other hand, this sequence of graphs is related to the combinatorial problem known as
the Towers of Hanoi game. The essence of this game is as follows. Three pegs of the same length
are attached to a support (a small plate) in the perpendicular direction. On one of these pegs, a
pile of n ≥ 1 disks of different diameters is placed in the order of decreasing size. The problem is
to move the disks to another peg while observing the rules of the game; moreover, this should be
done in the minimum number of moves (one may move only one disk at a time). The main rule of
the game is that one cannot place a larger disk on top of a smaller one. For the values of n from 5
to 8, this game can be purchased in stores as a game for children of age above three years. If, in
addition, the solution must be algorithmic, then such a problem is suggested to junior students of
universities as an exercise on the subject of recursion. One can easily verify that the problem is
solved in 2n − 1 steps.

There exist various modifications and complications of the game. The main of them is increasing
the number of pegs. It is clear that the larger the number of pegs, the wider the possibilities to move
the disks, and thus the faster the solution of the problem. In spite of numerous attempts, the problem
of finding a minimal and algorithmic solution in the case of four or greater number of pegs has not yet
been completely solved. For this famous problem, its history, generalizations and variations, failed
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Fig. 7.6. Pascal graph as a Schreier graph of level 3.

attempts at solving it, and some advances, see [102, 91] and references therein. We just note that an
asymptotic (i.e., approximate) solution of the problem was obtained by Szegedy in [178], where the

author showed that, for a number k ≥ 3 of pegs, the problem is solved in ∼ 2n1/(k−2)
steps. Thus,

for k > 3, the number of moves necessary for transferring n disks from one peg to another grows
(as a function of n) in an intermediate manner between polynomial and exponential growth. Note
that Szegedy did not discuss how to find an asymptotically minimal path algorithmically, although
it seems that a recursive method for the asymptotic solution of the problem can be derived from
the proof given in [178].

Surprisingly, the Towers of Hanoi problem is directly related to the theory of self-similar groups;
this fact was first noticed by Z. Šunić and described in [89, 88, 93, 91], where the groups Hk, k ≥ 3,
called Hanoi Towers groups were introduced and some results related to the algebraic properties of
these groups and the asymptotic theory of Schreier graphs were presented. A part of these results
is obtained on the basis of known information on the asymptotic properties of the game.

The Hanoi Towers group H3 is defined by the automaton shown in Fig. 7.7. This group acts on
a ternary tree and is generated by generators a, b, and c that correspond to the automaton states
a01, a02, and a12. Recurrent relations between the generators are as follows:

a = (1, 1, a)(01), b = (1, b, 1)(02), c = (c, 1, 1)(12).

Acting on a ternary tree, H3 defines a sequence of finite Schreier graphs {Γn}∞n=1 (called Pascal
graphs, as already mentioned; one can get a clear idea of these graphs from Fig. 7.6), as well as
a continuum family of infinite Schreier graphs associated with the action on the boundary of the
tree (the connected components of the orbital graph). A global rule that describes the sequence
{Γn}∞n=1 is as follows. To construct Γn+1 from Γn, one takes three copies of the graph Γn, denoted
by Γn,0, Γn,1, and Γn,2, that differ from Γn only by the labels of the vertices; namely, each label u,
u ∈ X∗ = {0, 1, 2}∗ , of a vertex in Γn is replaced by the label ux in Γn,x, x ∈ {0, 1, 2}. To obtain
Γn+1, one removes loops at the vertices znx and zny for every pair x, y ∈ X, x �= y (z is a letter
different from x and y), in the graphs Γn,x and Γn,y, respectively, and adds an edge that connects
these vertices and is colored with the symbol axy. One can describe this procedure more formally
by introducing the third alphabet and key vertices, but we will not do this.
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Fig. 7.8. Substitution rules for the Schreier graphs of the Basilica.

After deleting the labels of edges and the loops at the boundary vertices, the graphs Γn become
identical to the graphs considered in relation to different aspects of the Towers of Hanoi game with
three pegs. The spectral properties of these graphs were studied in [157, 93].

As already pointed out, to the Towers of Hanoi game with k ≥ 4 pegs, there corresponds a

group Hk that is self-similar and is defined by an automaton with k(k−1)
2 + 1 states over a k-letter

alphabet. The Schreier graphs Γn associated with this game are much more complicated, which is
indicated by the fact that the problem of calculating the distance between vertices 0n and 1n in
these graphs is equivalent to finding the minimum number of moves needed to transfer a tower of
n disks from one peg to another (which is still unsolved). The problem of calculating the diameters
of these graphs (which in this case are greater than the distance between the vertices 0n and 1n

when the number of disks is large) is also unsolved; and the spectral problem (discussed later) has
not been solved either.

Example 7.3. The following sequence of graphs is related to the self-similar group called the
Basilica, which was considered in Example 2.4. This group has played an important role in solving
a problem connected with amenable groups (namely, it served as the first example of an amenable,
but not subexponentially amenable, group) [96, 23], and it also served as the first nontrivial example
that has led to the development of the theory of iterated monodromy groups [142, 18].

Local substitution rules for this case are shown in Fig. 7.8, and a clear idea of the Schreier
graphs is given by Figs. 7.9–7.12. It is easily noticed that the graphs Γn converge to a set similar
to the Julia set of the map z → z2 − 1. That this is indeed the case under a reasonable definition
of convergence is proved in [142]. Obviously, the structure of graphs associated with the Basilica
is much more complicated than in the previous two examples. In [48], the authors proved that the
infinite Schreier graphs of the action on the boundary have one, two, or four ends, and gave a full
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Fig. 7.10. Schreier graph of the Basilica of level 3.
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Fig. 7.11. Schreier graph of the Basilica of level 4.

description of these graphs up to isomorphism (the graphs were considered without labels). There
are uncountably many such graphs, and some invariants that allow one to distinguish these graphs
were also found in [48].

Interesting classes of automata and the corresponding classes of groups were introduced by
Sidki [172]; these are the classes of polynomially growing automata and groups generated by these
automata. An important characteristic of an automorphism g of a degree d tree is its activity, which
is the growth of the number a(n) of nonidentity elements of the symmetric group Sym(d) in the
portrait of the element g on the nth level as n→∞ (recall that the portrait of a tree automorphism
is a coloring of the vertices of the tree with the elements of a symmetric group that describe locally
the action of the automorphism). This concept was already used in the discussion of the concept
of finite-type action (after Theorem 2.9).

Definition 7.2. (a) If the growth of the sequence a(n) associated with a tree automorphism
defined by a finite initial automaton is polynomial of degree k, then the corresponding initial
automaton is said to be polynomially (in the sense of Sidki) growing of degree k.

(b) A noninitial automaton A is said to be polynomially growing of degree k if, for any of its
states q, the corresponding initial automaton is polynomially growing of degree at most k and there
exists a state for which the growth is polynomial of degree k.
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Fig. 7.12. Schreier graph of the Basilica of level 5.

Thus, one distinguishes the classes of bounded, linear, quadratic, etc. automata and the corre-
sponding classes of groups.

Note that this terminology is not consistent with the concept of growth introduced in [75] (see
also [87]); however, now we will follow precisely this terminology. There exists a simple algorithm
for finding out whether or not a given automaton has a polynomial growth in the sense of Sidki and
for calculating the degree of the polynomial growth [172, 142]. We will assume that an automaton
is minimal, which, recall, means that different states induce different tree automorphisms. First,
in order for an automaton to be polynomially growing, it should have an identity state id, i.e., a
state that induces the trivial tree automorphism. Then the automaton is polynomial if and only
if any two cycles in its Moore diagram that do not pass through the identity state are disjoint.
Moreover, the automaton is bounded if and only if any two cycles in its Moore diagram that do
not pass through the identity state are disjoint and there does not exist an oriented path leading
from one of these cycles to the other. An alternative method for verifying the polynomiality of
growth is to find out if the spectral radius (the Perron–Frobenius number in the present case) of the
adjacency matrix of the Moore diagram of the automaton (considered as an oriented graph) with
the identity state removed is equal to 1; the degree of polynomial (in the sense of Sidki) growth of
the automaton in this case is equal to n− 1, where n is the multiplicity of the eigenvalue 1.

The Schreier graphs associated with bounded automata have been studied rather intensively [16,
142, 31]. They have polynomial growth (possibly, with noninteger and even irrational exponent),
which follows from the fact that the group generated by such an automaton is contracting [16, 142].
Among the recent results in this direction, we mention the results obtained by D’Angeli, Donno,
and Nagnibeda concerning the structure of Schreier graphs associated with the Basilica [48].

For polynomially growing but unbounded automata, the Schreier graphs have a much more
complicated structure. For example, the recent result of Bondarenko [33] shows that the growth
of infinite Schreier graphs associated with polynomially growing automata is subexponential with
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Fig. 7.13. Automaton of linear growth.
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Fig. 7.14. Schreier graph of intermediate growth.

an upper bound of the form n(log n)m
, where m is a positive constant; for many of these automata,

the growth is indeed intermediate between polynomial and exponential. For exponentially growing
automata, the complexity of finite Schreier graphs can be still higher, even if the group generated by
such an automaton is isomorphic to a well-known group such as a free group. However, one should
distinguish between the complexity of graphs in the chains {Γn} of finite graphs and the complexity
of infinite Schreier graphs Γξ, ξ ∈ ∂T . For example, in the case of a free group, infinite Schreier
graphs are typically Cayley graphs (i.e., regular trees), whereas their finite “relatives” Γn have a
rather complicated structure that cannot be described recursively in the spirit of substitution rules.
These questions will be considered in more detail in Section 10.

Example 7.4. We conclude the series of examples of Schreier graphs with a graph generated
by one of the simplest automata of linear growth. The automaton is shown in Fig. 7.13.

This graph was studied by Benjamini and Hoffman [26], as well as by Bondarenko, Nekrashevych,
and Ceccherini-Silberstein. An idea of the infinite Schreier graph Γ corresponding to the sequence 0∞

is given by Fig. 7.14.

The formal description of the representation of the graph Γ on the plane is as follows. As the
vertex set, we use integer numbers. Define the set of edges by the relation E =

⋃
k≥0 Ek, where

E0 = {(i, i + 1): i ∈ Z} and Ek =
{(

2k(n− 1/2), 2k(n + 1/2)
)}

for all n ∈ Z and k > 0. The main feature of the graph is that it has intermediate growth between
polynomial and exponential (here we mean the growth of the number of vertices of the graph
that are situated at distance n from a certain distinguished vertex, say, the vertex represented by
number 0 in our case). Moreover, as shown in [26], the growth of the graph is asymptotically equal
to nlog4 n. Another interesting feature of this graph is that, according to the terminology of [26],
this graph is ω-periodic; i.e., it is the inductive limit of a sequence of periodic graphs with vertex
sets in Z.

There also exist other exotic types of behavior of the growth of infinite Schreier graphs associated
with self-similar groups. For example, as pointed out in [91], infinite Schreier graphs associated with

the Hanoi Towers group Hk, k ≥ 4, have intermediate growth of degree 2(log n)k−2
.
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In this connection, recall that, as shown in [72], there exist Cayley graphs of intermediate growth
of finitely generated groups. In spite of extensive results on the class of intermediate growth groups,
there did not exist until recently any example of calculating the exact growth asymptotics for a
Cayley graph of intermediate growth. For example, even for G, it is still unknown whether the
growth is asymptotically equal to 2nα

for some 0 < α < 1. However, using the group G, Bartholdi
and Erschler constructed an infinite sequence of groups with growth of the form 2nα

, and the
exponent α for this sequence is accumulated around 1 (remaining less than 1) [15].

The problem of determining for what automata the sequence of finite graphs {Γn} is substi-
tutional in one or another sense is far from being solved. All the available examples are related
to contracting self-similar groups. For graphs and limit spaces defined by bounded automata,
substitution-type recursions were studied by Nekrashevych [142, 144] and Bondarenko [31]. Per-
haps, the existence of a substitution rule depends on the existence of a finite L-presentation of a
group by generators and relations (i.e., on whether the set of defining words of a group can be
obtained from a finite set of words by iteration with the use of a substitution) [19, 81].

We conclude this section with another definition of a variant of a recurrent sequence of graphs.
To this end, we need the concept of acceptor automaton (language recognizer), which is widely
used in informatics. Omitting a formal definition (see [104] for details), we only note that such
an automaton (denote it by Aacc) can be described by a finite oriented graph whose vertices are
called the states of the automaton and edges are colored with symbols of a finite alphabet X. From
each state, there emanate |X| edges colored with the symbols of the alphabet, and each symbol
is encountered once as a label among the edges emanating from a given vertex. There exist an
initial state q0 and a nonempty set F of final states. The automaton Aacc defines (recognizes)
the language L (i.e., a subset of the set of words over the finite alphabet X) consisting of words
that are read along the paths in the graph of the automaton that start at the initial state q0 and
end at a state belonging to the set F . A language is said to be regular if it is recognizable by a
finite automaton of the type indicated above. There are various generalizations of the concept of
regular languages. For example, Chomsky’s classical hierarchy of formal languages consists of classes
of regular, context-free, context-sensitive languages, and languages defined by grammars without
restrictions. Alternatively, these languages are defined by finite, stack, linear bounded automata,
and by the Turing machines, respectively [104].

Definition 7.3. Let {Γn} be a sequence of finite graphs. This sequence is said to be recurrent
in the broad sense of the word if there exist finite alphabets X and Y and automata Aacc and Bacc

over X and Y , respectively, such that there exist bijections between the sets of vertices and edges
of the graph Γn and the sets of words of length n recognizable by the automata Aacc and Bacc,
respectively.

The type of the automaton under consideration, i.e., finite automaton, stack automaton, etc.,
determines the relevant class of the graphs. It seems that such an approach to the definition of
a recursively defined sequence of graphs has not yet been considered. The definition above is in
a sense analogous to the definition of an automaton group, or a group with automaton structure,
which is widely used in geometric group theory.

8. ACTIONS ON THE SPACE OF SUBGROUPS
AND SCHREIER DYNAMICAL SYSTEMS

With every topological dynamical system (G,X) or metric dynamical system (G,X, µ), where
G is a finitely generated group with a system of generators A = {a1, . . . , am}, one can associate
a subset S ⊂ X Sch

2m (G) (we call it a pencil of Schreier graphs) consisting of pairs (Γx, x), x ∈ X,
where Γx is the orbital graph constructed on the orbit of the point x with the use of the system
of generators A. Then one can try to determine the properties of the dynamical system based on
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the information about S or, conversely, study the properties of the pencil S of graphs based on
the information about the properties of the dynamical system. As will be shown in an example
below, it may turn out that the dynamical system is reconstructed from a single representative of
the pencil. Also, assigning to every point x ∈ X its stabilizer, we obtain a map from X into the
space Y(G) of subgroups of the group G; in this case, the action of G on X induces the action of G
by conjugations on Y(G) (the adjoint action). For actions that are far from free (in one or another
sense), information on the original action may be encoded in the new actions (more precisely, in
the dynamical systems with phase spaces lying in X Sch

2m (G) or Y(G)). Let us explain this idea in
greater detail.

The topology on the space X Sch
2m (G) has already been defined. The topology on Y(G) is induced

by the Tikhonov topology of the space {0, 1}G (as before, we assume that G is countable) if each
subgroup H ≤ G is identified with its characteristic function ωH : ωH(g) = 1 ⇔ g ∈ H. For a
given finite subset F ⊂ G, a neighborhood UH

F of a subgroup H in this topology is the set of
subgroups L ≤ G such that H ∩F = L∩F , and neighborhoods of this kind (when F runs through
the set of finite subsets of G and H runs through the set of subgroups of the group G) generate
the topology on Y(G). Note that the sets UH

F are at the same time closed. This topology is a
particular case of the Chabauty topology defined on the space of closed subgroups of a locally
compact topological group [42]. For a countable group, this topology is metrizable and the space
Y(G) is compact and totally disconnected. As is well known and was already pointed out, such
spaces are characterized by the Cantor–Bendixson rank. For the free group Fn, n ≥ 2, the rank is
obviously equal to zero and the space Y(G) is homeomorphic to the Cantor perfect set. At the same
time, for the Tarski monsters Y(G) constructed by Ol’shanskii [148], which are simple p-groups (p is
a large number), the space Y(G) consists of a countable number of isolated points that accumulate
to a point corresponding to the trivial subgroup. This result follows from the fact that any proper
subgroup in Y(G) is cyclic of order p.

Remark 8.1. If we consider the lattice of subgroups of a discrete group with operations ∧
and ∨ defined as the intersection of two subgroups and their group union (i.e., H ∨K = 〈H,K〉 is
the subgroup generated by H and K), respectively, then the first operation is obviously continuous,
whereas the second is not generally continuous, as shown by the following simple example proposed
by Ya. Vorobets.

In the group Z, both sequences nZ and (n + 1)Z, n = 1, 2, . . . , converge to the trivial subgroup,
but nZ∨ (n + 1)Z = Z. Thus, the topology introduced is a topology on the set of subgroups of the
group G rather than on the lattice of subgroups of G (when one speaks of a topology on a lattice,
it is implied that both operations are continuous).

Problem 8.1. (a) What is the range of values of the Cantor–Bendixson rank of the space
Y(G) (G runs through the set of countable groups)?

(b) The same question as above but for finitely generated groups, or even for 2-generated groups.

Let (G,X) be a topological dynamical system and α : X → Y(G) be the map that assigns the
stabilizer stG(x) to every point x. This map is measurable (with respect to the Borel structures of
the spaces X and Y(G)). Indeed,

α−1(UH
F ) =

{
x ∈ X : f(x) = x ∀f ∈ F0, g(x) �= x ∀g ∈ F \ F0, F0 = F ∩H

}
,

and this set is obviously measurable. However, the map α may not be continuous, as shown in the
example of the group G considered in Theorem 8.1 below.

Suppose, in addition, that the group G is finitely generated and A = {a1, a2, . . . , am} is an
ordered set of its generators. Define a map β : X → X Sch

2m (G) by assigning a rooted graph (Γ, vx)
to a point x ∈ X, where Γ = Γ(G, stG(x), A) is the corresponding Schreier graph and the vertex
vx = stG(x) plays the role of the root.
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Let us also construct a map γ : Y(G) → X Sch
2m (G) by assigning the rooted Schreier graph

(Γ(G,H,A),H) to each subgroup H ≤ G. It is easily seen that this map is continuous and has
an inverse δ : X Sch

2m (G) → Y(G), which maps a rooted graph (Γ(G,H,A),H) to a subgroup in G
consisting of elements defined by the words in the alphabet of generators A and their inverses A−1

that are read along closed paths in the graph Γ(G,H,A) with the beginning and end at the root
(represented by the coset H of the identity element), and δ is also continuous. We stress that γ
and δ depend on the system of generators.

The action of G on X naturally extends to the spaces Y(G) and X Sch
2m (G). Indeed, for the

transition from a point x to a point gx, the corresponding transition from the stabilizer stG(x) to
the stabilizer stG(gx) obviously yields the conjugate subgroup g−1stG(x)g. Therefore, we have the
commutative diagram

X
α

β

Y(G)

γ

X Sch
2m (G)

in which all maps are equivariant (with respect to the actions of the group), all the actions of the
group G are topological (i.e., are implemented by homeomorphisms), and the vertical arrow defines
an isomorphism of topological dynamical systems.

Now suppose that a metric dynamical system (G,X, µ) is given with either a finite or an infinite,
invariant or quasi-invariant measure µ. Then the previous commutative diagram can be converted
into the commutative diagram

(G,X, µ)
α

β

(G,Y(G), ζ)

γ

(G,X Sch
2m (G), η)

in which the measures ζ and η are defined by the relations ζ = α∗µ and η = β∗µ. If the map α
(respectively, β) is injective modulo a measure-zero set, then β (respectively, α) is also injective
modulo a measure-zero set; therefore, there arises an isomorphism between the dynamical system
(G,X, µ) and its image under the map α or β by the Lusin–Suslin theorem on Borel monomorphisms.
Thus, totally nonfree dynamical systems of a countable group G can be modeled by dynamical
systems whose phase spaces are subspaces of the space Y(G), or subspaces of the space X Sch

2m (G)
if the group is generated by a set of m elements. In this case, the action is adjoint (i.e., by
conjugations). The measures ζ and η are invariant or quasi-invariant, depending on whether the
measure µ is invariant or quasi-invariant.

If the system (G,X) is topologically transitive, then the image system is also topologically
transitive. Corollary 8.9 and Proposition 8.11 proved below show that for minimal actions the
trajectory of a typical Schreier graph in the image β(X) ⊂ X Sch

2m (G) is dense; therefore, the β-image
of the system (G,X) is at least topologically transitive.

If the system (G,X, µ) is ergodic, then its image is also ergodic. In this connection Vershik
in [184] posed the problem of describing the set of ergodic continuous invariant measures for the
adjoint action. By the Bogolyubov–Day theorem [30, 52] (a generalization of the Bogolyubov–Krylov
theorem), this set is nonempty at least for the actions of amenable groups. Amenable groups and
amenable actions are discussed a little at the end of this section and also appear in a number of
problems discussed in the subsequent sections.

We also believe that it would be interesting to describe invariant measures on the closure of the
orbit of a subgroup H of a group G for important examples of pairs (G,H). Namely, the problem
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Fig. 8.1. The graph used for defining the graphs ∆1, ∆2, and ∆3.

is formulated as follows. Let H ≤ G, C(H) = {g−1Hg : g ∈ G} be the conjugacy class of the
subgroup H, and C(H) be its closure in Y(G).

Problem 8.2. What conditions on the system (G,X, µ) guarantee that for a typical point
x ∈ X the system (G,X, µ) is isomorphic to the system (G, stG(x), ζ) for some measure ζ concen-
trated on the closure stG(x)?

In fact, the question is in what cases the set stG(x) serves as a support of the measure ζ, and
the problem is aimed at finding out in what cases the action is reconstructed from the action on
one typical orbit.

According to Corollary 4.9, the set of G-typical points for a topological system (G,X) is comea-
ger; therefore, it seems likely that for extremely nonfree actions the action (G,C(stG(x))) on the
closure of the orbit of the stabilizer of a G-typical point should “almost” completely reconstruct the
system (G,X). For the present, there is no general result on this subject; however, here we present
an example—considered in detail by Ya. Vorobets at our request—that confirms the thesis that in
many interesting cases the action is completely (in the metric situation) or almost completely (in
the topological situation) reconstructed from the action on one orbit.

Example 8.1. Let G = 〈a, b, c, d〉 be the group of intermediate growth from Example 2.3,
which acts on the boundary ∂T of a binary tree, and β : ∂T → X Sch

4 (G) be the map defined above.
Recall that since the generators of the group G are involutions, the corresponding Schreier graphs,
which were described in the previous section, are 4-regular. Let ∆i, i = 1, 2, 3, be the three graphs
defined by replacing the labels b′, c′, and d′ in Fig. 8.1 with the labels c, b, d, the labels d, b, c, and
the labels b, c, d, respectively.

Theorem 8.1 [188]. The following assertions hold.

(i) The map β is injective with respect to the uniform measure on ∂T .

(ii) The map β is continuous everywhere except for a countable set of points that belong to the

orbit of the point ξ = 1∞.

(iii) The isolated points of the image β(∂T ) consist of rooted graphs (Γξ, gξ) : g ∈ G (i.e., of

labelings of the Schreier graph corresponding to the stabilizer of the point ξ that are obtained by

choosing an arbitrary vertex as the root).

(iv) The closure of the set β(∂T ) in the space of rooted Schreier graphs consists of this set and

a countable set of points obtained from the graphs ∆i, i = 1, 2, 3, by making them into rooted graphs

by choosing an arbitrary vertex as the root.

One can easily deduce from this theorem that the image ζ of the uniform measure ν on the
boundary ∂T is concentrated on the closure of the orbit of an arbitrary graph (Γx, x), where x ∈ ∂T
is an arbitrary point that does not belong to the orbit of the point ξ.
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Problem 8.3. (a) Under what conditions on the pair (G,H) does there exist an invariant
measure for the action of G on C(H)?

(b) Under what conditions is the system (G,C(H)) uniquely ergodic (i.e., an invariant measure
exists and is unique)?

Note that in the Russian literature the term “strictly ergodic” is used instead of “uniquely
ergodic.” At the end of Section 10, we will briefly discuss the concept of strong ergodicity. Note
also that the answer to the first part of the above-formulated problem is affirmative if there exists
an invariant mean for the action of the group G by left multiplication on the space of left cosets
G/H (i.e., if the action is amenable in the sense of von Neumann; see the end of this section).

In addition to the questions raised, one may also study various questions related to the topology
of sets of the type C(H) and their subsets C(H) and to the relative topology of the embedding
C(H) →֒ C(H); however, these questions are more peculiar to lattice theory in locally compact
groups (in particular, in Lie groups) (see, for example, [158]).

An action (G,X, µ) is obviously nonfree if the stabilizers of points are almost surely pairwise
different. As pointed out in Section 2, Vershik suggested calling such actions extremely nonfree
actions. This terminology can also be translated to the topological situation by saying that a
system (G,X) is extremely nonfree if the stabilizers of points are pairwise different for a comeager
set. A narrower (in the case of topological groups) class of actions consists of totally nonfree actions,
which are defined, as has already been said, as those actions with invariant measure for which the
sigma algebra of sets generated by the sets of fixed points of the elements of the group coincides with
the sigma algebra of all measurable sets [184] (however, for countable groups the classes of extremely
nonfree and totally nonfree actions coincide). The importance of this concept is demonstrated by
Theorem 10 in [184]. In the topological situation, a totally nonfree action can be defined as an
action whose algebra of Borel sets coincides with the algebra generated by the (closed) sets of fixed
points of the elements.

Returning to the reconstruction of a dynamical system from the action on one orbit, we reproduce
in more detail the scheme that we have actually already described. For an arbitrary Schreier
graph, this scheme allows one to construct a dynamical system associated with this graph. Let
Γ = Γ(G,H,A) be a Schreier graph of a group G with a system of generators A = {a1, . . . , am}. In
the space X Sch

2m , consider the subset Z consisting of points of the form (Γ, v), where v runs through
the vertex set of the graph Γ. In other words, we do not change the graph, but we change the
initial point (the root). The group G acts on this set on the second coordinate of the pair (Γ, v) by
changing the initial point but not changing the graph. This action looks like a translation in the
graph Γ from the vertex v to a neighboring vertex under the action of an appropriate generator.
Obviously, if two pairs (Γ, v) and (∆, w) are close in the space X Sch

2m , then the pairs (Γ, v′) and
(∆, w′) are also close, where v′ and w′ are neighbors of the vertices v and w, respectively, such that
the edges connecting these pairs of vertices are colored with a symbol a, a ∈ A. Thus, the action
described is continuous. Therefore, the action of G on Z extends by continuity to the closure Z
(which also consists of Schreier graphs of the group G). The topological dynamical system (G,Z) is
referred to as a Schreier dynamical system associated with the Schreier graph Γ(G,H,A) (or simply
an associated dynamical system).

If we apply this scheme to a Cayley graph, we obtain nothing interesting, because the space Z
consists of a single point (since a change of the root in a Cayley graph leads to a graph isomor-
phic to the original one). It is also clear that the case of a finite-index subgroup H ≤ G is of
little interest too, because in this case one obtains a dynamical system with a finite phase space.
Therefore, our scheme is of interest for infinite Schreier graphs that have small (or better trivial)
automorphism groups. The following proposition, which is similar to a relevant statement in the
theory of coverings [134], provides a clue to calculating the automorphism group of a Schreier graph.
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Proposition 8.2. The automorphism group of a Schreier graph Γ(G,H,A) is isomorphic to

the quotient group NG(H)/H, where NG(H) is the normalizer of H in G.

Proof. The proof of this proposition is analogous to the proof of Corollary 7.3 in [134], and
we omit it. �

The scheme considered is of interest, first of all, when one takes a maximal (or weakly maximal)
subgroup of the group G. While the concept of maximal subgroup (i.e., a proper subgroup such
that there are no intermediate subgroups between it and the entire group) is well known in group
theory, the concept of weakly maximal subgroup is known much less. It seems that for the first
time it appeared in Shalev’s paper [169].

Definition 8.1. Let G be an infinite group. A subgroup H ≤ G is said to be weakly maximal

if it has infinite index and is maximal with respect to this property (i.e., any intermediate subgroup
H ≤ K ≤ G either coincides with H or has finite index in G).

The following theorem (the first part of which is well known) shows that maximal and weakly
maximal subgroups always exist in an infinite finitely generated group. However, while there are a
large number of weakly maximal groups (at least every subgroup of infinite index is contained in a
weakly maximal subgroup), the number of maximal subgroups in an infinite group may be small,
even finite. For example, any maximal subgroup of the group G has index 2 [152], and there are
only seven such subgroups.

Theorem 8.3. In an infinite finitely generated group, any proper subgroup is contained in a

maximal subgroup, and any subgroup of infinite index is contained in a weakly maximal subgroup.

Proof. Let G be an infinite finitely generated group and H < G. Consider a set S, partially
ordered by inclusion, that consists of proper subgroups of G containing H. Any chain {Hn} in S
has a maximal element M that belongs to S. Indeed, define a maximal element M by the relation
M =

⋃
n Hn. If M = G, then all generators of the group G belong to Hn for some n because G

is finitely generated; thus, M = Hn, which is a contradiction. By Zorn’s lemma, the set S has a
maximal element, which is a maximal subgroup in G.

Similarly, if H has infinite index, then the partially ordered set U consisting of infinite-index
subgroups of G that contain H possesses the property that every chain {Hn} has a maximal element
M =

⋃
n Hn. Indeed, if we assume that M has finite index in G, then M is a finitely generated

subgroup (since G is finitely generated) and, hence, coincides with Hn for some n. Again, we arrive
at a contradiction. �

Of special interest are maximal and weakly maximal subgroups H < G that have a trivial
core K =

⋂
g∈G Hg. Maximal subgroups with trivial core are directly related to primitive actions

of groups, i.e., actions that do not have invariant equivalence relations different from the trivial
ones (in other words, when the entire set is a single equivalence class, or when each point of the
set is an equivalence class). The question of whether a group is primitive (i.e., whether it has a
faithful primitive action) is one of the cornerstones of group theory, and extensive literature has
been devoted to this question. Primitive groups include finitely generated noncommutative free
groups, nonelementary hyperbolic (in Gromov’s sense) groups and their generalizations, the so-
called convergence groups, nonsolvable linear groups, and most of the mapping class groups [66].
At the same time, Pervova [154, 152] proved that the group G, its generalizations Gω, and the
Gupta–Sidki p-groups have only maximal subgroups of finite index. Therefore, they and many
other self-similar groups of branch type are not primitive.

It seems that weakly maximal subgroups should also play an important role in the theory of
permutation groups. If a group G acts transitively on a set X and the stabilizer H of some point
is a weakly maximal subgroup, then any proper quotient system (G,Y ) of the system (G,X) (i.e.,
Y is a quotient set of the set X and the projection commutes with the action of the group) is
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finite (i.e., |Y | < ∞). Thus, transitive actions with weakly maximal stabilizers play a role similar
to the role of just-infinite groups in group theory; therefore, by analogy with the group case, they
should be called just-infinite actions. Theorem 8.4 proved below shows that branch groups act
in a just-infinite way on the orbits of the boundary points of the tree. We call an action (G,X)
residually finite if, for any pair of elements x, y ∈ X, there exists a finite quotient system in which
the images of the elements x and y are different. Then, for transitive actions of countable groups,
the condition of residual finiteness is equivalent to the fact that the stabilizer H can be represented
as the intersection

⋂∞
n=1 Hn of finite-index subgroups; this, in turn, is equivalent to the fact that H

is closed in the profinite topology.

For some time, it was an open question whether any maximal subgroup in any finitely generated
branch group has finite index. For example, this question was formulated in [19]. However, Bon-
darenko constructed a counterexample [32]. Nevertheless, taking into account the specific features
of this example (namely, the fact that the group in this example acts locally by elements of a finite
group that coincides with its derived subgroup), we formulate the following question.

Problem 8.4. Is it true that all maximal subgroups in any finitely generated branch p-group
(p is a prime number) have finite index?

In contrast to maximal subgroups, the group G has an extensive set of weakly maximal sub-
groups, among which the stabilizers of the boundary points are primarily distinguished. Moreover,
the following general fact is valid.

Theorem 8.4 [16, 17]. Let G be a branch group acting on a rooted tree T . For any boundary

point ξ ∈ ∂T, the stabilizer P = stG(ξ) is a weakly maximal subgroup.

Proof. Suppose that P is a proper subgroup of a subgroup H ≤ G and a vertex v belongs to
the path ξ ∈ ∂T and is not a fixed vertex for H, h(v) = w �= v for some h ∈ H. It is obvious that
the rigid stabilizers of all vertices of level n, where n = |v|, except for the vertex v, are subgroups
of P . Since hPh−1(w) = w, it follows that hPh−1 contains the rigid stabilizers of all nth-level
vertices except for the rigid stabilizer of the vertex w. Thus, H contains the rigid stabilizers of all
nth-level vertices and, hence, also contains ristG(n), which has finite index in G. �

The next example (Proposition 8.7), which belongs to E. Pervova, shows that the list of weakly
maximal subgroups of the group G is not exhausted by groups of the form stG(ξ), ξ ∈ ∂T . However,
we first prove a statement that we will need when considering this example and that is useful
in itself.

Lemma 8.5. Let G be a branch just-infinite group acting faithfully on a rooted tree T . Suppose

that H < G is a subgroup of finite index that acts spherically transitively on T . Then H is just-

infinite.

Proof. Let x ∈ H be an element different from the identity and N = 〈x〉H be its normal closure.
To prove the lemma, it suffices to prove that N has finite index in G. It is proved in [80, Theorem 4]
that every nontrivial normal subgroup of a branch group contains (ristG(n))′ for some n. There
exists a vertex v such that x fixes v but acts nontrivially on the set of vertices situated under v. We
may assume that the level k to which v belongs is greater than n. Indeed, if this is not so, then we
apply the arguments used in the proof of Theorem 4 in [80]. Namely, we replace the element x by an
appropriate (see [80]) element of the commutator [N, ristG(w)], where the vertex w is situated one
level below v and is such that x acts on it nontrivially; thus we obtain a new nonidentity element
in N that belongs to a lower level of the tree than v. Repeating this procedure several times, we
obtain a nonidentity element in N that belongs to a level > n.

Then, applying again the procedure of taking the commutator of N with ristG(w), similar to the
way it was done in the concluding part of the proof of Theorem 4 in [80], we find that N contains the
derived subgroup (ristG(u))′ (which is a nontrivial group), where the vertex u situated immediately
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under w (i.e., one level below) is such that at least one element of N acts on it nontrivially. Taking
into account that H acts transitively on the levels and conjugating (ristG(u))′ by the elements of H,
we find that N contains L = (ristG(|w| + 1))′. The group L is normal in G and, hence, also in H.
It follows from [80, Theorem 4] that the quotient group of a branch group by a nontrivial normal
subgroup is virtually abelian and, hence, is finite in our case in view of the just-infinite property.
Hence, N has finite index in H. �

Example 8.2. Let L be the normal closure of the element b in G, K be the normal closure of
the element (ab)2, and L̂ = 〈(ad)2, L〉. Note that L ≤ stG(1) and that G is a regularly branch group
over K (in the sense of Definition 3.5) [80]. For any subgroup X in G and for an arbitrary vertex u,
define Xu as stX(u)|u. Since the group 〈ad, L〉 acts spherically transitively on the tree and since G
is a branch just-infinite group, it follows from the above lemma that this group is just-infinite.

Lemma 8.6. Let x ∈ L̂. Then the normal closure xL̂ has infinite index in L̂ if and only if

x ∈ rist
L̂
(u) for some first-level vertex u.

Proof. Since L̂ ≤ stG(1), the implication in one direction is obvious. Suppose that x does
not belong to ristL̂(u) for any first-level vertex, i.e., both projections x0 and x1 in x = (x0, x1) are
nonidentity elements. Then there exist elements y0, y1 ∈ K such that [xi, yi] �= 1 for i = 0, 1. Let

Yi be the normal closure of the element [xi, yi] in G. Then xL̂ ≥ (Y0 × Y1)1,
2 and the latter group

has finite index in L̂, which was to be proved. �

Proposition 8.7. Let W = 〈a,diag(L̂× L̂)1, (1×K × 1×K)2〉. Then W is a weakly branch

group in G.
Proof. It is obvious that W has finite index in G (note that all elements in (K × 1 × 1 × 1)2

belong to different cosets in G/W ). Let x ∈ G \W ; we have to prove that Ŵ = 〈x,W 〉 has finite
index in G. Obviously, we can assume that x ∈ stG(1), so that x = (x0, x1). Moreover, we can
assume that x0 ∈ {1, a, ad}. Consider three cases.

Case 1. Suppose that x0 = 1. Then x1 ∈ L \ {1} and

rist
Ŵ

(1) ≥ (xL̂
1 × xL̂

1 )1.

Let u0 = (0) and u1 = (1) be the two vertices of the first level. Note that x1 does not belong to
ristG(u1) in view of the conditions imposed on the group W and element x. If the element x1 does

not belong to ristG(u0), then Ŵ has finite index by Lemma 8.6. Suppose the contrary. Then the
decomposition x = (1, 1, y, 1) is valid for some nontrivial y ∈ K. Note that L̂u = G for an arbitrary

nonroot vertex u. Let Y be the normal closure of the element y in G. Then Ŵ ≥ (Y ×K×Y ×K)2
and, hence, Ŵ has finite index in G.

Case 2. Suppose that x0 = a. Then x1 ∈ dL, and the equality Ŵu = G holds for an arbitrary
nonroot vertex u. Let u = (0) be a first-level vertex, and let X = rist

Ŵ
(1)|u. Then X is normal

in G; therefore, it is either trivial or of finite index in G. In the latter case, Ŵ also has finite index
in G. However, since Ŵ ≥ (1×K×1×1)2, the first case is impossible, which implies the conclusion
for this case.

Case 3. Let x0 = ad. Then x1 ∈ daL, and we have Ŵu = 〈ad, L〉 for an arbitrary first-level
vertex u. As before, let u = (0) denote a first-level vertex and X = rist

Ŵ
(1)|u. Then X is normal

in 〈ad, L〉. Since 〈ad, L〉 is just-infinite, it follows that X is either trivial or of finite index in G. In

the latter case, the conclusion follows immediately. However, since Ŵ ≥ (1×K × 1× 1)2, the first
case is impossible, which completes the proof of the proposition. �

2Here and below, the index 1 (or 2) denotes the level of the tree on the vertices of which the subgroup under
consideration is represented as the product of its projections (this corresponds to relations (2.1) and (2.2)). Note
that in the arguments below, when considering group inclusions denoted by the sign ≤, we will omit the signs of
embeddings Ψ and Ψ2 defined in (3.4) and (3.5).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 273 2011



128 R.I. GRIGORCHUK

Although G has an extensive set of weakly maximal subgroups, the following problem does not
seem hopeless.

Problem 8.5. Describe all weakly maximal subgroups in G.

If this is done, then all just-infinite actions of the group G will be described, and this will be
the first nontrivial example of this kind. The problem of describing weakly maximal subgroups in
other self-similar branch groups is on the agenda as well.

Definition 8.2. Two colored graphs Γ1 and Γ2 are said to be locally isomorphic if, for an
arbitrary r ∈ N and an arbitrary vertex u of one of the graphs, there exists a vertex v of the other
graph such that the subgraphs in Γ1 and Γ2 representing neighborhoods of radius r with centers
at the points u and v, respectively (we call them graph neighborhoods), are isomorphic as colored
rooted graphs.

Recall that Γξ denotes the Schreier graph associated with a point ξ; the vertex set of Γξ is
the orbit of ξ. The following two statements are obvious generalizations of statements formulated
in [87, Propositions 6.21 and 6.22].

Proposition 8.8. Let a group G act minimally on a topological space X. Then, for any

positive integer r, any G-typical point ω ∈ X, and an arbitrary point η ∈ X, there exists a vertex v
of Γη such that the graph neighborhoods of radius r with centers at the vertices ω and v in the

graphs Γω and Γη are isomorphic.

Proof. Let Bω(r) be the subgraph representing the neighborhood of radius r in the graph Γω

with a distinguished vertex ω (the subgraph Bω(r) includes all vertices of the graph Γω that lie at
a combinatorial distance ≤ r from the vertex ω and all edges incident to these and only to these
vertices in Γω, including loops). Suppose that u is a vertex of Bω(r) such that a(u) �= u, a ∈ A, and
a(u) also belongs to Bω(r). Thus, there is an edge in Bω(r) that is labeled by the symbol a and
connects the vertices u and a(u). Since the action is continuous, the point u has a neighborhood Uu

in X such that a(w) �= w for all points w ∈ Uu. Let us construct neighborhoods of this kind for all
vertices of the graph Bω(r) that are shifted by the generator a; we choose these neighborhoods so
small that they are pairwise disjoint. Now, let η be an arbitrary boundary point. Since the action is
minimal, the orbit of this point is dense in X. In the orbit of the point η, we find a point v that is so
close to ω that the relation θ = W (ω) implies W (v) ∈ Uθ for an arbitrary word W of length ≤ r over
the alphabet A. Thus, the W -images of the point v are close to the corresponding W -images of the
point ω (we will call such pairs partners). Connecting a-neighboring (but different) W -images (for
the words W of length ≤ r) of the point v by edges, labeling them by a, and applying this procedure
to every symbol a ∈ A, we obtain a graph ∆v(r) with the same number of vertices as Bω(r). The
graph ∆v(r) may differ from the graph Bω(r) only by loops, if they are present in Bω(r). Note that
up to now we have not used the fact that ω is a G-typical point.

Now, suppose that the vertex u of the graph Bω(r) is fixed under the action of the generator a.
Then the point u has a neighborhood Vu in X such that the element a acts trivially in this neigh-
borhood. Taking the point v sufficiently close to ω and using the fact that ω is a G-typical point, we
can make it so that every vertex of the graph ∆v(r) for which its partner vertex in the graph Bω(r)
is a-fixed for some a ∈ A is also a-fixed. Supplementing the graph ∆v(r) with the corresponding
loops, we obtain a graph isomorphic to Bω(r). �

Corollary 8.9. If the action is minimal, then the Schreier graphs of G-typical points are locally

isomorphic. In particular, this is true for spherically transitive actions on rooted trees. If X is a

metric compact set, then the Schreier graphs Γω are pairwise locally isomorphic for values of the

parameter ω that fill a comeager set.

We stress that in this corollary, just as in the above definition of local isomorphism of graphs,
we deal with colored graphs. The concept of local isomorphism is defined in an arbitrary category
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of graphs (either colored or not, oriented or not, etc.). It is clear that a local isomorphism of colored
graphs implies a local isomorphism of the graphs obtained by sweeping the colors away, but not
vice versa.

Corollary 8.10. Suppose that (G,Z) is a Schreier dynamical system3 defined by a minimal

action of a group G on a topological space X. Then this system is topologically transitive, and the

orbit of each point (Γω, ω), where ω is a G-typical point for the system (G,X), is dense in (G,Z).

Now we prove a metric variant of Proposition 8.8. The proof will follow the same strategy as
the proof of Proposition 8.8.

Proposition 8.11. Let (G,X, µ) be an ergodic dynamical system with an invariant (not nec-

essarily finite) measure µ and a finitely generated group G. Then, for almost every x ∈ X, the

graphs Γx are pairwise locally isomorphic.

Proof. We have to prove that there exists a measurable subset X∗ ⊂ X such that µ(X\X∗) = 0
and the graphs Γα and Γβ are locally isomorphic for any α, β ∈ X∗. We will say that a subset
X ′ ⊂ X has full measure if its complement has measure zero. Denote by Bω(r) a part of the
graph Γω, ω ∈ X, that represents the neighborhood of radius r of the point ω in the graph Γω

(i.e., Bω(r) includes vertices lying in the graph Γω at a distance of at most r from ω, and a pair
of such points is connected by an edge if it is connected by an edge in Γω). A graph ∆ with a
distinguished vertex is said to be admissible of radius r if it is isomorphic to the graph Bω(r) for
some point ω. For an admissible graph ∆, denote by X∆(r) the set of points ω ∈ X such that
Bω(r) is isomorphic to ∆ (as a rooted graph). The set X∆(r) is measurable because it consists of
the points x ∈ X that satisfy the inequalities gx �= hx and the equalities sx = tx, where the pairs
(g, h) and (s, t) run through certain finite sets R∆ and S∆ defined by the structure of the graph ∆
and composed of elements satisfying the inequalities |g|, |h|, |s|, |t| ≤ r. The space X is covered by
the sets X∆(r), and since there are only a finite number of these sets, there exists at least one set of
positive measure among them. We say that a graph ∆ is positively admissible if the measure of the
set X∆(r) is positive. Let Dr be the set of positively admissible graphs of radius r. For ∆ ∈ Dr,
define

X∆ =
⋃

g∈G

g(X∆(r)).

Then X∆ is an invariant subset of positive measure. Since the action is ergodic, this set has full
measure. Finally, introduce the set

X∗ =
⋂

r≥1

⋂

∆∈Dr

X∆,

which is also invariant and has full measure. We argued that for any pair ω, η ∈ X∗ the graphs Γω

and Γη are locally isomorphic. Indeed, let ξ ∈ G(ω) and Bξ(r) ≃ ∆ ∈ Dr. Since η ∈ X∆(r), it
follows that there exists a point ζ ∈ G(η) such that Bζ(r) ≃ ∆. �

Consider another example of a Schreier dynamical system that was analyzed in detail by my
student D. Savchuk. This example, related to the famous Thompson group, shows that a Schreier
dynamical system may also reconstruct the original action in the case of an action with a quasi-
invariant measure.

Definition 8.3. The Richard Thompson group F is the group consisting of all increasing
piecewise linear homeomorphisms of the closed interval [0, 1] that are differentiable at all points
of the interval except for a finite set of dyadic rationals and whose derivatives on the intervals of

3We keep the notation used in the definition of a Schreier dynamical system on p. 124.
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Fig. 8.2. Generators x0 and x1 of the Thompson group F .

differentiability are equal to integer powers of two (i.e., have the form 2n, n ∈ Z). The group
operation is the composition.

In addition to the group F , in the mid-1960s Thompson defined and examined groups V and T
that are infinite finitely presented simple groups (these were the first examples of this kind). The
main facts regarding these groups and their generalizations constructed by Higman [101] can be
found in survey [38]. Although F is not a simple group (note that it is nevertheless close to a simple
group; namely, any homomorphism with nontrivial kernel is factored through the abelianization of F ,
which is equal to Z2), the group F has another important property: it has no subgroups isomorphic
to the free group of rank 2. The group F is a finitely presented group with two generators and two
relations, and no nontrivial identities are satisfied in it [37, 1]. The homeomorphisms x0 and x1

that generate the group F are defined as follows:

x0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t

2
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2
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4
,
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4
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, 0 ≤ t ≤ 1

2
,

t

2
+

1

4
,

1

2
≤ t ≤ 3

4
,

t− 1

8
,

3

4
≤ t ≤ 7

8
,
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7

8
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The graphs of these generators are shown in Fig. 8.2.
Every dyadic irrational point in the interval [0, 1] can be defined by its binary representation.

This allows one to extend naturally the action of the group F to the sets {0, 1}∗ and {0, 1}ω of
finite and infinite words (or, more precisely, sequences) over the alphabet {0, 1}. The latter set is
homeomorphic to the Cantor set, and F acts on it by homeomorphisms. We call this action the
standard action of F on the Cantor set. In this case the generators x0 and x1 act on the sequences
as follows:

x0 :

⎧
⎨
⎩

0w �→ 00w,

10w �→ 01w,

11w �→ 1w,

x1 :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0w �→ 0w,

10w �→ 100w,

110w �→ 101w,

111w �→ 11w,

where w is an arbitrary sequence in {0, 1}ω .
In [165], Savchuk completely described the Schreier graph of the action of the group F on the

orbit of the point 1
2 ∈ [0, 1], which consists of all dyadic rationals of the interval (0, 1). In terms

of the action on the set {0, 1}ω , this corresponds to the orbit of the point 1000 . . . , which consists
of all sequences with a finite nonzero number of ones. This Schreier graph is shown in Fig. 8.3,
and one can see that it has a treelike structure; i.e., it is rather simple in the sense of its geometry
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Fig. 8.3. The Schreier graph of the action of the group F on the orbit of the point 1000 . . . . The
dashed edges denote the action of the generator x0, and the solid edges, the action of x1.

and combinatorial description. Note that the stabilizer stF
(

1
2

)
is a maximal subgroup of F ; this

fact confirms our thesis that it is the Schreier graphs associated with maximal and weakly maximal
subgroups that are of special interest. Since the core of stF

(
1
2

)
is trivial (i.e., it does not contain a

nontrivial normal subgroup), one can completely reconstruct F from this graph (we have already
encountered an analogous situation in the case of the group G).

Let us apply the construction of the dynamical system associated with a Schreier graph. Then
we obtain the following statement, which was proved in [166].

Theorem 8.12. Let (F,Z) be a dynamical system associated with the Schreier graph of the

Thompson group F .

(a) The Cantor–Bendixson rank of the set Z is 1. The perfect kernel D of the set Z is homeo-

morphic to the Cantor set.

(b) The action of the group F on the set D is conjugate to the standard action of F on the

Cantor set {0, 1}ω .

In other words, after removing a countable set of isolated points from Z and restricting the
action to the remaining part, we reproduce the original action.

We complete this section with the definition of some important concepts that will be used in the
following sections and have already been used in the present section (when discussing the existence
of an invariant measure on the closure of the conjugacy class of a subgroup).

Among the most important concepts of asymptotic group theory that are related to many
applied aspects of group theory are the concepts of amenable group and amenable action, which were
introduced by von Neumann in 1929. [147]. Independently (and in greater generality for topological,
not necessarily locally compact, groups) this concept was discovered by N.N. Bogolyubov [30].

Definition 8.4. A group G is said to be amenable if there exists a finitely additive left-invariant
measure ν that takes values in the interval [0, 1], is defined on the sigma algebra of all subsets of G,
and is such that ν(G) = 1.
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Definition 8.5. An action (G,X) of a group G on a set X is said to be amenable if there
exists a finitely additive G-invariant measure ν that takes values in [0, 1], is defined on the sigma
algebra of all subsets of X, and is normalized by the condition ν(X) = 1.

Books [69, 189, 39] are good sources for an initial acquaintance with the theory of amenable
groups.

Obviously, the amenability of a group is equivalent to the amenability of its action on itself by
left (or right) translations. There exist an enormous number of equivalent reformulations of the
concept of amenability of a group (perhaps, there is no other concept in mathematics that has as
many formulations). Here we restrict ourselves to the formulation of Følner’s criterion (also called
Følner’s condition); in Section 10, we will also mention Kesten’s probability criterion.

Theorem 8.13 [60, 41]. An action (G,X) is amenable if and only if, for an arbitrary ǫ > 0
and an arbitrary finite subset S ⊂ G, there exists a finite subset F ⊂ X such that

|F △ gF | ≤ ǫ|F | (8.1)

for all g ∈ S, where △ denotes the symmetric difference of sets.

The set that appears in the formulation of this theorem is called a Følner set. It is easy to
understand that if G is a countable group, then Følner’s condition that characterizes amenability can
be reformulated as the existence of an increasing sequence of Følner sets {Fn}∞n=1 that exhausts G
and is such that

|Fn △ gFn|
|Fn|

→ 0

for any element g ∈ G.
In the language of Cayley graphs associated with a group or of Schreier graphs associated with

the action of a group, Følner’s condition means the existence of large subsets of the vertex set with
a small boundary compared with the cardinality of the subset itself (here it does not matter how
the boundary of a subset of the graph is defined; any reasonable method will do [41]). The class AG
of amenable groups is closed with respect to the operations of taking a subgroup, a quotient group,
a group extension, and an inductive limit [69]. Finite groups are amenable (which is obvious), as
well as all commutative groups are amenable (this is proved by applying the axiom of choice) [69].
Thus, solvable (and nilpotent in particular) groups are amenable, and, moreover, the groups that
belong to the class EG of elementary amenable groups—the minimal class of groups that contains
finite and commutative groups and is closed with respect to the above-listed operations—are also
amenable.

The simplest example of a nonamenable group is the free group F2 of rank 2. Thus, any
group containing a subgroup isomorphic to F2 is nonamenable. Let NF be the class of groups
that do not contain a free subgroup with two generators. The following inclusions hold: EG ⊂
AG ⊂ NF. In [52], Day raised the question of whether these classes coincide. The fact that
AG �= NF was proved in [149]. The fact that EG �= AG was proved in [72]. The latter result follows
from the fact that intermediate growth groups are amenable but not elementary amenable [45].
In particular, G ∈ AG \ EG. Since there exist uncountably many intermediate growth groups
(even with different growth degrees, which, incidentally, implies the existence of an uncountable
number of pairwise non-quasi-isometric finitely generated groups) [72], there exist uncountably
many essentially different groups that belong to the complement AG \ EG. In [77], we introduced
the class SG of subexponentially amenable groups, i.e., the minimal class of groups that contains
the groups of subexponential growth (all of which are amenable) and is closed with respect to the
four above-listed group operations that preserve amenability. In [77], the question was raised as to
whether the classes SG and AG coincide. In [23], applying the results of [94], Bartholdi and Virág
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proved that the Basilica group defined in Example 2.4 belongs to the complement AG \ SG and
thus not only fails to be elementary amenable, but also is a group whose amenability is in no way
related to a subexponential growth.

In [20] and [9], it was proved that the groups generated by bounded and linearly growing au-
tomata, respectively, are amenable. At the same time, Sidki in [172] and Nekrashevych in [143]
proved that the groups generated by polynomially growing automata do not contain a free sub-
group with two generators (i.e., they belong to the class NF). The question of their amenability
remains open.

At present, all known examples and constructions of amenable but not elementarily amenable
groups are in one or another way related to self-similar groups of branch type or to their modifica-
tions and schemes based on these groups. It would be interesting to find other constructive types of
amenable groups. However, when the work on this paper was almost finished, the author, together
with K. Medynets, managed to construct infinite finitely generated simple amenable groups by using
minimal homeomorphisms of the Cantor set [85]; moreover, it is proved that there are an uncount-
able number of pairwise nonisomorphic groups of this form. All these groups are nonelementary
amenable, and they are constructed on a completely new basis, which has not been previously
applied in group theory. After that paper the central question concerning the construction of new
examples of amenable groups is as follows.

Problem 8.6. Do there exist finitely generated hereditary just-infinite nonelementary amena-
ble groups?

Note that finitely generated elementary hereditary just-infinite groups are exhausted by the
infinite cyclic and infinite dihedral groups.

To conclude, we formulate a well-known problem.

Problem 8.7. Is the Thompson group F amenable?

This problem was posed by R. Geoghegan as early as the 1970s. In spite of a large number of
attempts of many mathematicians to solve this problem, the problem still remains open. Note that
the recently published paper [171], which states that F is amenable, is incorrect.

9. REPRESENTATIONS, C∗-ALGEBRAS, AND SELF-SIMILAR TRACE

In this section, we define a certain C∗-algebra associated with a group acting on a rooted tree and
construct a self-similar (or recurrent) trace on this algebra in the case when the group is strongly
self-similar. We will need this trace and its properties in Section 10, in particular, in order to
construct asymptotic expanders. This and other C∗-algebras and recurrent traces on these algebras
have been studied in [16, 95, 141, 86]. Below we give some additional information on them.

As already mentioned in the Introduction, with an action of a countable group G on a measure
space (X,µ) by measure-preserving transformations, one can associate a number of unitary repre-
sentations. First, one can study the representation π defined in the Hilbert space L2(X,µ) by the
relation πg(f) = f(g−1x), f ∈ L2(X,µ) (the Koopman representation). One can also study a pencil
of representations ρx acting in the spaces l2(Gx) and indexed by the points x ∈ X, where Gx is
the orbit of a point x. The representation ρx is defined by left translations ρx(g)f(y) = f(g−1y)
of functions on the orbit and is isomorphic to the quasiregular representation ρG/H defined in the
space l2(G/H) by the action ρg(F )(fH) = F (g−1fH), F ∈ l2(G/H), where H = stG(x) is the
stabilizer of the point x. In fact, the representation π can also be defined in the case when the
measure µ is only quasi-invariant; to define the representations ρx, it suffices to have an action of
a group on a space X. A unitary representation of a group defines a C∗-algebra generated by the
operators of the representation of the group.

One can associate several C∗-algebras with an action of a group. First of all, this is the algebra Cπ

generated by the unitary representation π. Namely, one extends the representation π by linearity to
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a representation of the group algebra C[G] and then takes the closure of this algebra in the operator
norm. The second approach consists in extending the quasiregular representation ρx to the group
algebra and then taking its closure in the norm, which yields a C∗-algebra C∗

x. One can also consider
the integral

∫
x∈X l2(Gx) of Hilbert spaces, where Gx is the G-orbit of a point x and the group acts

by translations in every fiber l2(Gx), and take the closure of this representation in the norm (again
extending it to the group algebra). If X is a topological space, then one can additionally consider
the crossed product of the representation π on the commutative C∗-algebra C(X) of continuous
functions on X (we refer the reader to [181] for details of this and other constructions). The study of
groups on the basis of the analysis of their actions on measure spaces and the analysis of associated
C∗-algebras (and von Neumann algebras) falls within the field of measured group theory. Some idea
of this theory can be obtained from [181, 62, 113] and other monographs and articles.

From the viewpoint of measured group theory, representation theory, and the theory of operator
algebras, the following questions are natural: Are the above-mentioned representations irreducible?
What are their properties and the properties of the corresponding algebras and their relation to the
asymptotic and geometric properties of a group (for example, amenability, Kazhdan’s T-property,
Yu’s property A [195], etc.)? In particular, it is important to know what properties of the associated
C∗-algebras are invariants of a dynamical system. Below (namely, in Section 10), we will show
that in some situations the algebras C∗

x, x ∈ X, do not depend on the point x and, moreover,
are isomorphic to the algebra Cπ. Under some additional assumptions, these algebras are also
isomorphic to the reduced algebra C∗

r (G) of the group G (which is the closure in the norm of the
left regular representation λG, which is a particular case of the quasiregular representation λG/{1}).

In parallel, we can consider von Neumann algebras associated with an action; however, in this
case one should take the weak closure of the corresponding operator algebras instead of the closure
in the norm. The construction related to considering the integral of Hilbert spaces in the context
of von Neumann algebras is called Krieger’s construction (see [181]).

In the case of a group acting on a rooted tree, there are a few more constructions of operator
algebras that deserve attention; these constructions were considered in [141, 86] and are based on
the use of self-similarities of a Hilbert space (i.e., isomorphisms between the infinite-dimensional
Hilbert space and the direct sum of several of its copies). These algebras are defined with the use
of the Cuntz algebra (see [51]), which is important for operator algebras, and its generalizations.

Surprisingly, it seems that until recently the algebra Cπ was not especially popular in the studies
on dynamics. Among the studies in which this algebra plays an important role, we mention the work
by Bartholdi and the present author [16], which initiated the research on many problems touched
upon in the present paper, as well as the work by Nekrashevych and the present author [86].
Naturally, the Koopman representation appears in many papers and monographs, but, as a rule,
without involvement of C∗-algebras associated with it. For example, the Koopman representation
is dealt with in Glasner’s book [67] and in the paper by Kechris and Tsankov [114]. Note that
the question (which, according to Glasner, arose during his discussions with P. de la Harpe) of
irreducibility of the Koopman representation (restricted to the orthogonal complement of the space
of constant functions; we will say that the Koopman representation is almost irreducible in this case)
for ergodic actions on spaces with finite measure is discussed in the above-cited book by Glasner
(Ch. 5, Section 4), where it is proved that the Koopman representation is almost irreducible for the
whole automorphism group Aut([0, 1],m) of the Lebesgue space (this group has a natural topology
that turns it into a topological group). In the same book, it is also pointed out that the restriction
of the representation of this group to any countable dense subgroup of the group Aut([0, 1],m) is
almost irreducible as well. Thus, we can obtain examples of locally finite groups (for example, S(∞))
with irreducible Koopman representation.

In our case, the algebra C∗
π will play an important role. The first fact that we are going to prove

is that for groups acting on rooted trees this algebra can be approximated by finite-dimensional
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algebras. We call such algebras residually finite-dimensional (RFD). The RFD property is equivalent
to the fact that the algebra is embedded in a direct product of finite-dimensional matrix algebras
(considered as C∗-algebras). It is an analog of the property of residual finiteness for groups, which
is inherent in all groups acting faithfully on rooted trees, as already discussed above and is discussed
in [25], where the term “direct sum” is erroneously used instead of “direct product.” In addition,
for our further analysis it is important that there is a special trace on C∗

π. This trace provides a
convenient tool for the study of self-similar actions, and we will call it a self-similar trace.

Recall that a normalized trace on a unital C∗-algebra A is a linear functional τ : A → C that
is positive (i.e., τ(x∗x) ≥ 0 for all x ∈ A) and satisfies the relations τ(xy) = τ(yx) for arbitrary
x, y ∈ A and τ(1) = 1. A trace is said to be faithful if τ(x∗x) �= 0 for any x ∈ A, x �= 0. For
example, the reduced C∗-algebra C∗

r (G) of a group G has a canonical trace τ(a) = 〈aδe, δe〉, where
a ∈ C∗

r (G) and δe is a delta function with nonzero value on the identity element e. In this case,
τ(g) = 0 if g ∈ G is a nonidentity element, and τ(e) = 1.

A residually finite-dimensional C∗-algebra always has a faithful trace. Namely, if

i : A→
∏

n≥1

Mn(C)

is an embedding, then the trace

τ :
∏

n≥1

Mn(C)→ C

defined by the relation

τ(a1, a2, . . .) =
∑

n≥1

2−nτn(an), (9.1)

where τn stands for the standard normalized trace on matrices of size n, is a faithful trace on the
direct sum of matrix algebras, while its restriction to A yields a faithful trace on this subalgebra.
Taking another decreasing sequence of positive coefficients with summable series in place of the
coefficients 2−n in (9.1) and dividing (9.1) by the sum of the series, we obtain another faithful trace.
Thus, we obtain an infinite family of faithful traces (whose restriction to i(A) may nevertheless be
the same).

The trace that we are going to define is probably never faithful and is defined only on algebras
associated with groups acting on rooted trees; however, it possesses the property of self-similarity,
which means that the trace is consistent with matrix recursions used below (see [86] for more details
on these recursions).

Let us prove that the RFD property holds.

Proposition 9.1. Suppose that a countable group G acts faithfully on a rooted tree T = Tm,
and let ν be the uniform measure on the boundary ∂T of the tree. Then the algebra C∗

π associated

with the dynamical system (G, ∂T, ν) belongs to the class RFD.

Proof. Let H = L2(∂T, ν) and Hn, n ≥ 1, be the space generated by the characteristic
functions χCu

of the atoms of the partition ξn of the boundary ∂T into cylindrical sets Cu, |u| = n
(recall that Cu consists of geodesic paths that connect the root vertex with infinity and pass through
the vertex u). It is obvious that dimC(Hn) = |Vn| = m1m2 . . . mn, H0 ≃ C. Since each rank n atom
of the partition (i.e., an atom of the form Cu, |u| = n) is a union of mn+1 atoms of rank n + 1 and,
hence, each characteristic function of rank n is a sum of mn+1 characteristic functions of rank n+1,
there exists a natural embedding j : Hn → Hn+1. Let H⊥

n be the orthogonal complement of Hn−1

in Hn. Then dimCH⊥
n = m1 . . . mn−1(mn − 1) := qn and

H = H0 ⊕
∞⊕

n=1

H⊥
n .
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Since each of the partitions ξn is G-invariant, the spaces Hn and H⊥
n are also invariant. This

shows that the representation π is a direct sum of finite-dimensional representations and that the
algebra C∗

π is embedded in

C×
∞∏

n=1

Mqn(C),

which proves the proposition. �

In the case of a group acting on a d-regular tree, the numbers qn that appeared during the
proof of the previous proposition are equal to dn−1(d − 1). Assuming that C∗

π is embedded in the
direct product of matrix algebras, we will express an element x ∈ C∗

π as x = (x0, x1, . . .), x0 ∈ C,
xn ∈Mqn(C), n ≥ 1.

Now, for groups acting on rooted trees, we are going to define a special trace on the algebra C∗
π;

in what follows, we will call this trace a recurrent trace, or a self-similar trace if the group is
self-similar.

Theorem 9.2. The limit on the right-hand side of the relation

τ(x) = lim
n→∞

1

Nn
Tr[x]n, (9.2)

where Nn = m1 . . . mn is the number of vertices on the n-th level, [x]n = (x1, . . . , xn), and Tr is the

ordinary matrix trace, exists and defines a normalized trace τ on C∗
π.

Proof. Denote by πn the restriction of the representation π to Hn and by π⊥
n the restriction

of πn to H⊥
n . Then π is the sum of the representations π⊥

n : π =
⊕∞

n=0 π⊥
n . The representation πn

is isomorphic to the permutation representation ρn in l2(Vn) induced by the action of the group on
the nth level of the tree, where l2(Vn) is the space of functions on the set Vn of nth-level vertices.

First, we are going to prove the existence of the limit in (9.2) for elements of the group algebra
C[G] and then prove that the functional τ defined on this algebra satisfies the properties of the trace
and that, in addition, it is continuous with respect to the norm; after that, it remains to extend
this functional to the whole algebra C∗

π by continuity.
Since every element of the group algebra is a finite linear combination of elements of the group,

we will prove the existence of the limit in (9.2) under the assumption that x = g ∈ G. Let [g]n
denote a matrix of order Nn corresponding to the operator πn(g) and to the basis in l2(Vn) consisting
of delta functions at the nth-level vertices of the tree. In other words, [g]n is a permutation matrix
(with matrix elements belonging to the set {0, 1}) that describes the permutation of the nth-level
vertices under the action of g. In the arguments below, we represent the matrix [g]n as a block
matrix of order Nn−1 with diagonal blocks gii, 1 ≤ i ≤ Nn−1, of order mn. Denote the diagonal
elements of the matrix [g]n−1 by ḡii, 1 ≤ i ≤ Nn−1. Then

ḡii =

{
0 if gii = 0,

1 if gii �= 0,

and therefore

1

Nn
Tr[g]n =

1

Nn−1

Nn−1∑

i=1

Tr

(
1

mn
gii

)
≤ 1

Nn−1
Tr[g]n−1,

since the matrix [g]n is obtained from the matrix [g]n−1 by replacing the zero matrix elements with
zero matrices of order mn and by replacing the matrix elements equal to 1 with the corresponding
permutation matrices of order mn, whose normalized trace is obviously not greater than 1. This
proves the existence of the limit in (9.2) for the elements x ∈ G and, hence, for the elements
x ∈ C[G] as well.
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Denote the value of the limit in (9.2) on the elements of the group ring by τ(x). Starting from
this place up to Theorem 9.11, we will mean by τ precisely this functional.

Lemma 9.3. The functional τ(x) on C[G] defined by the limit in (9.2) is positive and satisfies

the commutation relation τ(xy) = τ(yx), x, y ∈ C[G].

This lemma follows obviously from analogous properties of the ordinary trace of finite-dimen-
sional matrices.

Lemma 9.4. Let G be a group acting on a rooted tree and x be a self-adjoint element of the

group algebra C[G]. Then the following inequality holds:

|τ(x)| ≤ 2‖x‖π, (9.3)

where ‖x‖π denotes the norm of the operator π(x).

Proof. Let x = (x0, x1, . . .) be the decomposition of the element x. Then ‖x‖π = supn‖xn‖,
where ‖ · ‖ denotes the standard norm of a matrix (i.e., the norm of the operator defined by the
matrix). Thus, using the notation [x]n = (x0, . . . , xn) and the fact that

qn = m1 . . . mn−1(mn − 1),

we obtain the estimates

τ(x) = lim
n→∞

1

Nn
Tr[x]n

= lim
n→∞

[
1

m1 . . . mn
Tr(x0) +

m1 − 1

m1 . . . mn

Tr(x1)

q1
+ . . . +

mi − 1

mi . . . mn

Tr(xi)

qi
+ . . . +

mn − 1

mn

Tr(xn)

qn

]

≤ lim
n→∞

[(
1 +

1

mn
+

1

mn−1mn
+ . . .

)
sup

1≤i≤n

Tr(xi)

qi

]

≤ lim
n→∞

[(
1 +

1

mn
+

1

mn−1mn
+ . . .

)
sup

1≤i≤n
‖xi‖

]
,

because Tr B ≤ r‖B‖ for an arbitrary self-adjoint matrix of order r. �

This lemma shows that the functional τ can be extended by continuity to the cone of all self-
adjoint elements of the algebra C∗

π. Since any element of the C∗-algebra is a linear combination
(with coefficients 1 and i =

√
−1) of two self-adjoint elements, it follows that τ can be defined on

the whole algebra C∗
π. This completes the proof of Theorem 9.2. �

As already pointed out, this trace is called a recurrent or self-similar trace. This name is chosen
because in the case of groups defined by finite automata the trace is completely determined by the
set of recurrent relations between the generating elements that is defined by the Moore diagram of
an automaton.

Now we are going to analyze the range of values of the trace τ on the elements of the group
(i.e., on the corresponding operators of the representation of the group). First, we prove that the
values of the trace in the case of essentially free actions are the same as in the case of the reduced
C∗-algebra C∗

r (i.e., 0 or 1); this is one of the advantages of the trace, and we will use it below.
Then we produce an example showing that the situation is drastically changed when passing to
branch-type actions. However, we will benefit from the trace even in this case.

The following proposition is inspired by Proposition 9 from [95].

Proposition 9.5. Let G = G(A) be a self-similar group defined by a finite automaton A over a

d-letter alphabet, and suppose that the action of G on the corresponding d-regular tree is essentially
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free. Let C∗
π be the C∗-algebra defined by this action and τ be the self-similar trace on it. Then

τ(g) =

{
1 if g = 1,

0 if g �= 1.
(9.4)

Proof. The equality τ(1) = 1 is obvious. Let us prove that τ(g) = 0 for any nonidentity
element g. Let A be the set of states of the automaton A. As usual, we will also consider A as a set
of generators of the group G. Suppose that the length of g with respect to the system of generators A
is n, n ≥ 1. This means that g is defined by one of the states s of an automaton B obtained by
minimizing the nth power (with respect to the operation of composition) of the automaton A∪A−1

(A−1 is the inverse of the automaton A, and the union of two automata is an automaton obtained
by a disjoint union of the Moore diagrams of these automata). Let B∗ be an automaton defined by
a connected component containing s in the Moore diagram of the automaton B. The section of the
transformation defined by the state s at any vertex of the tree Td is a transformation corresponding
to a certain state of the automaton B∗. For every state q of B∗, there exists a k(q) ∈ N such that q
acts nontrivially on the set of words of length k(q) (or, which is the same, acts nontrivially on the
level k(q) of the tree Tq). Hence we conclude that each state of the automaton B∗ acts nontrivially
on the set of words of length k for k =

∏
q∈Q k(q).

Consider the matrices [g]kn that describe the action of the element g on the set of words of
length kn, n = 1, 2, . . . (similar notation was used in the proof of Theorem 9.2). Let us decompose
this matrix into blocks of order dk(n−1), thus obtaining a block matrix of order dk whose rows and
columns are indexed by words of length k that are prefixes of the words of length kn indexing the
rows and columns of the matrix [g]kn. Denote the diagonal blocks by aii, 1 ≤ i ≤ dk. These are
either zero matrices or permutation matrices representing some elements gii, 1 ≤ i ≤ dk, of the
group G; these elements correspond to some states of the automaton B∗, and the following relations
hold: ajj = [gjj ]k(n−1). Denote by J the set of values of the index j, 1 ≤ j ≤ dk, for which the
corresponding diagonal elements are nonzero (the set of such elements corresponds to the set of
states that can be reached from the state s corresponding to the element g by moving in the Moore
diagram of the automaton B∗ along paths defined by words of length k such that all the states
passed are labeled by the trivial element of the symmetric group Sym(d)). Since the action on the
set of words of length k is nontrivial, at least one of the matrices aii, 1 ≤ i ≤ dk, is nonzero. Thus,
we arrive at the inequalities

1

dkn
Tr[πkn(g)] ≤ dk − 1

dk

1

dk(n−1)
max
i∈J

Tr[πk(n−1)(gii)] ≤
dk − 1

dk
. (9.5)

On the left-hand side of inequalities (9.5), the element g can be replaced by an arbitrary element gjj ,
j ∈ J . Iterating the first inequality in (9.5), we arrive at the inequality

1

dkn
Tr([g]kn) ≤

(
1− 1

dk

)n

.

Then, passing to the limit as n→∞, we obtain τ(g) = 0, which was to be proved. �

Let us return to the general situation and assume that G is a group acting on a rooted tree
T = Tm of general form; Nn = m1m2 . . . mn; ν is the uniform measure on the boundary of the tree;
C∗

π is the corresponding C∗-algebra; τ is a recurrent trace on it; g ∈ G; Fix(g), as before, denotes
the set of g-fixed points on the boundary; and Fixn(g) denotes the set of g-fixed vertices of the nth
level. Then, the following relations are valid:

ν(Fix(g)) = lim
n→∞

1

Nn
|Fixn(g)| = τ(g). (9.6)
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Indeed, the first relation is a simple consequence of the general properties of the measure, and the
second follows from the fact that the number of ones on the diagonal in the matrix representation
πn(g) of the element g is |Fixn(g)|. Thus, we arrive at the following proposition.

Proposition 9.6. Under the assumptions made above,

(a) the value of the trace τ(g) is zero if and only if g acts essentially freely on the boundary of

the tree;

(b) the recurrent trace vanishes on all nonidentity elements of a countable group G ≤ Aut(Tm)
if and only if the action is essentially free.

As pointed out in [112, Theorem 4.3], the following important fact holds, whose proof presented
here actually reproduces the proof of Theorem 4.3 in [112]; however, it is at the same time close to
the proof of Proposition 9 from [95], on which the proof of Proposition 9.5 was also based.

Theorem 9.7. Suppose that a group G is strongly self-similar (i.e., it is defined by a finite

automaton) and g ∈ G is an arbitrary element. Then

(a) the value of the trace τ(g) is zero if and only if the set Fix(g) is nowhere dense on the

boundary of the tree;

(b) the recurrent trace vanishes on all nonidentity elements of G if and only if the action is

essentially free.

Proof. Let us first prove (a). In view of the previous proposition, it suffices to prove that
the equality ν(Fix(g)) = 0 is equivalent to the fact that the set Fix(g) is nowhere dense. An
initial automaton defines a continuous transformation of the boundary (in fact, it is an isometry
with respect to an arbitrary ultrametric distλ̄ mentioned in Section 1). Therefore, the set Fix(g) is
closed and, by virtue of the equality τ(g) = ν(Fix(g)) = 0, cannot contain open subsets; hence, this
set is nowhere dense.

Let us prove the converse statement. Let B∗ be the minimal initial automaton described in the
proof of Proposition 9.5. One of its states s defines the given element g, g ∈ G. Let Q be the set of
states of the automaton B∗. Since Q is finite and Fix(g) is nowhere dense, there exists a k > 0 such
that, for every state t ∈ Q, the automaton B∗t acts nontrivially at least on one word of length k.
Let us prove by induction on n that

|Fixkn(g)| ≤ (dk − 1)n (9.7)

for n ≥ 0. Inequality (9.7) is obvious for n = 0. Suppose that it is valid for n−1, n ≥ 1, and consider
dkn words of length kn. By the induction hypothesis, at most (dk−1)n−1 prefixes of length k(n−1)
of such words, considered as vertices of the tree, are fixed by the element g. Suppose that a word u
of length k(n − 1) is fixed under the action of g and t is a state into which the state s transforms
under the action of the word u. Then t belongs to Q, and, in view of the choice of k, there exist
at most (rk − 1)n− 1 words fixed by the element corresponding to the state t. Thus, there are at
most (dk − 1)n words of length kn that are left fixed by the element g, which proves (9.7). So,

1

dkn
|Fixkn(g)| ≤

(
1− 1

dk

)n

.

Since the right-hand side of the last inequality tends to zero as n→∞, the application of (9.6)
completes the proof.

Assertion (b) follows from (a). �
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As a corollary to the statement proved above and relation (9.6), we obtain the following impor-
tant property of the actions of groups generated by finite automata, which we used in Section 5 for
constructing examples of essentially free actions.

Corollary 9.8. For self-similar groups defined by finite automata, the concepts of local non-

triviality, topological freeness, and essential freeness of the action on the boundary of a tree are

equivalent.

In contrast to essentially free actions on the boundary of a tree, in the case of weakly branch
actions the recurrent trace probably always takes a nonzero value at least on one element of the
group (more precisely, on the operator π(g)). To justify this statement, recall some concepts re-
lated to representations and invoke some observations and results from the recent publication by
Vershik [184].

A complex-valued function φ on a group G is said to be positive definite if the following inequality
holds for any finite set of elements {g1, g2, . . . , gn}, gi ∈ G, i = 1, . . . , n:

n∑

i,j=1

φ(gig
−1
j ) ≥ 0.

If, in addition, the function φ is constant on conjugacy classes and is normalized by the condition
φ(1) = 1, then it is called a central character. Notice that the word “character” is often used in other
senses as well, for example, as a homomorphism from a group into the unit circle group; however,
here we will use precisely this definition, following the terminology of [184], which, however, is closely
tied to the classical terminology (see, for example, [53]). Characters of this kind arise as restrictions
to the operators π(g) of the trace of factor representations of type II1, i.e., representations that
generate a von Neumann algebra that is a factor of type II1. For an arbitrary action of a countable
group on a space X with an invariant probability measure µ, the function

φ(g) = µ(Fix(g))

is a character in view of the relation µ(Fix(g)) = 〈π(g)1∆, 1∆〉, where 1∆ is the characteristic
function of the diagonal ∆ = {(x, x) : x ∈ X} and the inner product is taken in the space L2(R, ρ);
here R is a Borel subset in X×X consisting of pairs (x, gx): x ∈ X, g ∈ G, and the measure ρ with
support in R is defined by the condition that its projection onto each of the factors in X ×X is µ,
while on every fiber over a point x ∈ X the fiberwise measure corresponding to the measure ρ is a
counting measure (i.e., the measure of each point is 1). Note that R is a countable Borel equivalence
relation associated with the action of the group on X; some questions concerning such relations will
be considered in the last Section 11.

The group G acts on R by left and right translations with respect to the first and second
arguments. These two actions preserve the measure ρ and commute with each other. This defines
two representations π0 and π1 in the space L2(R, ρ) and two mutually commuting von Neumann
algebras W0 and W1 generated by the operators of the above-mentioned representations and the
operators of multiplication by functions in L∞(R, ρ). In the case of a finite measure µ and an ergodic
action, these algebras are factors of type II1 (we refer the reader to the fundamental monographs
by Takesaki [179–181] for details related to this construction). Below, for definiteness, we suppose
that W = W0 is the first of the two algebras, and let V be the subalgebra of W generated by the
operators of the group representation (i.e., by the operators π0(g), g ∈ G, while the closure, as is
conventional in the theory of von Neumann algebras, is taken in the strong or, equivalently, in the
weak operator topology). In the general case, the algebra V is a proper subalgebra of W . However,
a remarkable observation made by Vershik consists in the validity of the following statement.

Theorem 9.9 [184, Theorem 10]. For an ergodic action (G,Z, µ) with an invariant probability

measure, the coincidence V = W occurs if and only if the action is totally nonfree.
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Thus, for every totally nonfree group action, the described representation generates a factor
of type II1. To every character φ, there corresponds a representation πφ defined up to quasi-
equivalence of representations, and this representation is a factor representation if and only if φ is
indecomposable (i.e., φ is an extreme point in the space of central characters on the group with the
topology of pointwise convergence) [53].

In [184, Theorem 9], it is shown that for ergodic actions with invariant measure the function
φ(g) = µ(Fix(g)) is an indecomposable character if and only if V is a factor. Note also that when
a group acts on the boundary of a tree, it follows from (9.6) that this character is a restriction of
the recurrent trace to the group in view of the relations

φ(g) = µ(Fix(g)) = τ(g).

Theorem 9.10. Let G be a weakly branch group and φ be a character defined by its action on

a tree. Then the corresponding representation πφ is a factor representation.

Proof. By Theorem 2.4, the action of the group G on the boundary of a tree is totally nonfree,
and it is ergodic by Proposition 4.1 and by virtue of the fact that, by definition, a weakly branch
group acts transitively on the levels. It remains to apply Theorem 9 from [184]. �

It is an interesting problem to calculate explicitly the trace on self-similar groups and examine
its properties in greater detail. In our view, the following conjecture is plausible.

Conjecture 9.1. Let G be a weakly branch group and τ be the self-similar trace on it. Then

there exists an element g ∈ G such that τ(g) �= 0.

The recurrent trace can take values that densely fill the interval [0, 1]. Let us demonstrate
this using an example of the intermediate growth group G defined in Example 2.3. The relevant
calculations have been performed by my student R. Kravchenko.

Example 9.1. For the group G = 〈a, b, c, d〉, the set of values of the recurrent trace on the
operators π(g), g ∈ G, is equal to the set

τ(G) =
1

7
Q2 ∩ [0, 1], (9.8)

where Q2 stands for the set of dyadic rationals.
For simplicity, we will write τ(g) instead of τ(π(g)). If g = (g0, g1) ∈ stG(1), then we have

τ(g) = 1
2 (τ(g0) + τ(g1)), while if g = (g0, g1)σ, then τ(g) = 0 because the corresponding operator

matrix has zero values on the diagonal. Taking into account the recurrent relations between the
generators a, b, c, and d and the fact that τ(a) obviously vanishes, we arrive at the relations
τ(b) = τ(c)/2, τ(c) = τ(d)/2, and τ(d) = (1 + τ(b))/2, which imply τ(b) = 1/7, τ(c) = 2/7, and
τ(d) = 4/7. Since G is a contracting group with parameters 1/2 and 1 (and hence the sections
of any element of length ≥ 1 are shorter than the element itself) and, consequently, in the matrix
representation of any of its elements g the lengths of nonzero elements of this matrix are not greater
than the length of the element itself, we find that the value of the trace τ(g) belongs to the set
1
7Q2 ∩ [0, 1] for any g ∈ G.

To prove the reverse inclusion, we will use the fact that G is a regularly branch group with
respect to the subgroup K = 〈[a, b]〉G , the normal closure of the element [a, b] = (ab)2 [80]. Since
ψ(K) > K × K, it follows that (T + T )/2 ⊂ T , where T = τ(K), i.e., (x + y)/2 ∈ T if x, y ∈ T .
Then, we can easily prove, by induction on n ∈ N, that

m

2n
x +

2n −m

2n
y ∈ T

for an arbitrary m, 1 ≤ m ≤ 2n.
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It remains to be noticed that since the element

(ab)8 = (b, b, b, b, b, b, b, b)

in stG(3) belongs to K and since its trace is equal to τ(b) = 1/7, it follows that 7T contains 0 and 1
and satisfies (7T + 7T )/2 ⊂ 7T , which immediately implies (9.8).

The possibility of similar calculations of the values of the recurrent trace on the elements of
strongly self-similar contracting groups was pointed out in [81]. Calculations similar to the above
can in principle be performed for other self-similar contracting groups that are regularly branch
groups over one of their subgroups. Indeed, if G is a contracting group, then all sections gu of any
element g ∈ G belong to the nucleus N starting from a certain level N , i.e., for |u| > N . Thus, the
problem of calculating τ(g) for any element g reduces to calculating the trace on the set of elements
of the nucleus; the latter problem is easily solved by compiling a closed system of linear relations
between the values of the trace of the elements of the nucleus and the values of the trace on their
projections (which are also elements of the nucleus). This system must be consistent. It is unlikely
that it may be indeterminate, but this is still to be verified. If the group is regularly branch over
one of its subgroups, then roughly the same calculations as those performed above should yield the
full range of values of the trace on the elements of the group. At least if G is regularly branch
with respect to P , then τ(P ) ⊇ (τ(P ) + . . . + τ(P ))/d (the sum contains d terms, where d is the
cardinality of the alphabet). However, for the present there is no general statement that would
describe the range of values of the trace for the class of groups in question; moreover, it is not clear
how the knowledge of the structure of this range can be used to study the properties of a group
(however, the results presented above make it obvious that the recurrent trace is certainly useful
for solving problems of representation theory). It is worth noting that in the case of the group G
the values of the recurrent trace coincide with the dimensions of the centralizers of elements of the
group G, which were defined and calculated by A. Rozhkov4; possibly, this points to a relationship
between these quantities.

In the case of an irregular tree T = Tm, provided that the sequence m = {mn}∞n=1 defining the
branch index is bounded, a statement similar to Proposition 9.5 is also valid for countable groups
G ≤ Aut(T ) that act essentially freely. It would be interesting to find conditions that guarantee
relation (9.4) in the case of trees with unbounded branch index.

The following statement is undoubtedly known; however, we present its proof because we are
not aware of an appropriate reference.

Theorem 9.11. Let C be a unital C∗-algebra that has a faithful trace τ, τ(1) = 1, let G be a

countable subgroup of the group of unitary elements of the algebra C, and suppose that G generates C
as a C∗-algebra. Suppose that τ(g) = 0 for any nonidentity element g ∈ G. Then C is isomorphic

to the reduced C∗-algebra C∗
r (G) of the group G.

Proof. Using the trace τ , we construct a Gelfand–Naimark–Segal representation of the alge-
bra C. Namely, consider an inner product on C defined by the relation 〈x, y〉 = τ(y∗x), and let
H be the Hilbert space obtained by completing C with respect to the norm defined by this inner
product. Let ρ : C → B(H) be the representation of the algebra C in the space H by bounded
operators of left multiplication: ρ(c)(x) = cx, c, x ∈ C. This representation extends to the whole
space H by continuity. The representation ρ is faithful because

〈ρ(x)1, x〉 = 〈x, x〉 = τ(x∗x) > 0

if x �= 0, x ∈ C. Let us index the elements of the group G in an arbitrary way, G = {g1, . . . , gn, . . .}.
By the hypothesis, τ(g∗i gj) = τ(g−1

i gj) = 0 if i �= j.

4A. V. Rozhkov, “Metric Relations in Groups of Tree Automorphisms,” Algebra Logika 37 (3), 338–357 (1998)
[Algebra Logic 37 (3), 192–203 (1998)].
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Let K be a group isomorphic to G under an isomorphism ϕ and ki = ϕ(gi) ∈ K. Define an
operator U : H → l2(K) by the relation U

(∑
i αigi

)
=

∑
i αiki. This is an isometric isomorphism.

Then

(Uρ(gi)U
∗)(δkj

) = Uρ(gi)(gj) = U(gigj) = δkikj
= λ(ki)δkj

,

where δk is a delta function with nonzero value on the element k ∈ K, and λ : K → U(l2(K))
denotes the left regular representation of the group K. We have established that U intertwines the
(faithful) representations of the algebras C and C∗

r and, hence, establishes an isomorphism between
them. �

Corollary 9.12. Suppose that an action (G, ∂T, µ) of a strongly self-similar group is essentially

free. Then there exists a natural ∗-homomorphism C∗
π → C∗

r (G).

Proof. Indeed, if the recurrent trace τ on C∗
π is faithful, then the algebras Cπ and C∗

r (G) are
isomorphic by the isomorphism described in the proof of the theorem. If the trace is not faithful,
then the set of elements x ∈ Cπ satisfying the relation τ(x∗x) = 0 forms a closed ideal I; on the
quotient algebra Cπ/I, the trace τ induces a faithful trace τ̄ that satisfies the hypotheses of the
theorem; hence, Cπ/I ≃ C∗

r (G). �

It would be interesting to find out when the algebras Cπ and C∗
r (G) are isomorphic for actions

on rooted trees. Below we give a sufficient amenability-based condition for such an isomorphism.
For strongly self-similar groups acting essentially freely, the question of when the algebras Cπ

and C∗
r (G) are isomorphic is solved easily (see Proposition 9.14). An isomorphism is certainly

impossible if C∗
r (G) is not residually finite-dimensional. For example, the reduced C∗-algebra of the

free group Fm of rank m ≥ 2 is simple; hence, it does not belong to the RFD class. Moreover, the
following theorem is valid.

Theorem 9.13 [25]. The following assertions are equivalent for a group G:

(i) C∗
r (G) is residually finite-dimensional ;

(ii) the group G is amenable and belongs to the class of maximally almost periodic (MAP) groups;
i.e., its finite-dimensional representations separate the elements of the group (for finitely

generated groups, this condition is equivalent to the condition of residual finiteness).

Combining this statement with Corollary 9.12, we get the following result:

Proposition 9.14 [16]. For a self-similar group G acting essentially freely, the isomorphism

Cπ(G) ≃ C∗
r (G) takes place if and only if the group is amenable.

Recall that the full C∗
f (G)-algebra is defined as the C∗-algebra generated by a representation

that is the product of all irreducible unitary representations of the group. The reduced C∗-algebra
of a group is isomorphic to the full C∗-algebra if and only if the group is amenable [53, 24].

Let us note a few other facts related to representations and algebras associated with groups acting
on rooted trees. We begin with an irreducibility result for a class of quasiregular representations of
weakly branch groups. Recall the following definition.

Definition 9.1. Let H ≤ G. The commensurator commG(H) is a subgroup of G defined by
the relation

commG(H) =
{
g ∈ G | H ∩Hg has finite index in H and in Hg

}
.

The commensurator can also be defined by the relation

commG(H) =
{
g ∈ G | the H-orbits H(gH) and H(g−1H) are finite

}
.

The verification of the equivalence of these definitions is a useful exercise and is based on the
following two facts.
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1. If we denote by T a transversal (a set of representatives of the cosets) of H with respect to
H ∩ Hg, then the following decomposition into a disjoint union of left cosets with respect to the
subgroup H holds for the double coset HgH:

HgH =
⊔

t∈T
tgH.

2. Conversely, the above relation implies that T is a transversal; namely, the following decom-
position holds:

H =
⊔

t∈T
t(H ∩Hg).

To prove the irreducibility of quasiregular representations, we need the following criterion ob-
tained by Mackey.

Theorem 9.15 [132]. Let H be a subgroup of an infinite discrete countable group G. Then

the quasiregular representation ρG/H is irreducible if and only if commG(H) = H.

Proposition 9.16 [16; 17, Proposition 9.2]. Let G be a weakly branch group acting on a rooted

tree T and P be a parabolic subgroup (i.e., the stabilizer of some boundary point of the tree). Then

the representation ρG/P is irreducible.

Proof. To prove the proposition, we apply Lemma 2.3. Let P = stG(ξ) and g ∈ G \ P . Let
us show that the intersection P ∩ P g has infinite index in P g. Let u be the first vertex belonging
to ξ such that g−1(u) �= u. Then ristG(u) = ristP g(u) because P g stabilizes the vertex g−1(u) �= u,
and ristP∩P g(u) = ristP (u) for a similar reason. Since ristP (u) leaves the point ξ fixed and, by
Lemma 2.3, the orbit ristG(u)(ξ) is infinite, we can apply the Mackey criterion, and the proposition
is proved. �

So, weakly branch groups have a continuum family of irreducible quasiregular representations
parameterized by the boundary points. These representations separate the elements of the group
because the intersection of all parabolic subgroups is trivial in view of the spherical transitivity
of the actions of branch groups. All of them are pairwise nonisomorphic because have pairwise
different kernels of representations (i.e., subgroups of elements acting by the identity operator).

Now, we will show that the class of weakly branch groups has one more good property from
the viewpoint of representations and operator algebras; namely, weakly branch groups belong to
the class of ICC groups that have infinite classes of conjugate elements (i.e., for any nonidentity
element g ∈ G, the conjugacy class C(g) of the element g is infinite). It is well known [181] that
the von Neumann algebra generated by the left regular representation is a factor of type II1 for an
ICC group.

Theorem 9.17. Let G be a weakly branch group. Then G belongs to the class ICC.

Proof. Consider the action of G on itself by conjugations, and let StabG(g) be the stabilizer
of an element g ∈ G, g �= 1 (we have deliberately changed the notation for the stabilizer because
now we consider another type of actions, namely, the adjoint action). The conjugacy class C(g) is
infinite if and only if [G : StabG(g)] =∞. For some n, there exists an nth-level vertex u that is not
fixed under g. We will assume that the level n is chosen to be minimal among those on which the
action of the element g is nontrivial. Then the predecessor w of the vertex u is g-invariant. Let
v = g(u), v �= u, and 1 �= h ∈ ristG(u). Suppose that the sections of the elements g and h at the
vertex w have the form

g|w = (g1, . . . , gmn−1)σ, h|w = (1, . . . , 1, ξ, 1, . . . , 1),
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where 1 �= σ ∈ Sym(mn), ξ �= 1, and the position of the component ξ corresponds to the position
of the vertex u under the vertex w. Then

[h, g] = (1, . . . , 1, ξ−1, 1, . . . , 1, ξgj , 1, . . . , 1),

where the nonidentity components of the latter decomposition correspond to the positions of the
vertices v and u, with ξgj being a component of the decomposition of g|w and corresponding to the
position of the vertex u. Thus, we find that the inequality gh �= g holds for any nonidentity element
h ∈ ristG(u). Hence, ristG(u) ∩ StabG(g) = 1, and since ristG(u) is an infinite subgroup, StabG(g)
has infinite index in G. The theorem is proved. �

The following theorem, which gives a sufficient condition for an isomorphism between the C∗-al-
gebra generated by the Koopman representation and C∗-algebras generated by quasiregular repre-
sentations related to the actions on orbits, will be proved in the next section.

Theorem 9.18 [16]. Suppose that G acts spherically transitively on a tree T .

(i) There exists a canonical ∗-homomorphism C∗
π → C∗

G/Pξ
.

(ii) Suppose that the action of the group G on the orbit G(ξ) of some point ξ ∈ ∂T is amenable.

Then C∗
π ≃ C∗

G/Pξ
, where Pξ = stG(ξ).

10. RANDOM WALKS, SPECTRA, AND ASYMPTOTIC EXPANDERS

In this section, we touch upon some questions related to random walks on Schreier graphs and
questions of the spectral theory of graphs, consider some spectral measures associated with graphs,
and continue the discussion of the concept of amenability initiated in the previous section. Note
that the spectral theory of graphs, some issues of which are discussed below, is being successfully de-
veloped for various generalizations of the class of graphs, for example, for quantum graphs (see [118]
and references therein); however, we will not go into these generalizations. We begin with the
definition of a Markov operator.

The adjacency matrix A of a nonoriented graph Γ is a matrix whose rows and columns are
numbered by vertices and the intersection of a column and a row with labels u and v contains the
number au,v of edges that connect the vertices u and v. The adjacency matrix is symmetric and
defines an operator Ā in the (complex) Hilbert space l2(V ) (which will be also denoted by l2(Γ)) of
square summable functions defined on the vertex set V . The operator Ā acts as follows:

(Āf)(v) =
∑

w∼v

f(w).

We will prefer to deal with the normalized operator

(Mf)(v) =
1

deg(v)

∑

w∼v

f(w),

which is called a Markov operator. Since the sum of matrix elements of a Markov operator over each
row is equal to 1, its norm is not greater than 1, and it is equal to 1 in the case of a finite graph (in
this case the multiplicity of the eigenvalue 1 is equal to the number of connected components of the
graph). Note also that in the case of a finite connected graph, constant functions are eigenfunctions
corresponding to the eigenvalue 1. If the graph is infinite, then whether the norm of the operator M
is equal to unity is a delicate question. In the case of graphs with uniformly bounded degree of
vertices, there is a characterization of amenability in terms of the spectral radius of the operator M
(namely, the amenability is equivalent to the equality of the spectral radius to unity). We will
discuss this below.
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In the orientable case, the Markov operator is defined by the formula

(Mf)(v) =
1

deg(v)

∑

e∈E : α(e)=v

f(β(e));

however, in what follows we will discuss only the spectral properties of nonoriented graphs.
The matrix of a Markov operator is a matrix of transition probabilities of a simple random

walk on a graph when a wandering point passes from a current vertex to neighboring vertices
along connecting edges with equal probabilities. If the edges of a graph are labeled by symbols
of an alphabet X = {x1, . . . , xk} whose elements are assigned probabilities {p1, . . . , pk}, pi ≥ 0,∑

pi = 1, then one can consider a random walk in which the transition along an edge labeled by
a symbol xi occurs with probability pi. In this case the entries of the matrix of the corresponding
Markov operator belong to the set 0 ∪ {p1, . . . , pk}.

Let a =
∑

αgg ∈ R[G] be an element of the group algebra with positive real coefficients
that add up to unity and with the support (i.e., the set of elements g whose coefficient αg is
nonzero) generating the group (without using the operation of inversion; i.e., the generation is
understood in the semigroup sense). With such an element, one can associate a random walk on
any Schreier graph constructed for the group G with the use of the system of generators supp(a).
If supp(a) = {g1, . . . , gk}, then a transition along an edge labeled in the Schreier graph by a
generator gi occurs with probability αgi . If the element a is self-adjoint (or symmetric) in the
sense that its support is invariant under the inversion (of the elements) and the relation αg = αg−1

holds for every element g of the support, then the corresponding Markov operator is self-adjoint
and the random walk is said to be symmetric. The study of such walks on noncommutative groups
was initiated by Kesten [116], who tried to use these random walks in order to solve the Burnside
problem for periodic groups.

The main questions related to random walks on infinite graphs are the recurrency of a random
walk, the Liouville property of a graph (the absence of nonconstant bounded harmonic functions,
i.e., functions f(g) on the group that satisfy the relation Mf = f), the asymptotic behavior of the
transition probabilities as time tends to infinity (in particular, the rate at which the probabilities
of return to the initial point tend to zero), the behavior of the entropy of a random walk, etc.

The following dichotomy holds: the probabilities decrease either exponentially or subexponen-
tially. For symmetric random walks, the probabilities have exponential asymptotics if and only if
the norm (or, which is the same, the spectral radius) of the Markov operator is less than 1; this is
equivalent to the nonamenability of the graph or of a finitely generated group represented by the
Cayley graph (Kesten’s theorem [115]). Amenable groups have already been defined above; now we
will define amenable graphs. However, first we should agree on what we will mean by the boundary
of a subset of vertices in a graph.

The boundary of a subset F ⊂ V is the set ∂F of vertices in F that have a neighbor that does
not belong to F . As pointed out in [41], there are four natural approaches to the definition of the
boundary of a set of vertices in a graph. From the viewpoint of asymptotic graph theory, all these
approaches are equivalent. In particular, any of the four definitions of the boundary can be used
below in the definition of the amenability of a graph.

Definition 10.1. Suppose that a graph Γ has a uniformly bounded degree of vertices; i.e.,
there exists a constant C such that deg(v) ≤ C, v ∈ V . The graph Γ is said to be amenable if there

exists a sequence {Fn}∞n=1 of finite subsets of the vertex set such that |∂Fn|
|Fn| → 0.

The condition used in this definition is often called the Følner condition; it is interrelated with the
condition appearing in Theorem 8.13 (in this case one naturally adds the condition that the sequence
increases, i.e., Fn ⊂ Fn+1, n ≥ 1, which can always be satisfied provided that there exists a sequence
missing the monotonicity condition). This definition is consistent with the definition of amenability
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given above. In addition to the classical definition of the amenability of a group or the amenability
of its action on a set, one can alternatively define a finitely generated group to be amenable if its
Cayley graph is amenable (recall that a group is amenable if and only if each of its finitely generated
subgroups is amenable). In exactly the same way, an action of a finitely generated group is amenable
if the graph of the action (i.e., the Schreier graph associated with the action) is amenable.

Kesten’s theorem [115] stating that a group is amenable if and only if the norm of the Markov
operator (or, which is the same, the spectral radius) is equal to 1 has been generalized in many
ways; one of these generalizations can be found in [41, Theorem 5.1], which, in particular, implies
the following statement.

Theorem 10.1. A graph Γ with a uniformly bounded degree of vertices is amenable if and only

if the norm of the Markov operator M associated with the simple random walk is 1.

In this theorem, the simple random walk can be replaced by an arbitrary nondegenerate sym-
metric random walk. Kaimanovich showed [106] that in the case of graphs with nonuniformly
bounded degrees of vertices, the question of relationship between amenability and other asymptotic
characteristics is rather delicate and requires a careful approach.

The above theorem is only one of many examples that demonstrate the importance of evaluating
or estimating the norm of the Markov operator, as well as calculating its spectrum and spectral
characteristics. A similar problem consists in solving the spectral problem for the elements of the
group algebra that are represented as elements of the C∗-algebra generated by a quasiregular rep-
resentation ρG/H . In other words, the matter concerns the spectrum of the corresponding operator
acting in the space l2(Γ), where Γ = Γ(G,H,A). When speaking of the spectrum of a graph,
one usually means the spectrum of the Markov operator of a simple random walk on this graph.
However, the study of the spectra of operators of the form ρG/H(c), c ∈ C[G], is also of considerable
interest. With these operators one can associate a colored Schreier graph Γ(G,H,A), where A is
the support of the element c (the support is assumed to generate the group), with each a-colored
edge, a ∈ A, additionally labeled by the coefficient αa, provided that c =

∑
a∈A αa. We will denote

such a graph by Γ(G,H, c); moreover, we will always assume that this is a rooted graph with the
initial vertex represented by the coset 1H of the identity element.

Now we consider spectral measures. If M is a bounded self-adjoint operator in a Hilbert space H,
then its spectrum sp(M) is a closed bounded subset of the real axis, and the following decomposition
is provided by the spectral theorem:

M =

∫

sp(M)

λdE(λ),

where E(λ) is a system of orthogonal projectors (which is often called a spectral function or a
projector-valued measure). Each vector φ ∈ H is assigned a measure µφ on sp(M) defined by the
relation

µφ(B) = 〈e(B)φ, φ〉,

where B is any Borel subset of the real axis, 〈·, ·〉 denotes the inner product, and e(B) is the
density of the spectral function: e([a, b]) = E(b) − E(a). The choice of the vector φ depends on
a specific problem, while the properties of the measure µφ usually depend on the choice of φ. For
Markov operators, a natural choice for φ is the delta function with nonzero value at the root of
the graph (which serves as the starting point of a random walk). Thus, for a graph Γ, one can
define the measures µΓ

v , where v runs through the vertex set of the graph. These measures are
called Kesten’s spectral measures, because it was Kesten who first started to systematically analyze
random walks on noncommutative groups and their Cayley graphs; in particular, he calculated
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the spectral measure of a random walk on free groups and obtained a probability criterion for
amenability (Theorem 10.1).

Let us return to the Markov operator M . If we denote by p
(n)
v the probability of return to the

vertex v after n steps of a random walk on the graph with which this operator is associated, we can
easily see that this probability is 〈Mnδv, δv〉 =

∫
sp(M) λn dµ(λ). The integral in this relation is the

nth moment of the measure µv. It is well known that a bounded measure is uniquely defined by its
moments in view of the Stieltjes inversion formula.

In the case of finite graphs, a natural measure related to a graph is a counting measure ν (also
called an empirical measure) whose value on a subset B ⊂ R is equal to the number of points of
the spectrum of the Markov operator (counted with multiplicities) that fall into the set B, divided
by the number of vertices of the graph. Below we will see that such a measure is the mean of the
measures µv. Counting measures are widely used in probability theory, mathematical physics, and
other fields of natural science. In different fields, different terms are used for these measures; for
example, in physics, the term density of states is widely used.

The counting measure corresponds to a counting projector-valued spectral measure

e(B) =
∑

λ : λ∈B∩sp(M)

Eλ,

where Eλ is the orthogonal projector onto the space of eigenfunctions corresponding to the eigen-
value λ. Hence we obtain the following relations:

µ =
∑

λ∈sp(M)

Tr(Eλ)

|V | δλ =
∑

λ∈sp(M)

#(λ)

|V | δλ, (10.1)

where V is the vertex set of the graph, Tr, as before, stands for the ordinary matrix trace, and #
denotes the multiplicity of the eigenvalue.

Proposition 10.2. Let Γ be a finite graph with vertex set V and M be the Markov operator

of an arbitrary symmetric random walk on Γ. Then the counting measure µ associated with this

operator is equal to the mean of the Kesten measures µv over the set of all vertices ; i.e.,

µ =
1

|V |
∑

v∈V

µv.

Proof. Let |V | = m and Pn
ij be the probability of transition from vertex i to vertex j after n

steps of the random walk defined by the matrix M (we assume that the vertices are numbered by
positive integers from 1 to m). Since the random walk is symmetric (i.e., the matrix M is symmetric),
M is similar to a diagonal matrix D with the eigenvalues λk of the matrix M situated on the diagonal.
Let M = Φ−1DΦ, where the columns of the matrix Φ = (φij) are normalized eigenfunctions of the
matrix M and Φ−1 = (ψij) is the inverse matrix. Then the transition probabilities of the random
walk defined by the matrix M are given by

Pn
ij = 〈Mnδi, δj〉 =

m∑

k=1

φikλ
n
kψkj.

Let

µ′ =
1

|V |
∑

v∈V

µv.
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Consider the numbers

P̃n =

∫
λn dµ′(λ) =

1

m

m∑

i=1

Pn
ii =

1

m

m∑

k=1

λn
k

m∑

i=1

φikψki =
1

m

m∑

k=1

λn
k =

∫
λn dµ(λ).

Since a finite measure is uniquely defined by its moments (the role of which in this case is played
by the return probabilities) and since the averaging of measures corresponds to the averaging of
momenta, the proposition is proved. �

As a bonus, we have found that the moments of the counting measure are equal to the mean of
the moments of the Kesten measures over the vertex set.

Of great interest are the problems of approximating infinite graphs by finite ones and of finding
conditions under which the asymptotic characteristics of infinite graphs are approximated, in one
or another sense, by the corresponding characteristics of finite graphs. One of the simplest facts in
this direction is the following theorem.

Theorem 10.3. The Kesten spectral measure depends continuously on a point of the space

X Sch
2m in the weak topology of the space of measures.

In other words, if a sequence (Γn, vn)∞n=1 of rooted graphs converges in the space X Sch
2m to a graph

(Γ, v), then the sequence of Kesten measures µvn converges weakly to the Kesten measure µv.

Proof. Indeed, a bounded measure is uniquely defined by its moments, which coincide with
the probabilities of return to the root of the graph (which is the starting point of a random walk).
For any r and sufficiently large n, the neighborhoods of radius r in the graphs (Γn, vn) and (Γ, v)
are isomorphic as graphs. Hence, we have a convergence of the moments, which implies a weak
convergence of the measures. The theorem is proved. �

In fact, there is no need to consider only simple random walks. The arguments are also valid when
the random walks are defined by a symmetric probability distribution on the set of 2m generators
and their inverses. Moreover, one can also define the Kesten measure for an arbitrary symmetric
element a ∈ C[Fm] (Fm is a free group of rank m, which naturally covers all Schreier graphs in the
space X Sch

2m ), and then Theorem 10.3 still remains valid.

One can go even further and admit nonpositive coefficients in the decomposition of the element c
of the group algebra C[G] with respect to a basis consisting of elements of the group. However,
in this case µ may turn out to be a signed measure (which is also called a charge in the Russian
literature). In this case, one should speak of the coincidence of the sums of weights of closed paths
of length n that start and end at the distinguished point of the graph, rather than of the coincidence
of return probabilities. Here the weight of a path is the product of the labels of its edges (which in
this case are given by the nonzero coefficients of the element c), and the associated graph on which
the “random walk” occurs is the graph Γ(G,P, c), which is a generalization of the Schreier graph
dealt with above.

For example, Theorem 10.3 can be applied in the following situation. Let us return to the case
when there is an infinite covering sequence of finite Schreier graphs {(Γn, vn)}∞n=1 that converges to
an infinite Schreier graph (Γ, υ). Such a sequence corresponds to a decreasing sequence {Pn}∞n=1 of
finite-index subgroups in the group G with intersection P =

⋂∞
n=1 Pn. In this case, the graphs Γn

are the Schreier graphs constructed by means of the subgroups Pn, and Γ is the Schreier graph
constructed by means of the subgroup P . A subgroup P < G can be represented as the intersection
of subgroups of finite index if and only if it is closed in the profinite topology.

Suppose, as usual, that the group G acts faithfully and spherically transitively on a spherically
homogeneous tree T . Then the graphs Γn of the action on the nth, n ≥ 1, level (which are also
Schreier graphs Γ(G,Pn, A), where Pn = stG(un) and un is an nth-level vertex that belongs to a
fixed path ξ ∈ ∂T ) are connected. Let a ∈ C[G] be a symmetric element. Let π, πn, and π⊥

n
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denote the same representations as in Section 9, and let ρn = ρG/Pn
and ρG/P be the corresponding

quasiregular representations, P = stG(ξ). Recall that πn is isomorphic to ρn.

To prove the next proposition, we need the concept of weak inclusion of representations (in the
case of discrete groups).

Definition 10.2. Let ρ and ξ be two unitary representations of a group G that act in Hilbert
spaces Hρ and Hξ. Then ρ is weakly contained in ξ if, for any ε > 0, any finite subset S ⊂ G,
and every orthonormal set of vectors v1, v2, . . . , vn in Hρ, there exists an orthonormal set of vectors
w1, w2, . . . , wn in Hξ such that the following inequality holds for any s ∈ S:

sup
s∈S

∣∣〈vi, ρ(s)vj〉 − 〈vi, ξ(s)wj〉
∣∣ < ε, 1 ≤ i, j ≤ n.

In other words, the matrix coefficients of one representation is approximated by the matrix
coefficients of the other. In the topological language, a weak inclusion of ρ in ξ is equivalent to the
fact that ξ belongs to the closure of the one-point set {ρ} in the Fell topology on the dual space
of unitary representations of the group (see [183]). In the language of C∗-algebras, this means that
there exists a surjective homomorphism Cξ → Cρ that is constant on the elements of the group.

Proposition 10.4 [16]. 1. The following relations hold :

sp(π(a)) =
⋃

n≥0

sp(πn(a)) =
⋃

n≥0

sp(π⊥
n ). (10.2)

2. The spectrum of the operator ρG/P (a) is contained in sp(π(a)), and if the graph Γ is amenable

(or, which is the same, the action (G,G/P ) is amenable), then sp(ρG/P (a)) = sp(π(a)).

3. If the subgroup P is amenable, then sp(ρG/P (a)) ⊂ sp(ρG(a)), where ρG is the left regular

representation.

Proof. Relations (10.2) are an obvious corollary to the fact that the representation π is decom-
posable into a direct sum of the representations π⊥

n and the fact that the spectrum of a symmetric
matrix of block diagonal form with finite blocks is equal to the closure of the union of the spectra
of the blocks.

Let us prove assertion 2. The inclusion sp(ρ(a)) ⊂ ⋃∞
n=1 sp(ρn(a)) is almost obvious (see [16]).

To prove the reverse inclusion (assuming that the action on the orbit is amenable), suppose that
λ ∈ sp(ρn(a)) and that f is a corresponding eigenfunction (which can be assumed to be defined
on the set of nth-level vertices of the tree), ρn(a)f = λf . Let us identify the elements of the orbit
G(ξ) with the corresponding cosets with respect to the subgroup P . Since the action of G on the
orbit G(ξ) is amenable, it follows from Følner’s criterion (Theorem 8.13) that there exists a Følner
sequence {Fk}∞k=1 of finite subsets of the orbit. Fix an n and define a function fn,k on G(ξ) by the
relation

fn,k(gP ) =

{
f(gPn) if gP ∈ Fk,

0 if gP /∈ Fk.
(10.3)

The graph Γ = Γ(G,P, a) covers the graph Γn = Γ(G,Pn, a) in a natural way. Disregarding the
labels of the edges, we apply the well-known path lifting theorem for the coverings of topological
spaces [134]. Denote by D = Dn the diameter of the graph Γn, which is not greater than the
number Nn = m1m2 . . . mn of nth-level vertices of the tree. For any two nth-level vertices u and v
and any point ζ ∈ G(ξ) covering the vertex u (i.e., a point for which the corresponding path passes
through the vertex u), there exists a point η ∈ G(ξ) that covers v and is situated at a distance of
at most Dn from ζ in the metric of the graph Γ. Let ∂DF denote the D-boundary of an arbitrary
subset F of the vertex set of the graph Γ; i.e., ∂DF is the set of points situated at a distance of at
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most D from the complement of the set F . Let N be an upper bound for the cardinality of the set
of vertices contained in balls of radius Dn in the graph Γ (as N , one can take mn+1, where m is the
degree of the vertices of the graph Γ). Then the following inequalities hold:

‖ρ(a)fn,k − λfn,k‖ ≤ (1 + λ)|∂Fk| · ‖f‖,

N‖fn,k‖ ≥
(

∑

ζ∈G(ξ)

∑

η∈G(ξ), d(ζ,η)≤Dn

f2
n,k(η)

)1/2

≥ (|Fk| − |∂DnFk|)‖f‖.

Indeed, the first inequality in the second relation is obvious because each term in the sum is
repeated at most N times. To prove the second inequality, notice that each vertex ζ of the graph Γ
can be surrounded by a set Oζ that belongs to the neighborhood of radius Dn with center at this
point and is bijectively projected to the vertices of the graph Γn. If this vertex belongs to the set Fk

and lies at a distance greater than Dn from the boundary ∂Fk, then the terms that appear in the
sum and correspond to this vertex add up to at least ‖f‖, which implies the second inequality.
Thus, ∥∥∥∥ρ(a)

fn,k

‖fn,k‖
− λ

fn,k

‖fn,k‖

∥∥∥∥ ≤
2N |∂Fk|

|Fk| − |∂DnFk|
→ 0

as k →∞. Hence, λ ∈ sp(ρ(a)).
Finally, to prove assertion 3, we invoke the concept of weak inclusion of representations (the

main facts concerning this concept are presented in detail in [53]). It is known (see, for exam-
ple, [16, Proposition 3.5]) that a quasiregular representation ρG/P is weakly contained in a regular
representation ρG if and only if P is an amenable group. On the other hand, the weak inclusion
under consideration is equivalent to the existence of a surjective homomorphism C∗

r → C∗
ρG/P

from

the reduced C∗-algebra of the group G to the C∗-algebra generated by the representation ρG/P .
Thus, if an element a− λI represented by an operator in C∗

r is invertible in this algebra, then the
operator representing it in C∗

ρG/P
is also invertible. This implies the inclusion of the spectra. �

Now we can prove the earlier formulated Theorem 9.18.

Proof of Theorem 9.18. (i) Both algebras are the closures of the group algebra with respect
to the norms defined by the operators of the corresponding representations. We have to prove that

‖x‖π ≥ ‖x‖ρG/P
(10.4)

for any x ∈ C[G].
In view of the relation ‖x‖2 = ‖x∗x‖, which is valid in an arbitrary C∗-algebra, we can assume

that x is a symmetric element, and then the norm of the element x coincides with the upper bound of
the points of the spectrum. Since, by assertion 2 of Proposition 10.4, the spectrum of the element x
as an element of the algebra C∗

π contains the spectrum of the same element considered as an element
of the algebra C∗

G/P , we obtain inequality (10.4).

(ii) Repeating the arguments used in the proof of assertion (i) and taking into account the
second part of assertion 2 of Proposition 10.4 (which applies to the case of an amenable action
on the orbit), we arrive at the conclusion that the spectra coincide and, hence, the norms of any
element of the group algebra, considered as an element of each of the two C∗-algebras, are equal.
This proves an isomorphism of the algebras. �

Note also the following fact, which is immediate corollary to the arguments used in the proof of
Proposition 10.4.

Corollary 10.5. The existence of a surjective ∗-homomorphism C∗
r (G) → C∗

G/P that is con-

stant on the elements of the group algebra Z[G] is equivalent to the amenability of the group P .
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Proof. This statement is an obvious consequence of the fact that a quasiregular representation
is weakly contained in a regular representation if and only if there is a surjective homomorphism that
is constant on the elements of the group algebra and of the fact that a subgroup P ≤ G is amenable
if and only if the quasiregular representation ρG/P is contained in the regular representation ρG. �

Remark 10.1. The preceding statement is related to Kesten’s theorem from [116], which states
that if the support of a symmetric element x of the group algebra generates the group, then the
norm of x increases under the factorization G→ G/P with respect to a nonamenable subgroup P .
Kesten considered the case when P � G is a normal subgroup. However, the proof of his theorem
does not depend on the property of the subgroup P to be normal.

The following statement, which is based on a result of Serre [167], was first announced in [16].
For more details, see [98].

Theorem 10.6. Suppose that a covering sequence {(Γn, vn)}∞n=1 of finite rooted graphs con-

verges to a graph (Γ, v) in the sense of the topology of the space X Sch
2m . Then the sequence {µn}∞n=1

of counting measures associated with the Markov operator of a simple random walk on the finite

graphs converges weakly to some measure µ∗.

In [98, 95], the measure µ∗ was named the KNS spectral measure after Kesten, von Neumann,
and Serre. It is intuitively obvious that the measure ν is in a sense the averaging of the Kesten
measures µv over all vertices of the limit graph. The fact that this is indeed the case is confirmed
by the argument given below, which I first heard from B. Steinberg and M. Abért in private com-
munication (this fact is actually implicitly present in [95], namely, in the arguments preceding the
proof of relation (4.7)). It seems that an analog of the KNS spectral measure exists not only for
the Markov operator related to a simple random walk, but also in the case of arbitrary symmetric
distributions on the set of generators of a group; however, this fact is yet to be proved.

The following statement allows one to calculate the Kesten spectral measure in some cases (for
example, in the case of the lamplighter group). This statement is present implicitly in [95] and
explicitly in [112].

Theorem 10.7. Suppose that a self-similar group G defined by a finite automaton with a set of

states A, which serves as a system of generators of G, acts on a tree T spherically transitively and

essentially freely. Then the KNS spectral measure coincides with the Kesten measure of a simple

random walk on the group G.

Proof. Let θ be the Kesten measure of a simple random walk on the group, and

m =
1

2|A|
∑

a∈A∪A−1

a

be a group-algebra element that defines the Markov operator of a simple random walk on G and
acts by means of left convolution (i.e., by means of the left regular representation) on the elements
of l2(G). The moments θ(n) of the measure θ satisfy the following relations:

θ(n) = 〈mnδ1, δ1〉 = P
(n)
1,1 = trace

(
∑

aij
∈A∪A−1

ai1 . . . ain

)
=

∑

aij
∈A∪A−1

τ(ai1 . . . ain), (10.5)

where trace is the von Neumann trace defined on the elements of the weak closure of the left regular
representation by the relation trace(a) = 〈aδ1, δ1〉, and τ is the recurrent trace defined in Section 9.
The last equality in (10.5) is valid because in the case of an essentially free action the recurrent
trace behaves on the elements of the group in exactly the same way as the von Neumann trace
(namely, it vanishes on nonidentity elements and is 1 on the identity element).
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Let µ
(n)
k stand for the nth moment of the counting measure µk of the graph Γk. Then

µ
(n)
k =

∫
λn dµk(λ) = 〈mnδvk

, δvk
〉 =

1

dk

dk∑

k=1

λn
k = Tr[mn]k =

∑

aij
∈A∪A−1

tr[ai1 . . . ain ]k, (10.6)

where dk is the cardinality of the set of kth-level vertices of the tree (we assume that the tree has
the branch multiplicity d), [m]k and [g]k are the presentations of elements m ∈ C[G] and g ∈ G
by matrices of order dk, Tr is the ordinary matrix trace, and tr is the normalized trace on the
matrix algebra. Since tr[g]k → τ [g]k by the construction of the recurrent trace, we find that the

moments µ
(n)
k converge to θ(n) for any n. Thus, the sequence of counting measures converges to the

Kesten measure, and, hence, the latter coincides with the KNS spectral measure. The theorem is
proved. �

Let (G,X,χ) be a dynamical system with invariant measure, where G is a finitely generated
group with a system of generators A. For every point x ∈ X, the orbital graph Γx is isomorphic to

the Schreier graph (Γ, Px, A), where Px is the stabilizer of the point x. Let P
(n)
x be the probability

of return to the point x after n steps of the simple random walk on the graph Γx. Recall that
this probability coincides with the nth moment of the Kesten measure µx of the graph Γx with
distinguished point (root) x. Define the numbers P̃ (n) by the relation

P̃ (n) =

∫

X

P (n)
x dχ(x),

and define the measure χ∗ by the condition that its moments coincide with the numbers P̃ (n).
Alternatively, the measure χ∗ can be defined as the integral

∫
X µx dχ(x).

The measure χ∗ and its characteristics (support, moments, etc.) are invariants of the dynamical
system. We will call this measure the KNS spectral measure as well. This name is motivated by the
following fact, which is implicitly presented in [112] and was independently noted by Abért (private
communication).

Theorem 10.8. The measure ν∗ associated with a dynamical system (G, ∂T, ν), where T is

a spherically homogeneous tree and G ≤ Aut(T ) is a finitely generated group, coincides with the

KNS spectral measure µ∗.

Proof. Let Γk be the graph of the action on the kth level of the tree (this graph need not be
connected because we do not assume that the actions are transitive on the levels of the tree), µΓk

v

be the Kesten measure associated with a vertex v of the graph Γk, and P
(n)
k denote the nth moment

of the measure µk. The following relations hold:

P
(n)
k =

∫
λn dµk(λ) =

1

|Vk|
∑

v∈Vk

∫
λn dµΓk

v (λ) =

∫

Vk

∫
λn dµΓk

v (λ) dνk(v), (10.7)

where Vk is the vertex set of the graph Γk (i.e., the set of kth-level vertices of the tree) and νk is the
uniform measure on Vk (here we used the relation from Proposition 10.2). The integral

∫
λn dµΓk

v

defines the probability P
(n)
v,k of return to the vertex v ∈ Vk after n steps of the simple random walk

on the graph Γk. If x ∈ ∂T is a boundary point, n is fixed, and xk denotes the kth-level vertex that

belongs to the path x, then starting from a certain level kx we have P
(n)
v,k = P

(n)
x , k ≥ kx. In fact, for

a fixed n, one can find a K independent of x such that P
(n)
v,k = P

(n)
x for all k ≥ K, x ∈ X. Indeed,

for every x ∈ ∂T , there exists a neighborhood Ux such that, for all of its points, the probabilities of
return after n steps of the random walk on the graph Γx are equal. Choosing a finite subcovering
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{Uxi}i∈I from the open covering {Ux}x∈X of the boundary ∂T , fixing an appropriate ki for every

i ∈ I, and setting K = maxi∈I ki, we obtain a value for which the relations P
(n)
v,k = P

(n)
x hold for

k ≥ K. Taking into account that limk→∞ µk = µ∗ and limk→∞ νk = ν (recall that ν stands for the
uniform measure) and passing to the limit under integral sign in (10.7), we arrive at the relations

∫
λn dµ∗(λ) =

∫

∂T

P (n)
x dν(x) = P̃ (n), (10.8)

which show that the moments of the measures µ∗ and ν∗ coincide. This completes the proof of the
theorem. �

Now we apply our results to the construction of asymptotic expanders. Recall that a sequence
{Γn}∞n=1 consisting of connected m-regular graphs, m ≥ 3, is called an expander if there exists an
ǫ > 0 such that, except for the eigenvalue 1, the spectra of the Markov operators Mn of the graphs
Γn are contained in the interval [−1 + ǫ, 1 − ǫ]. The first examples of expanders were constructed
by Margulis [133] with the use of groups with Kazhdan’s T-property [24]. In spite of intensive
investigations related to this concept (which are of both theoretical and practical interest; the
point is that expanders have applied value [125]), at present there are only a few constructions of
expanders, and new methods for constructing them are of undoubted interest.

The following heuristic reasoning shows how one can try to construct new examples of expanders.
Namely, starting from a finite automaton A generating a nonamenable group G = G(A), consider
the covering sequence of Schreier graphs {Γn}∞n=1 associated with the actions of the group on the
levels of the tree, as described above. By Kesten’s criterion, since the group is nonamenable, the
norm of the Markov operator on this group is less than 1; therefore, this fact should imply the
validity of the condition on the spectra that underlies the definition of an expander. However, there
is something naive in this reasoning, because there are no arguments that would show that the
nonamenability of G in the construction indeed implies the property of the sequence {Γn}∞n=1 to be
an expander. It is only clear that the construction does not work in the case of amenable groups.

The hope to obtain expanders becomes greater if one additionally assumes that the action of a
nonamenable group G is essentially free. Although we have no proof of the property of the sequence
{Γn}∞n=1 to be an expander even under this additional condition, the results obtained above allow
us to prove a weaker but still useful property, namely, the property to be an asymptotic expander.

Definition 10.3. A covering sequence {Γn}∞n=1 of graphs is called an asymptotic expander

if the support of the KNS-spectral measure µ∗ associated with this sequence is contained in the
interval [−1 + ǫ, 1− ǫ] with some positive ǫ.

The meaning of this definition is as follows. If the sequence {Γn}∞n=1 has “bad” (i.e., accumulating
to ±1) eigenvalues of the Markov operator, then their density tends to zero as n increases; thus,
for large n, these eigenvalues become virtually invisible, and, hence, the corresponding graphs Γn

behave almost as expanders. As P. Kuchment told me, these kinds of phenomena are observed in
mathematical models of crystal physics. It seems quite probable that asymptotic expanders can be
applied in practice with almost the same success as true expanders, because the effect of “bad” (i.e.,
close to ±1) eigenvalues on telecommunication systems becomes negligible as n→∞.

Theorem 10.9. Suppose that a strongly self-similar group G = G(A) is nonamenable and

acts essentially freely on the boundary of the corresponding tree. Then the sequence {Γn}∞n=1 is an

asymptotic expander.

Proof. This theorem is an obvious corollary to Theorem 10.7, because the support of the
Kesten measure of a nonamenable subgroup does not contain the points −1 and 1. �

Now we give the “simplest” examples of asymptotic expanders.
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Example 10.1. Let A be the Aleshin automaton represented by the Moore diagram in Fig. 5.1.
It generates the free group F3 of rank 3, which is nonamenable. The Kesten measure of the simple

random walk on F3 is concentrated on the interval
[
−

√
5

3 ,
√

5
3

]
. As already mentioned above in Sec-

tion 5, the action of F3 defined by the automaton A is essentially free. Therefore, the corresponding
sequence {Γn}∞n=1 is an asymptotic expander.

Example 10.2. Let B be the Bellaterra automaton represented by the diagram in Fig. 3.2.
It generates the free product C2 ∗ C2 ∗ C2 of three copies of an order 2 group. This group is
nonamenable (it contains a noncommutative free subgroup of finite index) and acts essentially
freely on the boundary of a binary tree. Thus, the sequence {Γn}∞n=1 is an asymptotic expander in
this example as well. Moreover, the spectrum of the Markov operator of the simple random walk of

the group C2 ∗C2 ∗C2 fills the interval
[
−

√
2

3 ,
√

2
3

]
, and so the asymptotic spectrum of the sequence

{Γn}∞n=1 is contained in this interval.

Recall that a finite m-regular graph Γ, m ≥ 3, is called a Ramanujan graph if its spectrum,

upon removal of the points −1 and 1, is contained in the Kesten interval
[
−2

√
m−1
m , 2

√
m−1
m

]
, i.e.,

in the interval that supports the spectrum of the Markov operator on a homogeneous (not rooted)
tree with the branch degree m. Finding infinite sequences of m-regular finite Ramanujan graphs
is a difficult and enthralling problem [127, 50]. These sequences possess the strongest expanding
properties and, in this sense, are the most efficient expanders. One may have an impression that
the two examples above are examples of sequences of Ramanujan graphs, because their asymptotic
spectrum is precisely the Kesten interval. Nevertheless, a computer-aided verification shows that this
is not the case, and, starting from not too large values of n, the graphs Γn cease to be Ramanujan.
The same computer simulations show that probably the sequences {Γn}∞n=1 are expanders in both
examples. In this connection, we raise the following two questions.

Problem 10.1. Is it true that the sequence {Γn}∞n=1 in each of the two examples above (related
to the Aleshin and Bellaterra automata) is an expander?

Problem 10.2. Is it true that the sequence {Γn}∞n=1 constructed by a finite automaton is
never a sequence of Ramanujan graphs?

In our view, the answer to the second question is more likely to be positive rather than nega-
tive, and this is associated with the following fact: For the sequence {Γn}∞n=1 to be a sequence of
Ramanujan graphs, it is necessary that the group G generated by an automaton be either a free
group of rank equal to the number of states of the automaton, or a free product of groups of order 2
with the number of factors equal to the number of states of the automaton, or a free product of
such groups. Moreover, the action on the boundary should be essentially free. However, it is most
likely that the kernel of the homomorphism of C∗-algebras dealt with in Corollary 9.12 is always
nontrivial, which points to the fact that the norm of the Markov operator in L2(∂T, ν) is greater

than the Kesten threshold 2
√

m−1
m . However, these arguments need substantiation.

We call the distance from the support of the KNS spectral measure of an asymptotic expander
to the set {−1, 1} Kazhdan’s asymptotic constant (by analogy with a similar definition for ordinary

expanders). Thus, in the above Examples 10.1 and 10.2, Kazhdan’s asymptotic constants are 1−
√

5
3

and 1−
√

2
3 , respectively.

In our view, the sequences of graphs {Γn}∞n=1 constructed by means of a finite automaton have
the most constructive definition, and the practical implementation of such sequences should be much
easier than the implementation of existing expanders or sequences of graphs with other interesting
properties. Therefore, we expect them to have good prospects in theoretical investigations and
practical applications.

Let us mention another range of questions that arise in the study of covering sequences {Γn}∞n=1

of Schreier graphs. We will assume that these graphs are connected (which corresponds to the case
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when the group generated by an automaton acts transitively on the levels). Denote by δ(n) the
difference 1− λ1 between the eigenvalue 1 and the next smaller eigenvalue λ1 of the Markov opera-
tor Mn on the graph Γn. The quantity δ(n) (which is often called a spectral gap) can alternatively
be defined as the first nonzero eigenvalue of the Laplacian ∆n = I −Mn, where I is the identity
operator. If the sequence {δ(n)}∞n=1 is bounded away from zero by a positive constant, then {Γn}∞n=1

is an expander. Otherwise, the sequence {δ(n)}∞n=1 tends to zero; then the question of the rate of
this convergence arises. The decrease may be either power, exponential, or, possibly, intermediate
between power and exponential; however, it seems that there are no examples of such behavior
at present. For the lamplighter group δ(n) ∼ 1/n2 [95], while for the Hanoi Towers group H3

the sequence δ(n) decreases exponentially with δ(n) ∼ (1/5)n [93]. From the asymptotic solution
obtained by Szegedy [178] in the Tower of Hanoi problem with k pegs, which shows that the distance

between the vertices 0n and 1n in Γ
(k)
n increases as en1/(k−2)

, one can easily derive that the diameter

of the graphs Γ
(k)
n increases with n as en1/(k−2)

. Applying Chung’s inequality

d(n) ≤ log|Γn| − 1

− log δ(n)
,

which connects δ(n) with the diameter d(n) of the graph Γn, one can easily obtain the following
upper estimate:

δ(n) � ne−n
1

k−2
;

this estimate possibly indicates that the decay of the spectral hole for k ≥ 4 is of intermediate char-
acter between power and exponential. However, this fact needs to be supported by an appropriate
lower estimate.

Another important asymptotic characteristic of the sequence {Γn}∞n=1 is the growth of the di-
ameters d(n) = diam(Γn). For an expander, it is linear, which follows from Chung’s inequality.
A straightforward verification shows that the growth of the diameters of the Schreier graphs asso-
ciated with the realization of the lamplighter group by the automaton shown in Fig. 3.1 is linear.
Since the lamplighter, being a solvable group, is amenable, it is clear that the linear growth of
the diameters does not imply the property to be an expander. The examples above show that for
many self-similar groups generated by automata, the growth of the diameters of the graphs Γn is
exponential. In fact, this growth is exponential for contracting self-similar groups.

Proposition 10.10. Let G be a self-similar contracting group and {Γn}∞n=1 be the sequence of

Schreier graphs associated with this group. Then lim infn→∞ n
√

d(n) = χ > 1.

Proof. In [16], it is proved that the growth of the infinite Schreier graphs Γξ for contracting
groups is polynomial; i.e., the growth function γξ(r) of a graph Γξ, which counts the number of
vertices situated at a distance of at most r from ξ, is bounded from above by a function of the form
Crα, where C and α are constants, C > 0 and α > 0. Let un be the nth-level vertex of the path ξ
in the tree. Then, for any n, the growth function γn(r) of the graph Γn, which counts the number
of vertices in the graph Γn that are situated at distance ≤ r from the vertex un, is bounded from
above by a power function Crα. Since the number of vertices in the graph Γn is dn, where d is the
regularity of the tree, this obviously implies that the growth of d(n) is exponential. �

Recall that in Definition 7.2 we introduced Sidki classes of polynomially growing automata
and the corresponding classes of groups. Since the groups generated by bounded automata are
contracting groups, the growth of diameters for them is always exponential. In [31], Bondarenko
developed a method for calculating the order of exponential growth χ for this case.

The groups generated by automata that are polynomially growing but not bounded are not
necessarily contracting, and the diameters for these groups may have intermediate growth, as shown
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in Example 7.2 above. The graphs generated by exponentially growing automata may have all three
types of growth of the diameters. For example, the automaton shown in Fig. 7.7, which represents
the Hanoi Towers group H4, has exponential growth in the sense of Sidki, whereas the diameters

of the corresponding Schreier graphs Γ
(4)
n grow in an intermediate way. Similarly, the automata

defining the higher rank Hanoi Towers groups Hk, k ≥ 4, have exponential growth, whereas the

diameters of the graphs Γ
(k)
n associated with them grow in an intermediate way, more precisely, as

en1/(k−2)
, which follows from the above-mentioned result of Szegedy.

It seems that the Bellaterra and Aleshin automata, which have exponential growth, also give
series of graphs {Γn}∞n=1 with linear growth of the diameters; however, this fact is still to be proved
(this will be so if our conjecture that these automata generate expanders is confirmed).

For the sequences of finite graphs {Γn}∞n=1, the other asymptotic characteristics related to
random walks [140] and to models of statistical physics, such as the Ising model or the dimer
model [49], should also be studied, including the asymptotic calculation of the number of spanning
subtrees, the Euler characteristic, the chromatic number, the Jacobian of the graphs [11], the
sandpile model [135], etc.

On the other hand, one may examine the asymptotic properties of the infinite Schreier graphs Γξ,
ξ ∈ ∂T : growth, amenability, spectral properties, asymptotic properties of random walks, models
of statistical physics, sandpile model [135], etc. For example, we have already mentioned that the
infinite graph associated with the linear automaton shown in Fig. 7.13 has growth of order nlog4 n.
On the other hand, it is shown in [91] that the growth of the infinite graphs Γ(k) of the Hanoi Towers
groups Hk satisfies the following estimates:

a(log n)k−2 ≺ γ(k)(n) ≺ b(log n)k−2

for some positive constants a and b, a ≤ b. Thus, for k ≥ 4, the growth is intermediate between
polynomial and exponential. Note that the growth order of type c(log n)d

is quite rare in combina-
torial problems and is likely to be impossible for Cayley graphs of groups, because it contradicts
the following conjecture, which was put forward by the author in many of his works (and was
mainly formulated as a question rather than a conjecture; however, now we place emphasis on the
conjecture).

Conjecture 10.1. If the growth of a finitely generated group is slower than the growth of the

function e
√

n, then it is polynomial, and, hence, the group is virtually nilpotent.

This conjecture was proved for groups approximated by finite p-groups [76] and is also valid for
a more general class of groups approximated by nilpotent groups, with essentially the same proof.
Although the problem of describing all possible growth orders of groups seems to be hopeless, we
nevertheless think that this problem, just as other problems of asymptotic character, has a chance
to be solved for groups, graphs, and other objects related to finite automata.

Quite recently, Bondarenko has proved that the growth of infinite Schreier graphs associated
with polynomially growing automata is subexponential and that there is an upper bound of the
form n(log n)m

on the growth, with some positive constant m [33].

Problem 10.3. (a) What growth orders are possible for the diameter d(n) in the sequences
{Γn}∞n=1 associated with finite automata?

(b) The same question for the sequence δ(n) of values of the first nonzero eigenvalue of the
Laplacian.

(c) The same question for the growth degrees of infinite Schreier graphs Γξ, ξ ∈ ∂T .

(d) All the previous questions, but now formulated for the Schreier graphs associated with
polynomially growing automata.
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Problem 10.4. Does there exist an algorithm that would allow one to determine the type of
growth of a certain class of objects for a given automaton (for example, of the classes of objects
mentioned in questions (a), (b), and (c))? A similar question for the property of the graphs Γξ,
ξ ∈ ∂T , to be amenable.

We conclude this section with the discussion of another range of interesting questions related
to Schreier graphs. The matter concerns an analog of the Ruziewicz problem for actions on rooted
trees. Suppose that a group G acts spherically transitively on a rooted (not necessarily regular)
tree T . Then, on ∂T , the action is minimal, ergodic, and uniquely ergodic, i.e., has a unique invariant
probability measure (namely, the uniform measure ν). By a generalized Ruziewicz problem we mean
the question of uniqueness of a finitely additive G-invariant measure µ with the following properties:
µ is defined on the σ-algebra B of Lebesgue measurable sets on the boundary of the tree, µ takes
values in the interval [0, 1], and µ(∂T ) = 1. Such measures are in one-to-one correspondence with
G-invariant means in L∞(∂T,B, ν). The uniqueness problem for such a measure in the case of the
rotation group of the sphere Sn of dimension n ≥ 1 was raised by Ruziewicz in the early 1920s
and was studied by Banach, who showed that there are many such measures in dimension 1. In
dimension n ≥ 2, Ruziewicz’s problem was solved positively only in the early 1980s by Sullivan,
Margulis, and Drinfeld, who used the above-mentioned Kazhdan’s T-property to this end. Recall
that a group is said to possess Kazhdan’s T-property if any of its unitary representations that has an
almost invariant vector contains in fact a nonzero invariant vector (i.e., if the trivial representation
is weakly contained in a given one, then the trivial representation is a subrepresentation; in terms of
the Fell topology, this means that the trivial representation is an isolated point in the dual space).
A representation ρ of a group G in a Hilbert space H has an almost invariant vector if, for any
ǫ > 0 and any finite subset F ⊂ G, there exists a unit vector v ∈ H such that

‖ρ(s)v − v‖ < ǫ

for all s ∈ F .
Rosenblatt showed that the nonuniqueness of such a measure is equivalent to the existence of

an asymptotically invariant nontrivial net of subsets Eα ⊂ ∂T , i.e., a net of measurable subsets of
the boundary whose measures are separated from 1 (i.e., ν(Eα) ≤ c < 1), such that

lim
α

ν(gEα △ Eα)

ν(Eα)
= 0

for any g ∈ G.
An action with invariant probability measure is said to be strongly ergodic if there do not

exist nontrivial asymptotically invariant sequences. Such actions have been studied by K. Schmidt,
A. Connes, and B. Weiss, who gave a characterization of the Kazhdan property in terms of this
concept: a group G possesses the Kazhdan property if and only if an arbitrary action of the group
with invariant probability measure is strongly ergodic [24, Theorem 6.3.4]. In an unpublished
preprint,5 following the ideas of Kaimanovich expressed in [106], we, together with F. Paulin,
defined fiberwise amenable actions (G,X, µ) of a finitely generated group as actions such that, for
an arbitrary ǫ > 0, there exists a measurable map from X into the set of finite subsets of vertices
of the Schreier graph Γx, x ∈ X, x→ Ax, that satisfies the condition

|∂Ax|
|Ax|

< ǫ

for µ-almost every x.

5R. Grigorchuk and F. Paulin, “Spectral Characterization of Amenable Group Actions,” Preprint (1999).
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The following theorem was proved in the same preprint, and a larger part of the proof can be
found in Sections 6.3 and 6.4 of the book by Bekka, de la Harpe, and Valette [24], where the authors
also discuss many other questions related to the Ruziewicz problem.

Theorem 10.11. Let G be a finitely generated group with a set of generators A. The gener-

alized Ruziewicz problem has a negative solution (i.e., an invariant measure is not unique) if and

only if any of the following equivalent conditions holds:

(i) the Hecke-type operator M associated with the representation π in L2(∂T, ν) and restricted

to the orthogonal complement L2
0(∂T, ν) of constant functions contains 1 in its spectrum;

(ii) the representation π, restricted to L2
0(∂T, ν), contains an almost invariant vector ;

(iii) the action of G on ∂T has a nontrivial asymptotically invariant sequence;

(iv) the action of G on ∂T is fiberwise amenable.

11. COST OF ACTIONS AND RANK GRADIENT

The concept of cost of a group action by measure-preserving transformations was introduced
by Levitt [124]. Later on, this concept was developed largely due to the remarkable studies by
Gaboriau [63, 64]. The concept of rank gradient was introduced by Lackenby [121] in connection
with the research on three-dimensional topology [121, 122]. Investigations around this concept
received a new impetus from the study by Abért and Nikolov [5] and the ensuing study by Osin [151].
At present, both concepts (which, as we will soon see, are closely related) play a significant role in
asymptotic group theory.

We begin with the rank gradient. Let G be a finitely generated residually finite group (we will
keep this condition on the group until we begin the discussion of the cost of actions) and {Hn}∞n=1

be a decreasing sequence of finite-index subgroups. The upper rank gradient of this sequence is

RG(G, {Hn}) = lim
n→∞

d(Hn)− 1

|G : Hn|
(11.1)

(d(H) denotes the minimum number of generators of the group H, i.e., its rank). The lower rank
gradient and the rank gradient (if the limit exists) are defined in a similar way. The study of the
growth rate of the ranks of subgroups in decreasing chains of finite-index subgroups is of interest
both for group theory itself and for applied questions. In this case, it is expedient to consider only
chains {Hn}∞n=1 with trivial core, i.e., such that the intersection H =

⋂∞
n=1 Hn does not contain a

nontrivial normal subgroup. An important particular case is that when this intersection is trivial.
We also distinguish the case when Hn are normal subgroups.

The absolute rank gradient of a group G is defined as

RG(G) = inf
H≤G, |G:H|<∞

d(H)− 1

|G : H| . (11.2)

As already mentioned, this concept was introduced by Lackenby in [121, 122] and was motivated
by the studies in the field of the theory of expanders and three-dimensional manifolds, in particular,
by questions related to the conjecture on the relationship between the Heegaard genus and the rank
of the fundamental group of a three-dimensional manifold.

An example of a group with positive rank gradient is given by the free group Fm with m ≥ 2
generators. According to the classical Schreier theorem (see [128]), which connects the index |Fm :H|
of a subgroup H of the free group Fm with the number d(H) of its generators by the formula

d(H)− 1 = |Fm : H|(m− 1),

the rank gradient of any decreasing chain of finite-index subgroups is m− 1, so RG(Fm) = m− 1.
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Below we present conditions that guarantee the vanishing of the rank gradient of a sequence of
subgroups, or even of the whole group. These conditions are based on the notion of amenability.

In Section 2, with a decreasing sequence of finite-index subgroups of an arbitrary group we
associated a rooted tree (coset tree) T = T (G, {Hn}), whose vertices are left cosets with respect to
the subgroups and the action is defined by left multiplication. If the core of the chain of subgroups
is trivial, then the action of the group on this tree is faithful. We say that a decreasing chain of
finite-index subgroups {Hn}∞n=1 is essentially free if the action on the boundary of the associated tree
is essentially free with respect to the uniform measure. Sometimes this condition is called Farber’s
condition, who applied it in order to prove approximation results for L2-invariants of groups [57].

The following conjecture was put forward by M. Abért and N. Nikolov.

Conjecture 11.1. If a chain {Hn}∞n=1 is essentially free, then its rank gradient coincides with

the absolute rank gradient of the group G,

RG(G, {Hn}) = RG(G). (11.3)

For sequences {Hn}∞n=1 whose rank gradient vanishes, we can consider a function gr(n) defined
by the relation

gr(n) =
d(Hn)

|G : Hn|
.

We will call this function the relative decrease rank gradient function of the sequence {Hn}∞n=1 (or,
for short, the “relative rank”) and consider the rate of its decrease as n → ∞. If gr(n) → 0, then
we can make the rate of decrease arbitrarily large by removing some terms from this sequence;
therefore, of special interest are noncondensable sequences. For example, restricting ourselves to
groups approximated by finite p-groups (p is a prime number), we can consider only chains of
subgroups satisfying the condition |Hn+1 : Hn| = p for any n. The decrease of the rank in such
chains—we call them condensed p-chains—is of particular interest.

Problem 11.1. 1. What decrease orders can the function gr(n) have for condensed p-chains
with a trivial core in finitely generated groups approximated by finite p-groups?

2. The same question for normal chains.

3. The same question for chains with trivial intersection.

In addition to these questions, it is interesting to study within what limits the relative decrease
of the rank gradient can vary within a single group. What conditions on a group guarantee that
the asymptotic behavior of the relative decrease does not depend on the choice of one or another
type of decreasing chain of subgroups?

If a group G acts on a rooted tree T , then, as we repeatedly pointed out, a natural choice for
a decreasing sequence of finite-index subgroups is given by a sequence of stabilizers Pn = stG(un),
where {un} is a sequence of vertices (the index n denotes the level to which the vertex belongs) that
belong to some geodesic path connecting the root of the tree with infinity (i.e., to a boundary point
of the tree). If the tree T is p-regular and the action is spherically transitive, then |G : Pn| = pn,
and such a chain of subgroups is p-condensed.

As an example, consider the intermediate growth group G = 〈a, b, c, d〉 from Example 2.3, which
acts spherically transitively on a binary tree, and let Pn = stG(1n), n = 1, 2, . . . . This sequence
decreases, its intersection is equal to the stabilizer stG(1∞), and the core is trivial (because G is
just-infinite). In [17], the stabilizers Pn were described recurrently; using this description, we can
conclude that the sequence d(Pn) grows no faster than 10n (the constant 10 can be replaced by
a smaller one, possibly by 3). Thus, in this case the relative rank decreases no slower than 10n

2n .
It seems that the relative decrease of the rank gradient in this case is asymptotically of order n

2n ;
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however, this is yet to be verified. The relative rank of the sequence {stG(n)} of the level stabilizers
(which is not 2-condensed, but can be condensed) exhibits similar asymptotic behavior; this follows
from the explicit description of the stabilizers that was obtained in [160], as well as from the
calculation of the indices of the stabilizers of levels [81]. Indeed, starting from the fourth level,

stG(n) ≃ stG(3) × . . .× stG(3)

(2n−3 factors); i.e., the number of generators grows exponentially with n, while the index

[G : stG(n)] = 25·2n−3+2

grows as a double exponential.
Consider another example. Using the representation of the lamplighter group L by the automa-

ton shown in Fig. 3.1 and taking an arbitrary boundary point corresponding to a dyadic irrational,
we obtain a sequence of stabilizers that have trivial intersection and each of which is isomorphic to L
(if the boundary point is not assumed to correspond to a dyadic irrational, then the intersection may
turn out to be an infinite cyclic group; however, the core of the sequence will nevertheless be trivial).
This follows from the results of [95] and was explicitly mentioned by Nekrashevych and Pete in [145],
who gave numerous examples and even constructed series of groups that possess decreasing chains
of finite-index subgroups with trivial intersection that consist of groups isomorphic to the group
itself. The question of existence of such groups (which are said to be scale-invariant in [145]) was
raised by Benjamini. For such sequences, the relative rank gradient is equal to gr(n) = C

dn for some
constants C and d. At the same time, in L there exist condenced 2-chains of subgroups for which the
decrease of the relative rank gradient can vary from an exponential decay to a constant function (i.e.,
the rank gradient may be positive, which looks intriguing in the light of the theorems formulated
below). This results from the following proposition proved in [8] (the structure of subgroups of the
lamplighter is studied in more detail in a preprint6 by the present author and R. Kravchenko, in
which it is also shown that a faithful action of the lamplighter on the boundary of a tree obtained
from a decreasing chain of finite-index subgroups is always topologically free).

Proposition 11.1. Let Ln denote the group (Zn
2 ) ≀ Z. Then the index 2 subgroups of the

group Ln are exhausted by groups isomorphic to Ln and L2n.

An important role in studying the rank gradient (as well as the cost of actions) is played by the
property of amenability.

Theorem 11.2. (1) [5]. Let G be a residually finite group containing an amenable normal

subgroup, and let a chain {Hn}∞n=1 be essentially free. Then its rank gradient is zero.

(2) [4]. Let G be a finitely presented amenable residually finite group. Then the rank gradient

vanishes for an arbitrary decreasing chain of finite-index subgroups with trivial intersection.

(3) [4]. Let G contain an infinite solvable normal subgroup. Then the rank gradient vanishes for

an arbitrary decreasing chain of finite-index subgroups with trivial intersection.

The above-presented information about the types of decrease of the relative rank gradient of
the lamplighter group shows that even for metabelian (i.e., solvable of derived length 2) groups
(including the lamplighter group), assertion (1) of Theorem 11.2 fails unless we assume that the
action associated with the chain is essentially free. Assertions (2) and (3) of this theorem also fail
to hold unless we assume that the intersection is trivial.

Now we consider the cost of a group action (and the concept of cost of an equivalence relation).
Let (G,X, µ) be a dynamical system for which X is a standard Borel space [67], G is a countable

6R. Grigorchuk and R. Kravchenko, “The Lattice of Subgroups of the Lamplighter Group and Topological Freeness
of Boundary Actions,” Preprint (2011).
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group, and the measure µ is invariant. The action generates an equivalence relation E, E ⊂ X×X,
on X (decomposition into orbits) for which x and y are in the same class if there exists a g ∈ G
such that y = g(x) (this is expressed as xEy or (x, y) ∈ E). Obviously, every equivalence class is
either finite or countable (these relations are called countable). E is a Borel subset of X ×X (only
measurable actions are considered). One can also study arbitrary Borel equivalence relations with
at most countable classes (again defined by Borel subsets E ⊂ X × X); however, in view of the
following Feldman–Moore theorem from [58], there is no difference between considering countable
equivalence relations and considering decompositions into orbits of actions of countable groups.

Theorem 11.3. Let E be a countable Borel equivalence relation on a standard Borel space X.

Then there exist a countable group G and a Borel action of G on X such that the decomposition

into orbits coincides with E. Moreover, the group G and its action can be chosen so that

xEy ⇔ There exists a g ∈ G such that g2 = 1 and g(x) = y.

The question raised by Feldman and Moore as to whether any equivalence relation can be
generated by an essentially free action of a group when the decomposition has a quasi-invariant
measure was solved in the negative (see [61] and Subsection 4.3.1 in [62]).

A measure µ defined on X is E-(quasi)invariant if it is G-(quasi)invariant for some group acting
in a Borel fashion on X for which the decomposition into orbits coincides with the relation E
(Propositions 2.1 and 16.1 in [113]). The ergodicity of an equivalence relation with respect to a
quasi-invariant finite measure means the ergodicity of the corresponding group action that generates
this equivalence relation, namely, the absence of nontrivial (i.e., with measure different from 0 and 1)
invariant subsets.

Two equivalence relations (X,E) and (Y, F ) are isomorphic if there exists a Borel bijection
φ : X → Y that maps E to F . Relations E and F are measure equivalent (more precisely, equivalent
with respect to quasi-invariant measures µ and ν) if a Borel isomorphism can be established after
removing invariant subsets of measure zero from X and Y . This corresponds to the definition of
the orbital equivalence of group actions on measure spaces.

An equivalence relation can be considered as an edge set of an oriented graph (with the vertex
set in X). A Borel graph is a symmetric (i.e., (x, y) ∈ E implies (y, x) ∈ E) Borel subset E ⊂ X.
The pairs (x, y) serve as edges with the initial vertex x and terminal vertex y. In this case, the
vertex set V of the graph, which is the projection of the set E onto the first coordinate, is also
a Borel set by virtue of Kuratowski’s theorem [120] (the fact that the cardinality of equivalence
classes is at most countable plays an important role in the proof of this statement). In the same
way as for an ordinary graph, one naturally defines the following concepts for a Borel graph S:
a path connecting two vertices; its combinatorial length; a neighborhood D(n) of radius n of the
diagonal, which consists of pairs (x, y) such that there exists a path of length ≤n that connects
x and y (D(n) is a Borel set); and the degree deg(x) of a vertex x, which means the number of
points y such that (x, y) ∈ S. A graph is locally finite if the degrees of all of its vertices are finite.
A subgraph S ⊂ E generates E if, for any pair (x, y) ∈ E with x �= y, there exists a path from x
to y that lies completely in S; in other words, a subgraph S ⊂ E generates E if

⋃
n DS(n) = E.

For a subset Y ⊂ X ×X, denote {y : (x, y) ∈ Y } by Yx. Define a measure on the Borel subsets
of the set E by the relation

κ(Y ) =

∫
|Yx| dµ(x). (11.4)

Note that this integral may also take infinite values.

Definition 11.1. (a) The cost cost(E) of an equivalence relation E is the quantity inf κ(S),
where the infimum is taken over all Borel subgraphs S ⊂ E that generate E.
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(b) The cost of an action (G,X, µ) with invariant measure is the quantity cost(E), where E is
the decomposition into orbits.

(c) The cost of a group is the quantity

cost(G) = inf cost(G,X, µ), (11.5)

where the infimum is taken over all ergodic essentially free actions (G,X, µ) of the group G by
transformations that preserve the probability measure µ.

(d) The group G has a fixed cost if the cost of all of its essentially free actions with invariant
measure on a probability space is the same.

(e) An equivalence relation E on X that possesses an invariant probability measure is said to
be cheap if cost(E) = 1.

(f) A group G is said to be cheap if cost(G) = 1.

For actions on probability spaces for which almost all orbits are infinite, the cost is not less
than 1. For actions of amenable groups on probability spaces, the cost is 1, so such actions and
groups are the “cheapest” from the viewpoint of the cost [63]. However, there are many nonamenable
cheap groups; for example, the product of two infinite groups is a cheap group according to one of
the results of Gaboriau [64, 63]. At the moment no group that has a fixed cost is known.

The cost of an equivalence relation depends on the measure µ. For example, the multiplication
of a measure by a positive scalar proportionally increases the cost. When it is important to stress
what measure is meant, we will write costµ(E) or cµ(E).

Until recently, the cost has been studied only for almost free actions. However, it is also inter-
esting to study it for actions that are not almost free (but faithful). The first step in this direction
was made in [5]. The following theorem demonstrates the relationship between the rank gradient
and the cost of actions.

Theorem 11.4 (Abért and Nikolov [5]). Let a sequence {Hn}∞n=1 of subgroups of a group G
be essentially free. Then

RG(G, {Hn}) = costν(E)− 1, (11.6)

where E is the decomposition into orbits of the action of G on the boundary of the tree associated

with {Hn}∞n=1.

We are interested in the information on possible values of the cost of self-similar and strongly
self-similar groups and the cost of the equivalence relations arising when such a group is defined
by a finite automaton and hence acts on the boundary of the corresponding tree. The following
theorem is the first observation in this direction.

Theorem 11.5. Suppose that a group G acting on a tree T is self-replicating and acts essen-

tially freely on the boundary of the tree. Then cν(E) = 1, where E is the decomposition into orbits

of the action of the group G on the boundary of the tree T and ν is the uniform measure on the

boundary.

The first proof. Consider the decomposition X =
⊔d

i=1 Xi of the boundary X = ∂T of the
tree, where Xi are cylindrical sets corresponding to the first-level vertices. Let Ei = E|Xi be the
restriction to the subset Xi. Note that a natural identification of Xi with X, based on the self-
similarity of a regular rooted tree, maps the relation Ei to a subrelation of the relation E. This is
true for the action of any self-similar group. However, when a group is self-replicating, Ei is mapped
under this identification to E. From a result of Gaboriau (see [113, Theorem 21]), we can derive
the following relations:

cν(E) = cν|X1
(E|X1) + ν(∂T \X1) = cν|X1

(E|X1) +
d− 1

d
, (11.7)
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where d is the branching multiplicity of the tree. Using the similarity between the relations E
and E1 and the obvious homothety property of the uniform measure on the boundary, we find that
cν|X1

(E1) = 1
dcν(E). This, combined with (11.7), leads to the relation

cν(E)

(
1− 1

d

)
=

d− 1

d
,

which implies cν(E) = 1. �

The second proof. Let ξ ∈ ∂T be an arbitrary boundary point, {un}∞n=1 be the sequence of
vertices of the path ξ, and Pn = stG(un). Then |G : Pn| = dn. Since G is a self-replicating group,
the restriction Gn = Pn|Tun to the subtree Tun is a group isomorphic to the group G. The kernel of
the restriction homomorphism Pn → Pn|Tun is trivial (otherwise the action would not be essentially
free). Therefore, Pn ≃ G, n = 1, 2, . . . , and hence the rank gradient of the sequence {Pn} vanishes.
It remains to apply the Abért–Nikolov Theorem 11.4. �

While proving this theorem with the second method, we have simultaneously proved the following
proposition.

Proposition 11.6. A self-replicating group acting freely on the boundary of a tree belongs to the

class of scale-invariant groups, i.e., groups that possess a decreasing chain of finite-index subgroups

with trivial core that are isomorphic to the group itself.

In fact, for almost all boundary points of the tree, the intersection of the terms of the corre-
sponding sequence is trivial. As already pointed out above, nontrivial examples of scale-invariant
groups were constructed in [145].

We should stress that self-replicating groups represent an interesting class of groups of which
very little is known, although they are rather frequently encountered among self-similar groups.
For example, most of the 115 groups generated by three-state automata over a two-letter alphabet,
whose (incomplete) classification is given in [164, 139, 35], are self-replicating groups. Many of them
are branch groups. However, there are some that do not belong to this type, and a few of them, as
already mentioned (for example, the lamplighter group and the Baumslag–Solitar group BS(1, 3)),
act almost freely on the boundary of a tree.

Some concepts and methods of the theory of self-similar groups can be extended to the theory
of Borel equivalence relations. Consider an example of this kind. Let X = [0, 1], µ be the Lebesgue
measure, d ≥ 2 be a positive integer, and X =

⊔d
i=1 Xi be a partition of the interval into d pieces of

equal length. It is well known that the pair (X,µ) serves as a universal model of a measure space
(a Lebesgue space, see [159]). Therefore, the whole theory of measurable equivalence relations
can be presented using this space. Here it is important that the interval has a natural system of
self-similarities: every subinterval Xi is mapped isomorphically onto the entire interval X by an
appropriate (orientation-preserving) affine transformation ϕi. This self-similarity of the interval
underlies the following definition.

Definition 11.2. Let E be a Borel equivalence relation on X.

(a) The relation E is said to be self-similar if there exists a d ≥ 2 such that the relation E|Xi

turns into a subrelation Ei ⊂ E under the affine transformation ϕi that maps Xi to X,
i = 1, . . . , d.

(b) The relation E is said to be self-replicating if there exists a d ≥ 2 such that the relation E|Xi

turns into the relation E under the affine transformation ϕi that maps Xi to X, i = 1, . . . , d.

In this definition, instead of the interval [0, 1], one can use the boundary ∂T of a d-regular tree
and its natural decomposition ∂T =

⊔d
i=1 ∂Ti into cylindrical sets corresponding to the first-level

vertices (in this case, the affine transformations ϕi are replaced by natural isomorphisms between
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the subtrees Tui and the tree T , and ui, i = 1, . . . , d, are the first-level vertices numbered in a natural
order). Another natural model is given by the Cantor set represented as the space of sequences over
a d-letter alphabet and endowed with the Tikhonov topology.

The decomposition into orbits of an action of a self-similar group on the boundary of a tree
is self-similar, while the decomposition into orbits of an essentially free action of a self-replicating
group is self-replicating. Possibly, every self-similar or self-replicating decomposition can be realized
by an action of a self-similar or, respectively, self-replicating group; however, this fact is yet to be
proved or disproved.

Problem 11.2. Is an analog of the Feldman–Moore theorem valid for self-similar and self-
replicating equivalence relations? In other words, is it true that for any self-similar Borel equivalence
relation on the space X, there exists a group acting self-similarly on X for which the decomposition
into orbits coincides with the given equivalence relation? A similar question for self-replicating
equivalence relations.

The proof of the following theorem is analogous to the proof of Theorem 11.5.

Theorem 11.7. The cost of any self-replicating Borel equivalence relation that preserves an

invariant measure is 1 with respect to this measure.

Problem 11.3. (i) How many pairwise nonisomorphic Borel self-similar equivalence relations
do there exist?

(ii) The same question for self-replicating equivalence relations.

A special position among equivalence relations is occupied by hyperfinite relations.

Definition 11.3. (a) A countable equivalence relation E is said to be hyperfinite if there exists
an increasing sequence {Fn}∞n=1 of finite (i.e., with finite equivalence classes) Borel equivalence
subrelations Fn ⊂ E that exhaust E, i.e., F1 ⊂ F2 ⊂ . . . and

⋃
n Fn = E.

(b) A relation E having an invariant measure µ is hyperfinite almost everywhere if there exists
a Borel subset B ⊂ X, µ(X \B) = 0, such that the restriction E|B is hyperfinite.

The concept of hyperfiniteness can be regarded as an analog of the concept of amenability in
view of the following classical theorems.

Theorem 11.8. (i) (Dye [55]) Any two ergodic systems (Z,X, µ) and (Z, Y, ν) with invariant

probability measures and nonatomic spaces X and Y are orbitally equivalent.

(ii) (Ornstein–Weiss [150]) Any ergodic action of an amenable group by transformations that

preserve a probability measure is orbitally equivalent to an ergodic action of the group Z by trans-

formations that preserve the probability measure.

There exists a definition, going back to R. Zimmer, of an amenable (more precisely, µ-amenable)
equivalence relation that has a quasi-invariant probability measure µ. We omit this definition and
refer the reader, say, to Zimmer’s book [197], to paper [106], or to Section 9 of book [113]. We
present another statement that shows the relationship between amenability and hyperfiniteness and
generalizes the previous statement.

Theorem 11.9 (Connes–Feldman–Weiss [47]). Let E be a countable equivalence relation on X
and µ be an E-quasi-invariant probability measure. If E is µ-amenable, then E is hyperfinite

µ-almost everywhere.

So, any two nonatomic ergodic actions of amenable groups that preserve a probability measure
are orbitally equivalent, and the corresponding decompositions into orbits are equivalent (with
respect to the corresponding measures) to a hyperfinite equivalence relation. Moreover, any two
ergodic hyperfinite equivalence relations that preserve a probability measure are isomorphic. Hjorth
showed [103] that the property of a group to have only one (up to orbital equivalence) ergodic action
that preserves a probability measure is in fact equivalent to the property of being amenable.
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The examples presented in Kaimanovich’s note [106] show that all orbital Schreier graphs of a
group acting on a probability space with invariant measure may be amenable, while the action is
not amenable in the sense of Zimmer (i.e., the corresponding equivalence relation is not hyperfinite).
Ceccherini-Silberstein and Elek [40] constructed an action of the free product of four copies of the
group Z/2Z (which is virtually free and, hence, nonamenable) on a compact metric space, such that
all orbital Schreier graphs are amenable. For this action, they constructed two measures µ1 and µ2

such that the decomposition into orbits of the action is hyperfinite with respect to the first measure
and is not hyperfinite with respect to the second; here the proof of nonhyperfiniteness uses a lower
bound for the cost of actions.

Remark 11.1. The above-described situation with the hyperfiniteness of equivalence relations
is similar to the situation with hyperfiniteness in von Neumann algebras, where it is proved that
there exists only one hyperfinite factor of type II1 and where the hyperfiniteness of algebras is also
associated with their amenability.

In the last decade, owing largely to the studies by R. Zimmer, M. Gromov, A. Vershik,
V. Kaimanovich, D. Gaboriau, A. Furman, N. Monod, and Y. Shalom (see [62]), a direction tenta-
tively called “measured group theory” has been successfully developed. One of the central concepts
in this theory is the concept of measurable equivalence of groups. In this language, the result
formulated above concerning the orbital equivalence of the actions of amenable groups means that
amenable groups make up a class of measurable equivalence.

A relation E is said to be aperiodic if all of its equivalence classes are infinite. For such rela-
tions, the following theorem of Levitt [124] holds, which was historically the first statement that
demonstrated the importance of the concept of cost.

Theorem 11.10. Let E be a countable aperiodic Borel equivalence relation on X and a mea-

sure µ be an E-invariant probability measure. Then the relation E is hyperfinite µ-almost surely if

and only if costµ(E) = 1 and this value is achievable (i.e., costµ(E) achieves its value 1 on some

Borel subgraph that generates this equivalence relation).

The following important fact in the theory of equivalence relations correlates with some state-
ments formulated above.

Theorem 11.11. Let G be an amenable group acting on a space X by transformations that

preserve a measure µ.

(a) (Ornstein–Weiss [150]) Then the decomposition into orbits is hyperfinite µ-almost every-

where.

(b) (Zimmer [197]) If the action is essentially free and measure-preserving and the decomposition

into orbits E is hyperfinite µ-almost everywhere, then the group G is amenable.

The following proposition is one of the numerous corollaries to these results.

Proposition 11.12. Let G be a self-replicating group acting essentially freely on the boundary

of a tree. Then G is amenable if and only if the cost of the decomposition E into orbits with respect

to the uniform measure (which, recall, is 1 in view of Theorem 11.5) is achieved on some Borel

graph that generates the decomposition E.

Proof. Indeed, since the uniform measure ν is invariant, the amenability of G is equivalent
to the hyperfiniteness of the decomposition into orbits. Therefore, it follows from Levitt’s Theo-
rem 11.10 that the value of costν(E) = 1 is achieved. �

The equivalence relations generated by finite automata have not yet been essentially studied,
and our goal is to attract the reader’s attention to this interesting direction. The following problem
is one of many problems that can be set up in this connection (in this problem, it is assumed that
the group G(A) generated by an automaton A acts on the boundary ∂T of a tree by transformations
that preserve the uniform measure ν).
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Problem 11.4. Does there exist an algorithm that, given a finite invertible Mealy automa-
ton A, determines

(i) whether the dynamical system (G(A), ∂T, ν) is ergodic?

(ii) whether the action of the group G(A) on the boundary ∂T is almost free with respect to the
uniform measure ν?

(iii) whether the decomposition into orbits of the dynamical system (G(A), ∂T, ν) is hyperfinite?

The Borel actions of the group Z, of the free abelian groups Zn (an unpublished result by
B. Weiss), and even of finitely generated nilpotent groups [113, Theorem 11.1] have hyperfinite
decompositions into orbits in the pure form (i.e., irrespective of any measure; in other words, in the
sense of Definition 11.3(a) given above).

By the Slaman–Steel [173] and Weiss [190] theorems, the pure hyperfiniteness of an equivalence
relation is equivalent to the fact that this relation is generated by an action of the group Z (ir-
respective of any measure). As just mentioned, the decomposition into orbits of a Borel action
of a polynomial growth group (i.e., of a finitely generated virtually nilpotent group) is hyperfi-
nite (Jackson–Kechris–Louveau [105]). It is not known whether this result extends to groups of
subexponential growth or, maybe, even to amenable groups.

Weiss [190] raised the following question.

Problem 11.5. Is it true that an arbitrary action of an amenable countable group by Borel
automorphisms always has a hyperfinite decomposition into orbits?

It is not clear whether any ν-hyperfinite equivalence relation generated by a finite automaton is
hyperfinite in the pure form.

In particular, it would be interesting to verify the hyperfiniteness of the decompositions into
orbits for the actions of the lamplighter group and the Baumslag–Solitar group BS(1, 3) that are
described in Examples 2.2 and 5.4. Maybe some of them are not hyperfinite?

There are a number of statements, due mainly to Gaboriau [63, 64], on the behavior of the cost
of group constructions, in particular, of free products with a union and HNN extensions. A survey
of this information can be found in the last sections of book [113], which also contains an extensive
list of problems (which are also mainly due to Gaboriau). As an interesting example of calculating
a cost, note that the cost of the hereditary just-infinite group SL3(Z) is zero because this group has
a system of generators in which each next term commutes with the preceding term and the orders
of all generators are infinite [63]. Note that the quotient group G/N may have a larger cost than G.
Indeed, in the example

F4 → F2 × F2 → F2,

which consists of groups and surjective homomorphisms, the costs of the groups F4 and F2 are 4
and 2, respectively, whereas the cost of the direct product of two copies of the group F2 is zero.
Anyway, the cost of just-infinite groups deserves very careful examination. However, for branch
groups the answer is known; therefore, it remains to investigate the cost of simple groups and
hereditary just-infinite groups.

Theorem 11.13. Let G be a branch group. Then cost(G) = 1.

Proof. Indeed, the product of two infinite groups is a cheap group, and the property of a group
to be cheap is preserved under passage to finite-index subgroups or, conversely, under a finite-index
extension [113, Proposition 35.1]. Applying this statement to ristG(1), we obtain the statement
formulated above. �

Problem 11.6. Is it true that every just-infinite group has a fixed cost of 1 and this cost is
achieved?
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Unfortunately, there have not yet been developed any methods that would allow one to determine
whether or not a given self-similar decomposition (defined, for example, by a finite automaton) is
hyperfinite (recall that a problem regarding this issue was formulated above). It would be interesting
to prove the amenability of some self-replicating groups (for which one fails to prove the amenability
with other methods) by establishing, in one or another way, the hyperfiniteness (with respect to the
uniform measure) of the decomposition into orbits of their actions on the boundary of a tree and
the essential freeness of these actions. Recall that we already know that the cost of these actions
is 1, which possibly points to their hyperfiniteness.

In addition, it is desirable to develop methods for calculating the L2-Betti numbers of the
equivalence relations generated by finite automata. The L2-Betti numbers of equivalence relations
were introduced by Gaboriau in [64], who showed that these numbers are zero for many groups and
actions (in particular, for amenable groups). Thus, the fact that at least one of the L2-Betti numbers
is different from zero implies that the equivalence relation is not hyperfinite (and, accordingly, the
group generating this relation is not amenable). The L2-Betti numbers are invariants of orbital
equivalence, just as various operator algebras (first of all, von Neumann algebras) that are associated
with an action or with an equivalence relation. First of all, this is the classical von Neumann
construction for the case of essentially free actions and its generalization obtained by Krieger in the
case of nonfree actions. In addition to the original publications, one can learn about this issue in
the books by Takesaki [181], Connes [46], and in many other sources. One of the topical questions
is the problem of classification of von Neumann algebras associated with the actions of self-similar
groups generated by finite automata (I mean the algebras mentioned in Section 9 in connection
with a result of A.M. Vershik). It is also worthwhile to find conditions on an automaton under
which these algebras are hyperfinite factors of type II1. Does there exist an algorithm that would
allow one to do this? It is interesting that Mealy-type finite automata appear in the study of some
operator algebras, in particular, the Cuntz algebra, as demonstrated in [86].
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6. M. Abért and B. Virág, “Dimension and Randomness in Groups Acting on Rooted Trees,” J. Am. Math. Soc.
18 (1), 157–192 (2005).

7. S. V. Aleshin, “A Free Group of Finite Automata,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 12–14 (1983)
[Mosc. Univ. Math. Bull. 38 (4), 10–13 (1983)].

8. D. J. Allums and R. I. Grigorchuk, “The Rank Gradient and the Lamplighter Group,” Preprint (2011),
http://www.math.tamu.edu/~grigorch/publications/lamplighter.pdf

9. G. Amir, O. Angel, and B. Virág, “Amenability of Linear-Activity Automaton Groups,” arXiv: 0905.2007
[math.GR].

10. M. F. Atiyah, “Elliptic Operators, Discrete Groups and von Neumann Algebras,” in Analyse et topologie: Colloque
en l’honneur de Henri Cartan, Orsay, 1974 (Soc. Math. France, Paris, 1976), Astérisque 32–33, pp. 43–72.
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22. L. Bartholdi and Z. Šuniḱ, “Some Solvable Automaton Groups,” in Topological and Asymptotic Aspects of Group
Theory (Am. Math. Soc., Providence, RI, 2006), Contemp. Math. 394, pp. 11–29.

23. L. Bartholdi and B. Virág, “Amenability via Random Walks,” Duke Math. J. 130 (1), 39–56 (2005);
arXiv:math/0305262 [math.GR].

24. B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T) (Cambridge Univ. Press, Cambridge, 2008),
New Math. Monogr. 11.

25. M. B. Bekka and N. Louvet, “Some Properties of C∗-Algebras Associated to Discrete Linear Groups,” in
C∗-Algebras: Proc. SFB Workshop, Münster (Germany), 1999 (Springer, Berlin, 2000), pp. 1–22.

26. I. Benjamini and C. Hoffman, “ω-Periodic Graphs,” Electron. J. Comb. 12, 46 (2005).

27. I. Benjamini and O. Schramm, “Recurrence of Distributional Limits of Finite Planar Graphs,” Electron. J.
Probab. 6, 23 (2001); arXiv:math/0011019 [math.PR].

28. N. Bergeron and D. Gaboriau, “Asymptotique des nombres de Betti, invariants l2 et laminations,” Comment.
Math. Helv. 79 (2), 362–395 (2004).

29. M. Bhattacharjee, “The Probability of Generating Certain Profinite Groups by Two Elements,” Isr. J. Math.
86 (1–3), 311–329 (1994).

30. M. M. Bogolyubov, “On Some Ergodic Properties of Continuous Groups of Transformations,” Nauk. Zap. Kïıv.
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