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Şeyh Edebali University, Bilecik,
11210, Turkey

Abstract
In the present paper, we introduce a new band matrix F̂ and define the sequence
space

�p(F̂) =
{
x = (xk) ∈ ω :

∑
k

∣∣∣ fk
fk+1

xk –
fk+1
fk

xk–1
∣∣∣p <∞; 1 ≤ p≤ ∞

}
,

where fk is the kth Fibonacci number for every k ∈ N. We also establish some
inclusion relations concerning this space and determine its α-, β-, γ -duals. Further,
we characterize some matrix classes on the space �p(F̂) and examine some geometric
properties of this space.
MSC: 11B39; 46A45; 46B45; 46B20
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1 Introduction
Let ω be the space of all real-valued sequences. Any vector subspace of ω is called a se-
quence space. By �∞, c, c and �p ( ≤ p < ∞), we denote the sets of all bounded, con-
vergent, null sequences and p-absolutely convergent series, respectively. Also, we use the
conventions that e = (, , . . .) and e(n) is the sequence whose only non-zero term is  in the
nth place for each n ∈N, where N = {, , , . . .}.
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real num-

bers ank , where n,k ∈ N. We write A = (ank) instead of A = (ank)∞n,k=. Then we say that A
defines a matrix mapping from X into Y and we denote it by writing A : X → Y if for ev-
ery sequence x = (xk)∞k= ∈ X, the sequence Ax = {An(x)}∞n=, the A-transform of x, is in Y ,
where

An(x) =
∞∑
k=

ankxk (n ∈ N). (.)

For simplicity in notation, here and in what follows, the summation without limits runs
from  to ∞. Also, if x ∈ ω, then we write x = (xk) instead of x = (xk)∞k=.
By (X,Y ), we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X,Y )

if and only if the series on the right-hand side of (.) converges for each n ∈ N and every
x ∈ X and we have Ax ∈ Y for all x ∈ X.
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The matrix domain XA of an infinite matrix A in a sequence space X is defined by

XA =
{
x = (xk) ∈ ω : Ax ∈ X

}
(.)

which is a sequence space.
The approach constructing a new sequence space by means of the matrix domain of

a particular limitation method has recently been employed by several authors; see, for
instance, [–].
Let � denote the matrix � = (�nk) defined by

�nk =

⎧⎨⎩(–)n–k (n –  ≤ k ≤ n),

 ( ≤ k < n –  or k > n)

or

�nk =

⎧⎨⎩(–)n–k (n≤ k ≤ n + ),

 ( ≤ k < n or k > n + ).

In the literature, the matrix domain λ� is called the difference sequence space whenever
λ is a normed or paranormed sequence space. The idea of difference sequence spaces was
introduced by Kızmaz []. In , Kızmaz [] defined the sequence spaces

X(�) =
{
x = (xk) ∈ ω : (xk – xk+) ∈ X

}
for X = �∞, c and c. The difference space bvp, consisting of all sequences (xk) such that
(xk – xk–) is in the sequence space �p, was studied in the case  < p <  by Altay and Başar
[] and in the case  ≤ p ≤ ∞ byBaşar andAltay [] andÇolak et al. []. The paranormed
difference sequence space

�λ(p) =
{
x = (xk) ∈ ω : (xk – xk+) ∈ λ(p)

}
was examined by Ahmad andMursaleen [] andMalkowsky [], where λ(p) is any of the
paranormed spaces �∞(p), c(p) and c(p) defined by Simons [] and Maddox [].
Recently, Başar et al. [] have defined the sequence spaces bv(u,p) and bv∞(u,p) by

bv(u,p) =
{
x = (xk) ∈ ω :

∑
k

∣∣uk(xk – xk–)
∣∣pk <∞

}

and

bv∞(u,p) =
{
x = (xk) ∈ ω : sup

k∈N

∣∣uk(xk – xk–)
∣∣pk <∞

}
,

where u = (uk) is an arbitrary fixed sequence and  < pk ≤ H < ∞ for all k ∈ N. These
spaces are generalization of the space bvp for  ≤ p≤ ∞. Quite recently, Kirişçi and Başar
[] have introduced and studied the generalized difference sequence spaces

X̂ =
{
x = (xk) ∈ ω : B(r, s)x ∈ X

}
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for X = �∞, �p, c and c, where  ≤ p < ∞ and B(r, s)x = (sxk– + rxk) (r, s �= ). Following
Kirişçi and Başar [], Sönmez [] has examined the sequence space X(B) as the set of
all sequences whose B(r, s, t)-transforms are in the space X ∈ {�∞,�p, c, c}, where B(r, s, t)
denotes the triple band matrix B(r, s, t) = {bnk(r, s, t)} defined by

bnk(r, s, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r (n = k),

s (n = k + ),

t (n = k + ),

 otherwise

for all n,k ∈ N and r, s, t ∈ R – {}. Also in [–], the authors studied some difference
sequence spaces.
In this paper, we define the Fibonacci difference matrix F̂ by using the Fibonacci se-

quence {fn}∞n= and introduce new sequence spaces �p(F̂) and �∞(F̂) related to the matrix
domain of F̂ in the sequence spaces �p and �∞, respectively, where  ≤ p < ∞. This study
is organized as follows.
In Section , we give some notations and basic concepts including the Fibonacci se-

quence and a BK-space. In Section , we define a new band matrix with Fibonacci num-
bers and introduce the sequence spaces �p(F̂) and �∞(F̂). Also, we establish some inclusion
relations concerning these spaces and construct the basis of the space �p(F̂) for  ≤ p < ∞.
In Section , we determine the α-, β-, γ -duals of the spaces �p(F̂) and �∞(F̂). In Section ,
we characterize the classes (�p(F̂),X) and (�∞(F̂),X), where  ≤ p <∞ and X is any of the
spaces �∞, �, c and c. In the final section of the paper, we investigate some geometric
properties of the space �p(F̂) for  < p <∞.

2 The Fibonacci difference sequence space �p(F̂)
Define the sequence {fn}∞n= of Fibonacci numbers given by the linear recurrence relations

f = f =  and fn = fn– + fn–, n≥ .

Fibonacci numbers have many interesting properties and applications in arts, sciences
and architecture. For example, the ratio sequences of Fibonacci numbers converges to
the golden ratio which is important in sciences and arts. Also, some basic properties of
Fibonacci numbers [] are given as follows:

lim
n→∞

fn+
fn

=
 +

√



= α (golden ratio),

n∑
k=

fk = fn+ –  (n ∈N),

∑
k


fk

converges,

fn–fn+ – f n = (–)n+ (n≥ ) (Cassini formula).

Substituting for fn+ in Cassini’s formula yields f n– + fnfn– – f n = (–)n+.

http://www.journalofinequalitiesandapplications.com/content/2013/1/38
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A sequence space X is called a FK-space if it is a complete linear metric space with
continuous coordinates pn : X → R (n ∈ N), where R denotes the real field and pn(x) = xn
for all x = (xk) ∈ X and every n ∈N. A BK space is a normed FK space, that is, a BK-space
is a Banach space with continuous coordinates. The space �p ( ≤ p < ∞) is a BK-space
with ‖x‖p = (

∑∞
k= |xk|p)/p and c, c and �∞ are BK-spaces with ‖x‖∞ = supk |xk|.

A sequence (bn) in a normed space X is called a Schauder basis for X if for every
x ∈ X, there is a unique sequence (αn) of scalars such that x =

∑
n αnbn, i.e., limm→∞ ‖x –∑m

n= αnbn‖ = .
The α-, β- and γ -duals of the sequence space X are respectively defined by

Xα =
{
a = (ak) ∈ ω : ax = (akxk) ∈ � for all x = (xk) ∈ X

}
,

Xβ =
{
a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
and

Xγ =
{
a = (ak) ∈ ω : ax = (akxk) ∈ bs for all x = (xk) ∈ X

}
,

where cs and bs are the sequence spaces of all convergent and bounded series, respec-
tively [].
We assume throughout that p,q ≥  with p– + q– =  and denote the collection of all

finite subsets of N by F .

3 The Fibonacci difference sequence spaces �p(F̂) and �∞(F̂)
In this section, we define the Fibonacci band matrix F̂ = (f̂nk) and introduce the sequence
spaces �p(F̂) and �∞(F̂), where  ≤ p < ∞. Also, we present some inclusion theorems and
construct the Schauder basis of the space �p(F̂) for≤ p < ∞.
Let fn be the nth Fibonacci number for every n ∈ N. Then we define the infinite matrix

F̂ = (f̂nk) by

f̂nk =

⎧⎪⎪⎨⎪⎪⎩
– fn+

fn (k = n – ),
fn
fn+

(k = n),

 ( ≤ k < n –  or k > n)

(n,k ∈N).

Now, we introduce the Fibonacci difference sequence spaces �p(F̂) and �∞(F̂) as the set of
all sequences such that their F̂-transforms are in the space �p and �∞, respectively, i.e.,

�p(F̂) =
{
x = (xn) ∈ ω :

∑
n

∣∣∣∣ fn
fn+

xn –
fn+
fn

xn–
∣∣∣∣p < ∞

}
,

 ≤ p <∞,

and

�∞(F̂) =
{
x = (xn) ∈ ω : sup

n∈N

∣∣∣∣ fn
fn+

xn –
fn+
fn

xn–
∣∣∣∣ < ∞

}
.
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With the notation of (.), the sequence spaces �p(F̂) and �∞(F̂) may be redefined by

�p(F̂) = (�p)F̂ ( ≤ p < ∞) and �∞(F̂) = (�∞)F̂ . (.)

Define the sequence y = (yn), which will be frequently used, by the F̂-transform of a
sequence x = (xn), i.e.,

yn = F̂n(x) =

⎧⎨⎩
f
f
x = x (n = ),

fn
fn+

xn – fn+
fn xn– (n≥ )

(n ∈ N). (.)

Now, we may begin with the following theorem which is essential in the text.

Theorem . Let  ≤ p ≤ ∞. Then �p(F̂) is a BK-space with the norm ‖x‖�p(F̂) = ‖F̂x‖p ,
that is,

‖x‖�p(F̂) =
(∑

n

∣∣F̂n(x)∣∣p)/p

( ≤ p <∞)

and

‖x‖�∞(F̂) = sup
n∈N

∣∣F̂n(x)∣∣.
Proof Since (.) holds, �p and �∞ are BK-spaces with respect to their natural norms and
the matrix F̂ is a triangle; Theorem .. of Wilansky [, p.] gives the fact that the
spaces �p(F̂) and �∞(F̂) are BK-spaces with the given norms, where ≤ p < ∞. This com-
pletes the proof. �

Remark . One can easily check that the absolute property does not hold on the spaces
�p(F̂) and �∞(F̂), that is, ‖x‖�p(F̂) �= ‖|x|‖�p(F̂) and ‖x‖�∞(F̂) �= ‖|x|‖�∞(F̂) for at least one se-
quence in the spaces �p(F̂) and �∞(F̂), and this shows that �p(F̂) and �∞(F̂) are the sequence
spaces of non-absolute type, where |x| = (|xk|) and  ≤ p <∞.

Theorem . The Fibonacci difference sequence space �p(F̂) of non-absolute type is lin-
early isomorphic to the space �p, that is, �p(F̂)∼= �p for  ≤ p ≤ ∞.

Proof To prove this, we should show the existence of a linear bijection between the spaces
�p(F̂) and �p for  ≤ p ≤ ∞. Consider the transformation T defined, with the notation of
(.), from �p(F̂) to �p by x → y = Tx. Then Tx = y = F̂x ∈ �p for every x ∈ �p(F̂). Also,
the linearity of T is clear. Further, it is trivial that x =  whenever Tx =  and hence T is
injective.
Furthermore, let y = (yk) ∈ �p for  ≤ p≤ ∞ and define the sequence x = (xk) by

xk =
k∑
j=

f k+
fjfj+

yj (k ∈N). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/38
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Then, in the cases  ≤ p < ∞ and p = ∞, we get

‖x‖�p(F̂) =
(∑

k

∣∣∣∣ fk
fk+

xk –
fk+
fk

xk–
∣∣∣∣p)/p

=

(∑
k

∣∣∣∣∣ fk
fk+

k∑
j=

f k+
fjfj+

yj –
fk+
fk

k–∑
j=

f k
fjfj+

yj

∣∣∣∣∣
p)/p

=
(∑

k

|yk|p
)/p

= ‖y‖p <∞

and

‖x‖�∞(F̂) = sup
k∈N

∣∣F̂k(x)∣∣ = ‖y‖∞ < ∞,

respectively. Thus, we have x ∈ �p(F̂) ( ≤ p ≤ ∞). Hence, T is surjective and norm pre-
serving. Consequently, T is a linear bijection which shows that the spaces �p(F̂) and �p are
linearly isomorphic for  ≤ p ≤ ∞. This concludes the proof. �

Now, we give some inclusion relations concerning the space �p(F̂).

Theorem . The inclusion �p ⊂ �p(F̂) strictly holds for  ≤ p ≤ ∞.

Proof To prove the validity of the inclusion �p ⊂ �p(F̂) for  ≤ p ≤ ∞, it suffices to show
the existence of a numberM >  such that ‖x‖�p(F̂) ≤ M‖x‖p for every x ∈ �p.
Let x ∈ �p and  < p≤ ∞. Since the inequalities fk

fk+
≤  and fk+

fk
≤  hold for every k ∈N,

we obtain with the notation of (.),

∑
k

∣∣F̂k(x)∣∣p ≤
∑
k

p–
(|xk|p + |xk–|p

) ≤ p–
(∑

k

|xk|p +
∑
k

|xk–|p
)

and

sup
k∈N

∣∣F̂k(x)∣∣ ≤  sup
k∈N

|xk|,

which together yield, as expected,

‖x‖�p(F̂) ≤ ‖x‖p (.)

for  < p ≤ ∞. Further, since the sequence x = (xk) = (f k+) = (, , , , . . .) is in �p(F̂) –
�p, the inclusion �p ⊂ �p(F̂) is strict for  < p ≤ ∞. Similarly, one can easily prove that
inequality (.) also holds in the case p = , and so we omit the details. This completes the
proof. �

Theorem . Neither of the spaces bvp and �p(F̂) includes the other one, where  ≤ p < ∞.

Proof Let e = (, , , . . .) and x = (xk) = (f k+). Then, since F̂x = (, , , . . .) ∈ �p and �x =
(, ff, ff, . . . , fk–fk+, . . .) /∈ �p, we conclude that x is in �p(F̂) but not in bvp. Now, consider

http://www.journalofinequalitiesandapplications.com/content/2013/1/38
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the equation

∣∣∣∣ fk
fk+

–
fk+
fk

∣∣∣∣ = |f k – f k+|
fkfk+

=
|(–)k – fkfk+|

fkfk+
(k ∈N).

Then |(–)k – fkfk+| > fkfk+ whenever k is odd, which implies that the series
∑

k | fk
fk+

– fk+
fk

|p
is not convergent, where  ≤ p < ∞. Thus, F̂e = ( fk

fk+
– fk+

fk
) is not in �p for  ≤ p < ∞.

Additionally, since �e = (, , , . . .), the sequence e is in �p. Hence, the sequence spaces
�p(F̂) and bvp overlap but neither contains the other, as asserted. �

Theorem . If  ≤ p < s, then �p(F̂) ⊂ �s(F̂).

Proof Let  ≤ p < s and x ∈ �p(F̂). Then we obtain from Theorem . that y ∈ �p, where y
is the sequence given by (.). Thus, the well-known inclusion �p ⊂ �s yields y ∈ �s. This
means that x ∈ �s(F̂) and hence, the inclusion �p(F̂) ⊂ �s(F̂) holds. This completes the
proof. �

Now, we give a sequence of the points of the space �p(F̂) which forms a basis for the
space �p(F̂) ( ≤ p < ∞).

Theorem . Let  ≤ p < ∞ and define the sequence c(k) ∈ �p(F̂) for every fixed k ∈N by

(
c(k)

)
n =

⎧⎨⎩ (n < k),
f n+
fk fk+

(n≥ k)
(n ∈N). (.)

Then the sequence (c(k))∞k= is a basis for the space �p(F̂), and every x ∈ �p(F̂) has a unique
representation of the form

x =
∑
k

F̂k(x)c(k). (.)

Proof Let  ≤ p < ∞. Then it is obvious by (.) that F̂(c(k)) = e(k) ∈ �p (k ∈ N) and hence
c(k) ∈ �p(F̂) for all k ∈N.
Further, let x ∈ �p(F̂) be given. For every non-negative integer m, we put

x(m) =
m∑
k=

F̂k(x)c(k).

Then we have that

F̂
(
x(m)) = m∑

k=

F̂k(x)F̂
(
c(k)

)
=

m∑
k=

F̂k(x)e(k)

and hence

F̂n
(
x – x(m)) =

⎧⎨⎩ ( ≤ n≤ m),

F̂n(x) (n >m)
(n,m ∈N).

http://www.journalofinequalitiesandapplications.com/content/2013/1/38
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Now, for any given ε > , there is a non-negative integer m such that

∞∑
n=m+

∣∣F̂n(x)∣∣p ≤
(

ε



)p

.

Therefore, we have for everym ≥ m that

∥∥x – x(m)∥∥
�p(F̂)

=

( ∞∑
n=m+

∣∣F̂n(x)∣∣p)/p

≤
( ∞∑
n=m+

∣∣F̂n(x)∣∣p)/p

≤ ε


< ε,

which shows that limm→∞ ‖x – x(m)‖�p(F̂) =  and hence x is represented as in (.).
Finally, let us show the uniqueness of the representation (.) of x ∈ �p(F̂). For this, sup-

pose that x =
∑

k μk(x)c(k). Since the linear transformation T defined from �p(F̂) to �p in
the proof of Theorem . is continuous, we have

F̂n(x) =
∑
k

μk(x)F̂n
(
c(k)

)
=

∑
k

μk(x)δnk = μn(x) (n ∈N).

Hence, the representation (.) of x ∈ �p(F̂) is unique. This concludes the proof. �

4 The α-, β- and γ -duals of the space �p(F̂)
In this section, we determine the α-, β- and γ -duals of the sequence space �p(F̂) of non-
absolute type. Since the case p =  can be proved by analogy, we omit the proof of that case
and consider only the case  < p ≤ ∞ in the proof of Theorems . and ., respectively.
The following known results [] are fundamental for our investigation.

Lemma . A = (ank) ∈ (�p,�) if and only if

sup
K∈F

∑
k

∣∣∣∣∑
n∈K

ank
∣∣∣∣ < ∞,  < p≤ ∞.

Lemma . A = (ank) ∈ (�p, c) if and only if

lim
n→∞ank exists for all k ∈N, (.)

sup
n∈N

∑
k

|ank|q < ∞,  < p < ∞. (.)

Lemma . A = (ank) ∈ (�∞, c) if and only if (.) holds and

lim
n→∞

∑
k

|ank| =
∑
k

∣∣∣ lim
n→∞ank

∣∣∣. (.)

Lemma . A = (ank) ∈ (�p,�∞) if and only if (.) holds with  < p ≤ ∞.

Theorem . The α-dual of the space �p(F̂) is the set

d̂ =
{
a = (ak) ∈ ω : sup

K∈F

∑
k

∣∣∣∣∑
n∈K

f n+
fkfk+

an
∣∣∣∣q < ∞

}
,

where  < p≤ ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/38
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Proof Let  < p ≤ ∞. For any fixed sequence a = (an) ∈ ω, we define the matrix B = (bnk)
by

bnk =

⎧⎨⎩
f n+
fk fk+

an (≤ k ≤ n),

 (k > n)

for all n,k ∈N. Also, for every x = (xn) ∈ ω, we put y = F̂x. Then it follows by (.) that

anxn =
n∑

k=

f n+
fkfk+

anyk = Bn(y) (n ∈N). (.)

Thus, we observe by (.) that ax = (anxn) ∈ � whenever x ∈ �p(F̂) if and only if By ∈ �

whenever y ∈ �p. Therefore, we derive by using Lemma . that

sup
K∈F

∑
k

∣∣∣∣∑
n∈K

f n+
fkfk+

an
∣∣∣∣q < ∞,

which implies that (�p(F̂))α = d̂. �

Theorem . Define the sets d̂, d̂ and d̂ by

d̂ =

{
a = (ak) ∈ ω :

∞∑
j=k

f j+
fkfk+

aj exists for all k ∈N

}
,

d̂ =

{
a = (ak) ∈ ω : sup

n∈N

n∑
k=

∣∣∣∣∣
n∑
j=k

f j+
fkfk+

aj

∣∣∣∣∣
q

< ∞
}

and

d̂ =

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=

∣∣∣∣∣
n∑
j=k

f j+
fkfk+

aj

∣∣∣∣∣ = ∑
k

∣∣∣∣∣
∞∑
j=k

f j+
fkfk+

aj

∣∣∣∣∣ < ∞
}
.

Then (�p(F̂))β = d̂ ∩ d̂ and (�∞(F̂))β = d̂ ∩ d̂, where  < p < ∞.

Proof Let a = (ak) ∈ ω and consider the equality

n∑
k=

akxk =
n∑

k=

ak

( n∑
j=

f k+
fjfj+

yj

)
=

n∑
k=

( n∑
j=k

f j+
fkfk+

aj

)
yk =Dn(y), (.)

where D = (dnk) is defined by

dnk =

⎧⎪⎨⎪⎩
n∑
j=k

f j+
fk fk+

aj ( ≤ k ≤ n),

 (k > n),
n,k ∈N.

Then we deduce from Lemma . with (.) that ax = (akxk) ∈ cs whenever x = (xk) ∈
�p(F̂) if and only if Dy ∈ c whenever y = (yk) ∈ �p. Thus, (ak) ∈ (�p(F̂))β if and only if (ak) ∈
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d̂ and (ak) ∈ d̂ by (.) and (.), respectively. Hence, (�p(F̂))β = d̂ ∩ d̂. It is clear that
one can also prove the case p = ∞ by the technique used in the proof of the case  < p < ∞
with Lemma . instead of Lemma .. So, we leave the detailed proof to the reader. �

Theorem . (�p(F̂))γ = d̂, where  < p ≤ ∞.

Proof This result can be obtained from Lemma . by using (.). �

5 Somematrix transformations related to the sequence space �p(F̂)
In this section, we characterize the classes (�p(F̂),X), where  ≤ p ≤ ∞ and X is any of the
spaces �∞, �, c and c.
For simplicity in notation, we write

ãnk =
∞∑
j=k

f j+
fkfk+

anj

for all k,n ∈N.
The following lemma is essential for our results.

Lemma . (see [, Theorem .]) Let λ be an FK-space,U be a triangle, V be its inverse
and μ be an arbitrary subset of ω. Then we have A = (ank) ∈ (λU ,μ) if and only if

C(n) =
(
c(n)mk

) ∈ (λ, c) for all n ∈N

and

C = (cnk) ∈ (λ,μ),

where

c(n)mk =

⎧⎨⎩
∑m

j=k anjvjk ( ≤ k ≤ m),

 (k >m)

and cnk =
∑∞

j=k anjvjk for all k,m,n ∈N.

Now, we list the following conditions:

sup
m∈N

m∑
k=

∣∣∣∣∣
m∑
j=k

f j+
fkfk+

anj

∣∣∣∣∣
q

< ∞, (.)

lim
m→∞

m∑
j=k

f j+
fkfk+

anj = ãnk , ∀n,k ∈N, (.)

lim
m→∞

m∑
k=

∣∣∣∣∣
m∑
j=k

f j+
fkfjk+

anj

∣∣∣∣∣ = ∑
k

|̃ank| for each n ∈N, (.)

sup
n∈N

∑
k

|̃ank|q < ∞, (.)
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sup
N∈F

∑
k

∣∣∣∣∑
n∈N

ãnk
∣∣∣∣q <∞, (.)

lim
n→∞ ãnk = α̃k ; k ∈N, (.)

lim
n→∞

∑
k

|̃ank| =
∑
k

|̃αk|, (.)

lim
n→∞

∑
k

ãnk = , (.)

sup
n,k∈N

|̃ank| < ∞, (.)

sup
k,m∈N

∣∣∣∣∣
m∑
j=k

f j+
fkfk+

anj

∣∣∣∣∣ <∞, (.)

sup
k∈N

∑
n

|̃ank| < ∞, (.)

sup
N ,K∈F

∣∣∣∣∑
n∈N

∑
k∈K

ãnk
∣∣∣∣ < ∞. (.)

Then, by combining Lemma . with the results in [], we immediately derive the fol-
lowing results.

Theorem .
(a) A = (ank) ∈ (�(F̂),�∞) if and only (.), (.) and (.) hold.
(b) A = (ank) ∈ (�(F̂), c) if and only if (.), (.), (.) and (.) hold.
(c) A = (ank) ∈ (�(F̂), c) if and only if (.), (.) with α̃k = , (.) and (.) hold.
(d) A = (ank) ∈ (�(F̂),�) if and only (.), (.) and (.) hold.

Theorem . Let  < p <∞. Then we have
(a) A = (ank) ∈ (�p(F̂),�∞) if and only if (.), (.) and (.) hold.
(b) A = (ank) ∈ (�p(F̂), c) if and only if (.), (.), (.) and (.) hold.
(c) A = (ank) ∈ (�p(F̂), c) if and only if (.), (.), (.) and (.) with α̃k =  hold.
(d) A = (ank) ∈ (�p(F̂),�) if and only if (.), (.) and (.) hold.

Theorem .
(a) A = (ank) ∈ (�∞(F̂),�∞) if and only (.), (.) and (.) with q =  hold.
(b) A = (ank) ∈ (�∞(F̂), c) if and only (.), (.), (.) and (.) hold.
(c) A = (ank) ∈ (�∞(F̂), c) if and only (.), (.) and (.) hold.
(d) A = (ank) ∈ (�∞(F̂),�) if and only (.), (.) and (.) hold.

6 Some geometric properties of the space �p(F̂) (1 < p <∞)
In this section, we study some geometric properties of the space �p(F̂) for  < p < ∞.
For these properties, we refer to [, –].
A Banach space X is said to have the Banach-Saks property if every bounded sequence

(xn) in X admits a subsequence (zn) such that the sequence {tk(z)} is convergent in the
norm in X [], where

tk(z) =


k + 
(z + z + · · · + zk) (k ∈N). (.)
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A Banach space X is said to have the weak Banach-Saks property whenever, given any
weakly null sequence (xn) ⊂ X, there exists a subsequence (zn) of (xn) such that the se-
quence {tk(z)} is strongly convergent to zero.
In [], García-Falset introduces the following coefficient:

R(X) = sup
{
lim inf
n→∞ ‖xn – x‖ : (xn) ⊂ B(X),xn

w→ ,x ∈ B(X)
}
, (.)

where B(X) denotes the unit ball of X.

Remark . A Banach space X with R(X) <  has the weak fixed point property [].

Let  < p < ∞. A Banach space is said to have the Banach-Saks type p or the property
(BS)p if every weakly null sequence (xk) has a subsequence (xkl ) such that for some C > ,∥∥∥∥∥

n∑
l=

xkl

∥∥∥∥∥ < C(n + )/p (.)

for all n ∈N ( see []).
Now, wemay give the following results related to some geometric properties,mentioned

above, of the space �p(F̂), where  < p < ∞.

Theorem . Let  < p < ∞. Then the space �p(F̂) has the Banach-Saks type p.

Proof Let (εn) be a sequence of positive numbers for which
∑

εn ≤ /, and also let (xn)
be a weakly null sequence in B(�p(F̂)). Set z = x =  and z = xn = x. Then there exists
m ∈N such that∥∥∥∥∥

∞∑
i=m+

z(i)e(i)
∥∥∥∥∥

�p(F̂)

< ε. (.)

Since (xn) being a weakly null sequence implies xn →  coordinatewise, there is an n ∈
N such that∥∥∥∥∥

m∑
i=

xn(i)e(i)
∥∥∥∥∥

�p(F̂)

< ε,

when n≥ n. Set z = xn . Then there exists anm >m such that∥∥∥∥∥
∞∑

i=m+

z(i)e(i)
∥∥∥∥∥

�p(F̂)

< ε.

Again using the fact that xn →  coordinatewise, there exists an n ≥ n such that∥∥∥∥∥
m∑
i=

xn(i)e(i)
∥∥∥∥∥

�p(F̂)

< ε,

when n≥ n.
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If we continue this process, we can find two increasing subsequences (mi) and (ni) such
that ∥∥∥∥∥

mj∑
i=

xn(i)e(i)
∥∥∥∥∥

�p(F̂)

< εj

for each n≥ nj+ and∥∥∥∥∥
∞∑

i=mj+

zj(i)e(i)
∥∥∥∥∥

�p(F̂)

< εj,

where bj = xnj . Hence,

∥∥∥∥∥
n∑
j=

zj

∥∥∥∥∥
�p(F̂)

=

∥∥∥∥∥
n∑
j=

(mj–∑
i=

zj(i)e(i) +
mj∑

i=mj–+

zj(i)e(i) +
∞∑

i=mj+

zj(i)e(i)
)∥∥∥∥∥

�p(F̂)

≤
∥∥∥∥∥

n∑
j=

( mj∑
i=mj–+

zj(i)e(i)
)∥∥∥∥∥

�p(F̂)

+ 
n∑
j=

εj.

On the other hand, it can be seen that ‖x‖�p(F̂) < . Therefore, we have that

∥∥∥∥∥
n∑
j=

( mj∑
i=mj–+

zj(i)e(i)
)∥∥∥∥∥

p

�p(F̂)

=
n∑
j=

mj∑
i=mj–+

∣∣∣∣ fi
fi+

zj(i) –
fi+
fi
zj(i – )

∣∣∣∣p

≤
n∑
j=

∞∑
i=

∣∣∣∣ fi
fi+

zj(i) –
fi+
fi
zj(i – )

∣∣∣∣p
≤ (n + ).

Hence, we obtain∥∥∥∥∥
n∑
j=

( mj∑
i=mj–+

zj(i)e(i)
)∥∥∥∥∥ ≤ (n + )/p.

By using the fact that ≤ (n + )/p for all n ∈ N and  < p <∞, we have∥∥∥∥∥
n∑
j=

zj

∥∥∥∥∥
�p(F̂)

≤ (n + )/p +  ≤ (n + )/p.

Hence, �p(F̂) has the Banach-Saks type p. This concludes the proof. �

Remark . Note that R(�p(F̂)) = R(�p) = /p since �p(F̂) is linearly isomorphic to �p.

Hence, by Remarks . and ., we have the following theorem.

Theorem . The space �p(F̂) has the weak fixed point property, where  < p < ∞.
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3. Savaş, E, Karakaya, V, Şimşek, N: Some �(p)-type new sequence spaces and their geometric properties. Abstr. Appl.

Anal. 2009, Article ID 696971 (2009)
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21. Kirişçi, M, Başar, F: Some new sequence spaces derived by the domain of generalized difference matrix. Comput.

Math. Appl. 60, 1299-1309 (2010)
22. Sönmez, A: Some new sequence spaces derived by the domain of the triple band matrix. Comput. Math. Appl. 62(2),

641-650 (2011)
23. Choudhary, B, Mishra, SK: A note on Köthe-Toeplitz duals of certain sequence spaces and their matrix

transformations. Int. J. Math. Math. Sci. 18(4), 681-688 (1995)
24. Sarıgöl, MA: On difference sequence spaces. J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys. 10, 63-71 (1987)
25. Et, M: On some difference sequence spaces. Turk. J. Math. 17, 18-24 (1993)
26. Mursaleen, M: Generalized spaces of difference sequences. J. Math. Anal. Appl. 203(3), 738-745 (1996)
27. Mishra, SK: Matrix maps involving certain sequence spaces. Indian J. Pure Appl. Math. 24(2), 125-132 (1993)
28. Gaur, AK, Mursaleen, M: Difference sequence spaces. Int. J. Math. Math. Sci. 21(4), 701-706 (1998)
29. Malkowsky, E, Mursaleen, M: Some matrix transformations between the difference sequence spaces �c0(p), �c(p)

and ��∞(p). Filomat 15, 353-363 (2001)
30. Mursaleen, M, Gaur, AK, Saifi, AH: Some new sequence spaces and their duals and matrix transformations. Bull.

Calcutta Math. Soc. 88(3), 207-212 (1996)
31. Sönmez, A: Almost convergence and triple band matrix. Math. Comput. Model. (2012).

doi:10.1016/j.mcm.2011.11.079
32. Başar, F, Kirişçi, M: Almost convergence and generalized difference matrix. Comput. Math. Appl. 61(3), 602-611 (2011)
33. Et, M, Çolak, R: On some generalized difference sequence spaces. Soochow J. Math. 21, 377-386 (1995)
34. Et, M, Esi, A: On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull. Malays. Math. Soc. 23, 25-32

(2000)
35. Koshy, T: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)
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