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0e idea of neighborhood systems is induced from the geometric idea of “near,” and it is primitive in the topological structures.
Now, the idea of neighborhood systems has been extensively applied in rough set theory. 0e master contribution of this
manuscript is to generate various topologies by means of the concepts of j-adhesion neighborhoods and ideals. 0en, we define a
new rough set model derived from these topologies and discussed main features. We show that these topologies are finer than
those given in the previous ones under arbitrary binary relations. In addition, we elucidate that these topologies are finer than
those topologies initiated based on different neighborhoods and ideals under reflexive relations. Several examples are provided to
validate that our model is better than the previous ones.

1. Introduction

0e idea of rough set theory (RST) was first put forth by
Pawlak [1], where imperfect information gives rise to
indiscernibility of objects. RST proves its adequacy to treat
and model a lot of real-life issues that were constructed as a
method to overcome imperfectness and ambiguity of in-
formation. 0e classical RST was characterized by a pair of
approximation operators called lower and upper approxi-
mations which are established using equivalence classes. But
at times, equivalence relations are tricky to be acquired in
real-life issues due to the incompleteness of human infor-
mation. So, a lot of ideas and articles have been introduced to
generalizing the classical theory of RSs, for further specifics,
see reference [2]. For interpretation of the granules, both Lin
[3] and Yao [4] studied the RSs utilizing neighborhood
systems. In fact, they freed RSTfrom an equivalence relation
which is a very inflexible obligation that restricts the real-life
implementation scope of rough sets philosophy.

Quite recently, Abd El-Monsef et al. [5] applied
j-neighborhoods to generalize the classical RST. Allam et al.
presented the concepts of minimal right neighborhoods and
minimal left neighborhoods in [6, 7], respectively. Dai et al.
[8] presented new rough set models using maximal
neighborhoods induced from similarity relations. Al-shami
[9] defined containment neighborhoods and applied to
protect medical staff from infected diseases. Also, Al-shami
et al. [10] initiated several types of lower and upper ap-
proximations using Nj-neighborhoods. In [11], El-Bably
and Fleifel investigated new topological structures by rela-
tions. El-Bably et al. [12] introduced some closure operators
using arbitrary binary relation and generated some topol-
ogies from any binary relation without using sub-base or
base.

Study of the rough set theory via topology is an enjoyable
topic that received the attention of many researchers, see, for
example [2, 13–19]. An idealI [20] on a nonempty finite set
(universe) U is a nonempty family of subsets of U with
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heredity property, as well as it is closed under finite unions.
Some interesting papers studied ideals via rough set theory
such as [15, 21]. Hosny [22] replaced Pawlak’s approxi-
mations (lower and upper) by topological operators (interior
and closure). 0en, she [23] presented different methods to
establish new rough set models using ideals. In 2020, Kandil
et al. [24] offered the collection 〈I, Î〉 generated by two
ideals I and Î and proved that it is also an ideal on a
universe.

From topology’s view, our work discusses the notions
of rough sets based on the topological spaces generated by
j-adhesion neighborhoods and ideals. 0at is, it studies
the concepts of lower and upper approximations in terms
of j-adhesion neighborhoods via ideals. 0is approach
minimizes the vagueness of uncertainty regions at their
borders by increasing the lower approximation and de-
creasing the upper approximation which automatically
implies increasing the accuracy measure of the uncer-
tainty regions.

0e layout of this paper is as follows. In Section 2, we
recall three classes of neighborhood systems called
Nj-neighborhoods, Ej-neighborhoods, and Pj-neighbor-
hoods as well as the results that show the way of generating
topologies using these classes of neighborhoods. In Section
3, we apply the notions of ideal and Pj-neighborhood
systems to establish new types of topologies. Based on these
topologies, we propose new kind of rough set models and
compare them with the previous ones under reflexive and
arbitrary relations. We devote Section 4 to discuss the ap-
proximations and accuracy measures generated by
Ej-neighborhoods and Pj-neighborhoods with ideals.
Eventually, Section 5 gives conclusions and some directions
for future works.

2. Preliminaries

In this part, we present the j-neighborhood space, which
depends on a finite number of various kinds of arbitrary
binary relations. So, we produce eight diverse topologies and
investigate the relationships among these topologies. 0en,
we get eight techniques to find the lower and upper ap-
proximations of rough sets. Comparisons between the ac-
curacy of these types of new approximations are attained.

Henceforward, we consider j ∈ r, l, 〈r〉, 〈l〉, i, u, 〈i〉,{

〈u〉}, unless otherwise specified.

2.1. Approximations and Topologies Generated by Different
j-Neighborhoods

Definition 1 (see [5]). Let R be a binary relation on U. 0e
eight sorts of j-neighborhoods of any point h ∈ U, say
Nj(h), are given by

(1) Nr(h) � z ∈ U: hRz{ }.

(2) Nl(h) � z ∈ U: zRh{ }.

(3) Ni(h) �Nr(h)∩Nl(h).

(4) Nu(h) �Nr(h)∪Nl(h).

(5) N〈r〉(h) � ∩ Nr(z): h ∈ Nr(z){ }; if Nr(z) does not
exist there such that h ∈ Nr(z), then N〈r〉(h) � ∅.

(6) N〈l〉(h) � ∩ Nl(z): h ∈ Nl(z){ }; if Nl(z) does not
exist there such that h ∈ Nl(z), then N〈l〉(h) � ∅.

(7) N〈i〉(h) �N〈r〉(h)∩N〈l〉(h).

(8) N〈u〉(h) �N〈r〉(h)∪N〈l〉(h).

Definition 2 (see [5]). 0e triple (U, R,ψj) is called a
j-neighborhood space (in short, NjS), where ψj is a map-
ping from U to P(U) which assigns for each point in U its
j-neighborhood.

Proposition 1 (see [25]). Let (U, R,ψj) be aNjS and h ∈ U.
9en,

(1) 9e reflexivity of R implies that Nj(h) is a nonempty
set.

(2) 9e reflexivity of R implies that N〈j〉(h) is a subset of
Nj(h), for every j ∈ r, l, i, u{ }.

(3) If R is a transitive relation, then Nj(h) is a subset of
N〈j〉(h), for every j ∈ r, l, i, u{ }.

(4) 9e symmetry of R implies that
Nr(h) �Nl(h) �Ni(h) �Nu(h) and
N〈r〉(h) �N〈l〉(h) �N〈i〉(h) �N〈u〉(h).

Theorem 1 (see [5]). Let (U, R,ψj) be a NjS. 9en, the
family ⊤j � {M⊆U: ∀h ∈M, Nj(h)⊆M} forms a topology
on U.

Definition 3 (see [5]). Let (U, R,ψj) be a NjS. 0en, we
called a subset M⊆U a j-open set if M ∈ ⊤j, and we called
its complement a j-closed set. 0e class Γj of all j-closed sets
of a j-neighborhood space is given by Γj � F⊆U: Fc ∈ ⊤j{ }.

Definition 4 (see [5]). Let ⊤j be a topology induced from
j-neighborhoods. 0e j-lower, j-upper approximations, and
j-accuracy of M⊆U are respectively given by

(1) Rj(M) � ∪ O ∈ ⊤j: O⊆M{ }� intj(M).

(2) Rj(M) � ∩ F ∈ Γj: M⊆F{ }� clj(M).

(3) αj(M) � (|Rj(M)|/|Rj(M)|), where |Rj(M)|≠ 0.

2.2. Approximations and Topologies Generated by Different
Ej-Neighborhoods

Definition 5 (see [26]). Let R be a binary relation on U. 0e
Ej-neighborhood of a point h ∈ U (briefly, Ej(h)) is for-
mulated as

(1) Er(h) � {z ∈ U: the intersection ofNr(z) andNr(h)
is nonempty}.

(2) El(h) � {z ∈ U: the intersection of Nl(z) and Nl(h)
is nonempty}.

(3) Ei(h) �Er(h)∩El(h).

(4) Eu(h) �Er(h)∪El(h).
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(5) E〈r〉(h) � {z ∈ U: the intersection of N〈r〉(z) and
N〈r〉(h) is nonempty}.

(6) E〈l〉(h) � {z ∈ U: the intersection of N〈l〉(z) and
N〈l〉(h) is nonempty}.

(7) E〈i〉(h) �E〈r〉(h)∩E〈l〉(h).

(8) E〈u〉(h) �E〈r〉(h)∪E〈l〉(h).

Theorem 2 (see [26]). Let R be a binary relation on U and
h ∈ U. 9en,

(1) h ∈ Ej(z) iff z ∈ Ej(h).

(2) 9e reflexivity of R implies that E〈j〉(h) is a subset of
Ej(h) and Nj(h) is a subset of Ej(h) for every j.

(3) 9e symmetry of R implies that Er(h), El(h), Ei(h),
and Eu(h) are equal, and E〈r〉(h), E〈l〉(h), E〈i〉(h),
and E〈u〉(h) are equal.

(4) 9e transitivity of R implies that Ej(h) is a subset of
E〈j〉(h) for each j ∈ u, i, r, l{ }.

(5) If R is transitive and symmetric, then Ej(h) �Nj(h)
and Ej(h)⊆Ej(z) (if h ∈ Ej(z) ), for each j.

(6) If R is preorder, then Ej(h) � E〈j〉(h), for all
j ∈ r, l, i, u{ }.

(7) If R is an equivalence, then Ej(h) are equal for each
j, and Ej(h) �Nj(h).

Theorem 3 (see [26]). For each j, the family ⊤Ej
� {M⊆U:

∀h ∈M, Ej(h)⊆M} forms a topology on U.

Definition 6 (see [26]). Let (U, R,ψj) be anEjS. We called a
set M⊆U an Ej-open set if M ∈ ⊤Ej

, and we called its
complement an Ej-closed set. 0e class ΓEj

of all Ej-closed

sets is given by ΓEj
� K⊆U: Kc ∈ ⊤Ej
{ }.

Definition 7 (see [26]). Consider ⊤Ej
as a topology induced

by Ej neighborhoods. For each j, the Ej lower, Ej upper
approximations, and Ej accuracy of M⊆U are respectively
given by

(1) L⊖j (M) � ∪ O ∈ ⊤Ej
: O⊆M{ }� intEj

(M).

(2) U⊕j (M) � ∩ F ∈ ΓEj
: M⊆F{ }� clEj

(M).

(3) μj(M) � (|L
⊖
j (M)|/|U

⊕
j (M)|), where |U⊕j (M)|≠ 0.

2.3. Approximations and Topologies Generated by Different
j-Adhesion Neighborhoods

Definition 8 (see [27]). Let R be a binary relation on U. 0e
j-adhesion (Pj) neighborhood of any point h ∈ U (denoted
by Pj(h)) is defined as

(1) r-adhesion neighborhood: Pr(h) � {z ∈ U: Nr(z) is
equal to Nr(h)}.

(2) l-adhesion neighborhood: Pl(h) � {z ∈ U: Nl(z) is
equal to Nl(h)}.

(3) i-adhesion neighborhood: Pi(h) �Pr(h)∩Pl(h).

(4) u-adhesion neighborhood: Pu(h) �Pr(h)∪Pl(h).

(5) 〈r〉-adhesion neighborhood: P〈r〉(h) � {z ∈ U:

N〈r〉(z) is equal to N〈r〉(h)}.

(6) 〈l〉-adhesion neighborhood: P〈l〉(h) � {z ∈ U:

N〈l〉(z) is equal to N〈l〉(h)}.

(7) 〈i〉-adhesion neighborhood P〈i〉(h) �P〈r〉(h)∩
P〈l〉(h).

(8) 〈u〉-adhesion neighborhood: P〈u〉(h) �P〈r〉(h)∪
P〈l〉(h).

Remark 1. It should be noted that the concept ofPj-adhesion
neighborhood of any point in U in [27] is the same as the
notion of core of neighborhood systems induced by R in [28].

Proposition 2 (see [25]). LetR be a binary relation onU and
h ∈ U. 9en, Pj-neighborhoods have the next properties:

(1) P〈r〉(h) �Pl(h), P〈l〉(h) �Pr(h).

(2) P〈i〉(h) �Pi(h), P〈u〉(h) �Pu(h).

Lemma 1 (see [25]). Let R be a binary relation on U and
h, z ∈ U. 9en,

(1) h ∈ Pj(h) for all j.

(2) z ∈ Pj(h) iff Pj(z) �Pj(h) for every
j ∈ i, 〈i〉, r, 〈r〉, l, 〈l〉{ }.

Corollary 1 (see [25]). Let R be a binary relation on U. 9e
class ℘(U) � Pj(y)|y ∈ U{ } forms a partition for U in the
cases of j ∈ i, 〈i〉, r, 〈r〉, l, 〈l〉{ }.

Proposition 3 (see [25]). Consider R as a reflexive relation
on U and h ∈ U. 9en, Pj(h)⊆Nj(h)⊆Ej(h) for each j.

Proposition 4 (see [25]). Consider R as an equivalence
relation on U and h ∈ U. 9en, Pj(h) � Nj(h) � Ej(h) for
each j.

Theorem 4 (see [25]). Let (U, R,ψj) be a j-adhesion
neighborhood space (PjS). 9en, for each j ∈ r, l, i, u{ }, the
class ⊤Pj

� {M⊆U: ∀h ∈M, Pj(h)⊆M} forms a topology
on U.

Definition 9 (see [25]). Let (U, R,ψj) be a j-adhesion
neighborhood space. We called a set M⊆U a j-adhesion
open set if M ∈ ⊤Pj

, and we called its complement a
j-adhesion closed set. 0e family ΓPj

of all j-adhesion closed
sets of a j-neighborhood space is defined by

ΓPj
� K⊆U: Kc ∈ ⊤Pj
{ }.

Remark 2 (see [25]). Let (U, R,ψj) be a j-adhesion
neighborhood space. 0en,

(1) 0e collection ⊤Pj
is a quasidiscrete (clopen) to-

pology on U, ∀j ∈ i, 〈i〉, r, 〈r〉, l, 〈l〉{ }.

(2) For each j, ⊤j ⊆⊤Pj
provided that R is reflexive.
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Definition 10 (see [25]). Let (U, R,ψj) be a PjS and ⊤Pj
be

a topology generated by j-adhesion neighborhoods. 0e
j-adhesion lower, j-adhesion upper approximations, and
j-adhesion accuracy of M⊆U are respectively given by

(1) Lj(M) � ∪ O ∈ ⊤Pj
: O⊆M{ }� intPj

(M).

(2) Uj(M) � ∩ F ∈ ΓPj
: M⊆F{ }� clPj

(M).

(3) θj(M) � (|Lj(M)|/|Uj(M)|), where |Uj(M)|≠ 0.

2.4. Approximations and Topologies Generated by Different
j-Neighborhoods and Ideals. In [23], Hosny presented an
idea depending on generating different topologies by using
j-neighborhoods and ideals and studied some of their
properties.

Theorem 5 (see [23]). Consider (U, R,ψj) as a NjS and I

as an ideal on U. 9en, the family ⊤Ij � {M⊆U: ∀h ∈M,
Nj(h) − M ∈ I} forms a topology on U for each j.

Theorem 6 (see [23]). Let (U, R,ψj) be a NjS and I be an
ideal on U. 9en, ⊤j ⊆⊤Ij for each j.

Definition 11 (see [23]). Let (U, R,ψj) be aNjS andI be an
ideal on U. We called a set M⊆U an Ij-open set if
M ∈ ⊤Ij , and we called its complement an Ij-closed set.
0e family ΓIj of all Ij-closed sets of a j-neighborhood
space is given by ΓIj � K⊆U: Kc ∈ ⊤Ij{ }.
Definition 12 (see [23]). Let (U, R,ψj) be aNjS andI be an
ideal on U. 0e Ij-lower, Ij-upper approximations, and
Ij-accuracy of the approximation ofM⊆U are respectively
given by

(1) RI
j (M) � ∪ O ∈ ⊤Ij : O⊆M{ }� intIj (M), where

intIj (M) is an Ij interior of M.

(2) R
I

j (M) � ∩ F ∈ ΓIj : M⊆F{ }� clIj (M), where
clIj (M) is an Ij closure of M.

(3) αI
j (M) � (|R

I
j (M)|/|R

I

j (M)|), where |R
I

j (M)|≠ 0.

2.5. Approximations and Topologies Generated by Different
Ej-Neighborhoods and Ideals. For any binary relation,
Hosny et al. [29] utilized the concepts of Ej-neighborhoods
and ideal I to output various topologies ζIj which are finer
than the previous one generated by Ej-neighborhoods due
to [26].

Theorem 7 (see [29]). 9e class ζIj � {M⊆U: ∀h ∈M,
Ej(h) − M ∈ I} forms a topology on U for each j.

Definition 13 (see [29]). Let (U, R,ψj) be a EjS andI be an
ideal on U. We called a setM⊆U a ζIj -open set ifM ∈ ζIj ,
and we called its complement a ζIj -closed set. 0e class ΠIj
of all ζIj -closed sets is given by ΠIj � K⊆U: Kc ∈ ζIj{ }.
Theorem 8 (see [29]). Consider (U, R,ψj) as an EjS and I

as an ideal on U. 9en,

(1) ⊤Ej
⊆ ζIj .

(2) 9e reflexivity of R implies that ζIj ⊆ ζI〈j〉 for each
j ∈ i, u, r, l{ }.

(3) If R is a symmetric, then ζIr � ζIl � ζIi � ζIu and
ζI〈r〉 � ζI〈l〉 � ζI〈i〉 � ζI〈u〉.

(4) 9e transitivity of R implies that ζI〈j〉 ⊆ ζIj for each
j ∈ i, u, r, l{ }.

(5) If R is a preorder, then ζI〈j〉 � ζIj for each
j ∈ i, u, r, l{ }.

(6) If R is an equivalence, then all ζIj are equal, and
⊤Ij � ζIj for each j.

Lemma 2 (see [29]). For any binary relation R on U, we
have N〈j〉(h)⊆E〈j〉(h) for each h ∈ U and j ∈ i, u, r, l{ }.

Definition 14 (see [29]). Consider ζIj as a topology gen-
erated by Ej-neighborhoods and ideal I. 0en, for each j,
IEj

-lower,IEj
-upper approximations, andIEj

-accuracy of
a subset M⊆U are defined respectively as follows:

(1) LI⊖j (M) � intIEj(M), where intIEj(M) forms the
interior points of M in ζIj .

(2) UI⊕
j (M) � clIEj(M), where clIEj(M) forms the clo-

sure points of M in ζIj .

(3) σI
j (M) � (|L

I⊖
j (M)|/|UI⊕

j (M)|), where
|UI⊕

j (M)|≠ 0.

3. NovelTopologiesGenerated from j-Adhesion
Neighborhoods via Ideals

Now, we deal with ideals and four different j-adhesion
neighborhoods generated from eight different j-neighbor-
hoods via the same binary relation. By using them, new
topologies are generated that generalize these topologies
generated by j-adhesion neighborhoods. Several properties
and relationships between these topologies are obtained.

0roughout this paper, a PjS with ideal I(U, R,I,ψj)
is denoted by PI

j S.

Theorem 9. Let (U, R,I,ψj) be a PI
j S. 9en, the collection

ρIj � {M⊆U: ∀h ∈M, Pj(h) − M ∈ I} forms a topology on
U for each j.

Proof. First, let Mα ∈ ρIj , α ∈ Δ, and z ∈ ∪ α∈ΔMα. 0en,
there is an α0 ∈ Δ s.t. z ∈Mα0

. 0erefore,
[Pj(z) − Mα0

] ∈ I. Since − (∪ α∈ΔMα)⊆ − Mα0
,

[Pj(z) − (∪ α∈ΔMα)] ∈ I, i.e., ∪ α∈ΔMα ∈ ρIj . Second, let
M1,M2 be members of ρIj and z belong to the intersection
of M1 and M2. 0en, [Pj(z) − M1] ∈ I and
[Pj(z) − M2] ∈ I. According to the definition of I, we
obtain [Pj(z) − M1]∪ [Pj(z) − M2] ∈ I. Hence,
[Pj(z) − (M1 ∩M2)] ∈ I. 0is means thatM1 ∩M2 ∈ ρIj .
Finally, it is easy to see that ∅,U ∈ ρIj ,
∀j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }. Consequently, ρIj is a to-
pology on U. □

Lemma 3. IfI,J are ideals on aPjS(U, R,ψj) such that I
is a subset of J, then ρIj ⊆ ρJj .
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Proof. Direct to prove.
0e fundamental goal of the next results is to deduce the

relations between the topologies generated by j-adhesion
neighborhoods, topologies generated by j-neighborhoods
and ideals, and topologies generated by j-adhesion neigh-
borhoods and ideals, as it is shown in the following
theorems.

Our new types of topologies, which were generated by
j-adhesion neighborhoods and ideals, are finer than the
previous one generated by j-adhesion neighborhoods due to
[28] for any relation. □

Theorem 10. Let (U, R,I,ψj) be a PI
j S. If j ∈ r, l, i, u{ },

then ⊤Pj
⊆ ρIj .

Proof. Straightforward. □

Example 1. Let U� a, b, c, d{ } and R� (c, a), (c, b),{

(c, d), (d, a), (d, c), (d, d)}. 0en, we obtain the next
topologies

⊤r � a{ }, b{ }, a, b{ },∅,U{ },

⊤l � c, d{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤i � a{ }, b{ }, a, b{ }, c, d{ }, b, c, d{ }, a, c, d{ },∅,U{ },

⊤u � ∅,U{ },

⊤〈r〉 � ⊤〈u〉 � a, d{ }, a, b, d{ }, a, c, d{ },∅,U{ },

⊤〈l〉 � ⊤〈i〉 � P(U),
⊤Pr

� ⊤P〈l〉
� c{ }, d{ }, a, b{ }, c, d{ }, a, b, d{ }, a, b, c{ },∅,U{ },

⊤Pl
� ⊤P〈r〉

� b{ }, c{ }, a, d{ }, b, c{ }, a, b, d{ }, a, c, d{ },∅,U{ },

⊤Pi
� ⊤P〈i〉

� P(U),

⊤Pu
� ⊤P〈u〉

� c{ }, a, b, d{ },∅,U{ }.

(1)
If I� ∅, a{ }{ }, then

⊤Ir � a{ }, b{ }, a, b{ }, b, c, d{ },∅,U{ },

⊤Il � c, d{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤Ii � a{ }, b{ }, c, d{ }, a, b{ }, b, c, d{ }, a, c, d{ },∅,U{ },

⊤Iu � b, c, d{ },∅,U{ },

⊤I〈r〉 � ⊤
I

〈u〉 � d{ }, a, d{ }, b, d{ }, c, d{ }, a, b, d{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤I〈l〉 � ⊤
I

〈l〉 � P(U),

ρIr � ρI〈l〉 � b{ }, c{ }, d{ }, a, b{ }, b, c{ }, c, d{ }, b, d{ }, a, b, c{ }, a, b, d{ }, b, c, d{ },∅,U{ },

ρIl � ρI〈r〉 � b{ }, c{ }, d{ }, a, d{ }, b, c{ }, b, d{ }, c, d{ }, a, b, d{ }, a, c, d{ }, b, c, d{ },∅,U{ },

ρIi � ρI〈i〉 � P(U),

ρIu � ρI〈u〉 � b{ }, c{ }, d{ }, b, c{ }, b, d{ }, c, d{ }, a, b, d{ }, b, c, d{ },∅,U{ }.

(2)

If Î� ∅, d{ }{ }, then

⊤Îr � a{ }, b{ }, a, b{ }, a, b, c{ },∅,U{ },

⊤Îl � c{ }, a, c{ }, b, c{ }, c, d{ }, a, b, c{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤Îi � a{ }, b{ }, c{ }, a, b{ }, a, c{ }, b, c{ }, c, d{ }, a, b, c{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤Îu � a, b, c{ },∅,U{ },

⊤Î〈r〉 � ⊤
Î

〈u〉 � a{ }, a, b{ }, a, c{ }, a, d{ }, a, b, c{ }, a, b, d{ }, a, c, d{ },∅,U{ },

⊤Î〈l〉 � ⊤
Î

〈i〉

ρÎr � ρÎ〈l〉 � c{ }, d{ }, a, b{ }, c, d{ }, a, b, c{ }, a, b, d{ },∅,U{ },
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ρÎl � ρÎ〈r〉 � a{ }, b{ }, c{ }, a, b{ }, a, c{ }, a, d{ }, b, c{ }, a, b, c{ }, a, c, d{ }, a, b, d{ },∅,U{ },

ρÎi � ρÎ〈i〉 � P(U),

ρÎu � ρÎ〈u〉 � c{ }, a, b{ }, a, b, c{ }, a, b, d{ },∅,U{ }.

(3)

If J� ∅, a{ }, d{ }, a, d{ }{ }, then

⊤Jr � a{ }, b{ }, a, b{ }, b, c{ }, a, b, c{ }, b, c, d{ },∅,U{ },

⊤Jl � c{ }, a, c{ }, b, c{ }, c, d{ }, a, b, c{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤Ji � a{ }, b{ }, c{ }, a, b{ }, a, c{ }, b, c{ }, c, d{ }, a, b, c{ }, a, c, d{ }, b, c, d{ },∅,U{ },

⊤Ju � b, c{ }, a, b, c{ }, b, c, d{ },∅,U{ },

⊤J〈r〉 � ⊤
J

〈u〉 � ⊤
J

〈l〉 � ⊤
J

〈i〉 � P(U),

ρJr � ρJ〈l〉 � ρJu � ρJ〈u〉 � b{ }, c{ }, d{ }, a, b{ }, b, c{ }, b, d{ }, c, d{ }, a, b, c{ }, a, b, d{ }, b, c, d{ },∅,U{ },

ρJl � ρJ〈r〉 � ρJi � ρJ〈i〉 � P(U).

(4)

Remark 3. If I� ∅, a{ }{ } in Example 1, then

(1) ρIr ≠ ρIi and ρIl ≠ ρIi .

(2) ρIr ≠ ρIu and ρIl ≠ ρIu .

(3) ρIi ≠ ρIu .

Remark 4. In view of Example 1,

(1) In general, the collection ρIj need not be a quasi-
discrete (clopen) topology on U, although ⊤Pj

is
quasidiscrete topology on U,
∀j ∈ i, 〈i〉, r, 〈r〉, l, 〈l〉{ }.

(2) If ∀j ∈ u, 〈u〉{ }, then ρIj is not quasidiscrete to-
pology on U.

(3) ρIr need not be dual topology to ρIl .

(4) If R is any relation, then ⊤Ij , ρIj are not comparable,
for each j.

(5) If I� ∅{ } in 0eorem 9, then the present generated
topologies coincide with the previous one in

Proposition 4.1 in [28]. So, the current work is
considered as a generalization of work of [25, 27, 28].

0eorem 11 illustrates that the reflexivity condition is
necessary to create a relationship between the topologies ⊤Ij
and ρIj .

Theorem 11. Let (U, R,I,ψj) be a PI
j S, where R is re-

flexive. 9en, ⊤Ij ⊆ ρIj , for any ideal I.

Proof. LetI be any ideal onU. According to Proposition 3,
⊤Ij ⊆ ρIj . □

Remark 5. 0e new forms of topologies, which were gen-
erated by j-adhesion neighborhoods and ideals, are finer
than the topologies generated by j-neighborhoods and ideals
due to [23] for reflexive relation.

Example 2. Let U� a, b, c, d{ } and R�▲∪ (b, c), (b, d),{

(c, a), (d, b), (c, d), (d, c)}.
If I� ∅, a{ }{ }, then

⊤Ir � ∅,U, a{ }, b, c, d{ }{ },

⊤Il � ∅,U, b, c, d{ }{ },

⊤Ii � ∅,U, a{ }, b, c, d{ }{ },

⊤Iu � ∅,U, b, c, d{ }{ },

⊤I〈r〉 � ∅,U, a{ }, c, d{ }, a, c, d{ }, b, c, d{ }{ },

⊤I〈l〉 � ∅,U, c{ }, a, c{ }, b, d{ }, b, c, d{ }{ },
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⊤I〈i〉 � ∅,U, a{ }, c{ }, d{ }, a, c{ }, a, d{ }, b, d{ }, c, d{ }, a, b, d{ }, a, c, d{ }, b, c, d{ }{ },

⊤I〈u〉 � ∅,U, b, c, d{ }{ },

ρIr � ρI〈l〉 � ∅,U, a{ }, c{ }, a, c{ }, b, d{ }, a, b, d{ }, b, c, d{ }{ },

ρIl � ρI〈r〉 � ∅,U, a{ }, b{ }, a, b{ }, c, d{ }, a, c, d{ }, b, c, d{ }{ },

ρIi � ρI〈i〉 � P(U),

ρIu � ρI〈u〉 � ∅,U, a{ }, b, c, d{ }{ }.

(5)

Theorem 12. Let (U, R,I,ψj) be a PI
j S and R be a

symmetric relation on U. 9en,
ρIr � ρIl � ρIi � ρIu � ρI〈r〉 � ρI〈l〉 � ρI〈i〉 � ρI〈u〉.

Proof. Since R is a symmetric relation on U, then all
j-adhesion neighborhoods coincide. So,
ρIr � ρIl � ρIi � ρIu � ρI〈r〉 � ρI〈l〉 � ρI〈i〉 � ρI〈u〉. □

Proposition 5. Let (U, R,I,ψj) be a PI
j S. 9en, the fol-

lowing statements hold:

(1) ρIr � ρI〈l〉, ρIl � ρI〈r〉.

(2) ρIi � ρI〈i〉, ρIu � ρI〈u〉.

(3) ρIu ⊆ ρIr ∩ ρIl .

(4) ρIr ∪ ρIl ⊆ ρIi .

(5) ρI〈u〉 ⊆ ρI〈r〉 ∩ ρI〈l〉.

(6) ρI〈r〉 ∪ ρI〈l〉 ⊆ ρI〈i〉.

Proof. We prove (3) and one can prove the other cases in a
similar way. Let M ∈ ρIu , then [Pu(z) − M] ∈ I, ∀z ∈M.
Hence, [(Pr(z)∪Pl(z)) − M] ∈ I, ∀z ∈M. So, [Pr(z) −
M] ∈ I and [Pl(z) − M] ∈ I, ∀z ∈M. Consequently,
M ∈ ρIr ∩ ρIl . □

Definition 15. Let (U, R,I,ψj) be a PI
j S. A set M⊆U is

called ρIj -open set if M ∈ ρIj , and its complement is called
ρIj -closed set. 0e family ΥIj of all ρIj -closed sets is defined
as ΥIj � K⊆U: Kc ∈ ρIj{ }.

Definition 16. Consider ρIj as a topology generated by
j-adhesion neighborhoods and ideals. 0e IPj

-lower,
IPj

-upper approximations, IPj
-boundary regions, and

IPj
-accuracy of M⊆U are respectively given as follows:

(1) LI
j (M) � ∪ O ∈ ρIj : O⊆M{ }� intIPj

(M), where
intIPj

(M) represents interior of M wrt ρIj .

(2) UI
j (M) � ∩ F ∈ ΥIj : M⊆F{ }� clIPj

(M), where
clIPj

(M) represents closure of M wrt ρIj .

(3) BI
j (M) �U

I
j (M) − L

I
j (M).

(4) θIj (M) � (|L
I
j (M)|/|U

I
j (M)|), where |UI

j (M)|≠
0.

Remark 6. Table 1 displays the comparison between j-ap-
proximations and j-accuracy for j � r depending on Defi-
nitions 10, 12, and 16 by using any relation R and ideal
I� ∅, a{ }{ } of Example 1.

Remark 7. Table 2 offers the comparison between j-ap-
proximations and j-accuracy for j � l depending on Defi-
nitions 12 and 16 by using a reflexive relation R and ideal
I� ∅, a{ }{ } of Example 2.

0e next proposition that demonstrates the funda-
mental properties of L

I
j , U

I
j operators are under-

standable by observing that intIPj
, clIPj

fulfill all
properties of the topological interior and closure oper-
ators, respectively.

Proposition 6. Let (U, R,I,ψj) be a PI
j S and

j ∈ i, u, r, l{ }. IfM,M
‘

⊆U, then the following conditions hold:

(L1) L
I
j (M) � (U

I
j (M

c))c.

(U1) U
I
j (M) � (L

I
j (M

c))c.

(L2) L
I
j (U) �U.

(U2) U
I
j (∅) �∅.

(L3) if M⊆M
‘

, then L
I
j (M)⊆LI

j (M
‘

).

(U3) if M⊆M
‘

, then U
I
j (M)⊆UI

j (M
‘

).

(L4) L
I
j (M∩M

‘

) �LI
j (M)∩LI

j (M
‘

).

(U4) U
I
j (M∪M

‘

) �UI
j (M)∪UI

j (M
‘

).

(L5) L
I
j (M∪M

‘

)⊇LI
j (M)∪LI

j (M
‘

)

(U5) U
I
j (M∩M

‘

)⊆UI
j (M)∩UI

j (M
‘

).

(L6) L
I
j (∅) �∅.

(U6) U
I
j (U) �U.

(L7) L
I
j (M)⊆M.

(U7) M⊆UI
j (M).

(L8) L
I
j (M) �L

I
j (L

I
j (M)).

(U8) U
I
j (M) �U

I
j (U

I
j (M)).

(L9) L
I
j (M)⊆UI

j (L
I
j (M)).

(U9) U
I
j (M)⊇LI

j (U
I
j (M)).

Remark 8. If I� ∅, a{ }{ } and j � r, then Table 1 shows that
the converse of (L3), (L5), (L7), (L9) does not hold.
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(1) If M� a{ }, M
‘

� b{ }, then L
I
r (M)⊆LI

r (M
‘

), but
M⊈M

‘

. Consequently, the converse of (L3) is not
true.

(2) If M� a{ }, M
‘

� b{ }, then L
I
r (M∪M

‘

) � a, b{ }≠
b{ } �LI

r (M)∪LI
r (M

‘

). Consequently, the converse
of (L5) is not true.

(3) If M� a, c{ }, then the converse of (L7) is not true.

(4) 0e equality of properties (L9), (U9) does not hold
wrt the topology ρIj , although they are true
according to the topology ⊤Pj

. Here, ifM� b{ }, then
L
I
j (M) � b{ } and U

I
j (L

I
j (M)) � a, b{ }. Conse-

quently, the converse of (L9) does not hold.

By using any binary relation and without toting any
supplement conditions as Proposition 6 claims, one might
observe that our approximation approach satisfies all fea-
tures of the classical theory of rough set [1]. 0us, we can say

that our presented method exemplifies a noteworthy gen-
eralization to RST.

Proposition 7. Let (U, R,I,ψj) be a PI
j S and M⊆U. If

j ∈ r, l, i, 〈r〉, 〈l〉, 〈i〉{ }, then the following conditions hold:
L
I
j (M) �M�UI

j (M), ∀M ∈ ℘(U).

Proposition 8. Let (U, R,I,ψj) be a PI
j S. If R is a reflexive

relation on U, then L
I
j (M) �U

I
j (L

I
j (M)) and

U
I
j (M) �L

I
j (U

I
j (M)).

9e following propositions are obvious and the proof is
omitted.

Proposition 9. Let (U, R,I,ψj) be a PI
j S and M⊆U. If

j ∈ r, l, i, 〈r〉, 〈l〉, 〈i〉{ }, then the following statements hold:

(1) LI
u (M)⊆LI

r (M)⊆LI
i (M) and L

I
u (M)⊆

L
I
l (M)⊆LI

i (M).

(2) UI
i (M)⊆UI

r (M)⊆UI
u (M) and U

I
i (M)⊆

U
I
l (M)⊆UI

u (M).

(3) θIu (M)≤ θIr (M)≤ θIi (M) and θIu (M)≤ θIl
(M)≤ θIi (M).

Proposition 10. Let I,J be two ideals on a PI
j S(U, R,ψj)

and M⊆U. If I⊆J, then the following statements hold:

(1) LI
j (M)⊆LJj (M).

(2) UI
j (M)⊇UJ

j (M).

(3) θIj (M)≤ θJj (M).

In Tables 3 and 4, we make comparisons between j-ap-
proximations and j-accuracy for each j ∈ i, u, r, l{ }.

Definition 17. Let (U, R,I,ψj) be a PI
j S and

j ∈ i, 〈i〉, r, 〈r〉, l, 〈l〉{ }. A subset M of U is called

(1) Totally Ij definable, if LI
j (M) �M�UI

j (M).

Table 1: Comparison between j-approximations and j-accuracy for each j � r depending on Definitions 10, 12, and 16 by using any relation
R and I� ∅, a{ }{ } of Example 1.

M⊆U Our method, Definition 16 Definition 10 Definition 12

L
I
r (M) U

I
r (M) θIr (M) Lr(M) Ur(M) θr(M) RI

r (M) R
I

r (M) αI
r (M)

a{ } ∅ a{ } 0 ∅ a, b{ } 0 a{ } a{ } 1
b{ } b{ } a, b{ } 1/2 ∅ a, b{ } 0 b{ } b, c, d{ } 1/3
c{ } c{ } c{ } 1 c{ } c{ } 1 ∅ c, d{ } 0
d{ } d{ } d{ } 1 d{ } d{ } 1 ∅ c, d{ } 0
a, b{ } a, b{ } a, b{ } 1 a, b{ } a, b{ } 1 a, b{ } U 1/2
a, c{ } c{ } a, c{ } 1/2 c{ } a, b, c{ } 1/3 a{ } a, c, d{ } 1/3
a, d{ } d{ } a, d{ } 1/2 d{ } a, b, d{ } 1/3 a{ } a, c, d{ } 1/3
b, c{ } b, c{ } a, b, c{ } 2/3 c{ } a, b, c{ } 1/3 b{ } b, c, d{ } 1/3
b, d{ } b, d{ } a, b, d{ } 2/3 d{ } a, b, d{ } 1/3 b{ } b, c, d{ } 1/3
c, d{ } c, d{ } c, d{ } 1 c, d{ } c, d{ } 1 ∅ c, d{ } 0
a, b, c{ } a, b, c{ } a, b, c{ } 1 a, b, c{ } a, b, c{ } 1 a, b{ } U 1/2
a, b, d{ } a, b, d{ } a, b, d{ } 1 a, b, d{ } a, b, d{ } 1 a, b{ } U 1/2
a, c, d{ } c, d{ } a, c, d{ } 2/3 c, d{ } U 1/2 a{ } a, c, d{ } 1/3
b, c, d{ } b, c, d{ } U 3/4 c, d{ } U 1/2 b, c, d{ } b, c, d{ } 1
U U U 1 U U 1 U U 1

Table 2: Comparison between j-approximations and j-accuracy
for each j � l depending on Definitions 12 and 16 by using a
reflexive relation R and I� ∅, a{ }{ } of Example 2.

M⊆U Our method, Definition 16 Definition 12

L
I
l (M) U

I
l (M) θIl (M) RI

l (M) R
I

l (M) αI
l (M)

a{ } a{ } a{ } 1 ∅ a{ } 0
b{ } b{ } b{ } 1 ∅ U 0
c{ } ∅ c, d{ } 0 ∅ U 0
d{ } ∅ c, d{ } 0 ∅ U 0
a, b{ } a, b{ } a, b{ } 1 ∅ U 0
a, c{ } a{ } a, c, d{ } 1/3 ∅ U 0
a, d{ } a{ } a, c, d{ } 1/3 ∅ U 0
b, c{ } b{ } b, c, d{ } 1/3 ∅ U 0
b, d{ } b{ } b, c, d{ } 1/3 ∅ U 0
c, d{ } c, d{ } c, d{ } 1 ∅ U 0
a, b, c{ } a, b{ } U 1/2 ∅ U 0
a, b, d{ } a, b{ } U 1/2 ∅ U 0
a, c, d{ } a, c, d{ } a, c, d{ } 1 ∅ U 0
b, c, d{ } b, c, d{ } b, c, d{ } 1 b, c, d{ } U 3/4
U U U 1 U U 1
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(2) Internally Ij definable, if L
I
j (M) �M and

U
I
j (M)≠M.

(3) Externally Ij definable, if L
I
j (M)≠M and

U
I
j (M) �M.

(4) Ij rough set, if LI
j (M)≠M and U

I
j (M)≠M.

Remark 9. According to Table 3, c{ } is totally Ir-definable,
d{ } is internally Il-definable, and a{ } is externally
Iu-definable.

4. ComparisonofApproximationsandAccuracy
Measures Generated by Ej-Neighborhoods
andPj-Neighborhoods with Ideals

In this part, the comparison of approximations and accuracy
measures generated by Ej-neighborhoods and Pj-neigh-
borhoods with ideals is discussed.

In view of Example 1, we conclude that ζIj and ρIj are
not comparable, for each j, as we see in the next example.

Example 3. Continued from Example 1, ifI� ∅, a{ }{ }, then

ζIr � ζIi � ∅,U, a{ }, b{ }, a, b{ }, c, d{ }, a, c, d{ }, b, c, d{ }{ },

ζIl � ζIu � ∅,U, c, d{ }, b, c, d{ }{ },

ζI〈r〉 � ζI〈u〉 � ∅,U, b, c, d{ }{ },

ζI〈l〉 � ζI〈i〉 � P(U).

(6)
According to Proposition 3, our new sorts of topologies,

which were generated by j-adhesion neighborhoods and
ideal, are finer than the topologies generated by
Ej-neighborhoods and ideals due to [29] for reflexive re-
lation, as we see in the next theorem.

Theorem 13. Let R be any arbitrary binary relation on U.
9en, for any ideal I, the following statements are true:

(1) If R is a reflexive relation on U, then ζIj ⊆⊤Pj
⊆ ρIj ,

for each j.

Table 4: Comparison between j-approximations and j-accuracy for each j ∈ r, l, i, u{ } depending on Definition 16 by using reflexive
relation R and I� ∅, a{ }{ }.

M⊆U L
I
r (M) U

I
r (M) θIr (M) L

I
l (M) U

I
l (M) θIl (M) L

I
i (M) U

I
i (M) θIi (M) L

I
u (M) U

I
u (M) θIu (M)

a{ } a{ } a{ } 1 a{ } a{ } 1 a{ } a{ } 1 a{ } a{ } 1
b{ } ∅ b, d{ } 0 b{ } b{ } 1 b{ } b{ } 1 ∅ b, c, d{ } 0
c{ } c{ } c{ } 1 ∅ c, d{ } 0 c{ } c{ } 1 ∅ b, c, d{ } 0
d{ } ∅ b, d{ } 0 ∅ c, d{ } 0 d{ } d{ } 1 ∅ b, c, d{ } 0
a, b{ } a{ } a, b, d{ } 1/3 a, b{ } a, b{ } 1 a, b{ } a, b{ } 1 a{ } U 1/4
a, c{ } a, c{ } a, c{ } 1 a{ } a, c, d{ } 1/3 a, c{ } a, c{ } 1 a{ } U 1/4
a, d{ } a{ } a, b, d{ } 1/3 a{ } a, c, d{ } 1/3 a, d{ } a, d{ } 1 a{ } U 1/4
b, c{ } c{ } b, c, d{ } 1/3 b{ } b, c, d{ } 1/3 b, c{ } b, c{ } 1 ∅ b, c, d{ } 0
b, d{ } b, d{ } b, d{ } 1 b{ } b, c, d{ } 1/3 b, d{ } b, d{ } 1 ∅ b, c, d{ } 0
c, d{ } c{ } b, c, d{ } 1/3 c, d{ } c, d{ } 1 c, d{ } c, d{ } 1 ∅ b, c, d{ } 0
a, b, c{ } a, c{ } U 1/2 a, b{ } U 1/2 a, b, c{ } a, b, c{ } 1 a{ } U 1/4
a, b, d{ } a, b, d{ } a, b, d{ } 1 a, b{ } U 1/2 a, b, d{ } a, b, d{ } 1 a{ } U 1/4
a, c, d{ } a, c{ } U 1/2 a, c, d{ } a, c, d{ } 1 a, c, d{ } a, c, d{ } 1 a{ } U 1/4
b, c, d{ } b, c, d{ } b, c, d{ } 1 b, c, d{ } b, c, d{ } 1 b, c, d{ } b, c, d{ } 1 b, c, d{ } b, c, d{ } 1
U U U 1 U U 1 U U 1 U U 1

Table 3: Comparison between j-approximations and j-accuracy for each j ∈ i, u, r, l{ } depending on Definition 16 by using any relation R
and I� ∅, a{ }{ }.

M⊆U L
I
r (M) U

I
r (M) θIr (M) L

I
l (M) U

I
l (M) θIl (M) L

I
i (M) U

I
i (M) θIi (M) L

I
u (M) U

I
u (M) θIu (M)

a{ } ∅ a{ } 0 ∅ a{ } 0 a{ } a{ } 1 ∅ a{ } 0
b{ } b{ } a, b{ } 1/2 b{ } b{ } 1 b{ } b{ } 1 b{ } a, b{ } 1/2
c{ } c{ } c{ } 1 c{ } c{ } 1 c{ } c{ } 1 c{ } c{ } 1
d{ } d{ } d{ } 1 d{ } a, d{ } 1/2 d{ } d{ } 1 d{ } a, d{ } 1/2
a, b{ } a, b{ } a, b{ } 1 b{ } a, b{ } 1/2 a, b{ } a, b{ } 1 b{ } a, b{ } 1/2
a, c{ } c{ } a, c{ } 1/2 c{ } a, c{ } 1/2 a, c{ } a, c{ } 1 c{ } a, c{ } 1/2
a, d{ } d{ } a, d{ } 1/2 a, d{ } a, d{ } 1 a, d{ } a, d{ } 1 d{ } a, d{ } 1/2
b, c{ } b, c{ } a, b, c{ } 2/3 b, c{ } b, c{ } 1 b, c{ } b, c{ } 1 b, c{ } a, b, c{ } 2/3
b, d{ } b, d{ } a, b, d{ } 2/3 b, d{ } a, b, d{ } 2/3 b, d{ } b, d{ } 1 b, d{ } a, b, d{ } 2/3
c, d{ } c, d{ } c, d{ } 1 c, d{ } a, c, d{ } 2/3 c, d{ } c, d{ } 1 c, d{ } a, c, d{ } 2/3
a, b, c{ } a, b, c{ } a, b, c{ } 1 b, c{ } a, b, c{ } 2/3 a, b, c{ } a, b, c{ } 1 b, c{ } a, b, c{ } 2/3
a, b, d{ } a, b, d{ } a, b, d{ } 1 a, b, d{ } a, b, d{ } 1 a, b, d{ } a, b, d{ } 1 a, b, d{ } a, b, d{ } 1
a, c, d{ } c, d{ } a, c, d{ } 2/3 a, c, d{ } a, c, d{ } 1 a, c, d{ } a, c, d{ } 1 c, d{ } a, c, d{ } 2/3
b, c, d{ } b, c, d{ } U 3/4 b, c, d{ } U 3/4 b, c, d{ } b, c, d{ } 1 b, c, d{ } U 3/4
U U U 1 U U 1 U U 1 U U 1
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(2) If R is an equivalence relation on U, then
ρIj �⊤Ij � ζIj , for each j.

Proof. Direct to prove. □

Proposition 11. Let R (respectively I) be a reflexive binary
relation (respectively an ideal) on U and M⊆U. If
j ∈ r, l, i, 〈r〉, 〈l〉, 〈i〉{ }, then the following statements hold:

(1) LI⊖j (M)⊆Lj(M)⊆LI
j (M).

(2) UI
j (M)⊆Uj(M)⊆UI⊕

j (M).

(3) σI
j (M)≤ θj(M)≤ θIj (M).

To uphold the acquired outcomes, we consider a re-
flexive relation R on U given in Example 2. If I� ∅, a{ }{ },
then

ζIr � ζIu � ζI〈u〉 � ∅,U, b, c, d{ }{ },

ζIl � ζIi � ζI〈r〉 � ∅,U, a{ }, b, c, d{ }{ },

ζI〈l〉 � ∅,U, c{ }, a, c{ }, b, d{ }, b, c, d{ }{ },

ζI〈i〉 � ∅,U, a{ }, c{ }, a, c{ }, b, d{ }, a, b, d{ }, b, c, d{ }{ }.{

(7)

Remark 10. Table 5 offers the comparison between j-ap-
proximations and j-accuracy for j � 〈i〉 depending on
Definitions 14 and 16 by using a reflexive relationR and ideal
I� ∅, a{ }{ } of Example 2.

5. Conclusions and Future Works

To deal with uncertainty issues, Pawlak [1] proposed a non-
statistical approach called rough set. Its idea is based on col-
lection of the elements that have the same values according the
required attribute. Accuracy measures and approximations
represent the essential ideas in rough set theory which give
details of the boundary region in terms of size and structure.

In this paper, we have suggested new techniques to
generate new types of accuracy measures and approxima-
tions for a rough set under any arbitrary relation. 0ese
techniques are induced from hybridization of topological
structures and ideals. In addition to studying their basic

properties, we have compared between them. 0en, we have
compared them with last methods to show their importance
to improve the approximations and maximize the accuracy
measures.

In the forthcoming articles, we are going to introduce
further methods that help to obtain better approximation
and higher accuracy measures than those given in the lit-
erature. Also, we search how these methods can be applied to
model real-life issues.
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Table 5: Comparison between j-approximations and j-accuracy for each j � 〈i〉 depending on Definitions 14 and 16 by using a reflexive
relation R and I� ∅, a{ }{ } of Example 2.

M⊆U Our method, Definition 16 Definition 14

L
I
〈i〉(M) U

I
〈i〉(M) θI〈i〉(M) LI⊖〈i〉 (M) UI⊕

〈i〉 (M) σI
〈i〉(M)

a{ } a{ } a{ } 1 a{ } a{ } 1
b{ } b{ } b{ } 1 ∅ b, d{ } 0
c{ } c{ } c{ } 1 c{ } c{ } 1
d{ } d{ } d{ } 1 ∅ b, d{ } 0
a, b{ } a, b{ } a, b{ } 1 a{ } a, b, d{ } 1/3
a, c{ } a, c{ } a, c{ } 1 a, c{ } a, c{ } 1
a, d{ } a, d{ } a, d{ } 1 a{ } a, b, d{ } 1/3
b, c{ } b, c{ } b, c{ } 1 c{ } b, c, d{ } 1/3
b, d{ } b, d{ } b, d{ } 1 b, d{ } b, d{ } 1
c, d{ } c, d{ } c, d{ } 1 c{ } b, c, d{ } 1/3
a, b, c{ } a, b, c{ } a, b, c{ } 1 a, c{ } U 1/2
a, b, d{ } a, b, d{ } a, b, d{ } 1 a, b, d{ } a, b, d{ } 1
a, c, d{ } a, c, d{ } a, c, d{ } 1 a, c{ } U 1/2
b, c, d{ } b, c, d{ } b, c, d{ } 1 b, c, d{ } b, c, d{ } 1
U U U 1 U U 1
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