SOME TRANSFORMATIONS ON MANIFOLDS WITH ALMOST CONTACT AND CONTACT METRIC STRUCTURES

SHÛKICHI TANNO

(Received January 22, 1963)

1. Introduction. Given a (2n + 1)-dimensional differentiable manifold M, we denote by F(M) the family of all real valued differentiable functions on M, and by $\mathfrak{X}(M)$ the totality of differentiable vector fields on M. Then $\mathfrak{X}(M)$ is an F(M)-module and a Lie algebra over R, R being a field of real numbers. An almost contact metric structure is a tetrad (ϕ, ξ, η, g) , where ϕ is a linear operator $\phi: \mathfrak{X}(M) \to \mathfrak{X}(M)$ and η is a 1-form such that $\eta \cdot \phi = 0$, and ξ is a vector field such that $\eta(\xi) = 1$, satisfying the following relation:

(1. 1)
$$\phi \cdot \phi(X) = -X + \eta(X) \cdot \xi, \qquad X \in \mathfrak{X}(M),$$

and finally g is a Riemannian metric which satisfies $\eta(X) = g(\xi, X)$ for $X \in \mathfrak{X}(M)$ and

(1. 2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \cdot \eta(Y), \qquad X, Y \in \mathfrak{X}(M).$$

Then we see that ϕ is of rank 2n and ξ is a characteristic unit vector field corresponding to characteristic value 0. Since it follows from (1. 1) and other relations that $\phi \cdot \xi = 0$ and that, at any point x of M, denoting by ϕ_{η} the restriction of ϕ to the tangent subspace $T_x(\eta)$ of M which is orthogonal to ξ_x , it has a property $\phi_{\eta} \cdot \phi_{\eta} = -$ Identity.

By virtue of (1. 2), we can define a differentiable 2-form w as follows:

 $w(X, Y) = g(X, \phi Y), \qquad X, Y \in \mathfrak{X}(M),$

then the rank of w is 2n. An almost contact metric structure is called a contact metric structure, if the relation $w = d\eta$ is valid. And a differentiable manifold with a (or an almost) contact metric structure is called to be a (or an almost) contact Riemannian manifold.

Suppose μ be a diffeomorphism of M, then μ is said to be an automorphism of an almost contact metric structure, if it leaves all of ϕ, ξ, η and g invariant. In the sequel, by a transformation on M we understand a diffeomorphism of M. In this report, we treat mainly transformations which leave ϕ invariant. Some propositions of this note are stated in [9] in terms of infinitesimal transformations. My hearty acknowledgement goes to Prof. S.Sasaki, Mr. Y.Hatakeyama and Mr.Y.Ogawa.

2. Transformations on almost contact Riemannian manifolds.

THEOREM 2-1. Let M be a differentiable manifold with an almost contact metric structure. Then in order that a conformal transformation μ of the associated Riemannian metric g satisfies $\mu^* w = \alpha w$ for some positive scalar $\alpha \in F(M)$, it is necessary and sufficient that μ leaves ϕ invariant.

PROOF. As μ is a conformal transformation, there exists a scalar field σ for which we have $\mu^* g = \sigma^2 g$ and hence for an arbitrary point x of M,

$$(2. 1) g_{\mu x}(\mu X, \ \mu \phi Y) = \sigma^2(x)g_x(X, \phi Y), X, Y \in \mathfrak{X}(M).$$

And the relation $\mu^* w = \alpha w$ is written by definition as follows:

(2. 2)
$$(\mu^* w)_x(X, Y) = w_{\mu x}(\mu X, \mu Y) = g_{\mu x}(\mu X, \phi \mu Y)$$
$$= \alpha(x)g_x(X, \phi Y).$$

From (2. 1) and (2. 2) it follows that

$$g_{\mu x}(\mu X, \mu \phi Y) = \frac{\sigma^2(x)}{lpha(x)} g_{\mu x}(\mu X, \phi \mu Y).$$

Consequently, we have

(2. 3)
$$\mu_{z}\phi_{x}Y_{x} = \frac{\sigma^{2}(x)}{\alpha(x)}\phi_{\mu x}\mu_{x}Y_{x}$$

Since ϕ satisfies $\phi \cdot \phi \cdot \phi = -\phi$ which follows from (1.1), the left hand side of the last equation is

$$egin{aligned} &\mu_x\phi_xY_x=-\mu_x\phi_x(\phi_xullet\phi_xY_x)=-rac{\sigma^2(x)}{lpha(x)}\,\phi_{\mu x}\mu_x(\phi_xullet\phi_xY_x)\ &=-rac{\sigma^6(x)}{lpha^3(x)}\,\phi_{\mu x}ullet\phi_{\mu x}\phi_{\mu x}\mu_xY_x=rac{\sigma^6(x)}{lpha^3(x)}\,\phi_{\mu x}\mu_xY_x. \end{aligned}$$

And hence (2. 3) shows $\sigma^4(x) = \alpha^2(x)$. By assumption, α is positive and so we see that α is equal to σ^2 , then (2. 3) turns to $\mu_x \phi_x = \phi_{\mu x} \mu_x$. Conversely, if a conformal transformation μ ($\mu^* g = \sigma^2 g$) leaves ϕ invariant, then we have

$$\begin{aligned} (\mu^*w)_x(X,Y) &= g_{\mu x}(\mu X,\phi\mu Y) = g_{\mu x}(\mu X,\mu\phi Y) \\ &= \sigma^2(x) \ w_x(X,Y), \qquad X,Y \in \mathfrak{X}(M). \end{aligned}$$
(q. e. d.)

COROLLARY. If a conformal transformation μ on an almost contact Riemannian manifold leaves w invariant, then μ leaves ϕ also invariant and μ is necessarily an isometry, therefore μ is an automorphism of this almost contact metric structure.

In fact, by $\phi \mu = \mu \phi$ we have $\phi \cdot \mu \xi = 0$, and as μ is an isometry, we see

that $\mu \xi = \xi$ and of course $\mu^* \eta = \eta$.

PROPOSITION 2-1. Suppose μ be a conformal transformation $(\mu^*g = \sigma^2 g)$ on an almost contact Riemannian manifold M. If μ satisfies the relation $\mu^*\eta = \alpha\eta$ ($\mu\xi = \beta\xi$ resp.) for some positive α (β resp.) $\in F(M)$, then we have $\alpha = \sigma$ ($\beta = \mu^*\sigma$ resp.) and $\mu\xi = (\mu^*\sigma)\xi$ ($\mu^*\eta = \sigma\eta$ resp.).

Proof shall be omitted here.

Let H be a homogeneous holonomy group of a connected almost contact Riemannian manifold M. At an arbitrary but fixed point x of M, we consider the set $F(x,\xi) = \{\lambda \xi_x, \lambda \in H\}$ which may be identified with a subset of a 2ndimensional unit sphere. Further, for any point y of M, we join x and y by a piece-wise differentiable curve l(x, y) and define $F_y(x, \xi) = \tau(l)F(x, \xi)$, where the notation $\tau(l)$ means the parallel displacement along the curve l. Clearly, $F_y(x, \xi)$ does not depend upon the choice of the curve joining x and y. Then we say temporarily that M has a F-property if at every point z, ξ_z belongs to $F_z(x, \xi)$. Of course, this property does not depend on x. It is equivalent to say that for any two points y and z, there exists a curve l(y, z) such that $\xi_z = \tau(l)\xi_y$.

PROPOSITION 2-2. Suppose that an almost contact Riemannian manifold M has a F-property. If an affine transformation μ preserves the direction of ξ and at one point p of M μ leaves η invariant, then μ leaves ξ and η globally invariant.

PROOF. By virtue of $(\mu^*\eta)_p = \eta_p$, it is easy to see that $\mu\xi_p = \xi_{\mu p}$ is valid. We join p and an arbitrary point x of M by a curve l(p, x) along which ξ_p is parallel to ξ_x and we have $\mu\xi_x = \mu \cdot \tau(l)\xi_p$. By the way, μ is an affine transformation and so it commutes with the parallel displacement and we see that $\mu\xi_x = \xi_{\mu x}$. In the next place, for any $X \in \mathfrak{X}(M)$, we have $g_x(\xi_x, \phi X) = 0$ and so $g_p(\xi_p, \tau^{-1}(l)\phi X) = 0$. Namely $\eta_p(\tau^{-1}(l)\phi X) = 0$ and hence $\eta_{\mu p}(\mu \cdot \tau^{-1}(l)\phi X) = 0$, or equivalently $g_{\mu p}(\xi_{\mu p}, \mu \cdot \tau^{-1}(l)\phi X) = 0$. And finally

$$g_{\mu x}(\boldsymbol{\xi}_{\mu x}, \ \boldsymbol{\tau}(\boldsymbol{\mu}(l))\boldsymbol{\cdot}\boldsymbol{\mu}\boldsymbol{\cdot}\boldsymbol{\tau}^{-1}(l)\boldsymbol{\phi}X) = g_{\mu x}(\boldsymbol{\xi}_{\mu x}, \ \boldsymbol{\mu}\boldsymbol{\phi}X) = \eta_{\mu x}\boldsymbol{\cdot}\boldsymbol{\mu}\boldsymbol{\phi}X = 0.$$

Consequently $\mu^*\eta = \alpha \eta$ for some $\alpha \in F(M)$ and necessarily $\alpha = 1$.

3. Transformations on contact Riemannian manifolds.

THEOREM 3-1. If a transformation μ on a contact Riemannian manifold M leaves ϕ invariant, then there exists a positive constant α such that the relations $\mu^*\eta = \alpha\eta$, $\mu\xi = \alpha\xi$ and $\mu^*w = \alpha w$ hold good.

PROOF. (i) From the equations $\eta \cdot \phi = 0$ and $\phi \cdot \mu = \mu \cdot \phi$, we get $\eta \cdot \mu \phi = 0$, or at any point x of M we have $(\mu^* \eta)_x \phi_x X_x = 0$, $X \in \mathfrak{X}(M)$. Thereby

142

(3. 1)
$$(\mu^*\eta)_x = \alpha(x)\eta_x$$
 for some $\alpha \in F(M)$.

(ii) If we suppose $\phi \xi = 0$ and $\phi \cdot \mu = \mu \cdot \phi$, then we have $\phi \cdot \mu \xi = 0$. Hence, it follows that $(\mu \xi)_{\mu x} = \beta(\mu x)\xi_{\mu x}$ for some $\beta \in F(M)$. Combining (i) and this, we see that $\beta(\mu x) = \alpha(x)$.

(iii) We shall show that α is constant [9]. By operating the exterior differentiation to (3. 1), we get

$$(3. 2) d\mu^*\eta = d\alpha \wedge \eta + \alpha d\eta.$$

As d and μ^* commute, $d\mu^*\eta = \mu^* d\eta$. On the other hand, we have

$$(\mu^*d\eta)_x(\xi,Y)=d\eta_{\mu x}(\mu\xi,\mu Y)=0, \qquad Y\in \mathfrak{X}(M),$$

since $(\mu\xi)_{\mu x} = \alpha(x)\xi_{\mu x}$ and $i(\xi)d\eta = i(\xi) \ w = 0$, where $i(\xi)$ is the interior product operator by ξ . Hence $i(\xi)_x(d\mu^*\eta) = 0$. Consequently, we have by virtue of (3. 2) $i(\xi)(d\alpha \wedge \eta) = 0$. Moreover,

$$i(\xi)(dlpha \wedge \eta) = i(\xi)dlpha \wedge \eta - dlpha \cdot i(\xi)\eta = \pounds(\xi)lpha \cdot \eta - dlpha,$$

where we have put $\pounds(\xi)\alpha = i(\xi)d\alpha$. Thus, $\pounds(\xi)\alpha \cdot \eta = d\alpha$. Therefore, $d\alpha \wedge \eta = 0$ and $d\alpha \wedge d\eta = 0$. Further $\pounds(\xi)\alpha \cdot \eta \wedge d\eta = 0$. From this $\pounds(\xi)\alpha$ must be zero and $d\alpha = 0$. This means that α is constant, and $\mu^*w = \alpha w$ is clear. The fact that α is positive will be proved in the next Proposition 3-1.

Several Propositions follow from this Theorem.

PROPOSITION 3-1. Let M be a contact Riemannian manifold. If a transformation μ on M leaves ϕ invariant, then μ is conformal, precisely homothetic, relative to the η -plane $T_x(\eta), x \in M$.

PROOF. For an arbitrary point $x \in M$ and $X, Y \in \mathfrak{X}(M)$ we have

$$(\mu^* w)_x(X, Y) = w_{\mu x}(\mu X, \mu Y) = g_{\mu x}(\mu X, \phi \mu Y)$$
$$= g_{\mu x}(\mu X, \mu \phi Y) = (\mu^* g)_x(X, \phi Y)$$

On the other hand, by Theorem 3-1 the left hand side of the last equation is equal to

$$\alpha w_x(X,Y) = \alpha g_x(X,\phi Y),$$

for some constant α . Thus we have

$$(3. 3) \qquad \qquad (\mu^*g)_x(X, \phi Y) = \alpha g_x(X, \phi Y).$$

Here we assume that $X_x \neq 0$ and $X_x \in T_x(\eta)$ (i. e. $\eta_x(X) = 0$). And we define $Y = -\phi X$, then Y_x is also an element of the η -plane and we have

$$g_{\mu x}(\mu X, \mu X) = \alpha g_x(X, X), \qquad X_x \in T_x(\eta).$$

It follows from this that α is positive. Furthermore let Z be an arbitrary vector

S. TANNO

field such that $Z_x \in T_x(\eta)$ and Y be $-\phi Z$, then (3. 3) turns to

$$(\mu^*g)_x(X,Z) = \alpha g_x(X,Z), \qquad X_x, \ Z_x \in T_x(\eta).$$

PROPOSITION 3-2. If a transformation μ on a contact Riemannian manifold M leaving ϕ invariant is conformal at some one point of M, then μ is an automorphism. Conversely, if a homothetic transformation μ leaves ϕ invariant in a small neighborhood of one point of M, then μ is an isometry.

PROOF. By assumptions there exists a point p of M at which μ is conformal, that is $(\mu^*g)_p = \sigma^2 g_p$ holds good for some positive number σ . However, by Proposition 3-1, σ^2 must be equal to α corresponding to μ . On the other hand, by the relation $(\mu^*g)_p(\xi,\xi) = \sigma^2 g_p(\xi,\xi)$ and $(\mu\xi)_{\mu x} = \alpha\xi$, we have $\sigma^2 = \alpha^2$ and hence $\alpha^2 = \alpha = 1$. To see that μ leaves g invariant we rewrite (1.2) as (3.4) $g(X, Y) = w(\phi X, Y) + \eta(X) \cdot \eta(Y), \quad X, Y \in \mathfrak{X}(M)$. Two terms of the right hand side contain w, ϕ and η which are invariant by μ . This completes the proof of the first part of our statement. Conversely, suppose that we have a point q of M such that in a neighborhood U(q) of it a homothetic

PROPOSITION 3-3. In a contact Riemannian manifold, if a conformal transformation μ satisfies $\mu^* w = \alpha w$ for some positive $\alpha \in F(M)$, then μ is an automorphism of the contact metric structure.

transformation μ leaves ϕ invariant. Then, by applying the preceding result to

This follows from Theorem 2-1 and Proposition 3-2.

U(q), we see that μ is an isometry in U(q) and hence on M.

PROPOSITION 3-4. Let us denote by Φ the totality of transformations on a contact Riemannian manifold which leave ϕ invariant. If $\mu \in \Phi$ belongs either to the commutator subgroup $[\Phi, \Phi]$ or to some compact subgroup of Φ , then it is an isometry and so an automorphism of this structure.

PROOF. In fact, the correspondence between a transformation μ and a constant α defines a homomorphism h of the group Φ into the multiplicative group of real positive numbers. That is, for μ and $\nu \in \Phi$, we have $\mu^* \eta = \alpha \eta$ and $\nu^* \eta = \beta \eta$ ($\alpha, \beta \in R$), and then we see that

$$(\mu \cdot \nu)^* \eta = \nu^* (\mu^* \eta) = \alpha \beta \eta,$$

this permits us to define a homomorphism $h(\mu \cdot \nu) = \alpha \beta$.

PROPOSITION 3-5. Let M be a compact manifold with a contact metric structure, if a transformation μ leaves ϕ invariant, then μ is an automorphism of this structure. Therefore all of such transformations constitutes a compact Lie group.

144

PROOF. We notice that $\mu^*(\eta \wedge w^n) = \alpha^{n+1}\eta \wedge w^n$, $(\alpha = h(\mu))$. Integrating it over M we get

$$lpha^{n+1}\int_{M}\eta\wedgearpoin^{n}=\int_{M}\mu^{st}(\eta\wedgearpoin^{n})=\int_{M}\eta\wedgearpoin^{n}.$$

From this we see that α is equal to 1. Therefore μ leaves ϕ , w and η invariant and so leaves g invariant too. (q. e. d.)

Now, if a conformal transformation μ on a contact Riemannian manifold leaves ξ or η invariant, it follows that μ leaves w invariant. Then, by Proposition 3-3, μ is an automorphism. However, we can prove the following

PROPOSITION 3-6. If a conformal transformation μ on a contact Riemannian manifold M satisfies $\mu^*\eta = \alpha\eta$ for some (necessarily positive) $\alpha \in F(M)$ or preserves the direction of ξ , then μ is an automorphism.

PROOF. By Proposition 2-1, we see that μ satisfies $\mu^* \eta = \alpha \eta$ and $\mu \xi = (\mu^* \alpha) \xi$. And we can verify that α is a positive constant by the similar argument just as in the proof of Theorem 3-1. Hence we have $\mu^* w = \alpha w$, therefore Proposition 3-6 is an immediate consequence of Proposition 3-3.

PROPOSITION 3-7. If a transformation μ on a complete contact Riemannian manifold M leaves ϕ invariant and has no fixed point, then μ is an automorphism.

PROOF. We see by Proposition 3-1 that μ is homothetic relative to the η -plane $T_x(\eta), x \in M$, i. e.

(3. 5)
$$(\mu^* g)_x(Y, Z) = \alpha g_x(Y, Z), \quad Y_x, Z_x \in T_x(\eta),$$

where $\alpha = h(\mu) > 0$. Here we assume that μ is not an automorphism, that is $\alpha \neq 1$, then α can be supposed to be smaller than 1. Since if α is greater than 1, we can replace μ by μ^{-1} . Next, we decompose any vector field $X \in \mathfrak{X}(M)$ $(X_x \neq 0)$ as $X = -\phi \cdot \phi X + \eta(X)\xi$. Operating μ to the both sides of the last equation

(3. 6)
$$\mu_x X_x = -\mu_x \phi_x \cdot \phi_x X_x + \alpha \eta_x (X) \xi_{\mu x},$$

where we have utilized $\mu \xi = \alpha \xi$. As the both terms of the right hand side are orthogonal on account of $\mu \cdot \phi = \phi \cdot \mu$, we get

$$g_{\mu x}(\mu X, \mu X) = \alpha^2 \eta(X)^2 + g_{\mu x}(\mu \phi \bullet \phi X, \mu \phi \bullet \phi X)$$
$$= \alpha^2 \eta(X)^2 + \alpha g_x(\phi \bullet \phi X, \phi \bullet \phi X),$$

by virtue of (3. 5). Hence, we have the inequality

(3. 7)
$$g_{\mu x}(\mu X, \mu X) \leq \alpha g_{x}(X, X).$$

S. TANNO

If we denote by d(x, y) the distance between two points x and y, and put $x_1 = \mu x$, $x_{k+1} = \mu x_k$, $k = 1, 2, \cdots$, then (3. 7) means that $(dx_k, x_{k+1}) \to 0$ as $k \to \infty$ and $\{x_k\}$ constitutes a Cauchy sequence. By the completeness of M in consideration we see that there is a point x_{∞} such that $\mu x_{\infty} = x_{\infty}$, this contradicts the hypotheses. (q. e. d.)

In the preceding Proposition 3-7, the condition that μ has no fixed point can be removed if the complete contact Riemannian manifold is not locally flat and μ leaving ϕ invariant is an affine transformation. This may be proved by the method of [3]. But we have the following

PROPOSITION 3-8. If an affine transformation μ on a contact Riemannian manifold M leaves ϕ invariant, then μ is an automorphism.

PROOF. By ∇ we denote the covariant differentiation which arises from the Riemannian connection defined by the associated metric g. An affine transformation commutes with the covariant differentiation and we have

$$\nabla(\mu\phi\mu^{-1})_{\mu x}(X,Y) = \mu \cdot (\nabla\phi)_x(\mu^{-1}X,\mu^{-1}Y), \qquad X,Y \in \mathfrak{X}(M).$$

By assumption $\mu \phi_x \mu^{-1} = \phi_{\mu x}$, so we have

(3. 8)
$$\nabla \phi_{\mu x}(X,Y) = \mu \cdot (\nabla \phi)_x(\mu^{-1}X,\mu^{-1}Y)$$

On the other hand, it is known [8] that $\delta w = n\eta$, where δ is the codifferentiation operator. Therefore, if we contract $\nabla \phi_x$ and $\nabla \phi_{\mu x}$ in both local coordinates at x and μx , we get $-n\eta_x$ and $-n\eta_{\mu x}$ respectively. It follows from (3. 8) that $n\eta_{\mu x}(X) = n\eta(\mu^{-1}X)$, namely $\eta_{\mu x} = \mu^{-1*}\eta_x$. Hence, our assertion is true.

PROPOSITION 3-9. If a projective transformation μ on a contact Riemannian manifold M leaves ϕ invariant, then μ is an automorphism.

PROOF. For any projective transformation μ , there exists a 1-form θ such that

$$\sum_{i=1}^{2n+1} \left({}^{\mu}\Gamma - \Gamma\right){}^{i}\!(X,Y)\,\frac{\partial}{\partial y^{i}} = \theta(X){\boldsymbol{\cdot}}Y + \theta(Y){\boldsymbol{\cdot}}X, \qquad X,Y \,\in\, \mathfrak{X}(M),$$

where Γ is the Christoffel's symbol and ${}^{\mu}\Gamma$ is the image by μ of Γ and (y^i) 's are local coordinates at $y = \mu x, x$ being an arbitrary point of M. Then, by the similar way as above, we can derive the identity

$$n\eta_{\mu x}-(2n+1) hetaullet\phi_{\mu x}=n\mu^{-1oldsymbol{*}}\eta_{x}=rac{n}{h(\mu)}\eta_{\mu x}.$$

Thus, if we operate $\xi_{\mu x}$ to the right of each term, we see that $h(\mu) = 1$ holds

good. Hence, μ is an automorphism.

BIBLIOGRAPHY

- HATAKEYAMA, Y., On the existence of Riemann metrics associated with a 2-form of rank 2r, Tôhoku Math. Journ., 14(1962), 162-166.
- [2] ISHIHARA, S. and OBATA, M., Affine transformations in a Riemannian manifold, Tôhoku Math. Journ., 7(1955), 146–150.
- [3] KOBAYASHI, S., A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. Journ., 9(1955), 39-41.
- [4] LICHNEROWICZ, A., Géométrie des groupes de transformations, Dunod, Paris, (1958).
- [5] NOMIZU, K., Sur les transformations affines d'une variété riemannienne, C. R. Acad. Sci. Paris, 237(1953), 1308-1310.
- [6] _____, Studies on Riemannian homogeneous spaces, Nagoya Math. Journ., 9(1955), 43-56.
- [7] SASAKI, S., On differentiable manifolds with certain structures which are closely related to almost contact structures I, Tôhoku Math. Journ., 12(1960), 459-476.
- [8] SASAKI, S. and HATAKEYAMA, Y., On differentiable manifolds with contact metric structures, Journ. Math. Soc. Japan, 14(1962), 249-271.
- [9] TANNO, S., Note on infinitesimal transformations over contact manifolds, Tôhoku Math. Journ., 14(1962), 416-430.

TÔHOKU UNIVERSITY.