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ABSTRACT

The principal object of this note is to provide a natural further
step toward the unified presentations of the Voigt functions
K(z,y) and L(z,y) which play a rather important réle in such
diverse fields of physics as astrophysical spectroscopy and the
theory of neutron reactions. Explicit representations for these
functions, given in terms of some relatively more familiar special
functions of one and two variables, are potentially useful in finding
many other needed (numerical or analytical) properties of the
Voigt functions.  Several erroneous recent contributions to the
theory of Voigt functions, including (for example, the main result
of A. Siddiqui (1990), are also corrected here.

1. INTRODUCTION

The familiar Voigt functions K(z,y) and L(z,y) occur rather frequently in a
wide variety of problems in spectroscopy and neutron physics. These functions are
more intensively investigated in astrophysical spectroscopy in which we need to
consider the frequency dependence of spectral line profiles while computing opacities
of hot stellar gases. On the other hand, the Doppler broadened Breit—Wigner
resonances in neutron reactions are essentially the same as the Voigt functions.

Furthermore, the function

K(z,y) + i L(z,y)

is, except for a numerical factor, identical to the so—called ‘plasma dispersion

Junctiow’, which is tabulated by Fried and Conte (1961) and by Fettis et al (1972).



In any given physical problem, a numerical or analytical evaluation of the Voigt
functions (or of their aforementioned variants) is required. For an excellent review of
various mathematical properties and computational methods concerning the Voigt
functions, see (for example) Armstrong and Nicholls (1972); see also Haubold and
John (1979). We begin our present study by recalling here the following
representations [due to Reiche (1913)] for the Voigt functions K(z,y5) and L(zy):

Ko =L [ expl-yi-id) cos(at)dt 0
iT “0
and
1 r® 2 .
L(z,y) = — exp(-yt-1t°) sin(zt)dt 2
= _/(; ( ) sin(z?) (2)
(o< z o y>0),
so that
. 1 © : 2
K(z,y) + i L(z,y) = — exp|-(y-iz)t-4t°]dt
= S el
= expl(y-ia) [{1-erfly-im)} (3)
and

Keg) =i lxy) =L [ " expl-(yi)t- 1) dt

N

= exp|(y+iz)2|{L1-erfly+ia)} , (4)

where use is made of an elementary integral given (among other places) in
Gradshteyn and Ryzhik (1980, p. 307, Equation 3.322(2)). Since the error function
(see, e.g., Srivastava and Kashyap 1982, p. 17, Equation (71))



erf(z) = j—j— AP

- 24__.; ea(-7) (F[1§2] (ld <o) (5)

by Kummer’s transformation for the confluent hypergeometric function 174 (cf,
e.g., Erdélyi et al. 1953, p. 253, Equation (7); see also Srivastava and Kashyap 1982,
p. 24, Equation (7)), substitution in (3) and (4) followed by separation of real and
imaginary parts will readily yield the corrected versions of the 1¥1 representations
for K(z,y) and L(z,y) due to Exton (1981), as was observed independently by
Katriel (1982) and Fettis! (1983). Following Srivastava and Miller (1987, p. 112),
we should like to mention here that, in view of (5), the corrected versions of Exton’s
1Fy representations for the Voigt functions K(z,y) and L(z,y) would follow
directly from (1) and (2) by appealing to some known integral formulas (Erdélyi et
al. 1954, p. 15, Equation (16); p. 74, Equation (27); see also Gradshteyn and Ryzhik
1980, p. 480, Equations 3.897(1) and (2)).

The main purpose of this note is to give a systematic account of the various
attempts toward the unified presentations of the Voigt functions K(z,y) and
L(z,y). We also derive some explicit representations for these functions in terms of
certain relatively more familiar special functions of one and two variables. Each of
these representations will naturally yield numerous other potentially useful (numerical

or analytical) properties of the Voigt functions. Several erroneous recent

contributions to the theory of Voigt functions, including (for example) the main

IAn obvious error in Fettis’s expression for
K(zy) + i L(z,)

has been corrected in Equation (3) above (see also Srivastava and Miller 1987,
p. 112).



result of Siddiqui (1990), are corrected during the course of our present investigation.

2. A NOVEL UNIFICATION OF K(zy) AND IL(zy)
For the Bessel function J (z) defined by

® (_l)m (% )u+2m
4= ’ (12 < o), (6)

m=0 ™ [(v+m+l)

it is well known that

T, = J;—Tg cos 2 and  J,(7) = Lr—’i sin 2. (7

Motivated by these relationships, Srivastava and Miller (1987) introduced and studied
rather systematically a unification (and generalization) of the Voigt functions K{z,y)

and L(z,y) in the form:

Ve = ()} [ ¢ explcytaiT (et (8)
so that [cf Equations (1), (2), and (7)]

K(z,y) = V%,_%(:E:y) and L(z,y) = V%’%(z)y)- (9)

Following Srivastava and Miller (1987), we make use of the series representation

(6), expand the exponential function exp(-yt), and integrate the resulting



(absolutely convergent) double series in (8) term-~by-term; we thus obtain the explicit

expression:

® _g2) T _9 (T
V. (z9) = oh~t i 2 nf':' )F ((u+nf+)1) I'[4(p+v+2m+n+l)] (10)

m,n=0

(Re(u+v) > -1),

which, upon separating the n—series into its even and odd terms, yields

k-1 v+t 9 9
V#’V(z,y) = m {I‘[a}(p+u+1)]\ll2[a}(p+y+l); v+l, 4; -1°, y]
-2y F[%(p+u+2)]\112{%(p+u+2); v+l %; —:z:z, y2]} (11)

(Re(p+v) > -1),
where ¥, denotes one of Humbert’s confluent hypergeometric functions of two
variables, defined by (cf., e.g., Srivastava and Karlsson 1985, p. 26, Equation (22))
® m .n
(@) 7y

mn=0 (Np(71), mt !

Uola; 77 oY) =

(max{|zl,|y[} < =),

with, as usual,



I‘(A""n) 1, if n = 0,
(), = r(y)
) D) (ne1), i e {1,23,-4).
For p=-v= %, (11) would reduce immediately to the known representation

(Exton 1981, p. L76, Equation (8))

1 1 2 1 2
K(z:y) =" 7_)';%';2;'3 )y‘l = 1112[1, g;%;'z ay.]: (13)

N

while the special case p = v = % of (11) yields the corrected version of another

result due to Exton (1981, p. L76, Equation (9)):
1, .2 2 3 3. 2 2
L{zy) = = ‘112[1; %g -z ,y] - 2zy ‘Ifz[g;g,g; -2y ] (14)

In terms of Meijer’s G-function (cf, e.g., Srivastava and Manocha 1984, p. 45,

Equation (1) eg seq.), it is easily observed that

T (at) = (320)” GPY|4af2 J (15)
! 0,-v
and
exp(-3t) = Gy vt 0} n cg;g[%yztf* M], (16)

where we have used a well-known duplication formula for the G-function (Srivastava

and Manocha 1984, p. 47, Equation (8) with N = 2). Substituting from (15) and
(16) into (8), we find that



Vuulet) = = G [T ea(47)

-

. GMO| 272

B

0,~

dt. (17)
0,%

Setting ¢ = 2{u in (17) and evaluating the resulting integral as a G-function of
two variables by appealing to the Mellin-Barnes contour integral representing each of
the G-functions involved (cf Srivastava and Kashyap 1982, p. 37, Equation (1); see

also Srivastava et al. 1982, p. 7, Equation (1.2.3) et seq.), we obtain (c¢f Srivastava
and Miller 1987, p. 114, Equation (18))

0,1:1,0;2,0
G 10:0.2:0.2 (18)

(Re{p+v) > -1).

For pu=-v= % and g =v = %, (18) readily yields the representations
(c¢f. Haubold and John 1979, p. 481)

1 ,0,1:1,0:2,0 ST

K(zy) = = CL0020.2 (19)
T A lagh A } 2

YVi-: 0:%7 O:%

and?

2A notational error in Haubold and John (1979, p. 481, Equation (16a)) has been
corrected here (see also Srivastava and Miller 1987, p. 115).



1 0,1:
L(z,y) = = Gl’ .
=

(20)
Each of the G-functions occurring in (19) and (20) can be rewritten as an
H-function of two variables (Srivastava et al 1982, p. 82, Equation (6.1.1) et seq.).

We thus obtain the alternative (but equivalent) representations:

9
1 a0 nl 2 [(3:1,1): ;
Koy) = = HIGE000! (1)
ﬁ y — (031);(%11)) (071)1(%:1)
and
L o1Logol @) ;
Lzy) = = H 00000 . , (22)
{7 ¥l —— (5,1),(0,1); (0,1),(3,1)

in terms of the H-functions of two variables.

Equations (21) and (22) are essentially the corrected versions of the
corresponding representations given by Buschman (1982, p. 25, Equations (3.1) and
(3.2)). In fact, as pointed out by Buschman (1982, p. 25, Equation (3.4)), the
H-function representations (21) and (22) for the Voigt functions K(z,5) and L(zy)

are analytic in both variables z and y provided that

|arg(z)| + larg(y)| < & 7. (23)

The G-function representation (18) can also be rewritten, in a straightforward
manner, as an H-function representation for the generalized Voigt function V# V(z,y).
)]

We are thus led to a unification (and generalization) of the H-function



representations (21) and (22) in the form (cf Srivastava and Miller 1987, p. 115,
Equation (24)):

2| (4-p-4131,1):

J (Re(pt+v) > -1), (24)
(0:1)7('1/71); (0:1))(%:1)

in which the variables z and y are constrained, as also in (21) and (22), by
(23).

If, in this last result (24), we employ a known series expansion of the
H-function of two variables (cf Srivastava et al 1982, p. 84, Equation (6.2.1)), we
shall arrive once again at the double confluent hypergeometric series representation
(11) which we have already computed directly.

It may be of interest to observe here that the vast literature on the G- and
H-functions of two variables (see Srivastava et al. 1982) can be appropriately used in
order to derive many potentially useful (numerical or analytical) properties of the
generalized Voigt function V#, V(a:,y) and, in particular, of the Voigt functions
K(z,y) and L(z,y) themselves.

3. FURTHER ATTEMPTS TOWARD UNIFIED PRESENTATIONS
OF K(zy) AND L(zy)

An interesting generalization of the (classical) Bessel function Jy(z) is due to

Wright (1935a) who studied the function Jﬁ(z) defined by



10.

_)m

N7 = 2 (6> 0 |2 <o), (25)

nl T'(v+pm+l)

so that, by comparing the definitions (6) and (25),
508 = (19" ). (26)
In fact, Wright's generalized Bessel function J‘lj(z) defined by (25) is contained, as a

particular case, in the following class of generalized hypergeometric functions studied

by Fox (1928) and Wright (1935b):

(alel):' . ':(ap)Ap);

@ - 7% z
e 4= 1% — (20
(ﬂl’Bl))"'i(ﬁq;Bq); m=0 I;I IN(E] J”'Bjm) )

provided that the series converges, it being understood (as always) that no zeros

appear in the denominator of (27). Clearly, we have

(alal)r"'7(ap:1); a17"':a ;

¥ 7 = F, z (28)
(ﬁlil)f"a(ﬂq:l); ,51;"',.3 )

and

Jﬁ(z) = 0¢1[““"§ (v+1,p); -2]. (29)



11.

More importantly, in terms of Fox’s H-function, we can write (¢f Srivastava and

Kashyap 1982, p. 42, Equation II.5(21))
(al,Al),- . )(ap’Ap);

Y z
P q
(ﬂl’Bl)’. ° e ’(ﬁq’Bq)’

P+l -z (30)

In an attempt to generalize the work of Srivastava and Miller (1987), Siddiqui3

(1990) chooses to replace the Bessel function occurring in the definition (8) by the

following very special case of the (Fox-Wright) function pw ¢
Jﬂ (z) ~ o (_1)m (%z)u+2)\+2m
vA =0 T(A+m+1) T(v+A+um+1)
(1L,1);
— (%Z)V+2A 1,‘/)2 - %22 (31)

(A+1,1),(v+A+1,p);

(b >0 [2] <o)

so that, obviously,

3Siddiqui (1990) repeats most of what was already given by Srivastava and Miller
(1987); unfortunately, as we shall observe here, his only notable contribution in his
entire paper (Siddiqui 1990, p. 266, Equation (14)) is in serious error.



12.

1

Ju,O(z) = J(2) (32)
and
o@ = 49" By (u> o). (33)

Upon comparing the definition (31) with the relationship (30), we readily obtain

) a0 1 1l- a (0,1) -l
Toa@) = (12777 Hy'g) 42 (b > 0), (34)

(0»1):(')‘ ! 1) ,(-V-/\,,U,)

which, for A = 0, immediately yields [c¢f Equations (29), (30), and (33)]

M) = (19" Hy (1 > 0). (35)
(0,1),(-l/,u)

Formula (34) was stated and used incorrectly by Siddiqui (1990, p. 265,
Equation (11); p. 266, Equation (13)). Naturally, therefore, the main result of
Siddiqui (1990, p. 266, Equation (14)), which he derived by using the obviously
erroneousversion of (34), does not hold true as claimed. With a view to finding the
correct verstion of this only notable contribution in Siddiqui’s paper, we begin by

recalling his definition (Siddiqui 1990, p. 265, Equation (8)) in the corrected form:

(@) = ()} f(; 7 exp(-yt-31%) J L alad)ds (36)

which, when compared with the Srivastava-Miller definition (8), yields the

relationship:

1
Qu’y’o(:c,y) = V%V(:z:,y), (37)



13.

where we have made use of the reduction formula (32).

Next we apply the correct H-function representation (34), together with the

elementary result:

2,00,.2,2
H0,2 1yt

(o] A7 (0,1),(4,1)

which is essentially the same as the result used earlier by Srivastava and Miller

(1987, p. 114, Equation (16)), and we find from (36) that

(0,1)

L (071)’(_’\’1)7('1")‘)/—")

g’g 1zt dt, (39)
L o),

provided that the integral converges.

Setting ¢ = 2{7 in (39), if we evaluate the resulting integral in terms of an
H-function of two variables by appealing to the Mellin-Barnes contour integral
representing each of the H-function involved (c¢f Srivastava et al 1982, p. 3,

Equation (1.1.4); p. 82, Equation (6.1.1) et seq.), we shall finally obtain the

H-function representation:



14,

7 _
Qn V,A(z’y) - ﬁ
2
0,1:1,1;2,0{% | (#(1-7-1)-A1,1): (0,1); ———
H1,0:1,3;0,2 o (40)
y t (0,1),(-A1),(-w-Am); (0,1),(4,1)

(Re(n+v+2)) > -1; u > 0),

in which the variables z and y are constrained, as also in (21), (22), and (24),
by (23).

The H-function representation (40) for the generalized Voigt function defined by
(36) provides the corrected version of the main (and, as we remarked above, the only
significant) result of Siddiqui (1990, p. 266, Equation (14)). It is not difficult to

observe also that, in its special case when

(40) would correspond to the Srivastava-Miller result (24).

In view of the H-function representations (24) and (40), a natural further step
toward the unified presentations of the Voigt functions K{(z,y) and L(z,y) is
provided by the definition [cf Equation (39)]:

e, f s, ALYy (e, C)y
m,n,T,8V
% Qp,qumi( . B.). i(6..D.). 5
(77]:9_7; ])1,Q (ﬂj, ])l,q’( J’ J 1),”7
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2.2
e ; : LA, (. . :
P,Qip,quy| o4 y| dt, (41)
1yt (nj;gj’hj)l,Q: (ﬂj’Bj)l,q;(éj’Dj)l,v;

- H

where, as usual, (£.;e;,f;); p abbreviates the P-member array:

(El;el’fl)" ) ':(fP; eP :fp);

with similar interpretations for (aj, Aj)l p et cetera (see, for details, Srivastava et

al. 1982, Chapter 6).

In particular, for P = @Q = 0, the definition (41) reduces immediately to the

form:
(a;yA4.)7 .5 (7, C)q s
m’n;r,s;y ‘7 J l’p J’ .7 ]"u

. I,y
P,0u,0¢ .

1,v’

BT 3 dt (42)



16.

[AJ >0 (.7 = 1:"'7p); B] >0 (.7= 17"':Q); CJ >0 (.7= 11"')”’);
D;>0 (j= 1,9, |

which may be compared with (39).

If we set ¢ = 2{T in (41) and evaluate the resulting integral as before, we

obtain the following H-function representation for the generalized Voigt function

defined by (41):

. (&ie5 £)1,p+ (25 A5)p i (7 Cp)y g

1T, M T, SV

50 p.qun( oY
(153 80 By, By Byygi (85 Dy

2

- M 0,1:m,n;7,s
ﬁ P+17Q:p7q;ua’v yz

Qw0153 655 £y pe (o5 Ag)y g3 (1 Gy

(43)
("j3gj’hj)1,Q: (ﬂj’Bj)l,q; (5j’Dj)1,v
B, &
Re[u + ¢+ B-Z+ DE] >-1 (j=1,---m k= 1,---,7)].
J k

For P = @Q =0, (43) yields the following H-function representation for the
generalized Voigt function defined by (42):

A (.. C).
(0 A5)1 pi (15 Gy
m,n; 7,8,V
o U hY
(B By ,gi (85 D)y s
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= 20t M o lmnrs
I 1,0:p,q50,0
2 1 1) .
z (%(I—V-C))]')l)' (ajrAj)l’p) (737 Cj)l,u
(44)
2
: .. B. : ., D.
y (B Bidr,gi (82 Djdry
)
I-Re[_/.t.{‘;.fnz.g.__d}—l (i =1 m: k=1, r\]
B. D \J ) 37wy ? 17
L1 i VK |
Upon comparing the definitions (36) and (42), we obtain the relationship:
(0,1); ———;
,1;2,0;042
() = g %y 45)

(0’1)7('}‘)1):("/”\)/“); (0)1)7(%)1);

which, in view of (44), leads us immediately to the H-function representation (40).
In particular, for the generalized Voigt function VIL Azy) of Srivastava and Miller
(1987), we have [cf Equation (37)]

2,0
.0,2;:: z,y|, (46)
(0:1):('1/’1); (0:1))(%11);

which, again in view of (44), leads us immediately to the H-function representation
(24). More importantly, for the Voigt functions K(z,y) and L(z,y) themselves, we

observe that
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K(z,y) = d’é:g’g’g’—g Z,y (47)
(0,1),(4,1); (0,1),(4,1);

and

,0;2,0;
L(Z,y) = %,2;0,2;1 z,y ) (48)

respectively.

These last relationships (47) and (48) can indeed be used to derive various
needed (numerical or analytical) properties of the Voigt functions K(z,y) and
L(z,y) by simply specializing the corresponding properties of the unifications
proposed by (41) and (42). For example, the H-representations (21) and (22) would
follow readily from (44) by appealing to the relationships (47) and (48), respectively.
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