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1 Introduction.

Thanks to the works of Callahan, Costa, Hoffman, Karcher, Meeks, Rosen-
berg, Wei, etc.—see for example [1],[2],[3],[5],[8],[11],[12],[16],[20]—, we dis-
pose now of a large number of properly embedded minimal surfaces in the
euclidean space IR3 other than the classical examples. All those surfaces can
be viewed as minimal surfaces with finite total curvature properly embedded
in complete flat three manifolds. The most basic invariants associated to a
surface of this type are its topology and its periodicity. It is an interesting
problem to decide if the simplest examples—like the catenoid, the helicoid,
the Scherk’s surfaces or the Riemann example—can be characterized in terms
of some of these invariants. In the non-periodic case, there are two important
uniqueness theorems in this direction: the first one, obtained by Schoen [17],
characterizes the catenoid as the only complete minimal surface embedded
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in IR3 with finite total curvature and two ends. The second one, proved two
years ago by López and Ros [10], says that

“The plane and the catenoid are the only properly embedded mi-
nimal surfaces with finite total curvature and genus zero in IR3”.

In this paper we first give a new and simpler proof of this fact. Our
method of proof is based on the existence of a one-parameter deformation
for minimal surfaces such that the flux along any of their closed curves is
a vertical vector of IR3. Although this deformation was used in [10], the
arguments used here are different and can be adapted to other situations.

In fact, we will also apply the method to obtain some global theorems
in the singly-periodic case, i.e., for minimal surfaces with finite topology
properly embedded in IR3/Sθ, where Sθ is a screw motion obtained by ro-
tation around the positive x3-axis by angle θ ∈ [0, 2π[ followed by a non
trivial translation along the x3-axis. In [13], Meeks and Rosenberg studied
the geometry of these surfaces, classifying their possible end types: they
are—all simultaneously—asymptotic to planes, flat vertical annuli or to ends
of helicoids. The second Scherk’s surface and its generalizations [8] are genus
zero examples with 2k ends asymptotic to flat vertical annuli, properly em-
bedded in IR3/T , T being a non trivial vertical translation and k an integer
greater than one. Moreover, Karcher [8] discovered genus zero surfaces mi-
nimally embedded in IR3/Sθ, θ �= 0, with helicoidal type ends, which are
deformations of the above examples. In the case θ = 0, the only known
example of this type is the helicoid. In this paper we will prove a uniqueness
theorem for this surface. More precisely, we obtain that

“The helicoid is the only properly embedded minimal surface of
genus zero in IR3/T , T being a non trivial vertical translation,
with a finite number of helicoidal type ends.”

If the surface has only two ends, the above result was proved by Toubiana
[18].

Another classic example of singly periodic properly embedded minimal
surface is the Riemann’s example [1]. It can be viewed as a genus zero surface
with an infinite number of punctures in IR3 or as a punctured torus with two
planar ends in IR3/T . We will prove that this surface has no equivalent in
the ambient space IR3/Sθ, θ �= 0, that is
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“There are no properly embedded minimal surfaces of genus one
and a finite number of planar ends in IR3/Sθ, θ �= 0.”

Furthermore, the method developed in this paper can be used to obtain
information about properly embedded minimal surfaces with boundary: If Σ
is a properly embedded minimal surface of genus zero contained in a halfspace
of IR3 with finite total curvature and whose boundary is a convex Jordan
curve lying on the boundary of the halfspace then we prove Σ has only one
end and so it is an annulus. We prove a similar result when the minimal
surface lies in a slab of IR3 and its boundary consists on two convex Jordan
curves lying on the boundary of the slab.

The paper is organized as follows. In section 2 we review some basic facts
about the flux of a surface along a curve, define the deformation in terms
of the Weierstrass data of a minimal surface, and study its basic properties.
The theorems in the non-periodic case are proved in section 3, and the singly-
periodic ones are developed in section 4.

2 The deformation.

Let Σ be a Riemann surface and ψ : Σ −→ IR3 a conformal minimal immer-
sion of Σ into the three dimensional euclidean space. If Γ is a closed curve
in Σ parametrized by γ(s), s being the arc parameter of ψ ◦ γ, we denote by
n(s) the conormal of ψ along the curve Γ, i.e. n(s) = −dψ (Jγ′(s)), where J
is the complex structure of Σ. Recall that the flux of ψ along Γ is defined by

F lux(Γ) =
∫
Γ
n(s) ds.

The flux does not depend on the curve in a fixed homology class: in fact,
it can be viewed as the IR3-valued cohomology class on Σ determined by the
closed one form − (dψ) ◦ J .

Calling ψ∗ the—in general not globally well-defined—conjugate minimal
immersion of ψ, we have∫

Γ
dψ∗ (γ′(s)) ds = −

∫
Γ
(dψ) (Jγ′(s)) ds = F lux(Γ).
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Hence, the flux of ψ along Γ is the period of the multivalued map ψ∗.
Equivalently, using the IC3-valued holomorphic one-form (φ1, φ2, φ3) =

∂ψ
∂z
dz,

we have ∫
Γ
(φ1, φ2, φ3) = i F lux(Γ).

Note that the real part of the above integral vanishes because ψ is well
defined.

From the Weierstrass representation [15] we know that ψ is determinated
by the meromorphic map g and the holomorphic one-form ω on Σ defined by
the relations

φ1 =
1

2
(1− g2)ω, φ2 =

i

2
(1 + g2)ω, φ3 = gω.

We recall that g is the stereographic projection from the north pole of the
Gauss map of ψ. With this notation, the following assertions are equivalent:

i) For each closed curve Γ in Σ, the flux of ψ along Γ vanishes.

ii) The holomorphic one-forms φ1, φ2, φ3 are exact.

iii) The holomorphic one-forms ω, gω, g2ω are exact.

iv) The conjugate immersion ψ∗ is globally well-defined on Σ.

For each positive number λ, we define on Σ the meromorphic map gλ = λg
and the holomorphic one-form ωλ =

1
λ
ω. It follows that, via Weierstrass

representation, gλ and ωλ determine a—generally multivalued—conformal
minimal immersion ψλ : Σ −→ IR3. As above, we obtain directly that the
following assertions are equivalent:

i’) For each closed curve Γ in Σ, the flux of ψ along Γ is a vertical vector.

ii’) The holomorphic one-forms φ1 and φ2 are exact.

iii’) The holomorphic one-forms ω and g2ω are exact.

iv’) For each λ > 0, the immersion ψλ is globally well-defined on Σ.
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If the immersion satisfies i’) we will say that the flux of ψ is vertical.

From now, we will assume in this section that ψ : Σ −→ IR3 is a conformal
minimal immersion with vertical flux and Weierstrass representation given
by the meromorphic map g and the holomorphic one-form ω. Put

F =
∫
ω

2
, G =

∫
g2ω

2
, and x3 = Re

∫
gω.

Then, the immersion can be written as

ψ =
(
F −G, x3

)
: Σ −→ IC × IR ≡ IR3. (1)

In the same way, for each λ > 0 the immersion ψλ : Σ −→ IR3 is given by

ψλ =
(
1

λ
F − λG, x3

)
. (2)

Now, we will study some basic properties of the one-parameter family
{ψλ}λ>0. First, we remark that the third coordinate function of ψλ does not
depend on λ.

Recall [15] that the induced metric and the Gauss curvature of ψ are
respectively given by

ds2 =
1

4

(
1 + |g|2

)2 |ω|2, K = −
(

4|dg|
|ω| (1 + |g|2)2

)2

.

From these formulae we obtain the following lemma:

Lemma 1 Let ds2λ and Kλ be the induced metric on Σ by ψλ and its Gauss
curvature, respectively. Then, there exist real positive constants c1(λ), c2(λ)
such that

c1(λ) ds
2 ≤ ds2λ ≤ c2(λ) ds

2,

c1(λ) |K| ≤ |Kλ| ≤ c2(λ) |K|.

In particular, if ds2 is complete the same holds for ds2λ. Also we obtain
that

∫
ΣK dA is finite if and only if

∫
ΣKλ dAλ is finite.
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Let Π be a horizontal plane in IR3 such that its intersection with ψ(Σ)
is transversal. Then the intersection of ψλ(Σ) with Π is also transversal.
Denote by C a curve contained in ψ(Σ) ∩ Π, and by Cλ the correspon-
ding curve in ψλ(Σ) ∩ Π. Let ν and νλ be the normal vectors to C and
Cλ—as planar curves—, respectively. Both of them are horizontal vector
fields pointing to the same directions as g and gλ—viewed as plane vectors—.
As gλ = λg, it follows that νλ = ν. In particular, we conclude the following
lemma:

Lemma 2

i) If C is a segment, then Cλ is a segment parallel to C. Moreover, if C is
a straight line, the same holds for Cλ.

ii) If C is a convex Jordan curve, then the same holds for Cλ.

The last assertion of i) follows from lemma 1.
Lemma 2 also holds if C lies on the boundary of the minimal surface. If

this boundary is analytic, the above proof works. In the smooth category
we can reason as follows: The IC-valued Gauss map g and the coordinate
function x3 extend smoothly to the boundary. Hence the same holds for
φ3 =

∂x3

∂z
dz and ω = φ3/g. Then also F =

∫
ω/2 and G =

∫
g2ω/2 extend

and finally we conclude that ψλ =
(

1
λ
F − λG, x3

)
is smooth at the boundary

for each λ > 0. Now the arguments in the proof of lemma 2 are applied
without changes.

The next lemma states some symmetry properties of {ψλ}λ>0 induced by
the symmetries of ψ. Note that the ψλ’s are determinated up an additive
constant.

Lemma 3 Let ψ and {ψλ}λ>0 as above.

i) If ψ is invariant by a reflection in a vertical plane of IR3 and non flat,
then all the ψλ’s can be chosen invariant by the same reflection.

ii) If ψ is invariant by a translation which induces a holomorphic trans-
formation of Σ, then the same holds for all the ψλ’s—actually, this
translation depends on λ—.
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iii) If ψ is invariant by a screw motion Sθ obtained by rotation around the
x3-axis by θ, 0 < θ < 2π, followed by a—possibly trivial—translation
along the x3-axis, and this screw motion induces a holomorphic trans-
formation of Σ, then all the ψλ’s can be chosen invariant by Sθ.

Proof: First assume that ψ is invariant by a reflection RΠ in a vertical
plane Π of IR3. Denote by S the induced conformal transformation on Σ. As
the surface is not contained in Π, the intersection ψ(Σ)∩Π has dimension one.
So S must be antiholomorphic. We can assume that Π is the (x1, x3)-plane.
Hence, from (1) we have F ◦ S −G ◦ S = F −G. Grouping the holomorphic
terms and the antihilomorphic ones in different sides of the equation, we find
a complex constant a verifying

F ◦ S − F ≡ a ≡ G ◦ S −G.
Moreover a has zero real part—we can check this fact taking a point p ∈ Σ
such that ψ(p) lies in Π—; as F and G are determined up to an additive
constant, this fact allow us to choose the parameters of integration such that
F ◦ S − F ≡ 0 ≡ G ◦ S −G. Thus

(
1
λ
F − λG

)
◦ S = 1

λ
F − λG, and we have

ψλ ◦ S = RΠ ◦ ψλ, for each λ > 0. This proves i).
Take ψ invariant by a translation Tv of vector v = (u, v3) ∈ IC × IR. This

translation induces a conformal transformation S : Σ −→ Σ, defined by the
equation ψ ◦ S = Tv ◦ ψ. Assume that S is holomorphic; using (1), we have

F ◦ S −G ◦ S = F −G+ u, x3 ◦ S = x3 + v3.

The left equation implies that there exists a complex constant a such that

F ◦ S − F ≡ a ≡ G ◦ S −G+ u.
Hence, we have(

1

λ
F − λG

)
◦ S = 1

λ
F − λG+ a

(
1

λ
− λ

)
+ λu,

so calling T λv to the translation of vector
(
a
(

1
λ
− λ

)
+ λu, v3

)
∈ IC × IR, we

obtain ψλ ◦ S = T λv ◦ ψλ. This proves ii).
Finally, if ψ ◦ S = Sθ ◦ ψ for θ �= 0, then (1) gives us

F ◦ S −G ◦ S = eiθF − eiθG, x3 ◦ S = x3 + v3,
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where v3 is the vertical component of the translation associated to Sθ. Grou-
ping as above, we constrain two expressions to be constant and this constant
can be chosen as zero, obtaining F ◦ S − eiθF ≡ 0 ≡ G ◦ S − eiθG. The
assertion iii) is a direct consequence of this equation.

Next we will obtain two non-embeddedness properties of the deformation
{ψλ}λ>0, which will be key tools in further sections. Observe that the set
of points in Σ where the normal is vertical is independent of λ. Suppose
that ψ is not a plane, and let p ∈ Σ be a point where the normal is vertical,
say N(p) = (0, 0,−1). Take a conformal coordinate (D(ε), z) centered at p
satisfying

g(z) = zk, ω = (a+ z h(z)) dz,

where a is a non zero complex number, h is a holomorphic function in the
disc D(ε) = {z ∈ IC : |z| < ε}, and k is a positive integer. In order to
study the immersion ψλ around p we consider the new conformal coordinate(
D(λ

1
k ε), ξ

)
, ξ = λ

1
k z. So, ψλ is determined by

gλ(ξ) = ξ
k, ωλ =

1

λ1+ 1
k

(
a+

ξ

λ
1
k

h

(
ξ

λ
1
k

))
dξ.

Now we dilate ψλ by a homothety of ratio λ
1+ 1

k , obtaining a minimal
surface ψ̃λ = λ1+ 1

k ψλ. When λ goes to infinity, ψ̃λ converges uniformly on
compact subsets of IC to the minimal surface ψ∞ : IC −→ IR3 determined by
the Weierstrass data

g∞(ξ) = ξk, ω∞ = a dξ.

This limit surface is complete, has finite total curvature and its end is not
embedded—in fact it has transversal self-intersections—. So, the same holds
for ψλ with λ sufficiently large.

If N(p) = (0, 0, 1), the same fact is proved in a dual way.
From the above arguments, we conclude the following:

Lemma 4 If ψ : Σ −→ IR3 is a non flat minimal immersion with vertical
flux and p ∈ Σ is a point where the Gauss map of ψ is vertical, then for any
neighbourhood D of p there exists a real number λ > 0 such that ψλ |D is not
an embedding.
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Now take a properly embedded minimal end with finite total curvature
ψ in IR3, which is not a piece of a plane and such that the limiting normal
vector is (0, 0,−1). It is known [7] that we can parametrize this end in the
punctured disc D∗(ε) = D(ε)− {0}, and the Weierstrass data of the end can
be chosen as

g(z) = zk, ω =
(
a

z2
+ h(z)

)
dz, z ∈ D∗(ε), (3)

where a ∈ IC − {0}, h is holomorphic in D(ε) and k is a positive integer.
If k = 1, a must be real and the end is of catenoid type; in this case a is
the logarithmic growth of the half-catenoid asymptotic to the end. If k > 1
the end is asymptotic to a horizontal plane, and is called a planar type end .
The flux of ψ on this end vanishes for the planar case, and is vertical if
it is catenoid type. Hence, ψλ is well-defined on D

∗(ε). Moreover, if ψ is a
planar—resp. catenoid—type end, then ψλ is also a planar—resp. catenoid—
type end. In the first case the height of ψλ is independent of λ and in the
second one the same holds with the logarithmic growth of ψλ.

We obtain directly from (3) that

ψλ(z) = φλ(z) +H(z, λ), (4)

where φλ : D
∗(ε) −→ IR3 denotes either a parametrization of the end of

the (x1, x2)-plane or a parametrization of an end of the vertical catenoid
symmetric respect to the origin with logarithmic growth a, and H(z, λ) is a
finite-valued smooth function on D(ε)×]0,∞[.

We consider the conformal coordinate
(
D∗(λ

1
k ε), ξ

)
, ξ = λ

1
k z. So the

meromorphic data of ψλ are given by

gλ(ξ) = ξ
k, ωλ =

1

λ1− 1
k

(
a

ξ2
+

1

λ
2
k

h

(
ξ

λ
1
k

))
dξ.

After a homothety of ratio λ1− 1
k , we obtain a new minimal immersion

ψ̃λ(ξ) = λ
1− 1

k ψλ(ξ). When λ goes to infinity, ψ̃λ(ξ) converges uniformly on
compact subsets of IC − {0} to the minimal surface ψ∞ : IC − {0} −→ IR3

given by

g∞(ξ) = ξk, ω∞ =
a

ξ2
dξ, ξ ∈ IC − {0}.
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This surface is a vertical catenoid if k = 1. If k ≥ 2, it has an embedded end
at the origin and a non embedded one at infinity. So, for λ large enough, ψλ
is not embedded. The case g(0) = ∞ can be solved in a similar way. This
completes the proof of the following assertion:

Lemma 5 If ψ : D∗(ε) −→ IR3 is a planar type end with vertical limiting
normal and which is not a piece of a plane, then ψλ is not an embedding for
some λ > 0.

3 Minimal surfaces with finite total curva-
ture in IR3.

In this section and in the next one we will use the deformation studied above
to prove some global theorems for properly embedded minimal surfaces. Ano-
ther key ingredient in our method is the maximum principle at infinity of
Meeks and Rosenberg [14] —see also Langevin and Rosenberg, [9]—, which
states that the distance between two properly embedded disjoint minimal
ends in a complete flat three manifold is non zero.

First we will give a new proof of the uniqueness theorem of López and
Ros [10].

Theorem 1 The only embedded complete minimal surfaces of finite total
curvature and genus zero in IR3 are the plane and the catenoid.

Proof: Take a non flat complete minimal embedding ψ : Σ −→ IR3 with
genus zero and finite total curvature. Then Σ is conformally equivalent to
a sphere with a finite number of punctures corresponding to the ends of
the immersion, Σ = IC − {p1, . . . pr}. These ends are planar or catenoid type
ends, and we can assume that the normal vectors at the ends are vertical.
As the flux along the curves around the ends is zero or a vertical vector,
it follows that ψ has vertical flux and, so, we have a one-parameter family

10



of complete minimal immersions with finite total curvature ψλ : Σ −→ IR3,
λ > 0. The following assertion and lemmae 4 and 5 prove that ψ has neither
planar type ends nor points with vertical normal vector. As consequence,
the third coordinate function of ψ is proper and has no critical points. So
Σ is an annulus. It is a simple and well-known fact that the only embedded
complete minimal annulus in IR3 with finite total curvature is the catenoid
[7], and the theorem is proved.

Assertion 1 In the above conditions, all the ψλ’s are embedded.

Proof of the assertion 1: Denote by B = {λ > 0 : ψλ is injective }. If
λ0 ∈ B, then it follows from the maximum principle at infinity [14] that the
distance between two fixed ends of ψλ0 must be non zero. We can easily
conclude from (4) that this distance is infinity for each λ > 0 or it is a finite
continuous function of λ. So, for λ near λ0, ψλ is embedded, and therefore
B is open.

Now take a sequence {λn}n∈IN ⊂ B converging to λ0 > 0. If ψλ0 is
not injective, we have ψλ0(x) = ψλ0(y) for two distinct points x, y ∈ Σ.
The convergence of {ψλn}n to ψλ0 uniformly over compact subsets of Σ and
the maximum principle insure that there are neighbourhoods of x and y
with the same image under ψλ0 . So the image point set of ψλ0 is a mi-
nimal surface with finite total curvature embedded in IR3 and we have a
finite covering ψλ0 : Σ −→ ψλ0(Σ). The maximum principle at infinity allows
us to take an embedded ε-tubular neighbourhood U of ψλ0(Σ). Denote
by π : U −→ ψλ0(Σ), and l : U −→ IR the orthogonal projection of U onto
ψλ0(Σ) and the oriented distance to ψλ0(Σ), respectively. It follows from (4)
that for each n large enough, ψλn(Σ) ⊂ U and that π ◦ ψλn : Σ −→ ψλ0(Σ)
is a proper local diffeomorphism and, hence, a finitely sheeted covering map.
The embeddedness of ψλn implies that the continuous function l ◦ ψλn sepa-
rates the points in the fibers of the covering π◦ψλn and therefore this covering
has only one sheet. As π ◦ ψλn converges uniformly on compact subsets of Σ
to π ◦ ψλ0 = ψλ0 it follows that also ψλ0 : Σ −→ ψλ0(Σ) has one sheet. This
contradiction proves that B is closed in ]0,+∞[. As 1 ∈ B, it follows that
ψλ is embedded for each λ > 0, and the assertion is proved.
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Now we prove two results for properly embedded minimal surfaces with
smooth compact boundary. Denote by H+ = {(x1, x2, x3) ∈ IR3 : x3 ≥ 0}
the upper halfspace in IR3.

Theorem 2 Let ψ : Σ −→ H+ be a complete non flat minimal embedding
with finite total curvature and boundary given by a convex Jordan curve in
the (x1, x2)-plane. If Σ has genus zero, then it is an annulus.

Proof: From the hypothesis, Σ is a finitely punctured closed disc, and the
normal vector at each end must be vertical. As the flux of ψ is generated by
the flux of its ends, that flux must be vertical. So the deformation {ψλ}λ>0 is
well defined on Σ. Now we claim that the assertion 1 holds in this situation.
Calling B as above, the same arguments state the openness of B. If we
take a sequence {λn}n∈IN ⊂ B converging to λ0 > 0 and such that ψλ0

is not one-to-one, it follows as in assertion 1 that ψλ0 : Σ −→ ψλ0(Σ) is
a finite covering. Note that from the maximum principle, the surface ψλ
meets the (x1, x2)-plane only at its boundary. As, from lemma 2, ψλ0 is
one-to-one at ∂Σ, the covering has only one sheet. This contradiction proves
that B is closed in ]0,+∞[ and so, ψλ is an embedding for each λ > 0.
Applying lemmae 4 and 5, ψ has neither planar type ends nor points with
vertical normal vector. Consequently, the third coordinate function of ψ,
which vanishes at the boundary of Σ, is proper and has no critical points. In
particular, ψ has exactly one catenoid type end or, in other words, Σ is an
annulus. This completes the proof of the theorem.

Denote by Π1 and Π2 two distinct horizontal planes in IR
3 and by E the

slab bounded by these planes.

Theorem 3 Let ψ : Σ −→ E a complete minimal embedding with finite total
curvature and boundary given by a pair of convex Jordan curves lying one in
Π1 and the other in Π2. If ψ has vertical flux, then Σ is an annulus.

Proof: From the flux hypothesis, the deformation {ψλ}λ>0 is well-defined
on Σ. Also from the finite total curvature assumption ψ—possibly—has a
finite number of embedded planar type ends lying between Π1 and Π2. As in
the proof of theorem 2 we can conclude that ψλ is embedded for each λ > 0,
and so, from lemmae 4 and 5 we obtain that ψ has neither ends nor points
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where the normal is vertical. It follows directly that Σ is an annulus, and
the theorem is proved.

Remark 1 The hypothesis about the genus of Σ can be removed in theorems 1
and 2, putting the weaker one “ψ has vertical flux”.

The hypothesis “ψ has vertical flux ” in theorem 3 holds in some geometric
situations, for example, when our surface has genus zero and either it is
invariant by a non trivial rotation around the x3-axis, or it is the intersection
of a embedded complete minimal surface of finite total curvature in IR3 with
the slab.

4 Singly-periodic minimal surfaces.

Firstly we recall some basic results about properly embedded singly-periodic
minimal surfaces. Let Sθ, 0 ≤ θ < 2π, be the screw motion of IR3 ob-
tained as the composition of the rotation around the x3-axis by angle θ with
a non trivial vertical translation. If θ = 0 we will denote by T the trans-
lation S0. Let ψ̃ : Σ̃ −→ IR3 be a properly embedded minimal surface
invariant by Sθ and denote by S the conformal transformation of Σ defined
by Sθ ◦ ψ̃ = ψ̃ ◦ S. Then the induced immersion ψ : Σ −→ IR3/Sθ, where
Σ = Σ̃/S, is a proper embedding. Reciprocally, any proper non flat minimal
embedding ψ : Σ −→ IR3/Sθ determines a connected singly-periodic minimal
surface ψ̃ : Σ̃ −→ IR3 related with ψ in the above way, see [6],[12]—Note that
in the case θ = 0, if the quotient surface Σ is orientable, the Weierstrass re-
presentation of ψ̃ can be induced on Σ—. Suppose that Σ has finite topology.
Then it follows from the results of Meeks and Rosenberg [13] that the proper
embedding ψ : Σ −→ IR3/Sθ has finite total curvature. Moreover it is proved
in [13] that the behaviour of ψ at infinity is one of the followings:

1. All the ends of ψ are asymptotic to non vertical parallel planes, as in
the Riemann example. These ends lift to planar type ends in IR3. If
θ �= 0 the ends are necessarily horizontal.
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2. All the ends of ψ are asymptotic to flat vertical annuli, like the Scherk’s
second surface. This case occurs only if θ is a rational number.

3. All the ends of ψ are asymptotic to ends of helicoids. These helicoids
have the same slope up to sign, the same winding number and their
limit tangent planes at the ends are horizontal. In this case we will say
that the ends are of helicoidal type.

In [8], Karcher gave examples of embedded minimal surfaces in IR3/T of
genus zero and 2k ends asymptotic to flat vertical annuli, for any integer k
greater than one. He also showed that these surfaces can be deformed into
embedded minimal surfaces with helicoidal type ends in IR3/Sθ, θ �= 0.

An elementary lifting argument shows that the only properly embedded
minimal surface of genus zero and a finite number of planar type ends in
IR3/Sθ is the plane. So the simplest non trivial classification problem for this
type of ends appears in the case genus(Σ) = 1. The reasonable conjecture
here is that the only surface of this kind is the Riemann example. Now we
give a strong partial result in this direction:

Theorem 4 There are no properly embedded minimal tori with a finite num-
ber of planar type ends in IR3/Sθ, 0 < θ < 2π.

Proof: Consider a properly embedded minimal surface ψ : Σ −→ IR3/Sθ
with planar type ends, and assume that Σ is a finitely punctured torus. Using
the notation above, let ψ̃ : Σ̃ −→ IR3 be the corresponding singly-periodic
minimal surface. Embeddedness implies that the ends are horizontal. The
infinite cyclic covering map Σ̃ −→ Σ extends in an unbranched way through
the ends. So Σ̃ is conformally the cylinder IC −{0} with a infinite number of
punctures corresponding to the planar type ends of ψ̃. On the other hand, the
holomorphic differential φ3, which is globally well-defined on Σ [13], extends
in a holomorphic way to the torus. So, up to scaling, the third coordinate
function of ψ̃ is given by x3 = log |z|. As the flux vanishes at the planar type
ends, in order to insure that ψ̃ has vertical flux we only need to consider
the flux along the homology generator of the cylinder IC − {0}, which can
be represented by any horizontal section of ψ̃, Γ = {x3 ◦ ψ̃ = constant} ⊂ Σ,
with height that does not coincide with any planar type end. As S(Γ) is

14



another planar section, we have

F lux(S(Γ)) = F lux(Γ).

As the conormal vector fields of the curves Γ and S(Γ) differ by the rotation
around the x3-axis of angle θ, Rotθ, using the definition of flux we obtain

F lux(S(Γ)) = Rotθ (F lux(Γ)) .

The above two equalities and our assumption about θ insure that the flux
along Γ is vertical, so the deformation {ψ̃λ}λ>0 is well-defined on Σ̃. From
lemma 3 we have that all the ψ̃λ’s are invariant by the same screw motion. If
we are able to prove that all the ψ̃λ’s or equivalently the ψλ’s are embeddings,
we will have a contradiction with lemma 5. But this last fact can be proved
in the same way as in assertion 1. This completes the proof of the theorem
4.

Remark 2 The Riemann’s surface [1] demonstrates that the theorem does
not hold for θ = 0.

Remark 3 Let E be the slab determined by a pair of parallel planes Π1 and
Π2. Consider a minimal annulus properly embedded in E whose boundary
consists of a pair of straight lines, one lying on Π1 and the other on Π2. Then
it is known that the annulus must be a piece of the Riemann example: this
result was proved by Hoffman, Karcher and Rosenberg [4] if the boundary lines
are parallel. Later Toubiana [19] proved that if they are not parallel the above
minimal annulus can not exist. This last fact follows directly from theorem 4:
If the annulus exists we can construct using the Schwarz reflection principle
an embedded torus with two planar ends in IR3/Sθ, where 0 < θ < 2π, and
this is impossible by our theorem.

Now we consider a properly embedded minimal end of helicoidal type
ψ : A −→ IR3/T , T being a non trivial vertical translation, whose limiting
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normal vector is vertical, say (0, 0,−1). Meeks and Rosenberg [13] showed
that this end type can be characterized in terms of its Weierstrass data as
follows:
A is conformally a punctured disk. If g has a zero of order k at the

origin, then ω has a pole of order k + 1 at this point. Moreover ω has no
residue at the origin and gω =

(−iβ
z
+ f(z)

)
dz, where β is a non zero real

number and f is a bounded holomorphic function. The integer k coincides
with the winding number of the end, and the parameter β gives us the slope
of the helicoid asymptotic to the end A, and the period vector is given by
T = 2πβ(0, 0, 1)—for later use, we remark that if g has a pole at the origin,
we have a symmetric situation. In particular, ω is holomorphic at the end
and g2ω has no residue at the origin—.

As a consequence of the above description, in a suitable conformal coor-
dinate (D∗(ε), z), the helicoidal type end can be represented by

g(z) = zk (1 + z h(z)) , ω =
−iβ
zk+1

dz, z ∈ D∗(ε),

where k is a positive integer and h is holomorphic in D(ε). This end can be
lifted to a simply-connected minimal surface ψ̃ in IR3, and so, the deformation
{ψ̃λ}λ>0 is well-defined. This deformation can be determined by the multi-
valued minimal surface defined on D∗(ε) via the Weierstrass representation
data

gλ(z) = λg(z) = λz
k (1 + zh(z)) , ωλ =

1

λ
ω = −iβ

λ

dz

zk+1
. (5)

Hence gλ and ωλ represent a helicoidal type end in IR
3/T with horizontal

limit tangent plane and slope β, ψλ : D
∗(ε) −→ IR3/T . In particular, all the

ψ̃λ’s are T -invariant—note that in general this is not a consequence of the
T -invariance of ψ̃, see lemma 3—.

We conclude easily from (5) that

ψλ(z) = φλ(z) +H(z, λ), (6)

where φλ : D
∗(ε) −→ IR3/T is a parametrization of an end of a fixed helicoid

with slope β and vertical limiting normal vector, andH(z, λ) is a finite-valued
smooth function on D(ε)×]0,∞[.

Now we will prove the following uniqueness theorem for the helicoid:
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Theorem 5 The only properly embedded minimal surface in IR3/T with
genus zero and a finite number of helicoidal ends is the helicoid.

Proof: Take a properly embedded minimal surface ψ : Σ −→ IR3/T and
let ψ̃ : Σ̃ −→ IR3 be the associated singly-periodic minimal surface in IR3,
where Σ = Σ̃/S and S is the holomorphic transformation on Σ̃ induced by T .
Assume that Σ is a finitely punctured sphere, Σ = IC −{p1, . . . , pr} and that
the ends of ψ are of helicoidal type. The embedding ψ is globally determined
by its Weierstrass data (g, ω), which also determine the embedding ψ̃. The
above description of helicoidal ends in terms of the Weierstrass representation
shows that ω is holomorphic on IC except at the ends pi where g(pi) = 0, where
it has a pole without residue. Symmetrically, g2ω has no residue at the ends
pi with g(pi) =∞ and is holomorphic otherwise. The genus zero hypothesis
implies that ω and g2ω are exact one-forms on Σ, and so on Σ̃. Hence the
flux of ψ̃ is vertical, and the deformation {ψ̃λ}λ>0 is well-defined. Our above
study of helicoidal type ends show that ψ̃λ is T -invariant, or in other words,
gλ and ωλ determine a minimal immersion ψλ : Σ −→ IR3/T with horizontal
helicoidal type ends. The following step is proving that the embeddedness is
an invariant property throughout the deformation:

Assertion 2 For each λ > 0, ψλ is a proper embedding.

Proof: Denote by B = {λ > 0 : ψλ is injective }. First note that the end
types and their slope do not depend on λ. So, if λ0 ∈ B, we know that two
distinct ends of ψλ0 have the same slopes up to sign, and from the maximum
principle at infinity [14] they are separated one from the other by a positive
vertical distance. This distance is given by a finite continuous function of λ,
as we can deduce from (6). So, ψλ is embedded for λ near λ0 and B is open.
Similarly, following the proof of assertion 1 but reasoning in IR3/T instead
of in IR3, we obtain that B is closed, and the assertion is proved.

As consequence of the above assertion, we conclude applying lemma 4
to the embedding ψ̃ that there are no points of Σ where the normal of ψ
is a vertical vector. So, the total winding number of the immersion, W (Σ),
which is defined as the sum of the winding numbers of the ends, is equal
to 2 deg(g)—recall that at each end, the winding number coincides with the
order of the zero or pole of the Gauss map g at this point—.
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On the other hand, the total curvature of ψ can be computed in terms of
the winding numbers of its annular ends: Theorem 4 in [13] let us write

−4π deg(g) = 2π (χ(Σ)−W (Σ)) ,

where χ(Σ) denote the Euler characteristic of Σ. So in our situation, we
have χ(Σ) = 2− r, where r is the number of ends of ψ. Therefore, the above
formula yields

−2 deg(g) = 2− r − 2 deg(g).

Hence, r = 2 and Toubiana’s theorem [18] insures that ψ is the helicoid.

Remark 4 The hypothesis “θ = 0” is essential; consider the one-parameter
family of examples obtained by Karcher in [8].
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