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Abstract In this paper we consider nonhomogeneous birth

and death processes (BDP) with periodic rates. Two impor-

tant parameters are studied, which are helpful to describe a

nonhomogeneous BDP X = X (t), t ≥ 0: the limiting mean
value (namely, the mean length of the queue at a given time t)
and the double mean (i.e. the mean length of the queue for the

whole duration of the BDP). We find conditions of existence

of the means and determine bounds for their values, involving

also the truncated BDP X N . Finally we present some exam-

ples where these bounds are used in order to approximate the

double mean.
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1. Introduction

Homogeneous and nonhomogeneous birth and death pro-

cesses have a great importance for many fields of ap-
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plied probability. Nonhomogeneous versions of the birth

and death process have an important role in queueing

theory.

It is extremely difficult to obtain general results for

arbitrary forms of the birth and death rates and therefore

we must content ourselves in obtaining various types of

approximations.

In the literature there exist some papers devoted to the

problem of approximating BDP (see [2] for diffusions

approximations and [6] and [8]). Estimates concerning

the distance between truncated and infinite models for

homogeneous BDP are presented in [9]. Some queueing

applications of periodic BDP are given in [7].

In the case of rates with periodic behavior we study here

two parameters, that is the limiting mean value and the “dou-

ble mean”.

We can interpret the first parameter as the mean value,

at arbitrary time t , of the number of customers queueing up

before some device (e.g. bancomat counter).

The second characteristic represents the mean number of

customers in the queue for the whole duration of the service.

Our approach is based on the method introduced by Gne-

denko and Makarov (see [3]) and successively worked out

by one of the authors in [10] and [13].

The method based on the application of the logarith-

mic norm of operators and the corresponding estimates

is dealt with in Daletsky and Krein (see [1]). An im-

portant aspect of the analysis is the choice of the suit-

able transformation of the reduced matrix of the process

rates.

This procedure in the simplest cases is accurately exam-

ined in [4] and its description in the general case of nonho-

mogeneous BDP and the related applications to the study of

queueing systems is presented in [5].
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2. Basic results

Let X = X (t), t ≥ 0 be a nonhomogeneous birth and death

process (BDP) on the state space E = (0, 1, 2, . . .) and with

birth rates λn = λn(t), t ≥ 0 and death rates μn = μn(t), n ∈
E . This means that

P{X (t + h) = j | X (t) = i}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi (t) · h + o(h, t, i), if j = i + 1

μi (t) · h + o(h, t, i), if j = i − 1

1 − (λi (t) + μi (t)) · h + o(h), if j = i

o(h, t, i), if |i − j | > 1

(2.1)

for h > 0 and with limh↓0
o(h,t,i)

h = 0 uniformly with respect

to i ∈ E . This condition plays an essential role in deriving

the Kolmogorov differential system in the space l1.

The nonstationarity of X depends on the fact that the rates

μi (t) andλi (t) are functions of time and depend on the current

size of the queue.

Let

pi j (s, t) = Pr{X (t) = j | X (s) = i}
for i, j ∈ E, 0 ≤ s ≤ t

be the transition probability function of the process X = X (t)
and

pi (t) = Pr{X (t) = i} for i ∈ E, t > 0

be the state probabilities.

We denote by p(t) = (p0(t), p1(t), p2(t), . . .)T , t > 0

the column vector of state probabilities and by A(t) =
{ai j (t), t ≥ 0} the matrix related to (2.1) where

ai j (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λi−1(t), if j = i − 1

μi+1(t), if j = i + 1

−(λi (t) + μi (t)), if j = i

0, if otherwise.

(2.2)

The probabilistic dynamics of the process is represented

by the forward Kolmogorov differential system:

dp
dt

= A(t)p, p = p(t), t ≥ 0. (2.3)

The Cauchy problem formed by (2.3) with the initial con-

ditions p(s) has the following solution

U(t, s) = {pi j (t, s)}∞i, j=0 for t > s,

where pi, j (t, s) = Pr{X (t) = j |X (s) = i.}.
Throughout the whole paper we use the l1 -norm for vec-

tors x that is ‖x‖1 = ∑
i∈E |xi | and

‖B‖ = sup
j∈E

∑
i∈E

|bi j | = sup
j∈E

‖b j‖1

where x = (x0, x1, . . .)
T and B = {bi j }∞i, j=0.

Let � = {x : x ≥ 0, ‖x‖1 = 1}. We shall restrict our-

selves to birth and death processes whose rates have the

following form:

λn(t) = νna(t), μn(t) = ηnb(t), t ≥ 0, n ∈ E, (2.4)

with the assumptions that the rates are bounded, i.e.

0 < ηn ≤ M, n > 0 and 0 ≤ νn ≤ L , n ≥ 0 (2.5)

and, obviously, η0 = 0.

We clearly assume that the functions a = a(t) and b =
b(t) are non-negative, 1-periodic and bounded, with bounds

a(t) ≤ a, b(t) ≤ b. (2.6)

Conditions (2.4)–(2.6) guarantee (see [1]) the bounded-

ness and integrability of the operator function A(t) in the

space of sequences �1, where

‖A(t)‖1 = 2 sup
i

(λi (t) + μi (t)) ≤ 2(La + Mb).

We remark that conditions (2.4)–(2.6) are not used in the

proofs of the results below. These conditions are introduced

with the purpose of guaranteeing the integrability of the op-

erator function A(t) and can be weakened. For example it is

possible to replace (2.4) either with the condition that A(t)
is itself integrable or with the alternative condition that the

rates are linear combinations of a finite number of integrable

functions.

In [1] it is shown that the Cauchy problem for linear dif-

ferential equations in Banach spaces with bounded and inte-

grable operator functions has unique solutions for arbitrary

initial conditions. This means that, under our assumptions,

the existence and uniqueness of the solution do not pose any

problem.

We shall study the following mean values

Ep(0){X (t)} =
∑
k∈E

E{X (t) | X (0) = k}pk(0), (2.7)

and the conditional mean value

E{X (t) | X (0) = k}. (2.8)
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For our further analysis we need the following quantities.

Let 1 = d−1 = d0 ≤ d1 ≤ · · · and define

αk(t) = λk(t) + μk+1(t) − dk+1

dk
λk+1(t)

− dk−1

dk
μk(t), k ≥ 0, (2.9)

and consequently

α(t) = inf
k≥0

αk(t), α∗ =
∫ 1

0

α(t) dt,

M0 = sup
|t−s|≤1

∫ t

s
α(u) du, M = eM0+α∗

, (2.10)

W = inf
k

∑k−1
i=0 di

k

We remark that our aim here is the evaluation of estimates

for the speed of convergence of the means. Therefore the

conditions appearing in the next Theorem are not necessary

but sufficient for the existence of the mean of the limiting

regime.

The results of next theorems are formulated in terms of

the auxiliary sequences di , i ≥ 1, which do not possess any

probabilistic meaning. A detailed analysis of their properties

is given in [4]. We note that they are a sort of counterpart of

the Lyapunov functions.

Theorem 1. Let a birth and death process with rates λk(t)
and μk(t), k ≥ 0 be given. Let us assume that there exists
a sequence {d j } such that the number α∗ defined above is
strictly positive.

We also assume that the numbers d j grow sufficiently fast
so that infk≥1

dk−1

k = ω > 0.
Under all these conditions there exists the limit

lim
t→∞ |E{X (t)|X (0) = k} − φ(t)| = 0

for all k and for some 1–periodic function φ(t).
We claim also that, for k = 0, the following upper bound

holds

|E{X (t) | X (0) = k} − φ(t)| ≤ aν0 M2

Wα∗ e−α∗t . (2.11)

Proof. Equation (2.3) in explicit form reads⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dp0

dt
dp1

dt

...
dpn

dt

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
−(λ0 + μ0) μ1 0 0 · · ·

λ0 −(λ1 + μ1) μ2 0 · · ·
0 λ1 −(λ2 + μ2) μ3 · · ·
...

...
...

. . . · · ·

⎞⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

...

pn

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.12)

By introducing (see [10–13]), p0(t) = 1 − ∑∞
i=1 pi (t), the

second scalar equation

dp1

dt
= λ0 p0 − (λ1 + μ1)p1 + μ2 p2,

becomes

dp1

dt
= λ0 − λ0

∞∑
i=1

pi − (λ1 + μ1)p1 + μ2 p2

so that the system (2.12) writes

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dp1

dt
dp2

dt

...
dpn

dt

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
−(λ0 + λ1 + μ1) μ2 − λ0 −λ0 −λ0 · · · · · ·

λ1 −(λ2 + μ2) μ3 0 0 · · ·
0 λ2 −(λ3 + μ3) μ4 0 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

...

pn

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝

λ0

0
...

0
...

⎞⎟⎟⎟⎟⎟⎟⎠ (2.13)
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or otherwise

dz(t)

dt
= B(t)z(t) + f(t). (2.14)

This is a linear nonhomogeneous differential system the so-

lution of which can be written as

z(t) = V (t, 0)z(0) +
∫ t

0

V (t, z)f(z) dz, (2.15)

where V (t, z) is the Cauchy operator of (2.14). The corre-

sponding theory is treated in detail in the book by Daletsky

and Krein. We furthermore remark that, if B does not depend

on t , then the Cauchy operator possesses the explicit simple

form V (t, s) = e(t−s)B .

There is the following simple relationship between pairs,

z(i) = z(i)(t), t ≥ 0, i = 1, 2, of solutions of (2.14) and pairs

of solutions of (2.3), p(i) = p(i)(t), t ≥ 0, i = 1, 2:∥∥p(1) − p(2)
∥∥

1

= ∣∣p(1)
0 − p(2)

0

∣∣ +
∑
i≥1

∣∣p(1)
i − p(2)

i

∣∣
=

∣∣∣∣∣1 −
∑
i≥1

p(1)
i −

(
1 −

∑
i≥1

p(2)
i

)∣∣∣∣∣
+ ∥∥z(1) − z(2)

∥∥
1

=
∣∣∣∣∣ ∑

i≥1

(
p(2)

i − p(1)
i

)∣∣∣∣∣
+ ∥∥z(1) − z(2)

∥∥
1

≤
∑
i≥1

∣∣p(2)
i − p(1)

i

∣∣
+ ∥∥z(1) − z(2)

∥∥
1

= 2
∥∥z(1) − z(2)

∥∥
1
, t ≥ 0.

Consequently,

‖z(1) − z(2)‖1 ≤ ‖p(1) − p(2)‖1 ≤ 2‖z(1) − z(2)‖1,

t ≥ 0, (2.16)

which will be used in the study of stability and ergodicity.

Consider the matrix

D =

⎛⎜⎜⎜⎜⎜⎝
d0 d0 d0 · · ·
0 d1 d1 · · ·
0 0 d2 · · ·
...

...
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ (2.17)

and the space of sequences

�1D = {zT = (p1, p2, . . .) : ‖z‖1D = ‖Dz‖1 < ∞}, (2.18)

as in [13].

We have

D−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d−1
0 −d−1

1 0
. . .

0 d−1
1 −d−1

2 0
. . .

. . . 0
. . . d−1

2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By applying this transformation to the matrix B(t) in (2.14),

we arrive at the matrix DB(t)D−1

DB(t)D−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ0 + μ1) d0 · d−1
1 · μ1 0 . . .

d1 · d−1
0 · λ1 −(λ1 + μ2) d1 · d−1

2 · μ2 0

0 d2 · d−1
1 · λ2

. . .
. . .

. . .

... 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.19)

We recall the definition of the logarithmic norm that was

proposed for finite-dimensional spaces by Lozinskij and gen-

eralized to Banach spaces by Daletsky and Krein, see for

instance [13].

Definition 1. Let B(t), t ≥ 0 be a one-parameter family of

bounded linear operators on a Banach space B and let I
denote the identity operator. For each t ≥ 0, the number

γ (B(t)) = lim
h→+0

‖I + h B(t)‖ − 1

h
(2.20)

is called the logarithmic norm of the operator B(t).

The logarithmic norm of the matrix B(t) = {bi j (t)}, t ≥ 0

corresponding to a linear operator on the vector space B
equipped with �1-norm, is

γ (B(t)) = sup
j

(
b j j (t) +

∑
i �= j

|bi j (t)|
)

, t ≥ 0. (2.21)

Let B(t) be an operator function corresponding to Eq. (2.13).

Then the logarithmic norm of the operator B(t) is related to
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the Cauchy operator V (t, s), 0 ≤ s ≤ t of the system

dx
dt

= B(t)x, t ≥ 0 (2.22)

by

γ (B(t)) = lim
h→+0

‖V (t + h, t)‖ − 1

h
, t ≥ 0. (2.23)

From the latter one can deduce the following bounds on the

B-norm of the Cauchy operator V (t, s), 0 ≤ s ≤ t :

e− ∫ t
s γ (−B(τ )) dτ≤ ‖V (t, s)‖ ≤ e

∫ t
s γ (B(τ )) dτ , 0 ≤ s ≤ t.

(2.24)

Moreover, for any solution x(t) ∈ B, t ≥ 0 of (2.22) we have

‖x(t)‖ ≥ e− ∫ t
s γ (−B(τ )) dτ‖x(s)‖. (2.25)

We will also make use of the fact that if B is a vector space

with norm �1 and all diagonal elements of B are non-negative

then, by (2.21)

γ (B(t)) = sup
j

∑
i

bi j (t), t ≥ 0,

and, a fortiori, for any solution x(t), t ≥ 0 of (2.22), s.t.

x(s) ≥ 0, we have

‖x(t)‖ ≥ e
∫ t

s inf j
∑

i bi j (τ ) dτ‖x(s)‖, 0 ≤ s ≤ t. (2.26)

If B is endowed with norm �1D , from (2.24) we have that

‖V (t, s)‖1D ≤ exp

{ ∫ t

s
γ (B(τ ))�1D dτ

}
(2.27)

and, by (2.26)

γ (B(t))�1D = γ (DB(t)D−1) = − inf
k

αk(t) = −α(t). (2.28)

In view of (2.26) and having in mind (2.28) we obtain the

following inequality∥∥p(1)(t) − p(2)(t)
∥∥

1D

≤ e− ∫ t
s α(u)du

∥∥p(1)(s) − p(2)(s)
∥∥

1D, 0 ≤ s ≤ t,

(2.29)

for all p(i)(s) ∈ �1D, i = 1, 2. Now, periodicity of α(t) and

estimate (2.29) imply the exponential stability of Eq. (2.14)

and the existence of a 1-periodic solution of this equation

q(t) ∈ �1D . Hence, the respective π(t) = (1−∑
i≥1 qi (t)

q(t)
) ∈ �1D

represents the limiting 1-periodic regime of X (t), where X (t)
is the BDP considered.

Let �1E be the space of sequences

�1E =
{

z = (p1, p2, . . .)
T : ‖z‖1E =

∑
n|pn|< ∞

}
.

(2.30)

We have for any vector z = (p1, p2, . . .)
T ∈ l1D the fol-

lowing bound:

‖z‖1E =
∑
n≥1

n|pn| =
∑
n≥1

n

dn−1

dn−1|pn| ≤ ω−1
∑
n≥1

dn−1|pn|

= ω−1
∑
n≥1

dn−1

∣∣∣∣∣ ∑
i≥n

pi −
∑

i≥n+1

pi

∣∣∣∣∣
≤ ω−1

∑
n≥1

dn−1

(∣∣∣∣∣ ∑
i≥n

pi

∣∣∣∣∣ +
∣∣∣∣∣ ∑

i≥n+1

pi

∣∣∣∣∣
)

≤ 2ω−1
∑
n≥0

dn

∣∣∣∣∣ ∑
i≥n

pi

∣∣∣∣∣ ≤ 2ω−1‖z‖1D. (2.31)

Therefore, as q(t) ∈ �1D , there exists the limit 1-periodic

mean φ(t) = ∑
nπn(t) < ∞.

Let p(0) = (p0(0), p1(0), . . . , pn(0), . . .)T = e0 = (1, 0,

0, . . .)T , and put z(0) = (π1(0) − p1(0), . . .)T . Then z(0) ≥
0, and if v(t) = Dz(t), then one has v(0) ≥ 0. We have that

v(t) satisfies the homogeneous differential system

dv
dt

= DB(t)D−1v, t ≥ 0. (2.32)

All non-diagonal elements of the matrix DB(t)D−1 are non-

negative for all t ≥ 0 according to (2.19). Then v(t) ≥ 0 for

all t ≥ 0.

Therefore,
∑

i≥k zi (t) ≥ 0 for any t ≥ 0 and any k. Now,

the following estimate holds:

‖z‖1D =
∞∑

k=0

dk

∑
i≥k+1

pi =
∞∑

i=1

i pi

∑i−1
k=0 dk

i

≥ inf
i≥1

∑i−1
k=0 dk

i

∞∑
h=1

h ph = W‖z‖1E . (2.33)

Then, by (2.29) and (2.33) we obtain

|E{X (t)|X (0) = 0} − φ(t)|
≤ ‖z(t)‖1E ≤ W−1‖π(t) − p(t)‖1D = W−1‖z(t)‖1D

Springer



144 Queueing Syst (2006) 52: 139–151

≤ W−1 exp

(
−

∫ t

0

α(s) ds

)
‖z(0)‖1D

= W−1exp

(
−

∫ t

0

α(s) ds

)
‖π(0) − p(0)‖1D. (2.34)

By writing∫ t

0

α(s) ds =
∫ �t

0

α(s) ds +
∫ t

�t
α(s) ds (by periodicity)

= �t
∫ 1

0

α(s) ds +
∫ t

�t
α(s) ds

= �tα∗ +
∫ t

�t
α(s) ds = α∗(t − t + �t)

+
∫ t

�t
α(s) ds (2.35)

we get∣∣∣∣∣
∫ t

0

α(s) ds − α∗t

∣∣∣∣∣ =
∣∣∣∣∣
∫ t

�t
α(s) ds − α∗(t − �t)

∣∣∣∣∣
≤ α∗|t − �t| + sup

z: |t−z|≤1

∫ t

z
α(s) ds ≤ M0 + α∗. (2.36)

From the above inequality we have

−α∗ − M0 + α∗t ≤
∫ t

0

α(s) ds ≤ α∗t + α∗ + M0,

and

−
∫ t

0

α(s) ds ≤ −α∗t + α∗ + M0.

We have finally the inequality

exp

(
−

∫ t

0

α(s) ds

)
≤ e−α∗t eα∗+M0 = Me−α∗t . (2.37)

By taking into account that p(0) = (1, 0, 0, . . .)T and the

form of the 1D-norm, where only elements of index equal or

larger than 1 appear, we have that

‖π(0) − p(0)‖1D = ‖π(0)‖1D ≤ lim sup
t→∞

‖π(t)‖1D. (2.38)

Moreover, by (2.15) we can write

‖π (t)‖1D = ‖q(t)‖1D ≤ ‖V (t, 0) · q(0)‖1D

+
∥∥∥∥∥

∫ t

0

V (t, τ )f(τ )dτ

∥∥∥∥∥
1D

≤ ‖q(0)‖1D‖V (t, 0)‖1D

+
∫ t

0

‖Df(τ )‖1‖V (t, τ )‖1Ddτ by (2.27)

≤ ‖π (0)‖1De
∫ t

0 γ (B(s))�1D ds

+ d0aν0

∫ t

0

e
∫ t
τ

γ (B(u))�1D dudτ by (2.28)

≤ ‖π (0)‖1De− ∫ t
0 α(s)ds + d0aν0

∫ t

0

e− ∫ t
τ

α(u)dudτ

≤ Me−α∗t‖π (0)‖1D + Maν0

∫ t

0

e−α∗(t−τ )dτ,

(2.39)

because of (2.37).

Passing to the limit as t → ∞ we get

lim sup
t→∞

‖π(t)‖1D ≤ Maν0

α∗ . (2.40)

Finally using (2.34), (2.37), (2.38) and (2.40), we obtain

(2.11).

We now consider the family of truncated BDPs X N =
X N (t), t > 0 on the state space EN = {0, 1, 2, . . . , N },
where birth rates are λn(t), n ∈ EN−1 and death rates μn(t),
n ∈ EN (and with intensity matrix AN ).

The truncated process has the vector of probabilities gov-

erned by the forward Kolmogorov differential system

dpN

dt
= AN (t)pN . (2.41)

We will identify below the finite vector with entries

(a1, . . . , aN ) and the infinite vector with the same first N
coordinates and the others equal to zero. The same identifi-

cation will be assumed also for the rate matrix AN .

Theorem 2. Assume there exists a sequence {di } such that
α∗ > 0. Then for any t ≥ 0

|E{X (t)|X (0) = 0} − E{X N (t)|X N (0) = 0}|

≤ 3tMaν0(La + Mb)

WN α∗ , (2.42)

where

WN = inf
k≥0

∑k
i=0 dN−1+i

N + k
. (2.43)
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Proof: Write the system (2.3) in the form

dp
dt

= AN (t)p + (A(t) − AN (t))p. (2.44)

Then

p(t) = UN (t, 0)p(0) +
∫ t

0

UN (t, τ )(A(τ )

−AN (τ ))p(τ ) dτ. (2.45)

Hence

|E{X (t)|X (0) = 0} − E{X N (t)|X N (0) = 0}|

= ‖p(t) − pN (t)‖1E ≤
∫ t

0

‖UN (t, τ )(A(τ )

−AN (τ ))p(τ )‖1E dτ. (2.46)

We have that

UN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uN
00 . . uN

0N 0 0 · · ·
uN

10 . . uN
1N 0 0 · · ·

· · ·
uN

N0 . . uN
N N 0 0 · · ·

0 . . 0 1 0 · · ·
0 . . 0 0 1 · · ·

· · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.47)

and

AN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ0 μ1 0 · · · 0 0 0 · · ·
λ0 −(λ1 + μ1) μ2 · · · 0 0 0 · · ·
· · ·
· · ·
0 0 0 · · · λN−1 −μN 0 · · ·
0 0 · · · 0 0

. . .

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.48)

Then

(A − AN )p = (0, . . . , 0, −λN pN + μN+1 pN+1, λN pN

−(λN+1 + μN+1)pN+1 + μN+2 pN+2, . . .)
T ,

(2.49)

and

UN (A − AN )p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uN
0N (−λN pN + μN+1 pN+1)

uN
1N (−λN pN + μN+1 pN+1)

...

uN
N N (−λN pN + μN+1 pN+1)

λN pN − (λN+1 + μN+1)pN+1 + μN+2 pN+2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.50)

Inequalities uN
i j (t, τ ) ≥ 0 for all i, j, t, τ and equalities∑

i uN
i j (t, τ ) = 1 for all j, t, τ imply the bound

‖UN (A − AN )p‖1E = |−λN pN + μN+1 pN+1|
∑
n≤N

nuN
nN

+
∑
k≥N

(k + 1)|λk pk −(λk+1+μk+1)pk+1+μk+2 pk+2|

≤ (LapN + MbpN+1)

×
(

N−1∑
k=0

(k − (k + 1))
k∑

i=0

uN
i N + N

N∑
i=0

uN
i N

)
+

∑
k≥N

(k + 1)(La(pk + pk+1)

+Mb(pk+1 + pk+2))

≤ La(N pN + (N + 1)(pN + pN+1) + (N + 2)(pN+1

+pN+2) + · · ·) + Mb(N pN+1 + (N + 1)(pN+1

+pN+2) + (N + 2)(pN+2 + pN+3) + · · ·) ≤
≤ (La + Mb)

∑
k≥N

(2k + 1)pk ≤ 3(La + Mb)
∑
k≥N

kpk .

(2.51)

By (2.39) (with π (t) replaced by z(t)) and assuming that

z(0) = 0 we get

‖z(t)‖1D ≤ Maν0

α∗ . (2.52)

On the other hand,

dN−1(pN + pN+1 + . . .) + dN (pN+1 + pN+2 + . . .) + . . .

= pN dN−1 + pN+1(dN−1 + dN ) + pN+2(dN−1

+ dN + dN+1) + · · ·
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= dN−1

N
N pN + dN−1 + dN

N + 1
(N + 1)pN+1

+ · · · ≥ WN

∑
k≥N

kpk . (2.53)

Then

∑
k≥N

kpk ≤ W−1
N

∑
k≥N

dk−1

( ∑
i≥k

pi

)
≤ W−1

N ‖z‖1D

≤ Maν0

WN α∗ . (2.54)

Finally from (2.46), (2.51), (2.52) and (2.54) we obtain

(2.42). �

As a consequence of Theorem 1 and Theorem 2 we obtain

the following statement.

Corollary 1. Let {di } be a sequence such that α∗ > 0. Then
for any t ≥ 0

|φ(t) − E{X N (t)|X (0) = 0.}| ≤ M2aν0

Wα∗ e−α∗t

+3tMaν0(La + Mb)

WN α∗ . (2.55)

Remark 1. Here the first expression of the right-hand side

of (2.55) tends to zero as t → ∞, and the second expres-

sion tends to zero as N → ∞ (for any fixed t , provided that

WN → ∞ as N → ∞). Hence, Theorem 2 gives us a tool

for calculating the limiting mean, as shown in the examples

below.

Let now introduce the following important characteristic

of the nonhomogeneous BDP.

Definition 2. The double mean of the BDP X = X (t), t ≥ 0

is defined by

E = lim
t→∞

1

t

∫ t

0

E{X (u)|X (0) = k} du, (2.56)

provided that the limit exists and does not depend on k.

Theorem 3. Let {di } be a sequence such that α∗ > 0 and
assume also that infk≥1

dk−1

k = ω > 0. Then the double mean
of the BDP X exists and the following inequalities hold:∣∣∣∣∣E −

∫ t+1

t
E{X (u)|X (0) = 0} du

∣∣∣∣∣ ≤ M2aν0

Wα∗ e−α∗t , (2.57)

and∣∣∣∣∣E −
∫ t+1

t
E{X N (u)|X N (0) = 0} du

∣∣∣∣∣ ≤ M2aν0

Wα∗ e−α∗t

+ 3(t + 1)Maν0(La + Mb)

WN α∗ . (2.58)

Proof: The existence of the double mean follows from

Theorem 1 which gives the bound∣∣∣∣∣1

t

∫ t

0

(E{X (u)|X (0) = 0} − φ(u)) du

∣∣∣∣∣ ≤ M2aν0

tWα∗2
. (2.59)

Convergence to zero of (2.59) and 1-periodicity of φ, im-

ply that

E = lim
t→∞

1

t

∫ t

0

φ(u) du =
∫ 1

0

φ(u) du. (2.60)

By applying again Theorem 1, we obtain∣∣∣∣∣E −
∫ t+1

t
E{X (u)|X (0) = 0} du

∣∣∣∣∣ =
∣∣∣∣∣
∫ t+1

t
(φ(u)

−E{X (u)|X (0) = 0}) du

∣∣∣∣∣ ≤ M2aν0

Wα∗ e−α∗t . (2.61)

Corollary 1 gives (2.58):∣∣∣∣∣E −
∫ t+1

t
E{X N (u)|X N (0) = 0} du

∣∣∣∣∣
=

∣∣∣∣∣
∫ t+1

t
(φ(u) − E{X N (u)|X N (0) = 0}) du

∣∣∣∣∣
≤ M2aν0

Wα∗ e−α∗t + 3(t + 1)Maν0(La + Mb)

WN α∗ . (2.62)

�

Remark 2. If the basic functions a(t), b(t) are T -periodic

with T �= 1, then all the bounds of the theorems above must

be changed according to

α∗ = 1

T

∫ T

0

α(t) dt, M0 = sup
|t−s|≤T

∫ t

s
α(u) du,

M = eM0+α∗T , (2.63)

in place of (2.11).
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3. Some examples

We consider the simplest nonhomogeneous queueing sys-

tems, with periodic rates.

We show how the limiting mean length of the queue (a pe-

riodic function of time t) is obtained. The same construction

for the double mean is also presented.

In our examples we choose some values of the period

T corresponding to different situations: the case T = 1 is

related to the standard situation examined above, the case

of a short period T = 0.01 corresponds to rapidly vary-

ing processes and the case of a long period (T = 100)

approximates the situation where the intensity of arrivals

of customers and the duration of services significantly

differ.

It is interesting to remark that the behaviour of the

limiting averages in the models M(t)/M(t)/1 and M(t)/
M(t)/2 is simpler for small and intermediate values of the

period.

In these cases only negligible oscillations of the mean

values are perceived during the period.

For large values of T in the arrival and service rates the

oscillations in the limiting mean values are instead extremely

significant.

The choice of the weights di considerably influences the

different estimates of the speed of convergence.

The optimal choice of the sequence {di } in the general case

is a difficult problem which will be examined in a separate

paper.

The program used for the calculation of the limiting aver-

ages and the limiting mean was written in Delphi 6, while the

calculations have been carried out with a processor Celeron

2400.

Example 1. (Queue-length process for the M(t)/M(t)/1

queue). We present different examples of periodic func-

tions a(t) and b(t). (i) a(t) = 1 + sin 2π t and b(t) =
4 + 2 cos 2π t (period T = 1). We have νn = ηn = 1,

L = M = 1 and a = 2, b = 6. Set dk = 2k, k ≥ 0.

Then α(t) = 1 − sin 2π t + cos 2π t , α∗ = ∫ 1

0
α(t) dt = 1,

M0 = sup|t−s|≤1

∫ t
s α(u) du = 1 + 1

2π
and M = eM0+α∗ =

e2+ 1
2π < 10. Moreover, W = infk

∑k−1
i=0 di

k = 1 and WN =
infk≥0

∑k
i=0 2N−1+i

N+k = 2N−1

N .

Hence by Theorem 1, Theorem 2 and Corollary 1, we have

that

|E{X (t)|X (0) = 0} − φ(t)| ≤ 200e−t

|E{X (t)|X (0) = 0} − E{X N (t)|X N (0) = 0}| ≤ 480Nt

2N−1

and

|φ(t) − E{X N (t)|X N (0) = 0}| ≤ 200e−t + 480Nt

2N−1
.

Theorem 3 implies that |E − ∫ t+1

t E{X (u)|X (0) = 0} du| ≤
200e−t , and |E − ∫ t+1

t E{X N (u)|X N (0) = 0} du| ≤ 200

e−t + 480N (t+1)
2N−1 .

For t = 24, N = 50, the above inequality writes |E −
0.38305460| ≤ 10−8.

In figure 1 the mean E{X N (t)|X N (0) = 0} when t ranges

from 24 to 25 is drawn.

(ii) a(t) = 1 + sin 200π t , b(t) = 4 + 2 cos 200π t (period

T = 0.01). νn = ηn = 1 = L = M , a = 2 and b = 6. For

dk = 2k, k ≥ 0, α(t) = 1 − sin 200π t + 2 cos 200π t ; α∗ =
100

∫ 0.01

0
α(t) dt = 1, M0 = sup|t−s|≤0.01

∫ t
s α(u) du = 0.01

+ 1
200π

and M = eM0+T α∗ = e0.02+ 1
200π < 1.1. W = infk∑k−1

i=0 di

k = 1 and WN = infk≥0

∑k
i=0 2N−1+i

N+k = 2N−1

N .

Fig. 1 E{X N (t)|X N (0) = 0},
for t ∈ [24, 25].
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Fig. 2 E{X N (t)|X N (0) = 0},
for t ∈ [20, 20.01].

Hence

|E{X (t)|X (0) = 0} − φ(t)| ≤ 3e−t |E{X (t)|X (0) = 0}

−E{X N (t)|X N (0) = 0}| ≤ 53Nt

2N−1
,∣∣∣∣∣E − 100

∫ t+0.01

t
E{X N (u)|X N (0) = 0} du

∣∣∣∣∣ ≤ 3e−t

+ 53N (t + 1)

2N−1
.

Then, for t = 20, N = 45, we have that

|E − 0.33354528| ≤ 10−8

In figure 2 the mean E{X N (t)|X N (0) = 0}, for t belonging

to the interval [20, 20.01] is pictured.

(iii) a(t) = 1 + sin 0.02π t , b(t) = 4 + 2 cos 0.02π t .
With the same choice for {dk} we get the estimates

|E{X (t)|X (0) = 0} − φ(t)| ≤ 2e432−t , |E{X (t)|X (0) = 0}
− E{X N (t)|X N (0) = 0}| ≤ 48·e216 Nt

2N−1 , and |E − 0.01
∫ t+100

t

E{X N (u)|X N (0) = 0} du| ≤ 2e432−t + 48·e216 N (t+1)
2N−1 .

For t = 455, N = 365, the above yields

|E − 0.60725144| ≤ 10−8.

Figure 3 represents the mean E{X N (t)|X N (0) = 0} for

t ∈ [455, 555].

Example 2. (Queue-length process for the M(t)/M(t)/2

queue). We consider now the same periodic functions of Ex-

ample 1.

(i) a(t) = 1 + sin 2π t , b(t) = 4 + 2 cos 2π t (1-periodic

functions). In this case we have νn = η1 = 1 (n ≥ 1), ηn =

Fig. 3 E{X N (t)|X N (0) = 0},
for t ∈ [455, 555].
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Fig. 4 E{X N (t)|X N (0) = 0},
for t ∈ [11, 12].

2 (n ≥ 2), hence L = 1, M = 2 and a = 2, b = 6. If

dk = 2k, k ≥ 0, then α(t) = 3 − sin 2π t + 2 cos 2π t , α∗ =∫ 1

0
α(t) dt = 3, M0 = sup|t−s|≤1

∫ t
s α(u) du = 3 + 1

2π
, M =

eM0+α∗ = e6+ 1
2π < 500, W = infk

∑k−1
i=0 di

k = 1 and WN =
infk≥0

∑k
i=0 2N−1+i

N+k = 2N−1

N . Hence by the results proved above

we have that

|E{X (t)|X (0) = 0} − φ(t)| ≤ 2 · 105e−3t

|E{X (t)|X (0) = 0} − E{X N (t)|X N (0) = 0}| ≤ 3 · 104 Nt

4 · 2N−2
,

|φ(t) − E{X N (t)|X N (0) = 0}| ≤ 2 · 105e−3t + 3 · 104 Nt

4 · 2N−2
,

and, by Theorem 3∣∣∣∣∣E −
∫ t+1

t
E{X (u)|X (0) = 0} du| ≤ 2 · 105e−3t ,

∣∣∣∣∣E −
∫ t+1

t
E{X N (u)|X N (0) = 0} du

∣∣∣∣∣ ≤ 2 · 105e−3t

+3 · 104 N (t + 1)

4 · 2N−2
,

Put t = 11, N = 54. The last bound then becomes

|E − 0.29456925| ≤ 10−8. In figure 4 the function

E{X N (t)|X N (0) = 0} for t inside [11, 12] is drawn.

(ii) a(t) = 1 + sin 200π t , b(t) = 4 + 2 cos 200π t . Then

νn = η1 = 1 (n ≥ 1), ηn = 2 (n ≥ 2), L = 1, M = 2, a =
2, b = 6. For dk = 2k, k ≥ 1, we obtain the following

bounds

|E{X (t)|X (0) = 0} − φ(t)| ≤ 6e−3t ,

|E{X (t)|X (0) = 0} − E{X N (t)|X N (0) = 0}| ≤ 72Nt

2N−1
,

∣∣∣∣∣E − 100

∫ t+0.01

t
E{X N (u)|X N (0) = 0} du| ≤ 6e−3t

+72N (t + 1)

2N−1
.

Set t = 7, N = 44. Then the last inequality becomes

|E − 0.25434930| ≤ 10−8

Figure 5 shows the mean E{X N (t)|X N (0) = 0} in the in-

terval [7, 7.01].

(iii) a(t) = 1 + sin 0.02π t , b(t) = 4 + 2 cos 0.02π t (period

T = 100). In this case we obtain (for the same sequence

dk = 2k) the bounds:

|E{X (t)|X (0) = 0} − φ(t)| ≤ e1232−3t ,

|E{X (t)|X (0) = 0} − E{X N (t)|X N (0) = 0}|

≤ 40Nte616

2N−1
,∣∣∣∣∣E − 0.01

∫ t+100

t
E{X N (u)|X N (0) = 0} du

∣∣∣∣∣ ≤ e1232−3t

+40N (t + 1)e616

2N−1
,

which, for t = 418 and N = 945 yields

|E − 0.31032003| ≤ 10−8.
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Fig. 5 E{X N (t)|X N (0) = 0},
for t ∈ [7, 7.01].

Fig. 6 E{X N (t)|X N (0) = 0},
for t ∈ [418, 518].

The function E{X N (t)|X N (0) = 0}, for t ∈ [418, 518], is

represented in figure 6.
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d’une chaîne de Markov stochastiquement monotone, Stoch. Proc.
Appl. 56(1) (1995) 137–149.

Springer



Queueing Syst (2006) 52: 139–151 151

10. A.I. Zeifman, Stability for continuous-time nonhomogeneous
Markov chains, Lect. Notes Mathem. 1155 (1985) 401–414.

11. A.I. Zeifman, Truncation error in a birth and death system,
U.S.S.R. Comput. Math. and Math. Phys. 28(6) (1988) 210–
211.

12. A.I. Zeifman, On the estimation of probabilities for birth and death
processes, J. Appl. Probab. 32 (1995) 623–634.

13. A.I. Zeifman, Upper and lower bounds on the rate of convergence
for nonhomogeneous birth and death processes, Stoch. Proc. Appl.
59 (1995) 157–173.

Springer


