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Many useftil descriptions of stochastic models can be obtained from functional limit

theorems (invariance principles or weak convergence theorems for probability meastires on

function ŝpaces). These descriptions typically come from standard functional limit theorems

via the o^ntinuous mapping theorem. This paper facilitates applications of the continuous

mapping theorem by determining when several important ftmctions and sequences of func-

tions preserve convergence. The functions considered are composition, addition, composition

plus addition, multiplication, supremtun, reflecting barrier, first passage time and time

reversal. These functions provide means for proving new functional limit theorems from

previous ones. These functions are useful, for example, to establish the stability or continuity

of queues and other stochastic models.

1. Introduction. Stochastic processes of interest in operations research models
such as queue length processes can often be represented as functions of more basic
stochastic processes such as random walks and renewal processes. Consequently, limit
theorems for sequences of stochastic processes in operations research models can
often be obtained from existing limit theorems for the more basic processes by
showing that the coimecting functions preserve convergence. This method for proving
limit theorems is described in Billingsley (1968) and is well known. The purpose of
this paper is to investigate several functions which frequently arise in operations
research models. The functions considered are composition, addition, composition
plus addition, multiplication, supremum, reflecting barrier, first passage time and time
reversal. We find general conditions under which these functions preserve conver-
gence. For example, suppose X„ = {^^(O, t > 0} and Y^ = (Y^it), t > 0} are
stochastic processes which converge jointly in distribution as «-»oo. Under what
conditions does their sum (A', -I- Y^) = {X„it) + Y^it), t > 0} also converge as n -^ oo?
If by "convergence" we mean weak convergence of random elements of the function
space D[0, oo) with Skorohod's (1956) 7, topology as described in Billingsley (1968)
and Lindvall (1973), then the appropriate connecting function is addition mapping
D [0, oo) X Z) [0, oo) into D [0, oo). Addition is known to preserve convergence when
both limit processes have continuous paths w.p.l., but not in general; see Billingsley
(1968, Problem 3, p. 123). We determine sufficient conditions for addition to preserve
convergence. For example, it suffices for the two limit processes to be independent
with one being continuous in probability; see §4.

While our interest here is in stochastic limit theorems, we rarely mention probabil-
ity measures or stochastic processes in this paper. This is because we can apply the
continuous mapping theorem to translate the question of preserving stochastic con-
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vergence to the question of preserving deterministic convergence on the underlying
sample space. Suppose X„, n > 1, and X are random variables with values in a
separable metric space and/„, n > \, and/ are Borel measurable functions mapping
this separable metric space into another.

CONTINUOUS MAPPING THEOREM (CMT).

(i) If X^-^X and f is continuous almost surely with respect to the distribution of X,

(ii) If X^^X and f„(x„)-*fix) for ail x G A and [x„} with x„-^x for some A with
PiXGA)=l,thenf„iX„)-^f{X).

The mode of convergence above has not been specified because the CMT holds for
convergence w.p.l., convergence in probability, and relative compactness as well as
the more familiar convergence in distribution (weak convergence) covered by
Theorems 5.1 and 5.5 in Billingsley (1968). For relative compactness, with a slight
abuse of notation, X^-^X means that w.p.l. every subsequence of {X„} has a
convergent subsequence and its set of limit points is the set X. These four modes of
convergence are used in the classical and functional strong laws of large numbers,
weak laws of large numbers, laws of the iterated logarithm and central limit laws,
respectively.

Since the CMT is so important, we briefly discuss its proof and interpretation.
There are several ways to prove the CMT associated with each mode of convergence,
but there is one way which we believe helps the understanding. The revealing proof in
each case is to represent the mode of convergence in terms of w.p.l. convergence and
then apply the CMT associated with w.p.l. convergence. Since the CMT associated
with w.p.l. convergence is obvious, the issue for each mode is the representation in
terms of w.p.l. convergence. For convergence in distribution, the vehicle is Skorohod's
(1956, §3) representation theorem; p. 7 of Billingsley (1971), Dudley (1%8), Wichura
(1970) and references there. Let => denote both weak convergence of probability
measures and weak convergence (convergence in distribution) of random variables.
Let ~ denote equality in distribution. As before, let the random variables take values
in a separable metric space.

SKOROHOD REPRESENTATION THEOREM. / / X^ => X, then there exists a probability
space supporting random variables Y^, n > 1, and Y such that >'„ ~ X„ for ali n, Y'^ X
and Y^-^Yw.p.l.

It is easy to apply the Skorohod Representation Theorem to prove the CMT for
weak convergence. Consider form (ii) of the CMT. If X^=>X, the representation
theorem gives Y^-->-Y w.p.l. with Y„'^X„,n>\, and Y~X. The obvious w.p.l. CMT
gives/n(y^)-»/(y) w.p.l. under the specified conditions. As a consequence, f^iYJ

Since Y^~X^ and Y~ X, f„iY„)~f„iX„) and / (y )~ / (X) . Hence,/.(^TJ
f too. A similar argument applies to convergence in probability becaxise a

sequence {X„) converges in probability to A" if and only if every subsequence of {X^)
has a further subsequence converging w.p.l. to X; Theorem 4.4 of Tucker (1967). The
theorem in Tucker (1967) is for real-valued random variables, but it extends easily to
separable metric spaces because X„-*X w.p.l. (in probability) if and only if diX^, X)
-*0 w.p.l. (in probability), where d is the metric. This means that these modes of
convergence are characterized by the convergence of associated real-valued random
variables. Finally, relative compactness by definition involves w.p.l. convergence.

The CMT obviously operates with greater force when the converging random
variables X„ and the limit X have values in a general space such as a function space.
Then X^ and X are stochastic processes and many random quantities of interest can
be represented as a measurable functions which are continuous almost surely with
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respect to typical limit processes. It is for precisely this reason that much attention in
recent years has been devoted to proving functional limit theorems, invariance
principles or stochastic limit theorems in function space settings. One of the function
spaces most frequently used is D, the space of all right-continuous functions on a
subinterval of the real hne which have hmits from the left, endowed with Skorohod's
(1956) J^ topology, chapter 3 of Billingsley (1968) and Lindvall (1973). There are now
many results of the form X„-^X in D. With these results in hand and many more
forthcoming, it is natural to focus on the other hypotheses in the CMT. For useful
functions/„, n > I, and/on D or D x D, it is natural to ask when/is continuous and
when f„ix„)^>fix) for all A:, -^ x. This paper addresses this question. The results are of
the form: if x is restricted to a particular subset of D or D x D, then f^ix^)^fix)
whenever x^-^x. In stochastic applications it often requires a little work to identify
the appropriate connecting function. The technique is illustrated at the end of §5.
Since the range of the functions we consider is also D, functions are mapped into
functions, stochastic processes are mapped into stochastic processes, and functional
limit theorems are mapped into functional limit theorems. Limits for real-valued
random variables, which are often desired in applications, can be obtained later from
the CMT using projections or other real-valued functions.

All the functions here have been used to prove limit theorems for queues; see
Iglehart and Whitt (1970), Kennedy (1972) and Whitt (1974, 1974a). The earlier
results for queues plus various extensions follow easily from the present paper. The
results here are especially useful for establishing continuity or stability of stochastic
models because then the limiting stochastic processes often do not have continuous
sample paths, cf. Kennedy (1972, 1978), Whitt (1974a) and Zolotarev (1978). In fact,
many of the functions here are treated in Billingsley (1968, §§5, 11, 17) in conjunction
with limit processes such as Brownian motion which have continuous sample paths
w.p.l. For other applications in which limit processes do not necessarily have con-
tinuous paths and the generality here is important, see Bingham (1973), de Haan and
Resnick (1978), Goldie (1977), Lindberger (1978), Serfozo (1973) and Wichura (1974).

The function space D here is slightly more general than in chapter 3 of Billingsley
(1968) because the domain of the functions is allowed to be an arbitrary subinterval of
the real line instead of a compact subinterval and the range is allowed to be an
arbitrary complete separable metric space instead of the real line. The minor gap
between this setting and chapter 3 of Billingsley (1968) is filled in §2. The approach
here is different from that of Stone (1963) or Lindvall (1973) so should be of
independent interest.

For the most part, the topology on D is Skorohod's (1956) / , topology, as in chapter
3 of Billingsley (1%8), but his A/, topology is also used in the study of suprema and
first passage times in §§5 and 6. It turns out that the essential properties of the / ,
topology carry over to the M, topology, but discussion of the Af, topology is
minimized in this paper. The Af, topology is introduced only when results unavailable
(J,) are available (A/,). However, the investigation of the functions here has been
extended to all the other Skorohod (1956) topologies by Pomarede (1976-1976a).

Previous versions. This paper, a revision of several shorter papers written in
1970-1971, has been distributed since 1973 as a Yale University Technical Report
entitled, "Continuity of Several Functions on the Function Space D." It is referred to
this way in several of the references.

2. The function space D with Skorohod's / , topcriogy. The purpose of this section
is to generalize the function space D[0, 1] discussed in chapter 3 of Billingsley (1968)
by allowing the domain of functions to be an arbitrary subinterval of the real line and
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the range to be an arbitrary complete separable metric space. The results are natural
extensions of the results obtained for D[0, oo) by Stone (1963) and Lindvall (1973),
but the methods here are different. Of particular interest is the simple proof of the
theorem characterizing weak convergence of probability measures on the function
space in terms of weak convergence of image measures associated with restrictions to
compact subintervals (Theorem 2.8). We begin by providing preliminary facts about
the topology and the Borel a-field.

Let r be a subinterval of the real line. The endpoints of T can be finite or infinite
and, if finite, open or closed. Let 5 be a CSMS (complete separable metric space) with
metric m. Let D = DiT)^ DiT, S) be the set of all right-continuous S-valued
functions on T with limits from the left. Let D have Skorohod's (1956) J, topology or
its natural extension to noncompact intervals: a net {x^} converges to x in DiT) if
the restrictions of x^ converge to the restriction of x in Di[a, b]) for each compact
interval [a, b]CT such that a and b are continuity points of x or endpoints of T. This
mode of convergence agrees with previous extensions of the J^ topology to T = [0, oo)
by Stone (1963) and Lindvall (1973). However, this is by no means the only mode of
convergence worth considering. It is often desirable to require more at open boundary
points, but we do not here. (Continuity issues associated with a stronger topology
have recently been investigated by Bauer (1978).)

For T = [a, b], let p be the uniform metric on Z)([a, b]), e the identity map on T, A
the set of increasing homeomorphisms of T. ° the composition map, and a\/ b
= max{a, b]. If

d{x,y) = inf {p(X, e)\yp(x,y ° X)), (2.1)
A £ A

where p is regarded as the uniform metric on both DiT, T) and DiT, S), then d is the
usual incomplete metric inducing the 7, topology on Di[a, b]); p. I l l of Billingsley
(1968). It is sometimes convenient to have another representation for d which shows
that there is considerable freedom in the choice of X. For n > I, let &„ be the
c o l l e c t i o n s o f a l l s e t s A = [tj G T : a = t Q < • • • < t„ = b ) . F o r A ^ , A j G &„ a n d x ^ ,

X2 G D, let wiA^, Aj) = max.{\ty - ?2,|,y = 0, 1, . . . , n) and

w(x,,X2;^, , >l2)= max sup {m[x^{s^), X2is2)]].

LEMMA 2.1. For x, y G D([a, b]),

dix,y) = inf inf { w ( ^ , , ^ 2 ) V >v(x, v;

PROOF. i<)¥ox A^, A^G &„, let X be defined by A(ry) = ty, 0 < j < n, and by

linear interpolation elsewhere. Then piX, e)- wiAi, A2) and pix,y o X) < wix,y,
A^,A^.

i>) Using Lemma 1 on p . 110 of Billingsley (1968), choose n and A^G &„ for e > 0

given so that

max w(x; [ ? , ( ; - 1 ) , ' . , ) ) = max sup {m[x(5 , ) , x(52)]} < €.

Also choose X so that p{X, e) < dix,y) -I- € and p{x,y o X) < dix,y) + e. Let A^

= \ ( ^ , ) - Then / ^ 2 e ( J „ , w(Ai, A^) < piX, e) < d{x, y) + i, wix,y; ^ , , ^ 2 ) <

pix,y o X) -I- maxi^^^^ wix, [/,(^-,), ty)) < dix,y) + 2e. •
REMARKS. The metric d as defined by Lemma 2.1 was introduced and shown to

induce the 7, topology by Kolmogorov (1956). Lemma 2.1 itself is due to Pomarede
(1976). Lemma 2.1 shows that it suffices to work with the subset of piecewise linear
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functions in A with only finitely many changes of slope. For further discussion about
metrics inducing the 7, topology on £>, see §3 of Straf (1970).

The following lemma shows that the specification of convergence in terms of the
restrictions is consistent with the direct definition of convergence for compact
domains.

LEMMA 2.2. / / b is a continuity point of x with a < b < c, x^^x in Di[a, c]) if and
oniy if the restrictions of x„ convergence to restrictions of x in di[a, b]) and D([b, c]).

PROOF, (if) If the restrictions converge, use the homeomorphisms X„ of [a, b] and
[b, c] to construct the homeomorphisms \ , of [a, c]. Since ft is a fixed point for the
homeomorphisms associated with the restrictions, this construction is always possible.

(only if) Since ft is a continuity point of x, the homeomorphisms X, of [a, c] can be
altered to make ft a fixed point and still have piX„, e)^0 and pix^, x ° XJ-^0. The
restrictions of \ can now be used to get convergence for the restrictions of x .̂ •

Let all topological spaces be endowed with Borel a-fields (generated by the open
subsets). Let w, : DiT, S)—* S be the one-dimensional projection defined for any
xGD and tGThy 7r,ix) = xit), and let r^ : DiT)-^Di[a, ft]) be the restriction to
[a, ft] defined for any a < ft in 7 by r^^ix)(t) = xit), a < t < b.

LEMMA 2.3. The profections ir, and the restrictions r^^ are measurable for each t and
a < b in T.

PROOF. If / is an endpoint of T, then w, is continuous and thus measurable. If t is
not an endpoint, then ir, is continuous at x for almost all t by Lemma 2.2 because
continuity points can be made endpoints. For S = R, follow p. 121 of Billingsley
(1968) and let

Then h,^ is continuous and IT, = limn_^̂  /;,„ by the right-continuity of functions in D,
so 77, is measurable. For S an arbitrary CSMS, recall that S is homeomorphic to a Gg
subset (countable intersection of open subsets) of R°°, p. 308 of Dugundji (1968), so
we can make the identification and enlarge the range to /?°°. (Note that DiT, S) is
homeomorphic to Z)(T, S') if S and S' are homeomorphic.) Let h,^ map D into /?*
by letting /i,«(x), = h,„iXi), where x,(0 is the ith coordinate of xit) G /?" . Then the
argument above for S = R carries over to S = R°°. Thus, ir, is measurable with
respect to the Borel o-field of DiT, R'"). Note that the / , topology on DiT S)
coincides with the relative topology induced on DiT S) by the J^ topology on
DiT,R'°). (To see this, recall that convergence is characterized by the metric
convergence of the restrictions to compact subintervals of T and recall that a
subspace of a metric space with that same metric is a metric space with the relative
topology; Theorem 5.1, p. 186, of Dugundji (1968).) Thus the Borel o-field on DiT S)
coincides with the trace on DiT, S) of the Borel a-field on Z)(r,/?"), i.e.,
9,iDiT,S))=%iDiT,R'^))nDiTSy, cf. Theorem 1.9, p. 5, of Parthasarathy
(1967). Hence, the restriction of ir, to DiT S) is measurable. A similar argument
applies to r̂ .̂ For example, if ft is not a right endpoint of T, work with h^^^ix^t)
= h,„ix), a < t < b, where S is regarded as a subset of /?°° as above. Note that /j^^,
maps D into C[a, ft] for each n. Since C[a, ft] is a closed subset of D[a, ft] with the j]
topology, h^^„ix) cannot converge to r ĵ,(x) as n ^ oo in the 7, topology if x has jumps
in (a, ft). However, it is not difficult to see that h^^„ix) converges to r^ix) in the Af,
topology. Moreover, it is not difficult to show that h^|,„ : D^C[a, ft] is continuous
for each n. Hence, r̂ ^ is measurable as a mapping from D to D[a, ft] if the Borel
0-field associated with the 7, topology is used on the domain and the Borel a-field
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associated with the M^ topology is used on the range. However, the A/, topology is
known to be metrizable as a complete separable metric space, Whitt (1973) and
Pomarede (1976). Hence, the A/, and 7, topologies are comparable Souslin topologies,
so their Borel a-fields coincide, p. 124 of Schwartz (1973). i

REMARK. An alternate proof that 77, is measurable can be obtained from a simple
modification of p. 249 of Parthasarathy (1967).

We now want to define a metric on D which induces the 7, topology. To do this, we
treat the different possible endpoints of 7" as separate cases. First, assume that T
contains no finite open endpoints. This assumption entails no loss of generahty
because it is easy to construct a homeomorphic space in which finite open endpoints
of T are replaced by ±00. For example, it is easy to see that D{[a, b), S) is
homemorphic to Z>([0, 00), S) under the mapping </> : D([0, 00), S)-^Di[a, b), S)
defined by <t>(x){t) = x{^t)\ a <, i < b, where tp(t) = t(b - / ) ^ ' - a(b - a)' \ a < t

This leaves [a, 00), ( - cc, a] and ( - 00, 00) as the relevant possibihties for T. Since
(—00, a] is similar to [a, 00). we do not discuss ( — 00, a] further. For any x. v G
Di[a, 00)), let d be defined by

d(x.y) = f^dt e~<'~'-^d,;[r^,{x), r^)] A 1, (2.2)

where a/\ b = min{a, b} and d^, is the metric in (2.1) on D(ls, t]). For any x.
7 G Z)(( - 00, 00)), let d be defined by

d{x,y) = r° ds rdt e^-%,[r,,{x), r,( v)] A 1- (2.3)

The idea in (2.2) and (2.3) is to weight the tails relatively less and to have d-
convergence determined by rf,,-convergence of the restrictions for almost all s and t.

LEMMA 2.4. The integrals in (2.2) and (2.3) are weii defined.

PROOF. For each x, y, and s, d^,ir^,{x), r^,{y)] is continuous in / at each point of
continuity of both x and y. Thus the integrands as functions of t are Riemann (and
thus Lebesgue) integrable. For each x,y, and t, <4,[r^,(x), /•„(.>')] is also continuous in 5
at each point of continuity of both x and j . By the Lebesgue Dominated Convergence
Theorem, the integral over t as a function of s is continuous at all points of continuity
of both X and^. Thus the integral over t is Riemann integrable in s. 1

THEOREM 2.5. The functions d in (2.2) and (2.3) are metrics which induce the
extended J^ convergence on D{T).

PROOF. It is well known that p A 1 is a bounded metric equivalent to p for any
metric p, from which it is easy to deduce that d in (2.2) and (2.3) are metrics. If
x„-^ X, then d^,{r^,{x„), r^,{x)]-^(i for almost all 5 and t, including s = a in the setting
of (2.2). By the Lebesgue Dominated Convergence Theorem, dix^, x)-^Q. On the
other hand, if rf(x„, x ) ^ 0 , then d^,{r^,{x„), r^,{x))^Q for all pairs is, t) such that both
s and / are continuity points of x. To see this, first note that {d^,[r^,ix^), r^,{x)\/\ 1}
has a convergent subsequence for each s and t. Let s and / be continuity points of x
and suppose d^,[r^,{x„), r^,{x)\ A 1 -*« > 0 for a subsequence indexed by n'. Then it is
not difficult to see that there is a 6 depending on x and e such that

lim inid.,[/"., {x„), r,, (x)l > 8

for all pairs (s^, /(,) with .v - 6 < ô < -̂  ^^d t < t^< i + 8. This implies that
lim inf̂  ,^ d{.x„. v) > 0. which is a contradiction. Hence, ^,,[/-^,(x,,). r^,{x')\->0 when-
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ever s and t are continuity points of x. Since every subsequence converges to 0, the
entire sequence converges to 0. Hence, x^^ x. •

THEOREM 2.6. The space (D, 7,) is metrizabie as a complete separable metric space.

PROOF. The metrics d in (2.1) if T = [a, ft], in (2.2) if T=[a, oo) and in (2.3) if
r = ( - 00, 00) are not complete, p. 112 of Billingsley (1968), but it is well known that
there is a metric inducing the same topology as d in (2.1) which is complete, namely,
fi?o on p. 113 of Billingsley (1968). If this complete metric is used for d^,, then d in (2.2)
and (2.3) also become complete and induce the same topology. All the previous results
in this section extend to this setting. The main fact to check is that the new
^«[''jr(^)' '•jr(j)] *s continuous in 5 and t at points which are continuity points of both
X and y, which is needed in the new version of Lemma 2.4. For separability, a
countable dense set in (Z), </) consists of those x with values in a countable dense set
of 5 which are constant over each interval [(/ - \)/k, i/k) C\ T, - nk < i < nk, and
each outside interval ( - oo, ink — \)/k) n T and [n, oo) n T. i

LEMMA 2.7. The Borel a-field on D coincides with the Kolmogorov a-field i generated
by ir,, t G T).

The following proof is a variant of one communicated by David Pollard, who in
turn attributes it to Michael Wichura.

PROOF. Lemma 2.3 implies that the Kolmogorov a-field is contained in the Borel
a-field. To go the other way, it is possible to follow the proof of Theorem 14.5 of
Billingsley (1968), which involves introducing a new basis for the topology. More
directly, it suffices to show that each continuous real-valued function f on D is
measurable with respect to the Kolmogorov a-field, p. 4 of Parthasarathy (1967).
Suppose r = [ 0 , 00), the other cases being treated similarly. For each « > 1, let
<i), : D -*D b e def ined b y <i>„ix)it) = xik/n), k/n < t<ik + \)/n, 0 < A: < « ^ a n d
<̂ n(-̂ )(0 ~ ^('^0' t > n.lt is easy to see that ^^(x)^ x as n -* oo for each x G D. Since
/ is continuous, /(<#>„ (x))-^/(x) as n-^co. Hence, it suffices to show that f ° 4>n is
measurable. However, it is possible to represent / = </>„ as the composition of three
measurable functions. Let ŵ  : D^S"^"*"' be the projection map defined by 1r„ix)
= [x(0), xi\/n), x(2/«) , . . . , x(«)]. Let ;//„ : 5"'"^'^Z) be defined so that i/'«(w«(x))
= <t>nix) for each xGD. Hence, / ° ^̂  = / ° '/'„ ° '7„. Let the domain of ir^ he
endowed with the Kolmogorov a-field; let S"'"*"' be endowed with the product
topology, under which the Borel a-field coincides with the product o-field; and let the
domain of/be endowed with the 7, topology. Since <//„ and/are continuous, they are
Borel-measurable. By Lemma 2.3, ir^ is measurable. Since the composition of measur-
able functions is measurable, f ° i^^ o ir^is measurable. •

As on p. 124 of Billingsley (1968), let Tp = {t GT : Pi[x G D \ xit) i^ xit - )} )
= 0} for any probability measure P on DiT). The set 7" - T^ is at most countable. As
before, let =̂  denote weak convergence of probability measure.

THEOREM 2.8. Let ?„, n> \, and P be probability measures on DiT). Then Pn^P
if and oniy if Pnr~,l =* Pr',^ on D([5 ,̂ r̂ j) for ail k and some sequence {[5̂ , /^], k > \)
with U r . i K . ' J = T.

PROOF, (only if) By Lemmas 2.2 and 2.3, /•„ is measurable and continuous almost
surely with respect to P for s, t G Tp. Thus the CMT can be applied.

(if) Let [s^] be a nonincreasing sequence of points in Tp and let {?̂ } be a
nondecreasing sequence of points in Tp with t^ > Si^ ior k > \ and
Let F he an arbitrary closed subset ol DiT, S) and let //^ = r̂ ,̂̂ '(r̂ ,̂̂ (F)). It is easy to
see that F c H, for all k. Moreover, we shall show that f = fih.,*^^. Assuming this
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for the moment, let « > 0 be given and choose k^ so that P(Hi^) < P(F) -t- t. Then,

for A" > An.

lim supP^(F) < lim sup/'^(//j.) = lim

by virtue of the convergence Pnr^J^ => Pr^J^ using the characterization in Theorem 2.1
(iii) of Billingsley (1968). Since e was arbitrary, this implies P^=^P.

It remains to show that D^^i H;^CF. Suppose xtD^^i Hi^. We shall show that,
for any « > 0, dix, F) < t. Since F is closed, this implies that x G F. To be definite,
suppose T = [a, co) so that d is defined in (2.2). For t > 0 given, choose k^ so that
s^^= a and e~\~'''> < e/2. This implies that dix,y) < d^ix,y) + i/2 for k > k^
where

= f''" " dt e-^'~''U,,[r,,ix), r,,iy)] A 1.

Since x G H .̂̂ , x G r^,^\r^,^ (F)). This means that there is a sequence {7„} in F such

that d^,Jr^,Jx), r^,yy\)]Xo as «->oo. By Lemma 2.2, djr^,ix), r^,iyJ]-^O as
« -» 00 for all t which are continuity points of x in [a, /̂  ], which is almost all t. Hence,

by the Lebesgue Dominated Convergence Theorem, di^ix,yJ-*O as n-*co. Choose

/JQ SO that d^ix,y„) < e/2 for n > n^. Then, for n > n^, dix, yj < d^ix,yj + e/2 < t,
so that dix, F)<€. •

REMARK. The proof of Theorem 2.8 is closely related to the general theory of
weak convergence induced by mappings recently developed by Pollard (1977). While
the proof here was obtained independently of Pollard (1977), it is a fairly recent
addition, reaching this form only in 1978 with the aid of a suggestion by Richard
Serfozo.

3. Composition. This section is devoted to the composition function, which is
often used in random time transformations (subordination), cf. §17 of Billingsley
(1968). Recent related results about weak convergence with random time transforma-
tions are contained in Aldous (1978) and Durrett and Resnick (1977).

We begin by defining some subsets of D = DiT S). Throughout this paper, we
assume subsets of D and other spaces are topologized with the relevant relative
topology and Cartesian products are topologized with the relevant product topology.
Let C = CiT, S) be the subset of continuous funcfions in D; let CQ = ^ ( 7 , , 7̂ 2) be
the subset of strictly-increasing r2-valued functions in C; let DQ= D^JI^T^, T^) be the
subset of nondecreasing r2-valued functions in D. It is well known that the 7,
topology on C coincides with the topology of uniform convergence on compact
intervals. Obviously C and DQ are closed subsets of D, while Cg is neither open nor
closed. However,.CQ is a Gj because

Q = n n {xGC:xiq)~xip)>0},
p^Q q^Q

q>p

where Q is the set of rationals in r , .
Let composition be defined for any (x, j ) G DiT^, S) X D^T^, Tj) with T^ C T^ by

(x o y\t) = xiyit)), t G T^. It is easy to see that x o y E DiT^, S), which need not be
the case if y^D^. For example, let T, = 72 = Tj = S = [0, 1]; if x = /,2-i ,) and
y = 2~^ + 2 ^ ^ , (-2)~''/[2-i_2-" ,2-'-2-<"*'>)' where /^ is the indicator function of the
set A, then x,y G D but x o v has no limit from the left at / = 2~' .
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Billingsley (1968, pp. 145, 232) has shown that composition on Z)([0, 1],/?)X
DoQO, 1], [0, 1]) is measurable and continuous at (x , / ) E C x (C n DQ). With Lemma
2.7, BiUingsley's arguments also apply when the domains of x and y are more general
intervals and the range of x is a CSMS. To see that composition is not continuous on
D X Dg in any of Skorohod's (1956) topologies, let 7, = Tj = Tj = 5 = [0, 1], x̂  = x
= Ai/2.))' y('^ = 2 - ' and y„it) = (2"' - «"'), 0 < / < 1. Then (x^ o yj(t) = 0 while
(x °.y)(0= 1, o < f < 1.

THEOREM 3.1. The composition mapping on D{T^, S) x D^T^, T^ is continuous at
each (x,y) E(C X DQ) U (Z) X Q).

REMARK. H . Bauer has noted [2, p. 28] that an additional assumption is needed
when (x, / ) E (D X Q). It suffices for T, to be open on the right. If T, has the right
endpoint b, then it suffices for x to be continuous aty{b).

PROOF, (i) Suppose (x,, /„) -^ (x, y)inD x DQ with (x, y)EC x DQ. It suffices to
look at compact domains. Choose [a, b] C T, so that a and b are continuity points of
y or endpoints of T^. Since yn-*y for the restrictions to [a, b], the range of the
restrictions of y^, n > I, and y to [a, b] is contained in a compact subinterval
[c, d] C Tj. Since x E C and x„-^x, p(x„, x ) ^ 0 for the restrictions to [c, d]. Let X„
be homeomorphisms of [a, b] such that p{\, e)-»0 and piyn,y ° XJ-^O. Working
with the restrictions to compact domains, we have by the triangle inequality
Pi^n ° yn'X ° y °K)< fKXn °yn,x° yj + p(x o y^,x o y c X J . T h e first t e r m c o n -
verges to 0 because p(x^, x)-»0 and the second term converges to 0 because x e C

(ii) Suppose (x„,j^'„)^(x, j ) in D x Dg with {x,y) E D X CQ. Again it suffices to
look at compact domains. Choose [a, b] so that a and b are continuity points of x o j
or endpoints of 7,. Choose [c, d] C Tj so that the restrictions of/„, « > 1, a n d / to
[a, b] have values in [c, d] and so that c and (f are continuity points of x or endpoints
of Ty We now \york with the restrictions to the compact domains. Let X„, n > l,he
homeomorphisms of [c, d] such that p(x^, x o\)-*0 and p(X,, e)-*0. Let Hn, n > 1,
be elements of A([a, b]). By the triangle inequality, p{x„ ° / „ , x = / ° /*„)

< p(x^ ° / „ , X o X̂  o j ^ ) + p(x 0 \i ° y^, X ° y ° (xj. Since the first term on the right
converges to 0 as n ̂  oo, it suffices to construct ju,, for each e > 0 so that p(ii^, e) < e
and p(x o X^ o y^^ X ° y o ̂ ) < i for sufficiently large n. The idea is to let ^l„ be
approximately V ~' ° \, ° y^. This cannot actually be the solution because/„ need not
be continuous or strictly increasing, but it suffices to define \i„ on a finite subset this
way and use linear interpolation elsewhere. This works because y„ -^y where / G CQ.

By Lemma 1 on p. 110 of Billingsley (1968) there exists a finite set of points {t}
such that c = 0̂ < • • • < /„ = rf and ^ (x ; [/,_„ r,)) = sup,̂  ,<,,_,^<,^ {m[x{s,), x{s^])
< €, 1 < y < «. Since a and b are continuity points of x = j , the finite set can be
chosen so that either/(a) = c or y{a) is not included in the set. Similarly, ̂ (6) = d ox
it is not included. Furthermore, the finite set [tj] can be chosen, by adding points if
necessary, so that y~\tj^^)-y-\tj) < e/2 for y{a) < tj < tj^i <y(b), y-\tj) - a

< t/2 for tj the smallest point greater than y(a), and b-y'\tj) < e/2 for tj the
largest point less than j(6). Let n^ be such that p(y~^ ° K ° }>„, e) < e/2 for n > n^,
which exists by part (i). Let /* = max{/ : /, < y{a)}, m* = min{/ : /, > y(b)} and
", = '/• + ,. 0 < / < m* - /*. For sufficiently large n, {«,} is the relevant subset of {;,}.
Let s„, = inf{5 : X, o y^(s) > «,}, 0 < i < m* - t* and « > 1. For all n sufficiently
large, .?„,. < j,^,^,), 0 < i < m* - I* - I, and k,, - j ~ ' ( M , ) | < e/2, 1 < / < m* - /• -
1. Hence, for sufficiently large n, we can define /!„ by ̂ i„(s„i)= y'\ui), 1 < / < w* -
/* - 1, and by linear interpolation elsewhere. Since (X, o y^)(t) E [u^, «,+,), if and only
if ( [

y„,x o y . ^^) < ^maxw(x, [?,_,, tj}) < e.



76 WARD WHITT

Also, by the triangle inequality,

P{l^,'e)<p{n„, y ^' o X̂  ° _>'„) + p(_v ^ ' = Â  ° y„. e).

By construction.

and, for « > n,,, p(j; ' o X„ <> /„ , e) < e/2. •

REMARK. A different proof of (ii) above can be obtained from Theorem 2.6.1 of
Skorohod (1956). The idea is to show that (x^ ° y^) converges pointwise on a dense
set, which is easy, and then control Skorohod's 7, modulus for x„ ° y^ in terms of
moduli for x^ and 7^. In fact, for any (x,^) E D X DQ, W"^ „ ^(6) < w"f(8) for w" in
(14.44) of Billingsley (1968). This inequahty does not hold for w' in (14.6) of
Billingsley (1968): let T, = T,= T, = S = [0, 1], x = / j . / ^ , „, y = (l/3)/[o .̂ ^̂  + (2/3)
/[,/2, i]> and 8 — 2 /3 (example due to Michael Wichura).

Composition is also continuous in the following more special situation; Lemma 3.1
of Kennedy (1972). Let F = F(Ty S) be the subset of functions in D with discon-
tinuities only at integer points in Ty Let G = G{T^, T^ be the subset of functions in
DQ with integer values. Obviously F and G are closed subsets of D.

THEOREM 3.2. Composition is continuous on F X G.

PROOF. Suppose ix^,y„)-^{x,y) in F x G. Working with the restrictions to com-
pact domains, we have via the triangle inequality that p{x„ ° yn, x o y o X^)
< p(Xn ° y^, X ° /„) + p(x ° y,,, X ° y o X )̂. If X̂  are homeomorphsims such that
p(yn,y ° \,)->0 and p(X^, e)^0, then y„ = y ° Â  for sufficiently large n because/„
and y are integer-valued. Hence, the second term on the right is 0 for sufficiently large
n. The first term converges to 0 because (^-convergence coincides with p-convergence
on F. I

It is also of interest to have a "converse" to continuity for composition, which
provides convergence for stochastic processes based on convergence of embedded
processes.

THEOREM 3.3. Suppose x^ » >>„ -* z in D{[a, b]) and >„ -^y in C n D^[a, b]) with
y E CQ. Then

(i) x„-^z o ^ - ' in D(iy(a),y{b))); and
(ii) if yn(a) = y(a) and Vn(b)= y(b) for all n sufficiently large., then x^-*z ° v ' in

PROOF, (i) Since >v,-^/, / „ ( « ) < c and y„{b)> d for any compact [c,d]
<Z(^y{a),y(b)) for sufficiently large n. Since y^^^y, >'„ '~*7 ' ^̂ ^ [c,d\ where

y^\t) = inf{u > a :y„{u) > t), c < t <. d, cf. Theorem 7.2. Choose [c, d] so that
j ' ^ ' ( c ) and j '^'(rf) are continuity points of 2. By Theorem 3.1, x^ o/„ " A " ' " ^ ^ ° .̂ ' '
on [c, d]. When/„(«) < c and>>„(*) > d,yn " y^^ = e, where e is the identity map on
[c, d] since y„ E C, so x̂  = x„ = y„ ° / „" ' on [c, d] for sufficiently large n. Note that
>>„ ° y;^' = e while y,;' o v,, 7̂  e in general.

(ii) Uy„{a) = yia) SLndy^(b) = y(b), [y(a), y(b)] can be used instead of [c, d] in (i).
REMARK. If y„ is not continuous in Theorem 3.3, an extra condition on the

fluctuations of x„ is needed. For example, let all domains be [0, 1 ], let y = e,
J^ = ( ^+ « - ' / ( , / , „ ) A 1, x ( 0 = 0, 0 < / < l , x „ ( 2 - ' - H ( 2 « ) - ' ) = l , x„(0 = 0, /
^ [ 2 ' ' , 2 ' ' + «" ' ] , and x^ defined by linear interpolation elsewhere. Then x„ o Vn
= X, y^-^y, y E CQ and all functions are continuous except y ,̂ but {x^} does not
converge.

We conclude this section with an extension of Theorem 3.3 in the weak conver-
gence setting, motivated by Lemma 2 of Iglehart and Whitt (1971). For a different
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approach, see Serfozo (1975). As in the remark following Theorem 3.1, we need T, to
be open on the right in the following theorem and corollary.

THEOREM 3.4. Let (A'„, Y^) be random elements of D(Ty S)X D^T^, T^ with
TJ C TJ and let y be a nonrandom element of C^Ti, T^. If

(i) [X^) is relatively compact in D{y{T^, S),
(ii) ^n ^^y i" Do, and
(iii) the finite-dimensional distributions of X^ ° Y^ converge at all points in a dense

subset of Ty, then X^ ° Y„^Z in D(TyS) for some random element Z and X^

PROOF. By (i) and Theorem 2.3 of Billingsley (1968), it suffices to show that every
weakly convergent subsequence has the same limit. Suppose X^.=>X' and X^,.=>X".
By (ii) and Theorem 4.4 of Billingsley (1968), (A'̂ ,, Y^.)=^(X',y) and iX„,., Y^..)
=^(X",y). By Theorem 3.1, ^,. <= Y„.^X' oy and X„.. <= Y„..=>X" o y. However, (iii)
implies that A" ° y~X" => j , where ~ means equality in distribution, because the
finite-dimensional distributions uniquely determine a measure on D. Since y E Q,
A" ~ A"' on [y{a), y(b)]. Hence, X„=>X for some random element A". Let Z = A' o y.
By Theorem 3.1, A'„ o Y„=>Z ^indX„o Y„ o y'^ ^X " y " y~^ = Z <> y-^ = X. §

REMARK. Conditions (ii) and (iii) above do not imply convergence of the finite-
dimensional distributions of {X^} in Theorem 3.4. For example, let 7, = Tj =
Tj = 5 = [0, 1], y(t) = t, y„(t) = [nt]/n, x(t) = 0, 0 < t < I, and x„ =
S*-o hkr-'+(2nr',(k-^i)n-'y where [a] is the integer part of a. Then (x,/) E C X Cg,
yn-*y, x^ o y^(t) = x o y(t) = 0, 0 < ; < 1, but x^(/) fails to converge to x(t) at any
/e(0,1).

Let F(x„, y^; a, b) denote the maximum fluctuation of x„ in D({y{a),y{b)\) over
any jump oiy^ in Z>o([a; b]); that is, let

F{x„,y„•, a, b) = sup{/n[x(u), x(t>)] :y{a)

<yXt-)<u,v< y„{t) < y(b), a < t < b], (3.1)

where y„(a - ) and y„(b) are redefined to be y(a) and y(b) if y^(b - ) >y(a) or
y\,{b) < y(b). Let T^ be the subset of points in 7, which are either continuity points of
Z w.p.l. or endpoints of 7,.

COROLLARY 1. Let iX„, YJ be random elements of D(Ty S) X £>o( î. Tj) with
TjC T^, S = R, andy a nonrandom element of CQ. If

(i) Y^^yinDo-
(ii) X^o Y^^ZinD;
(iii) F(X„, y,; a, b)=^0 for all a and b in T^, then

X.^Zoy-^ in D{y(T,), R).

If Z E C w.p.l., then (iii) is a necessary condition.

PROOF. Obviously (i) and (ii) here imply (ii) and (iii) in Theorem 3.4, so it suffices
to show that {A'̂ } is ti^t. Let a, b E T^. Obviously

•sup \X^(t)\ < sup \X, o Y^{t)\+Fi,X^, Y„; a, b),
y(a)<.l<, y{b) a<.t<b

SO (i) of Theorem 15.2 of Billingsley (1968) follows from (ii) and (iii). Since/ e CQ, for
any 8 > 0 there is a y > 0 such that y{t) - y{s) > 2y for all 5 and t such that
a <, s < t < b and t - s> 8. (The continuous function /(/) = / ( / ) - / ( / - 5) attains
its infimum on [a -I- 8, b]) Since Y„ => j , for this 8 and any TJ > 0, P( Y^{tj) - Y„(tJ_,)
> y, ally) > 1 - TJ for any set {tj} in [y(a),y(b)] with tj - /̂ _, > 5 for sufficiently
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large n, where n is independent of {/,). Hence, for each e. T) > 0, there exist 8. y > 0

and /IQ SO that

P{w'^Sy) > 2^) < ^ « , = YS^) >') + P(^n^n, Y^; fl, * ) > £ ) + T, < 3T,

for n > MQ, where w' is the modulus in (14.6) of Billingsley (1968), so that (li) of
Theorem 15.2 of Billingsley (1968) is satisfied. Thus {A'J is tight.

To see that (iii) is necessary when P{Z E C) = 1, note that

P{F{X„,Y„•a.b)>e)<P{w,J8)>€) + P{ sup | F „ ( 0 - > - „ ( / -

where w is the modulus in (14.2) of Billingsley (1968) on [yia), y(b)]. If P(Z E C)
= 1, then P{Z o / " ' E C) = 1 so that {X„} is C-tight. Lemmas 3 and 4 of Iglehart
and Whitt (1971) show that the right side converges to 0 as n-»oo for any e > 0. i

Prior to Theorem 3.4, our results have been expressed in a deterministic setting,
from which applications to stochastic settings are immediate. However, it is also
possible to go the other way, which shows that Theorem 3.4 applies to all modes of
stochastic convergence. Since x„-*x if and only if Pn=^P, where P„ and P are
measures attaching unit mass to x„ and x, p. 12 of Billingsley (1968), we have the
following.

COROLLARY 2. Let {x„,y„) be elements of D{Ty S) X D^T^, Tj) with Tj C Ty
S= R andy E CQ. Ifyn^y in DQ, X^ ° yn-^z in D, and F{x^,y^; a, b)^0 for all a
and b which are continuity points of z, then

If z E C, then F{x„,y„; a. b)-^Q for alt a and b in T, is a necessary condition.

REMARK. Obviously (i) in Theorem 3.4 is a necessary condition and we have just
seen that (iii) in Corollaries 1 and 2 is necessary when P{Z E C ) = 1, but (iii) in
Corollaries 1 and 2 is not necessary in general. For example, let all domains be [0, 1],
let x = /[2^, ,], x^ = /[2-,+ „-.,,,, y = e, y„{t) = </[o,2-'iui2-' + 2«-Mi(O + (2" ' + 2n"^')
/(2-i,2-'+2«-'](0. 0 < r < 1. Then F(x„,/„; 0, 1)= 1 while x^-*x, y^-^-v, and x^ " y^
-^ X ° y.

4. Addition and nraltipUcation. Let a binary operation -I- called addition be
defined on the CSMS (5, m) such that m{s^ + Sj, S3 + J4) < m(5,, 53) + misj, s^) for
all s,, Sj, Sj 54 E S. It suffices for 5 to be a topological group with m generated by a
norm: m(5,, 2̂) = P i - •S2II and \\s^ + s^W < \\s^\\ + \\Sj\\. For example, a Banach space
will do. Define addition in D{T, S) by (x -I- vXO = x(t)+y{t), t E T. Addition is
obviously continuous on D x D at ( x , 7 ) E C X C because for compact intervals
PiXn + y^y X + y) < p(x„, x) -(- p{yn, y) by virture of the initial assumption. However,
addition is not continuous in general (Problem 3 on p. 123 of Billingsley (1968)): let
all domains be [0, 1] and \ei S = R; if y = - x = - x„ = /(,/2. l] and/n = /(2-i+n-i, i].
then x^ = X and j n - ^ / , but {x^+ y„] does not converge. (The minus sign in this
example shows that addition is not continuous in any of Skorohod's (1956) topolo-
gies.) Consequently, D is not a topological group and much of classical functional
analysis does not apply. The example above also illustrates that the product topology
on D{T, Sf is weaker than the J, topology on DiT, S^) with the product topology on
S^: {x^,yn)-*(x,y) in the first topology, but not the second. It is easy to see that
addition is continuous in the 7, topology on D(T, S^), so an alternate way to show
that addition preserves convergence is to demonstrate convergence in D{T, S^) with
the y, topology. This approach has recently been pursued by Pakshirajan and Mohan
(1978).
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Let Disc^x) be the set of discontinuity points of x in T. Since {{x,y) : Disc(x)n
D i s c ( / ) = 0 } is the intersection over n of the (open) sets of {x,y) which have no
common discontinuities of size at least n~' , this set is a G .̂

THEOREM 4.1. Addition on D X D is measurable and continuous at those (x, / ) for
which Disc;(x) n Disc( v) = 0 .

PROOF, (measurability) By Lemma 2.7, it suffices to show that the map {x,y)
-^x(z) + > (0 from £) X D to 5 is measurable for each / E T, but this follows since
this map is the composition of the measurable maps (x,y)-*{x{t),y{t)) and {s,s')
-*s + s'.

(continuity) Let a and b be continuity points of both x and / in 7 and fix e > 0.
Apply Lemma 1 on p. 110 of Billingsley (1968) to construct finite subsets A^ = {tj}
and Aj = [Sj] of [a, b] such that a = tQ< • • • < tn = b, a = SQ< • •• < s^ = b,

w(x; [/,_,, tj)) < £ and w(y; [5,_,, Sj)) < e for ally. Since Disc(x) n Di sc ( / ) = 0 , the

two sets Ay and Aj can be chosen so that A^n A2 = {a, b). Note that ^ ( x ; [tj_y, tJ))

< e and w(y, [tj_y, tj)) < e for {/,} = ^ , u ^2- Let 28 be the distance between the

closest two points in AyU Aj. Choose «„ and homeomorphisms X̂  and Ju„ so that
p{x„,xo X,,) < (6 A €), (KK e)<{8/\ e), p{y„, y^ ^i„)<{8A t), and p( >!„, e) < (5 A
e) for n > /ig. Thus, for n > nQ, \ \Ai) n [!.„ '(^2) = {"' *} ^"d X, '(^4,) U n„ '(/12)
has corresponding points in the same order as ^ , U /l2- Let y^ be homeomorphsims of
[a,b] defined by Yn(/,) = /,' for corresponding points tj EX^\Ay)V fi~\A^ and
tj E AyU A2 and by linear interpolation elsewhere. Then p(y^, e) < e and p(x„ -!-/„,
(x + y) ° >„) < p(x„, X ° y^) + p(yn,y ° Yn) < 2e, with the first inequality holding be-
cause of the initial assumption about m and +. •

Now let S = R and consider pointwise multiplication on D X D, defined by
{xy){t) = x{t)y(t), t E 7. The example for addition with 1 added to y„, y and 1
subtracted from x^, x shows that multiplication is not continuous in general.

THEOREM 4.2. Multiplication is measurable on D(T, R) X D(T, R) and continuous
at those x, y for which Disc(x) Pi Disc( j ) = 0 .

PROOF. The argument for Theorem 4.1 applies with only minor modification.
Only the last step of the continuity argument must be changed: p{x^„, {xy) ° y,)
< P(^x^„,y„{x o y j ) + p(/^(x => y„), {xy) o y j < ||/„||p(x„, x o y J -|- \\x\\p{y„,y ° y„),
where ||x|| = sup^^,^^ |x(0 | < 00. Sincey^-^y, sup«>, \\y„\\ < 00. •

For stochastic applications of Theorems 4.1 and 4.2, we have

LEMMA 4.3. / / X and Y are independent random elements of D with P{X{t)
= X{t-))=\ for all t E 7, then

/'(Disc(A') n Disc(r) i= 0) = 0.

PROOF. Since X and Y are independent, we can write

P(Disc(A:) n Disc(y) # (J)) = JP{X EA{y))P{Y E dy),

where A{y) = [x : Disc(x) n Disc(>') =^ 0 } . For any 7 E D, P{X E A{y)) =

5. Composition witii translation. Theorem 4.1 can be combined with §3 to treat
composition with translation. For the following theorem, let x„, x, z E D{T, R),
y„ E DQ{T, T), JO E CQ{T, 7) and j n ^ j . Let b„ and c„ he real constants, and let
F{x„,y„•, a,b)he as in (3.1).
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THEOREM 5.1.

z. and Disc(x <= y) 0 Disc(z) = 0 , then

> X o V + r in D{T. R ).

(ii) / / (x^ o v̂  - fe^c^e)^ A-, c,,( V,, - b,,e)-^z. v,, E C n /)„ a«<i Disc(x) n Disc(z)
= 0, then

(Xr, - c^e)^X c F- ' - z o y- I in D(T. R).

(iii) / / (x„ o /^ - b„c„e)^x, c„{y„ - b„e)^z, F(x^,y^; a, b)^0 for all a and b
which are continuity points of z or endpoints of T. and Disc(x) n Disc(z) = 0 then

( x „ - c^e)^x o v^ ' - z o v' ' inD{T. R).

PROOF, (i) A direct application of Theorems 3.1 and 4.1 does the job because
(Xn ° yn - b„c„e) = (x„ - c«e) o vv, + c„{y„ - b^e).

(ii) By Theorem 4.1, (x„ - c„e) o y^ = (x„ o ŷ  - b„c„e) - c„iy„ - b^e)-*x - z.
Now apply Theorem 3.3.

(iii) Apply Theorem 4.! as in (ii), then use Corollary 2 to Theorem 3.4. i
REMARK. This relatively trivial extension of previous results is included because

there are many stochastic applications. As a simple example, suppose (A', Y) is a
random element of Z)([0. oo), R) X Do{[O, oo), R) such that {U„, K,)=>((/, V), where
L/„(0 = n-"[X{nt) - n\t] and V^(i) = n-"[V(nO - w/x̂ r], r > 0, with X„, iu„, and a
being constants such that a < 1, ju,, -> ju, > 0 and X„-^X. To put this in our setting, let
x„{t)=n-''X{nt), y„{t)=n-'Y{nt). €„ = n'^«X„, and d,, = M«- Then y„~^^le by the
CMT because V^ -> V, and [(x^ - c„e), y„, c„iy„ - fe„e)] =»[(/, jue, K] by Theorem 4.4
of Billingsley (1968). If P{Disc{U ° iue)'n Disc(K) ¥= 0 ) = 0, then >f;=* 6' o jne -H K
by the CMT and Theorem 5.1(i), where W^{t) = n'"[X{Y{nt))-X„^i.„nt], r > 0. In
this way. Corollary 1 and Theorem 1 of Iglehart and Kennedy (1970) are extended.
See Serfozo (1973), (1975) and references there for more applications of §§3-5.

6. Supremiun. Throughout §§6 and 7 let 5 = /? and let 7 have 0 as a closed left
endpoint. For any x E D, let x\t) = supo<^<, x{s), t ET. (We could look at x\s, t)
= sup^^^^, X(M), W E 7, which would put xMn the space D with a two-dimensioanl
parameter space, cf. Straf (1970), but we have chosen not to consider multidimen-
sional parameter spaces in this paper.) The supremum function t is easily seen to be
continuous in each of Skorohod's (1956) topologies. In fact, with the metric d in (2.1)
or (2.2), we have a Lipschitz property which does not hold for the previous functions.

THEOREM 6.1. For all x. y E D. ^(x ' . y )̂ < d{x.y).

PROOF. If x\t) > y\X{t)) + e for some t E T and A E A, then there is an s <, t

such that x ( i ) > y^(X(O) + « > y(A(5)) -I- «. Similarly, if y'{l) > x^(A" '(/)) -t- c, then

y{s) > x(A~ '(5)) + £, so x{s) < y(X{s)) - e. t
Below we will have occasion to use Skorohod's (1956) M, topology. Virtually

everything up to this point, including Theorem 2.6, carries over. The M, topology is
weaker than the 7, topology and coincides with the topology of pointwise convergence
on the subset DQ of nondecreasing real-valued functions in D. We say that x^-^x{A)
if the A topology is used on D, where A = i , , M, or U (uniform convergence on
compact intervals). Let c,,, « > 1, be real numbers.

THEOREM 6.2. Suppose that (x„ — <r^e)—»x(7|).

(i) / / c „ - ^ c, then xl^ix + ce)^/,)-
(ii) If c^^ + ix and x has no negative jump, then {xl ~ c,,e)—> x(y,).
(iii) [f c^-^ ~ CC, then .vj -^ r( U), where v(t) = x(0), t E 7.
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PROOF, (i) By Theorem 4.1, x̂  -^x -I- ce. Then apply Theorem 6.1.
(ii) It suffices to use the compact domain [0, b] where * is a continuity point of x or

the right endpoint of 7. Let A, E A[0, b] be such that p{x„ - c^e, x => A,)^0 and
p(X„, e )^0 . Since x̂  < xJ, it suffices to show for any e > 0 that there exists an n,, such
that xj(/) - cj - x{\{t)) < t, 0 < t < b, n > nQ. Since x„ - c„e^x, there is an /i,
such that xjs) - c^s - x(Xn(s)) < e/2 for all 5 < ?, « > «,. Since x has no negative
jumps and c, -^ oo, there exists an «o > n, such that x(X„(5)) - x(X„(?)) < c^{t - s)->r
e/2 for all .s < /, « > n^. Adding completes the proof.

(iii) Since xj(5) > xJ(O) = x^(O)-*x(O) as «-^oo, it suffices to show for each t > 0
and e > 0 that there exists an «o such that x„{s) < x{0) + t, 0 < s < t, n > nQ. Using
the right-continuity of x, choose Q̂ > 0 so that x^t^) < x(0) -I- e/2. Choose /IQ SO that
Cn < 0 A(-2(xT(O//o)). d,{x„ - c„e, x) < e/2, and p,(A„, e) < tQ/2 for n > no. Then
x„(.J) - c„s < x{\{s)) + e/2, 0 < 5 < /, so that x„{s) < c^s + x^t^) + e/2 < x(0) -I- e
if .J < ?o/2 and x^{s) < c^s + x\t) -\- e/2 < -x^(0 + x\t) + e/2 < e/2 if tQ/2 < .j
< /. I

THEOREM 6.3. Suppose that (x^ - c„e)->x{M^).
(i) Ifc„-*c, then x]-^(x + ce)T(M,).
(ii) / / c„ --^ + 00, then (xJ - c„e)^x{M^).
(iii) / / ĉ  -* - 00, then xJ -^y{U) wherey{t) = x(0), t E 7.

PROOF. We only prove (ii). The argument in the proof of Theorem 6.2(ii) applies
again, but since the parametric representations move continuously along the com-
pleted graphs, it is not necessary to prohibit negative jumps in x. Again, let ft be a
continuity point of x. If ( x „ - c „ e ) ^ x , there exist parametric representations
[/«(•«)' 'n(^)] and [y{s), t{s)] of the completed graphs of (x„ - c„e) and x on [0, b] such
that p{yn,y) + p{t„, t)-*0, where j ^ , / , /„, and / are continuous functions on [0, 1] say.
Since e is the identity,/„ = z„ - c„/„ on [0, 1], where [z,, tJ is a parametric representa-
tion of the completed graph of x .̂ As before, since xJ > x^, it suffices to show that
^ni'') ~ (^n'J.^) < y(^) + e, 0 < r < 5 < 1, for sufficiently large n. Since c,-»oo and^-
is bounded and continuous on [0, 1], y{r) < y{s) + c„[t„{s) - t„{r)] + e/2, 0 < r < s

< 1. Since x̂  - c„e^x(M,), z„{r) - c^t^{r) < y{r) + e/2, 0 < r < 1. Adding com-
pletes the proof. •

Needless to say, corresponding results hold for the infimum function x-̂  because
x̂^ = -{-xf. Also closely related is the function/ : Z)^D defined for any x E Z) by
/(x) = X - x̂ .̂ The function/, which corresponds to the addition of an impenetrable
barrier at the origin, frequently arises in the study of queues. The following is a
generalization of Theorem 1 of Iglehart and Whitt (1970). Let 9{t) = 0, t E T.

THEOREM 6.4. Suppose (x^ - c^e)-^x(y,), where x(0) = 0.
(i) Ifc^-^c, thenfix^)^f{x + ce){J,).
(ii) // ĉ  -^ + CO, then f{x„) - c„e -^ x{Jy).
(iii) / / ĉ  -̂  - CO and x has no positive jumps, then f{xj —* 0{ U).

PROOF, (i) By Theorem 4.1, x ^ ^ x -I- ce, but then / is continuous in each of
Skorohod's (1956) topologies. In fact, an analog of Theorem 6.1 is easy to prove.

(ii) By Theorem 4.1 and 6.2(iii), f{x„) - c„e = x„ - c^e - xj; = x„ - c„e + {-xj^
-^ X.

(iii) Note that / (xJ = x„ - c„e - (x] - c„e). By Theorem 6.2(ii), (x^ - c„e)^x.
Theorem 4.1 cannot be applied for the subtraction unless x E C, but the same
homeomorphsims A,, can be used for both x̂  - c^e^x and x^ - c e~*x Hence
f{x^)-^0.

7. Inverse or first passage time. It is convenient to discuss first passage times in
the subset E of functions in Z)([0, oo), R) which are unbounded above and have
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x(0) > 0. Since £ = H ^=i B^, where £„ is the closed subset of functions in D which
are bounded above by n and have x(0) > 0, £ is a Gj subset. For x E £, let tbe first
passage time function be defined by x ~'(/) = inf{.s > 0 : x(s) > / ) , ? > 0. It is easy to
see that x""' E £ n DQ{[0, X ) , [0, oo)). As in §6, we use the 7,, M, and U topologies
on D. To start with, the first passage time function is not continuous in the 7,
topology. For example, let x = 2/[o 2) + e/p ^-^ and x^ = (2 - « ~ ')/[o ,) + (2 + « ')
A . ) A ) ' ' ' , ) b i ' l ) l f ll

n> I.

[ ) p ^^ ^ ( ) [ o )

then x^-'-*'X - ' ( M , ) but not (7,) since x , , " ' ( l ) = l for all

THEOREM 7.1. The first passage time function mapping E{My) into E D i>o(M,) is

continuous.

PROOF. Whitt (1971). It suffices to look at nondecreasing functions in £ because
the supremum function is continuous (A/,). Then each parametric representation [y, t]
of the completed graph of x can serve as a parametric representation of the completed
graph of X " ' when the roles of y and / are switched.

REMARK. Continuity of the supremum and first passage time functions in the M,
topology is not as useful as it might appear because Af, convergence on DQ IS
equivalent to pointwise convergence at all continuity points of the limit functior plus
all closed bounded endpoints of 7. This follows from 2.4.1 of Skorohod (1956)
because A^ (c, x) = 0 for all x E DQ. Furthermore, weak convergence of random
functions in {DQ, M) is characterized by weak convergence of the corresponding
finite-dimensional distributions for t E Tp.

THEOREM 7.2. The first passage time function mapping E{Jy) into £ n I>o(7,) is

measurable and continuous at each strictly increasing x.

PROOF, (measurability) By Theorem 7.1, continuity implies measurability if the Af,
topology is used. However, the a-fields generated by the A/, and 7, topologies
coincide. This can be seen from Lemma 2.7 plus a corresponding result for the A/,
topology. More generally, the topological o-fields associated with two comparable
Souslin topologies on the same space coincide by virtue of the separation lemma; p.
124 of Schwartz (1973). Alternatively, by an analog of Lemma 2.7 for Af,, it suffices to
show that the mapping x -^ x ^ \t) is measurable for each t, but this follows because
x~\t) > ais equivalent to x{a) < t, cf. Lemma 4 of Vervaat (1972).

(continuity) Since x^^x(7 , ) , x^-*x(A/,) because the A/, topology is weaker than

the 7,. Then x^"^'-^x^'(Af,) by Theorem 7.1. Since x~ ' E C, x^~' - *x^ ' ( ( / ) and thus

also (7,). I

As a dual to Theorem 6.2(ii), we have the following result (due to W. Vervaat, who

in turn was inspired by (2.9) of Gut (1975)).

THEOREM 7.3. If c„•^'X), x„ E E, x has no positive jumps, x(0) = 0, and c^{x^ - e)

^ x ( 7 , ) , then c„{x-^ - e)-* - x ( 7 , ) .

REMARK. The need for the condition x(0) = 0 was noted by Bauer [2, p. 49].

PROOF. Since c„{x„-e)-*x{Jy), x^^e{U). By Theorem 7.2, x„- ' -^e( t / ) . By
Theorem 3.1, c„(x„ o x ^ " ' - x„"')-^x. By Theorem 4.1, it suffices to show that
Cn{Xn ° JCn"' - e)-^0. Let 7 / ( x ) be tbe supremum of the positive jumps of x in [0, t],
where x(0) is interpreted as the jump at t = 0. Since x has no positive jumps and
Cn(x^-e)->x, c^7/(xJ-^0. However, x„ o x;;^') - ' < J^^-'^Mn). Hence,
c„{x„ ° x^~' - eXO < <^n-^2t(^n) < « ^^T all t < b and all n sufficiently large. •

REMARK. The special case of Theorem 7.3 in which x E C is covered by Theorem

6.2 here plus Theorem 1 of Iglehart and Whitt (1971) or Lemmas 1 and 2 of Vervaat

(1972).
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The foUov/ing result shows that x E C is necessary if we want convergence for both
the supremum and first passage times.

THEOREM 7.4. / / c„^oo, x„ E £, c„(xJ - e)^x(7i) and c„(x„"'' - e)-* -x(7,),
then X EC.

PROOF. Since the 7; topology is in effect and Cn(x] - e) has no negative jumps,
neither does x. Since c^{x^' - e) has no negative jumps, neither does - x. •

Corresponding to Theorem 6.3(ii), we have

THEOREM 7.5. Let x^E E and c„-^oo. / / ĉ (Xn - e)^x(A/,) then c^{x^^ - e)
->-x{Mi).

PROOF. By Theorem 6.3, we can assume x„ is nondecreasing for each n. Let [y^, /„]
and [y, t] be parametric representations of the graphs of c„{x„ - e) and x associated
with c„{x„ - e)^x. If z„ = c'^ + t„, then [z„, /J, [t„, z j , and [c„{t„ - z„), z j are
parametric representations for x,, x„ ', and c„(x„ ' — e), respectively. Since/„-^7 and
t^^t uniformly on compact sets, z, = c-\ + t„--*t and c„{t„ - z„)= -y^^-y
uniformly on compact sets. Hence, c^{x~'^ - e)-* -x(Af,). •

Applications are facilitated by the easily proved

LEMMA 7.6. If xEE and X is a homeomorphism of [0, 00), then ( x ~ ' ) o X

= (X-' o x)-"' and{x o X)"' = X-' o x'K

COROLLARY. Let x^E E,c^^(X>, and a>0. If c„{x„ - ae) -^ x(Af,) or (7,) if x has
no positive jumps, then c„(x„"' — a~^e)—> -a'^x ° a~^e in the same topology.

PROOF. Since c,(x, - ae) = ac„(a"'x„ - e), a c „ ( [ a " ' x j ~ ' - e ) ^ - x by
ITieorems 7.3 and 7.5. Since [a~'x^]~' = x^~' o ae by Lemma 7.6, ac„{x~^ ° ae — e)
-^ -X. Finally, aCn{x~^ - a"'e)-* - x » a~'e by Theorem 3.1 and c^{x~^ - a"'e)
--» - a ~ 'x ° a" 'e. I

REMARK. Distributional complements to the results in §§6 and 7 plus an indica-
tion of possible applications are contained in Bingham (1973) and references there.
First passage times with more general boundary functions are treated by Chow and
Hsiung (1976), Gut (1973), (1975), Lindberger (1978), Mohan (1976) and Pakshirajan
and Mohan (1978). Recent related results are contained in Bauer (1978), Goldie
(1977) and de Haan and Resnick (1978).

8. Time reversai. Let D be £)([0, 1], 5) where (S, m) is a complete separable
metric group under -I- and m is translation invariant (S = /?* is one possibility). Use
the metric d in (2.1). Assume that x(l) = x(l - ) for all x E D, which amounts to
looking at a closed subset. Let Dg be the closed subset of D in which x(0) = 9, where 8
is the identity in (5, -I-). Let R . D-^ D he the reverse-time function defined for any
xEDhy

\ limx(l - s), 0 < r < 1,

t=\.

Let r : D—*Dg be the reverse-time function starting at 9, defined for any x E D hy
r(x)(/) = R{x\t)- x(l), 0 < ? < 1. To see how the time reversal functions can be
applied, note that /(x) = r(x)^ for x E Dg(\Q, 1], R) and / the barrier function in
Theorem 6.4.

THEOREM 8.1. d[R{x), R{y)] = d{x,y) on D x D and d[r{x), r{y)] < 2d{x,y) on
D X D and Dg X Dg.
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PROOF. Obviously the maps are one-to-one and onto. Note that {- r) maps A into
itself and {~ r){e) = e, where e is the identity in A. Note that p{Rx. Ry) = p{x, y) and
p{rx, ry) < p{x,y)-{-m[x{\),y{\)]<2p{x,y}. Then note that )?(x) = ( - r)(X)

= R{x o X) for (x, X)E D X A and r(x) o {-r){X) = r{x o X) for (x, X)E DQX A.
For any (x, y) E D X D. let d)^{x. y) be the minimum of p(x, )• = A) and p(A, e). Then

Ry o(- r)X) V p ( ( - ^A, e)

/?(y = A)) V P ^ - ^ A , i~r)

= p{x.y o A)Vp(A, e)

= d^{x,y).

Consequently, d{Rx, Ry) - d{x, y). The same argument applies to r.

I am grateful to Herbert Bauer, David Pollard, Jean-Michel

Pomarede, Richard Serfozo, Wim Vervaat, Michael J. Wichura and the referees for
their assistance.
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