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1 Introduction

The aim of this paper is to present a study on Ćirić type multi-valued
operators. Following the approach given in [16], where the author consid-
ered some variants of the multivalued contraction principle given by Nadler
[14], respectively a so-called strict multi-valued contraction principle, we will
consider here the case of Ćirić type multi-valued operators, see [3].

We also notice that in [24] Reich developed some fixed point theorems
for multi-valued generalized contractions. A fully comprehensive study on
Reich operators was made in [12] by T. Lazăr et al. Also, qualitative proper-
ties, namely data dependence, Ulam-Hyers stability and so on, were studied
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for the case of multi-valued ϕ-contractions by V.L. Lazăr in [13]. Moreover,
C. Chifu and G. Petruşel in [5] studied qualitative properties concerning
Hardy-Rogers multi-valued operators (see [7] for the single-valued case) in
the framework of b-metric spaces, while T. Lazăr, D. O’Regan et al. [11]
studied the case of multi-valued operators of Ćirić type defined on a set en-
dowed with two metrics. Finally, we point out that in [2], M. Boriceanu
studied existence and uniqueness of the fixed point and data dependence for
multi-valued Ćirić type operators in the context of b-metric spaces. At the
same time, Ćirić type multi-valued operators were are studied in [17] and
[19].

Regarding terminology and basic concepts for fixed point problems re-
lated to multi-valued operators, we will follow the works [1],[9], [18] and
[23]. Furthermore, for the approximation of strict fixed points (also called
end-points) of multi-valued mappings, we refer to [6], [8] and [22]. Finally,
regarding data dependence, multi-valued fractal operators, selections and
qualitative properties for the fixed point inclusion and for multi-valued frac-
tals, we will refer to [4], [10] and [20].

Led (X, d) be a metric space. Denote by P (X) the family of all
nonempty subsets of X. Also, Pb(X) stands for the family of nonempty,
bounded subsets of X and Pcl(X) the family of nonempty, closed subsets of
X. In a similar manner, by Pcp(X) we refer to the family of nonempty, com-
pact subsets of X. From now on, B(x0, r) means the closure in (X, d) of the
ball B(x0, r), where B(x0, r) := {x ∈ X | d(x0, x) < r} is the open ball with

radius r > 0 and the center x0 ∈ X. By B̃(x0; r) := {x ∈ X|d(x0, x) ≤ r}
we denote the closed ball centered in x0 with radius r. We recall now some
important functionals which will be used through the paper:
• the gap functional D : P (X)× P (X)→ R+, D(A,B) := inf

a∈A, b∈B
{d(a, b)}.

• the generalized Pompeiu-Haussdorf functional H : P (X)× P (X)→ R+ ∪
{+∞}, where H(A,B) = max{sup

a∈A
D(a,B), sup

b∈B
D(b, A)}.

Furthermore, if T : X → P (X) is a multi-valued operator, then an element
x ∈ X is a fixed point for T if and only if x ∈ T (x). We denote by FT the set
of all fixed points of the operator T and by (SF )T the set of all strict fixed
points of T , where x ∈ X is a strict fixed point of T (or an endpoint, or a
stationary point) if and only if {x} = Tx.
For a multi-valued operator T : X → P (Y ) we can also define the follow-
ing useful notions. The graph of the operator T , defined by Graph(T ) :=
{(x, y) ∈ X × Y | y ∈ T (x)}, and the image of the set Y ∈ P (X) will be
denoted by T (Y ) :=

⋃
x∈Y

T (x). A single-valued mapping t : X → Y is called

a selection of T if for each x ∈ X, we have that t(x) ∈ T (x).
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We present now an important concept, which appears naturally by Nadler’s
contraction principle. By [21], we recall here the notion of multi-valued
weakly Picard operator.

Definition 1.1. Let (X, d) be a metric space.
Consider T : X → P (X) be a multi-valued operator. By definition, T is
a multi-valued weakly Picard operator (briefly MWP operator) if for each
x ∈ X and for each y ∈ T (x), there exists a sequence (xn)n∈N, satisfying the
following
(i) x0 = x and x1 = y,
(ii) xn+1 ∈ T (xn), for each n ∈ N,
(iii) the sequence (xn)n∈N is convergent to a fixed point of T .

Remark 1.1. A sequence (xn)n∈N satisfying conditions (i) and (ii) is called a
sequence of successive approximations of T starting from (x, y) ∈ Graph(T ).
If T : X → P (X) is a MWP operator, then we define the operator T∞ :
Graph(T )→ P (FT ), by T∞(x, y) := {z ∈ FT | there exists a sequence of
successive approximations of T starting from (x,y) that converges to z}.

Furthermore, if (X, d) is a metric space and T : X → P (X) a multi-valued
operator, then T is said to be closed if Graph(T ) is a closed set in X ×X.
By T 1(x) := T (x), ..., T n(x) := T (T n−1(x)) we denote the iterates of the
multi-valued mapping T , while the set V 0(Y ; ε) := {x ∈ X | D(x, Y ) < ε}
is called the (open) ε-neighborhood of Y ∈ P (X).

From [14], we shall recall some important lemmas that are used through-
out the article.

Lemma 1.1. Let A and B from P (X) and q > 1. Then, for each a ∈ A,
there exists b ∈ B, such that d(a, b) ≤ qH(A,B).

Lemma 1.2. Let A and B from P (X). Also, consider η > 0, such that
(i) for each a ∈ A, there exists b ∈ B, with d(a, b) ≤ η,
(ii) for each b ∈ B, there exists a ∈ A, with d(a, b) ≤ η.
Then H(A,B) ≤ η.

Now, we recall the basic concepts for the qualitative properties of the fixed
point inclusion and of the fixed point iteration. The first two definitions are
related to well-posedness of the fixed point problem. For the concept of
well-posedness, we let the reader follow [12] and [19].

Definition 1.2. Let (X, d) be a metric space and T : Y → Pcl(X) be a
multi-valued operator. Then the fixed point problem is well-posed for T with



26 C.D. Alecsa and A. Petruşel An. U.V.T.

respect to the gap functional D if and only if:
(i) FT = {x∗};
(ii) if (xn) ∈ X has the property that D(xn, T (xn))→ 0, then xn → x∗.

Definition 1.3. Let (X, d) be a metric space, Y ∈ P (X) and T : Y → Pcl(X)
be a multi-valued operator. Then the fixed point problem is well-posed for T
with respect to the Pompeiu-Haussdorf functional H if and only if:
(i) (SF )T = {x∗};
(ii) if (xn) ∈ X is a sequence such that H(xn, Txn)→ 0, then xn → x∗.

Now, the second important concept related to the fixed point problem is
limit shadowing or Ostrowski property, which can be found in [12] and [13].

Definition 1.4. Let (X, d) be a metric space and T : X → P (X) be a
multi-valued operator. By definition, the multi-valued operator T has the
Ostrowski property, if FT = {x∗} and for any sequence (yn)n∈N ⊂ X, such
that D(yn+1, T yn)→ 0, we have (yn)n∈N → x∗, as n→∞.

We introduce now the notions of ψ-MWP operator and of generalized
Ulam-Hyers stabilites. For the study of generalized Ulam-Hyers stability we
refer to [15].

Definition 1.5. Let (X, d) be a metric space and T : X → P (X) be a
MWP operator. Let ψ : R+ → R+ be continuous in 0, increasing, such that
ψ(0) = 0. By definition, T is ψ-MWP operator, if there exists a selection
t∞ : Graph(T ) → FT of T∞, such that d(x, t∞(x, y)) ≤ ψ(d(x, y)), for each
(x, y) ∈ Graph(T ).

Definition 1.6. Let (X, d) be a metric space and T : X → P (X). By
definition, the fixed point inclusion

x ∈ T (x) (1.1)

is called generalized Ulam-Hyers stable if and only if there exists an increas-
ing, continuous in 0 function ψ : R+ → R+, with ψ(0) = 0, such that for
every ε > 0 and for each y∗ ∈ X for which D(y, T (y)) ≤ ε, there exists a solu-
tion x∗ a solution of the fixed point inclusion (1.1), such that d(y∗, x∗) ≤ ψ(ε).

Definition 1.7. Let (X, d) be a metric space and T : Y → P (X). By
definition, the strict fixed point inclusion

{x} = T (x) (1.2)

is called generalized Ulam-Hyers stable if and only if there exists an increas-
ing, continuous in 0 function ψ : R+ → R+, with ψ(0) = 0, such that for
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every ε > 0 and for each y∗ ∈ X for which H(y, T (y)) ≤ ε, there exists
a solution x∗ a solution of the strict fixed point inclusion (1.2), such that
d(y∗, x∗) ≤ ψ(ε).

Finally, following [6], [8] and [22], we recall the last important concepts.

Definition 1.8. Let X 6= ∅ and T : X → P (X) be a multi-valued operator.
Then, T has the approximate endpoint property if inf

x∈X
sup
y∈Tx

d(x, y) = 0.

2 Main results

The aim of this paper is to extend to the case of Ćirić type multi-valued
generalized contractions, the results given in [16], where the author studied
extended properties for the fixed point problem related to Nadler’s multi-
valued contractions through relevant metrical and topological properties.
In the present section some variants of the multi-valued Ćirić principle are
given. We shall enhance the classical result of Ćirić [3] with additional met-
rical and topological conclusions with respect to the fixed point problem.

Theorem 2.1 (An extended version of the Ćirić’s multi-valued contraction
principle). Let (X, d) be a complete metric space and T : X → Pcl(X) be a
multi-valued α-Ćirić type operator, i.e., there exists α ∈ (0, 1), such that

H(T (x), T (y)) ≤ α ·M(x, y), for each x, y ∈ X,

where

M(x, y) := {d(x, y), D(x, T (x)), D(y, T (y)),
1

2
[D(x, T (y)) +D(y, T (x))]}.

Then, the following conclusions hold:
(a) there exists x∗ ∈ FT ;
(b) for each (x, y) ∈ Graph(T ), there exists a sequence (xn)n∈N of successive
approximations for T starting from (x, y), convergent to a fixed point of T ;
(c) there exists a selection t∞ : Graph(T )→ FT of T∞, such that

d(x, t∞(x, y)) ≤ 1

1− α
d(x, y),∀(x, y) ∈ Graph(T );

(d) FT is closed in (X, d);
(e) if (xn)n∈N is a sequence of successive approximations for T , starting from
a pair (x, y) ∈ Graph(T ), which converges to a fixed point x∗(x, y) of T , then

d(xn, x
∗) ≤ αn

1− α
d(x, y), ∀n ∈ N∗;
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(f) if G : X → Pcl(X) is a Ćirić-type multi-valued operator with coefficient
β, and there exists η > 0, such that H(T (x), G(x)) ≤ η, for all x ∈ X, then

H(FT , FG) ≤ η ·max
{ 1

1− α
,

1

1− β

}
;

(g) if Tn : X → Pcl(X) is a sequence of multi-valued α-Ćirić-type operators,

with Tn(x)
H→ T (x) as n→∞, uniformly with respect to x ∈ X, then

lim
n→∞

H(FTn , FT ) = 0;

(h) if there exists x0 ∈ X and r > 0, such that D(x0, T (x0)) < (1−α)r, then
there exists x∗ ∈ FT ∩B(x0, r);
(i) if there exists x0 ∈ X and r > 0 such that δ(x0, T (x0)) < (1 − α)r, then

T : B̃(x0, r)→ P

(
B̃

(
x0,

1

1− α
r

))
and there exists x∗ ∈ FT ∩B(x0, r);

(j) if X is a Banach space, U an open subset of X and T : U → Pcl(X) is
a Ćirić multi-valued operator, then the associated multi-valued field G : U →
P (X), G(x) := x− T (x) is open;
(k) there exists a Caristi selection of T ;
(m) if, additionally, T : X → Pcp(X), then the fixed point inclusion x ∈ T (x)
is generalized Ulam-Hyers stable;
(n) the multi-valued operator T has the approximate fixed point property;
(o) if the multi-valued operator T is lower semicontinuous, then it has the
approximate endpoint property if and only if it has a unique strict fixed point;

(p) if α <
1

2
, then the fixed point set FT is compact.

(q) if T : X → Pb,cl(X), then for each p > 0, one has H(F ∗p , FT ) ≤ p

1− α
,

where F ∗p := {x ∈ X | D(x, T (x)) < p}.

Proof. (a), (b), (c) and (e) (In fact (a) and (b) means that T is a MWP
operator, while (a), (b) and (c) can be concise represented by saying that T
is a ψ-MWP operator, with ψ(t) = 1

1−αt).
Let x0 ∈ X and x1 ∈ T (x0) be arbitrary elements. Then H(T (x0), T (x1)) ≤

αM(x0, x1). Furthermore, consider q ∈
(

1,
1

α

)
.

Now, for x1, there exists x2 ∈ T (x1), such that d(x1, x2) ≤ qH(T (x0), T (x1)),
so d(x1, x2) ≤ qαM(x0, x1). We consider the following cases :
If M(x0, x1) = d(x0, x1), then d(x1, x2) ≤ (qα)d(x0, x1).
If M(x0, x1) = D(x0, T (x0)) ≤ d(x0), x1, then d(x1, x2) ≤ (qα)d(x0, x1).
If M(x0, x1) = D(x1, T (x1)) ≤ d(x1, x2), then d(x1, x2) ≤ (qα)d(x1, x2),
which is a contradiction, So M(x0, x1) can not be d(x1, x2).
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Finally, if M(x0, x1) =
1

2
[D(x1, T (x0)) +D(x0, T (x1)), ], then by using the

fact that D(x1, T (x0)) ≤ d(x1, x1) = 0 and the fact that D(x0, T (x1)) ≤
d(x0, x2) ≤ d(x0, x1) + d(x1, x2), it follows that M(x0, x1) ≤

1

2
d(x0, x1) +

1

2
d(x1, x2). So d(x1, x2) ≤

qα

2
d(x0, x1) +

qα

2
d(x1, x2). Then d(x1, x2) ≤

qα

2− qα
d(x0, x1).

Since q ∈
(

1,
1

α

)
, we get that d(x1, x2) ≤ (qα)d(x0, x1).

Let us denote by λ := qα. Then, by all the cases d(x1, x2) ≤ λd(x0, x1).
Also, denote by ρn := d(xn, xn+1), for each n ∈ N. By induction, we can
construct a sequence (xn)n∈N, such that for xn ∈ T (xn−1), there exists xn+1 ∈
T (xn), for which ρn ≤ λρn−1, for each n ∈ N. Then ρn ≤ λnρ0, so by triangle

inequality d(xn, xn+p) ≤ λn
1− λp

1− λ
ρ0. Taking n → ∞, it follows up that the

sequence (xn)n∈N is Cauchy, so there exists x∗ ∈ X, such that xn → x∗.

Furthermore, in the estimate d(xn, xn+p) ≤ λn
1− λp

1− λ
ρ0. taking p → ∞, it

follows that d(xn, x
∗) ≤ λn

1− λ
d(x0, x1). Taking n = 0 and making q ↘ 1, it

follows the estimate d(x, x∗) = d(x, t∞(x, y)) ≤ 1

1− α
d(x, y), with y ∈ T (x).

Here, we denoted by x := x0 and y := x1 ∈ T (x0).
The final step is to show that x∗ ∈ FT , i.e., to prove that D(x∗, T (x∗)) = 0.
We have the following estimation:

D(x∗, T (x∗)) ≤ d(x∗, xn+1) +H(T (xn), T (x∗)) ≤ d(x∗, xn+1) + αM(xn, x
∗).

Moreover, since

M(xn, x
∗) ≤ max{d(xn, x

∗), d(xn, xn+1), D(x∗, T (x∗)),

1

2
[d(x∗, xn) + d(x∗, xn+1) +D(x∗, T (x∗))]},

by letting n→∞, we obtain that lim
n→∞

M(xn, x
∗) ≤ D(x∗, T (x∗)).

This means that

D(x∗, T (x∗)) ≤ αmax{D(x∗, T (x∗)),
1

2
D(x∗, T (x∗))} < D(x∗, T (x∗)),

and the conclusion follows.
(d) We know that FT ∈ P (X). We shall show that FT is closed in (X, d). For
this, let xn ∈ FT , such that xn → x∗. So, for each n ∈ N, D(xn, T (xn)) = 0.
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We shall show that x∗ ∈ FT , i.e. x∗ ∈ T (x∗). Also, since the operator T has
closed values, then it is enough to show that D(x∗, T (x∗)) = 0. We have the
following inequalities :

D(x∗, T (x∗)) ≤ d(x∗, xn) +D(xn, T (x∗)) ≤ d(x∗, xn) +H(T (xn), T (x∗))

≤ d(x∗, xn) + αM(x∗, xn)

We have the following cases:
If M(x∗, xn) = d(x∗, xn), then D(x∗, T (x∗)) ≤ (1 + α)d(xn, x

∗)→ 0.
Furthermore, ifM(x∗, xn) = D(xn, T (xn)) = 0, thenD(x∗, T (x∗)) ≤ d(x∗, xn)
→ 0. Moreover, if M(x∗, xn) = D(x∗, T (x∗)), then we obtain that

D(x∗, T (x∗)) ≤ 1

1− α
d(x∗, xn)→ 0.

Finally, if M(x∗, xn) =
1

2
[D(xn, T (x∗)) +D(x∗, T (xn))] ≤ 1

2
D(xn, T (x∗)) +

1

2
d(x∗, xn).

Also, D(xn, T (x∗)) ≤ H(T (xn), T (x∗)) ≤ αM(xn, x
∗) ≤ α

2
D(xn, T (x∗)) +

α

2
d(x∗, xn), so D(xn, T (x∗)) ≤ α

2− α
d(xn, x

∗). This implies that

D(x∗, T (x∗)) ≤ d(x∗, xn) +
α

2− α
d(xn, x

∗) =
2

2− α
d(xn, x

∗)→ 0, n→∞.

Thus, by all cases x∗ ∈ FT , so FT is closed.

(f) By (a),(b),(c) and (e), we have that d(x, x∗) ≤ 1

1− α
d(x, y), where x is an

arbitrary element of X and y ∈ T (x), where x∗ ∈ FT . Taking x = y∗ ∈ FG,

then we obtain that d(x∗, y∗) ≤ 1

1− α
d(y, y∗), where y ∈ T (y∗). Further-

more, since y ∈ T (y∗) is arbitrary, we can make the following assertion: for
y∗ ∈ FG, there exists y ∈ T (y∗), such that d(y, y∗) ≤ H(G(y∗), T (y∗)) ≤ η,

so d(x∗, y∗) ≤ η

1− α
.

Now, also from the global principle of the existence of the fixed point of G,

we get that d(x, x∗) ≤ 1

1− β
d(x, y), with x∗ ∈ FG, x is an arbitrary element

of X and y ∈ Gx.

Taking x = y∗ ∈ FT , then we obtain that d(x∗, y∗) ≤ 1

1− β
d(y, y∗), where

y ∈ G(y∗).
As in the first case, since y ∈ G(y∗) is arbitrary, then for y∗ ∈ FT , there exists
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y ∈ G(y∗), such that d(y∗, y) ≤ H(T (y∗), G(y∗)) ≤ η. So d(x∗, y∗) ≤ η

1− β
.

From the first case we get that for y∗ ∈ FG, there exists x∗ ∈ FT , such that

d(x∗, y∗) ≤ η ·max
{ 1

1− α
,

1

1− β

}
,

while from the second case we infer that for y∗ ∈ FT , there exists x∗ ∈ FG,
such that

d(x∗, y∗) ≤ η ·max
{ 1

1− α
,

1

1− β

}
.

By Lemma 1.2, we get the conclusion H(FT , FG) ≤ η ·max
{ 1

1− α
,

1

1− β

}
.

(g) Let ε > 0 be an arbitrary fixed element. Since Tn(x)
H→ T (x) as

n → ∞, uniformly for each x ∈ X, then for all x ∈ X, we have that
lim
n→∞

H(Tnx, Tx) = 0.

This means that for ε > 0, there exists N(ε) ∈ N, such that for each
n ≥ N(ε), we have that sup

x∈X
H(Tn(x), T (x)) < ε. From the conclusion (f) of

data dependence, we have that for ε > 0, there exists N(ε) ∈ N, such that

for all n ≥ N(ε), one has H(FTn , FT ) <
1

1− α
· ε. So, the conclusion is valid.

(h) Let s ∈ (0, r), such that B̃(x0, s) ⊂ B(x0, r), with D(x0, T (x0)) <
(1 − α)s < (1 − α)r. Since D(x0, T (x0)) < (1 − α)s, then there exists
x1 ∈ T (x0), such that d(x0, x1) < (1− α)s < s, so x1 ∈ B(x0, s) ⊂ B̃(x0, s).
From the hypothesis, we have that H(T (x0), T (x1)) ≤ αM(x0, x1), where:

M(x0, x1) =

= max{d(x0, x1), D(x0, T (x0)), D(x1, T (x1)),
1

2
[D(x0, T (x1)) +D(x1, T (x0))]}

≤ max{d(x0, x1), D(x0, T (x0)), D(x1, T (x1)),
1

2
[d(x0, x1) +D(x1, T (x1))]}

= max{d(x0, x1), D(x0, T (x0)), D(x1, T (x1))}
≤ max{d(x0, x1), H(T (x0), T (x1))}

We consider the following cases:
If the maximum is d(x0, x1), then H(T (x0), T (x1)) ≤ αd(x0, x1).
If the maximum is H(T (x0), T (x1)), then, since α < 1, we obtain a contra-
diction.
From the above cases, it follows that H(T (x0), T (x1)) ≤ αd(x0, x1). Since
D(x1, T (x1)) ≤ H(T (x0), T (x1)) ≤ αd(x0, x1) < α(1− α)s, then there exists
x2 ∈ T (x1) for which d(x1, x2) < α(1− α)s.
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Furthermore, by triangle inequality one can obtain d(x0, x2) ≤ d(x0, x1) +
d(x1, x2) < (1− α)s+ α(1− α)s = (1− α2)s < s, so x2 ∈ T (x1) ∩ B̃(x0, s).
By induction, we can construct a sequence (xn)n∈N, with xn from T (xn−1) ∩
B̃(x0, s), such that :
xn+1 ∈ T (xn), for each n ∈ N,
d(xn−1, xn) ≤ αn−1(1− α)s, for each n ∈ N∗,
d(x0, xn) ≤ (1− αn)s, for all n ∈ N.

It follows that the sequence (xn)n∈N is Cauchy, so there exists x∗ ∈ B̃(x0, s),
such that xn → x∗.
As in the proof of (a),(b),(c) and (e), one can show that x∗ ∈ T (x∗). More-
over, since xn ∈ B̃(x0, s) and B̃(x0, s) is closed in X, then x∗ ∈ B̃(x0, s) ⊂
B(x0, r).
(i) Let u ∈ T (x0). Then, by applying the triangle inequality, we get that
d(z, x0) ≤ d(z, u) +d(u, x0), so d(z, x0) ≤ d(z, u) + δ(x0, T (x0)). Now, taking

inf
u∈T (x0)

, it follows that d(z, x0) ≤ D(z, T (x0)) + δ(x0, T (x0)).

We first show that T (B̃(x0, r)) ⊂ B̃

(
x0,

1

1− α
r

)
.

Let y ∈ B̃(x0, r). We will show that T (y) ⊂ B̃

(
x0,

1

1− α
r

)
.

So, take z ∈ T (y). The aim is to show that z ∈ B̃

(
x0,

1

1− α
r

)
, i.e.,

d(z, x0) ≤
1

1− α
r.

Then d(z, x0) ≤ D(z, T (x0)) + δ(x0, T (x0)) < H(T (y), T (x0)) + (1− α)r. So
d(z, x0) < αM(y, x0) + (1− α)r.
We know that:

M(y, x0) = max{d(y, x0), D(x0, T (x0)), D(y, T (y)),

1

2
[D(y, T (x0)) +D(x0, T (y))]}.

We also have d(y, x0) ≤ r and D(x0, T (x0)) ≤ δ(x0, T (x0)) < (1 − α)r ≤ r.
So, we obtain:

M(y, x0) ≤ max{r,D(y, T (y)),
1

2
[D(y, T (x0)) +D(x0, T (y))]}.

We employ an analysis on the following cases :
If the maximum from the right hand side is r, then d(z, x0) < αr+(1−α)r =

r <
1

1− α
r.

If the maximum is D(y, T (y)), then d(z, x0) < αD(y, T (y)) + (1− α)r. So
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d(z, x0) < (1−α)r+αd(y, z) ≤ (1−α)r+αd(y, x0) +αd(z, x0). This means

that d(z, x0) <
1

1− α
r.

Finally, if the maximum is
1

2
[D(y, T (x0)) +D(x0, T (y))], then d(z, x0) <

α

2
D(y, T (x0)) +

α

2
d(x0, z) + (1 − α)r. This implies that (2 − α)d(z, x0) <

αd(y, x0) + αδ(x0, Tx0) + 2(1− α)r and thus d(z, x0) ≤
2− α2

2− α
r.

From all the cases, it follows that d(z, x0) ≤ max{ 1

1− α
r,

2− α2

2− α
r} =

1

1− α
r.

This means that T
(
B̃(x0, r)

)
⊂ B̃

(
x0,

1

1− α
r

)
. We have that

D(x0, T (x0)) ≤ δ(x0, T (x0)) < (1− α)r.

Taking X := B̃

(
x0,

1

1− α
r

)
and T : B̃(x0, r) → Pcl(X), we apply the

conclusion (i) for local version of the fixed point problem for the Ćirić op-
erator on the closed ball. We mention that we have used the fact that

B̃

(
x0,

1

1− α
r

)
is closed in the complete metric space (X, d). Then, there

exists x∗ ∈ FT ∩ B̃(x0, r). Using the fact that d(x0, x
∗) ≤ r, we can show

that d(x0, x
∗) < r.

Suppose to the contrary that r = d(x0, x
∗). Then, we have the following

inequalities: r = d(x∗, x0) ≤ H(T (x∗), T (x0)) + δ(x0, T (x0)) < αM(x∗, x0) +
(1− α)r, where

M(x∗, x0) = max{d(x∗, x0), D(x∗, T (x∗)), D(x0, T (x0)),

1

2
[D(x∗, T (x0)) +D(x0, T (x∗))]}.

Notice that D(x∗, T (x∗)) = 0, D(x0, T (x0)) ≤ δ(x0, T (x0)) ≤ (1 − α)r < r,
D(x0, T (x∗)) ≤ d(x0, x

∗) and D(x∗, T (x0)) ≤ d(x∗, x0) + D(x0, T (x0)) <
d(x∗, x0) + (1− α)r.
Then, we get the following cases :
If the maximum from the right hand side is d(x∗, x0), then r < αd(x∗, x0) +
(1− α)r = αr + (1− α)r = r, which is false.
If the maximum is D(x∗, T (x∗)), then r < (1− α)r < r, which is also false.
If the maximum is D(x0, T (x0)) < (1−α)r, then we get r < (1−α)r+α(1−
α)r = (1− α2)r < r, also false.

For the last case, if the maximum from the right hand side is
1

2
[D(x∗, T (x0))
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+D(x0, T (x∗))], then M(x∗, x0) ≤
1

2
H(T (x∗), T (x0)) + (1 − α)r. Further-

more, by the condition that the operator is of Ćirić-type, we have that

H(T (x∗), T (x0)) ≤ αM(x∗, x0). So H(T (x∗), T (x0)) ≤
α(1− α)r

2− α
.

It follows that r = d(x∗, x0) < H(T (x∗), T (x0))+(1−α)r, so r < (1−α2)r <
r, which is false.
From all the cases from above, it follows that d(x∗, x0) < r.
(j) We prove that, if V is an open subset of U , then G(V ) is open in X.
This means that for x0 ∈ U and r0 > r > 0, with B(x0, r) ⊂ U , then
V 0(G(x0), (1− α)r) ⊂ G(B(x0, r)).
So, let y ∈ V 0(G(x0), (1 − α)r), i.e. D(y,G(x0)) < (1 − α)r. We shall
show that y ∈ G(B(x0, r)). In other words, we shall show that there exists
x∗ ∈ B(x0, r), such that y ∈ G(x∗), i.e., y ∈ x∗ − T (x∗).
Let us consider the multi-valued operator F : B(x0, r)→ Pcl(X), defined by
F (x) := y + T (x).
If F has a fixed point x∗, then x∗ ∈ y + T (x∗) or y ∈ x∗ − T (x∗). Now, for
each x, z ∈ B(x0, r), we have that :
H(F (x), F (z)) = H(y+T (x), y+T (z)) ≤ H(T (x), T (z)) ≤ αM(x, z). More-
over, D(x0, F (x0)) = D(x0, y + T (x0)) = D(y, x0 − T (x0)) = D(y,G(x0))
< (1 − α)r. Then F is a Ćirić operator defined on the open ball B(x0, r),
where D(x0, F (x0)) < (1 − α)r. Applying the conclusion (h), i.e. the local
version involving an open ball, it follows easily that G is open.
(k) For the proof of the Caristi selection of the multi-valued Ćirić operator
T , we refer to the work of A. Petruşel and G. Petruşel [20].
(m) Let ε > 0 and consider y∗ ∈ X that satisfies D(y∗, T (y∗)) ≤ ε. Then,

for each (x, y) ∈ Graph(T ), we have that d(x, t∞(x, y)) ≤ 1

1− α
d(x, y).

Now, since there exists (y∗, u∗) = D(y∗, T (y∗)), we take x∗ := t∞(y∗, u∗).

This implies that d(y∗, x∗) = d(y∗, t∞(y∗, u∗)) ≤ 1

1− α
d(y∗, u∗) = ψ(ε),

where ψ(t) =
t

1− α
.

(n) For the proof of this, we refer to [2].

(o) Let ε > 0. Let’s denote Eε(T ) :=
{
x ∈ X| sup

z∈Tx
d(x, z) ≤ ε

}
. Since T

is lower semicontinuous, by Lemma 3.3 from [8], we get that for each ε > 0,
the set Eε(T ) is nonempty. Now, let x, y ∈ Eε(T ). It follows that:

d(x, y) ≤ H({x}, T (x)) +H(T (x), T (y)) +H({y}, T (y)).

Now, since x, y ∈ Eε(T ), then H({x}, T (x)) ≤ ε and H({y}, T (y)) ≤ ε. So,
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we get that
d(x, y) ≤ 2ε+ αM(x, y).

Then, we have the following cases:

If M(x, y) = d(x, y), then d(x, y) ≤ 2ε+ αd(x, y), so d(x, y) ≤ 2ε

1− α
.

If M(x, y) = D(x, T (x)) = D({x}, T (x)) ≤ H({x}, T (x)) ≤ ε, then d(x, y) ≤
2ε+ αε = ε(2 + α).
Similarly, if M(x, y) = D(y, T (y)) = D({y}, T (y)) ≤ H({y}, T (y)) ≤ ε, then
d(x, y) ≤ 2ε+ αε = ε(2 + α).

Finally, if M(x, y) =
1

2
[D(x, T (y)) +D(y, T (x))], then we infer that:

D(x, T (y)) ≤ d(x, y) +D(y, T (y))

= d(x, y) + inf
z∈T (y)

d(y, z) ≤ d(x, y) + sup
z∈T (y)

d(y, z)

≤ d(x, y) + ε,

since y ∈ Eε(T ).
Furthermore,

D(y, T (x)) ≤ d(x, y) +D(x, T (x))

= d(x, y) + inf
z∈T (x)

d(x, z) ≤ d(x, y) + sup
z∈T (x)

d(x, z)

≤ d(x, y) + ε,

since x ∈ Eε(T ). Thus, d(x, y) ≤ 2ε+ αε+ αd(x, y).
From all the cases, it follows that

d(x, y) ≤ εmax
{2 + α

1− α
,

2

1− α
, 2 + α

}
=

2 + α

1− α
ε.

Now, if the multi-valued Ćirić-type operator T has a strict fixed point, then
T has the approximate endpoint property. Let us suppose now that the
multi-valued operator T has the approximate endpoint property. We define

Cn := E 1
n
(T ) =

{
x ∈ X | sup

y∈T (x)
d(x, y) ≤ 1

n

}
. Then, by our hypothesis, for

each n ∈ N, Cn is nonempty. Furthermore, for all n ∈ N, Cn+1 ⊆ Cn.
Also, since T is lower semicontinuous, then Cn are closed, for each n ∈ N.
Also, we observe that :

δ(Cn) = δ
(
E 1

n
(T )
)
≤ 2 + α

1− α
· 1

n
, so lim

n→∞
δ(Cn) = 0.

Then, by Cantor’s intersection theorem, it follows that
⋂
n∈N

Cn = {x0}, so the

conclusion follows easily.
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(p) By (d), we have that FT is closed in (X, d). Since (X, d) is complete,
then FT is complete with respect to d. Furthermore, let’s suppose that FT is
not compact. Then FT is not precompact. This means that there exist δ > 0
and (xk)k∈N ⊂ FT , such that d(xi, xj) ≥ δ, for all i 6= j.
Denote ρ := inf{R | ∃a ∈ X, such that B(a,R) contains an infinity of x′ks}.

It is obvious that ρ ≥ δ

2
, because for each a ∈ X, B

(
a,
δ

2

)
contains at most

one xk.
Furthermore, consider 0 < ε < (1− 2α)ρ and take a ∈ X, such that the set
J := {k | xk ∈ B(a, ρ+ ε)} is infinite. Then, for each k ∈ J , we have

D(xk, T (a)) ≤ H(T (xk), T (a)) ≤ αM(xk, a).

Now, we have the following cases:
If M(xk, a) = d(xk, a), then D(xk, T (a)) ≤ αd(xk, a) ≤ α(ρ+ ε).
Also, if M(xk, a) = D(a, T (a)), then D(xk, T (a)) ≤ αd(a, y), for y ∈ Ta.

Now, if M(xk, a) =
1

2
D(xk, T (a)) +

1

2
D(a, T (xk)), then

D(xk, T (a)) ≤ α

2
D(xk, T (a)) +

α

2
d(a, xk),

so D(xk, T (a)) ≤ α

2− α
d(a, xk). It implies that D(xk, T (a)) ≤ α(ρ+ ε).

So, all the cases from above imply that D(xk, a) ≤ max{α(ρ+ ε), αd(a, y)},
where y ∈ T (a). From all of this, we have two cases to consider :
In the first case, by D(xk, T (a)) ≤ αd(a, y), with y ∈ T (a), we obtain that
D(xk, T (a)) ≤ αd(a, xk) + αd(xk, y). Taking inf

y∈T (a)
, we get, for each k ∈ J ,

that D(xk, T (a)) ≤ α

1− α
· (ρ+ ε).

Now, the second case is for D(xk, T (a)) ≤ α(ρ + ε). From these two cases,

one can get D(xk, T (a)) ≤ max
{
α,

α

1− α

}
· (ρ+ ε) =

α

1− α
· (ρ+ ε). Then

D(xk, T (a)) ≤ α

1− α
·(ρ+ε), so since T (a) is compact, there exists yk ∈ T (a),

such that d(xk, yk) ≤
α

1− α
(ρ+ ε), for each k ∈ J .

Moreover, since T (a) is compact, then there exists b ∈ T (a), for which the
set J ′ := {k ∈ J | d(yk, b) < ε} is infinite. This means that for each k ∈ J ′

(since α <
1

2
and ε was chosen such that ε < ρ · (1− 2α)), we have that

d(xk, b) ≤ d(xk, yk) + d(yk, b) <
α

1− α
(ρ+ ε) + ε < ρ.
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This contradicts the fact that the ball B(b, R) contains an infinite number of

elements x′ks, where R =
α

1− α
ρ+ ε

(
1 +

α

1− α

)
.

(q) Let F ∗p := {x ∈ X | D(x, T (x)) < p}, for each p > 0. Notice that if
x ∈ FT , then D(x, T (x)) = 0 < p, for each p > 0. So FT ⊆ F ∗p . This implies
that H(F ∗p , FT ) = ρ(F ∗p , FT ) := sup

x∈F ∗
p

D(x, FT ), for all p > 0, where ρ denotes

the excess functional.
Moreover, let x ∈ F ∗p and ε > 0. Because x ∈ F ∗p , then D(x, T (x)) < p. So,
for x ∈ F ∗p there exists x1 ∈ T (x), for which d(x, x1) < (1 + ε)p.
For x0 = x and x1 ∈ T (x) = T (x0), following (b) there exists a sequence of
successive approximations (xn)n∈N, starting from (x0, x1) ∈ Graph(T ), such

that d(xn, x
∗) ≤ Ln(q)

1− L(q)
d(x0, x1), for each n ∈ N, where L(q) := qα, with

q ∈
(

1,
1

α

)
and with the property that xn → x∗ ∈ FT as n→∞.

Taking n = 0, we obtain d(x0, x
∗) ≤ 1

1− L(q)
d(x0, x1) ≤

(1 + ε)p

1− L(q)
. So

d(x0, x
∗) ≤ (1 + ε)p

1− qα
. Taking q ↘ 1, respectively ε ↘ 0, it follows that

d(x0, x
∗) ≤ p

1− α
. So, the conclusion follows easily from this inequality.

We will present now the second result of this article, which is an extended
version of strict fixed point principle for multi-valued Ćirić operators. Since
all the conclusion from Theorem 2.1 are valid even in the particular case
when (SF )T 6= ∅, for this case we shall present only the metrical conclusions
that are new.

Theorem 2.2 (An extended strict fixed point principle for multi-valued Ćirić
operators). Let (X, d) be a complete metric space and T : X → Pcl(X) be
a multi-valued α-Ćirić type operator. Suppose that (SF )T 6= ∅. Then, the
following conclusions hold :
(a) (SF )T = FT = {x∗};
(b) if α <

1

2
, then T has the Ostrowski property;

(c) the fixed point inclusion x ∈ T (x) is generalized Ulam-Hyers stable;
(d) the strict fixed point inclusion {x} = T (x) is generalized Ulam-Hyers
stable;
(e) the fixed point problem is well-posed for T , with respect to D and, respec-
tively, with respect to H;

(f) if α <
1

2
, then H(T (x), x∗) ≤ α

1−alphad(x, x∗), for each x ∈ X;
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(g) d(x, x∗) ≤ 1

1− α
H(x, T (x)), for each x ∈ X;

(h) if G : X → P (X) is a multi-valued operator with FG 6= ∅, and there
exists η > 0, such that H(T (x), G(x)) ≤ η, for all x ∈ X, then H(FT , FG) ≤
η · 1

1− α
.

Proof. (a) Since (SF )T 6= ∅, then there exists x∗ ∈ (SF )T ⊂ FT . Suppose
there exists y∗ ∈ FT . We show that x∗ = y∗. For this, suppose the contrary
that x∗ 6= y∗. Then:

d(x∗, y∗) = D(T (x∗), y∗) ≤ H(T (x∗), T (y∗)) ≤ αM(x∗, y∗).

Since D(x∗, T (x∗)) = D(y∗, T (y∗)) = 0, D(x∗, T (y∗)) ≤ d(x∗, y∗) and D(y∗,
T (x∗)) = d(x∗, y∗), it follows that M(x∗, y∗) ≤ d(x∗, y∗).
So d(x∗, y∗) ≤ αd(x∗, y∗) < d(x∗, y∗). This implies that d(x∗, y∗) = 0, so we
obtain a contradiction.
Finally, x∗ = y∗, so FT = {x∗} = (SF )T .
(b) Let (yn)n∈N be a sequence, such that D(yn+1, T (yn)) → 0. We shall
show that d(yn, x

∗) → 0. Then, we have d(x∗, yn+1) ≤ H(T (x∗), T (yn)) +
D(yn+1, T (yn)) ≤ αM(x∗, yn) +D(yn+1, T (yn)), where

M(x∗, yn) =

= max
{
d(x∗, yn), D(x∗, T (x∗)), D(yn, T (yn)),

1

2
[D(x∗, T (yn)) +D(yn, T (x∗))]

}
≤ max

{
d(x∗, yn), D(yn, T (yn)),

1

2
[d(yn, x

∗) +D(x∗, T (yn))]
}
.

Now, we have the following cases :
If the maximum from the right hand side is d(x∗, yn), then d(x∗, yn+1) ≤
D(yn+1, T (yn)) + αd(x∗, yn).
If the maximum is D(yn, T (yn)) ≤ d(yn, x

∗) + D(x∗, T (yn)), then we have
H(x∗, T (yn)) = H(T (x∗), T (yn)) ≤ αM(x∗, yn) ≤ αd(yn, x

∗)+αH(x∗, T (yn)).

So, we get that H(T (x∗), T (yn)) ≤ α

1− α
d(yn, x

∗).

It implies that d(yn+1, x
∗) ≤ D(yn+1, T (yn)) +

α

1− α
d(yn, x

∗).

Consider now the case when the maximum is
1

2
[d(yn, x

∗) +D(x∗, T (yn))].

Then, we obtain D(x∗, T (yn)) ≤ H(T (x∗), T (yn)) ≤ αM(x∗, yn). Thus

H(T (x∗), T (yn)) ≤ α

2
(d(yn, x

∗) +H(T (x∗), T (yn))). This means that

H(T (x∗), T (yn)) ≤ α

2− α
d(yn, x

∗).
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Hence d(yn+1, x
∗) ≤ D(yn+1, T (yn)) +

α

2− α
d(yn, x

∗).

Now, since β := max
{
α,

α

1− α
,

α

2− α

}
=

α

1− α
, then from all the cases

from above, it follows that d(yn+1, x
∗) ≤ D(yn+1, T (yn)) + βd(yn, x

∗) ≤
D(yn+1, T (yn)) + βD(yn, T (yn−1)) + β2d(yn−1, x

∗) ≤ . . . ≤ βn+1d(y0, x
∗) +

n∑
k=0

βn−kD(yk+1, T (yk)). Now, since β < 1, using Cauchy’s lemma, we get

that d(yn+1, x
∗)→ 0.

(c) By (a) we know that (SF )T = FT = {x∗}.
Now, let us consider x ∈ X and y ∈ T (x). Then, we have the following:
d(x, x∗) ≤ d(x, y) + H(T (x), T (x∗)) ≤ d(x, y) + αM(x, x∗) ≤ d(x, y) +

αmax
{
d(x, x∗), D(x, T (x)),

1

2
d(x∗, y) +

1

2
d(x, x∗)

}
. Moreover, we consider

the following cases:

If M(x, x∗) = d(x, x∗), then d(x, x∗) ≤ 1

1− α
d(x, y).

If M(x, x∗) = D(x, T (x)), then

d(x, x∗) ≤ d(x, y) + αD(x, T (x)) ≤ (1 + α)d(x, y)

Finally, if M(x, x∗) ≤ 1

2
d(x∗, y)+

1

2
d(x, x∗), then we have d(x, x∗) ≤ d(x, y)+

α

2
d(x∗, y) +

α

2
d(x, x∗). So, we get d(x, x∗) ≤ 2 + α

2(1− α)
d(x, y). From all the

cases we obtain that

d(x, x∗) ≤ max
{ 1

1− α
, 1 + α,

2 + α

2(1− α)

}
d(x, y) =

2 + α

2(1− α)
d(x, y).

Now, let us define ψ(t) :=
2 + α

2(1− α)
t, so d(x, x∗) ≤ ψ(d(x, y)). We notice

that ψ is continuous in 0, increasing and with ψ(0) = 0.
Then, as in (m) of Theorem 2.1, we have the following:
Let ε > 0 and consider y∗ ∈ X that satisfies D(y∗, T (y∗)) ≤ ε. Then, for
each (x, y) ∈ Graph(T ), we have d(x, t∞(x, y)) ≤ ψ(d(x, y)).
Now, since there exists (y∗, u∗) = D(y∗, T (y∗)), we take x∗ := t∞(y∗, u∗).
This implies that d(y∗, x∗) = d(y∗, t∞(y∗, u∗)) ≤ ψ(d(y∗, u∗)) and the conclu-
sion follows.
(d) Let ε > 0 and y∗ ∈ X, such that H(y∗, T (y∗)) ≤ ε. Since T is a Ćirić

multi-valued operator, from (h) we have that d(x, x∗) ≤ 1

1− α
H(x, T (x)),

for each x ∈ X. This implies that d(y∗, x∗) ≤ 1

1− α
H(y∗, T (y∗)) ≤ ψ(ε),

where ψ(t) :=
t

1− α
satisfies ψ(0) = 0 and it is an increasing and continuous
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mapping in 0.
(e) The proof of this conclusion is given in [19].
(f) We know that

H(T (x), T (x∗)) ≤ αmax{d(x, x∗), D(x, T (x)),
1

2
[D(x, T (x∗)) +D(x∗, T (x))]}.

We have the following cases:
If the maximum is d(x, x∗), then H(T (x), T (x∗)) ≤ αd(x, x∗).

If the maximum is
1

2
[D(x, T (x∗)) +D(x∗, T (x))], then H(T (x), T (x∗)) =

α

2
d(x, x∗) +

α

2
H(T (x), T (x∗)) and so H(T (x), T (x∗)) ≤ α

2− α
d(x, x∗).

If the maximum isD(x, T (x)), then we obtainH(T (x), T (x∗)) ≤ α

1− α
d(x, x∗).

Since max
{ α

2− α
, α,

α

1− α

}
=

α

1− α
, H(T (x), x∗) = H(T (x), T (x∗)) ≤

α

1− α
d(x, x∗).

(g) We have the following chain of inequalities d(x, x∗) ≤ H(x, T (x)) +

H(T (x), x∗) ≤ H(x, T (x)) + αd(x, x∗). Thus d(x, x∗) ≤ 1

1− α
H(x, T (x)).

(h) Let x∗ ∈ (SF )T and y∗ ∈ FG. Then, we have

d(x∗, y∗) ≤ H(G(y∗), x∗) ≤ H(G(y∗), T (y∗))+H(T (y∗), x∗) ≤ η+αM(y∗, x∗).

Now, we have the following cases for M(y∗, x∗):

1) if M(y∗, x∗) = d(y∗, x∗), then d(y∗, x∗) ≤ η

1− α
.

2) if M(y∗, x∗) = D(x∗, T (x∗)), then d(y∗, x∗) = 0.
3) if M(y∗, x∗) = D(y∗, T (y∗)) ≤ H(G(y∗), T (y∗)) ≤ η, then d(y∗, x∗) ≤
(1 + α)η.

4) finally, if M(y∗, x∗) =
1

2
D(x∗, T (y∗)) +

1

2
D(y∗, T (x∗)), then

H(T (x∗), T (y∗)) ≤ αM(y∗, x∗) ≤ α

2
H(T (y∗), T (x∗)) +

α

2
d(x∗, y∗). Hence, we

get thatH(T (x∗), T (y∗)) ≤ α

2− α
d(x∗, y∗). Then d(x∗, y∗) ≤ η+

α

2− α
d(x∗, y∗),

which implies that d(y∗, x∗) ≤ 2− α
2(1− α)

η. It follows that d(y∗, x∗) ≤ η ·

max
{

(1 + α),
1

1− α
,

2− α
2(1− α)

}
=

1

1− α
η. Using Lemma 1.2 the conclusion

follows.
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[5] G. Chifu and G. Petruşel, Fixed point results for multivalued Hardy-Rogers con-
tractions in b-metric spaces, Filomat, 31 (8), (2017), 2499–2507

[6] A.A. Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear
Anal., 72, (2010), 132–134

[7] A.D. Rogers and G.E. Hardy, A generalization of fixed point theorem of Reich,
Canad. Math. Bull., 16, (1973), 201–208

[8] N. Hussain, A.A. Harandi, and Y.J. Cho, Approximate endpoints for set-valued
contractions in metric spaces, Fixed Point Theory Appl., 2010:614867, (2010), 1–13

[9] J.R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contrac-
tions, J. Math. Anal. Appl., 227, (1998), 55–67
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