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Some varieties with points only in a field extension 

By 

ANDREW BREMNER, D. J. LEWIS and PATRICK MORTON 

We are interested in the following problem. Let F be an irreducible algebraic variety 
of degree d, in projective n-space ~", defined over a field k; and suppose K is a finite 
extension of k with [K:k]  prime to d. If F has a point defined over K, then does it 
necessarily have a point defined over k? 

Several instances of this phenomenon are known, in particular when F is a quadric in 
~" [12], or a cubic plane curve [11]. Brumer [3] and Amer [1] have shown that the result 
holds for the intersection of two quadrics, while Pfister [10] has shown that results of this 
nature do not continue to generalize by giving an example of three quadrics in IP z having 
a zero in I1)(~f2), but no zero in I1~. Further such counterexamples involving systems of 
quadrics are given by Cassels [4] and Coray [5]. 

Cassels and Swinnerton-Dyer have conjectured that if F is a cubic hypersurface in IP", 
then the existence of a point defined over K with [K: k] prime to 3, implies the existence 
of a k-rational point on F. This conjecture is still unresolved, but Coray [6] has shown 
that when n = 3, then a point on F defined over such a field K implies that F has a point 
over a field extension L ofk  with [L: k] = 1, 4, or 10. Finally, Coray in [6] gives an example 
of a quartic curve over I1~ possessing no rational point (because it possesses no 5-adic 
point), yet having a point over a cubic extension of I1~. 

We give in this note some further examples of instances where points on a variety 
defined over an extension field do not imply the existence of points defined over the base 
field. In (I) we give two cubics in ]p2 defined over tI~, having a common zero over a 
quadratic extension of II), but having no common zero in Q. In (II) and (III) we are 
concerned with quartic curves in ~,2. Coray [6] has shown [Cor. 6.5] that a point on such 
a curve F defined over a field K where [K: k] is odd, implies that F has a point over a 
field extension L of k with [L: k] = 1 or 3. In (II) we give an example of such a curve in 
~D2 which is everywhere locally solvable, has no point defined over ~ ,  but does have a 
point defined over a cubic extension of I1~. In (III) we give two similar examples defined 
over the function field ~ (t). In (IV) we give a quartic form in 16 variables with a point 
over a cubic extension of Q, but with no point actually in Q. 

L Let F be the intersection of the two cubics: 

X3 q_y3 + Z 3 _..=0, xy  2 - - z ( y  2 - y Z  q-Z 2) = 0. 

1 + X / - - 3  
Then F contains the point (x, y, z) = (0, co, 1) where ~o - . But as is well known 

2 



Vol. 43, 1984 Varieties over field extension 345 

[9], any  r a t i ona l  po in t  on F mus t  have xyz = 0, and  it is immed ia t e  to deduce  tha t  

x=y=z=O.  

I I  (a). Let  F be the quar t i c  curve over  II) def ined by  

(1) F: 3 x 4 + 4 2 4 = 19 z 4 . 

N o w  (1) is everywhere  local ly  solvable.  Indeed,  it  represents  a curve of genus 3, so by  
Wei l ' s  es t imate  [13] the n u m b e r  Np of po in ts  m o d u l o  p on  (1) satisfies the inequa l i ty  

Np > p  + 1 - - [6~ , fp ] ,  

and  thus  there  is a p - ad i c  po in t  on F p r o v i d e d  p > 37. I t  is easy to check so lvabi l i ty  for 

the r ema in ing  primes.  
Define the cubic  i r r a t iona l  0 by  

03 + 202 + 2 0 -  32 = 0.  

Then  by  direct  ca lcula t ion ,  (x, y, z) = (02 + 2, 3 0, 6) is a po in t  on  F. H o w e v e r  we now 
show tha t  F has  no  po in t s  defined over  I1~. 

W e  work  in the ex tens ion  K = @ (~), where  ~4 = _ 12. The  fo l lowing facts a b o u t  K are 
1 2 re lega ted  to  an appendix .  An  in tegra l  basis  is {1, c~, o91,o02} where  co 1 = �89 + ~ ,  

0) 2 -- ~c~1 + zc ~1 3 (notice tha t  001 is a r oo t  of unity);  the class n u m b e r  of K is 1 ; a funda-  
men ta l  uni t  is e = - 3 + 4 001 + 2 002; and  there  are the ideal  fac tor iza t ions  

(2) = p 2, (19) = (4 - , , / /~3 ) (4  + x / ~ 3 )  = (4 - , , / -Z~)  P19 P19, 

(4 + c~ - 400 1 - 2002) = P2P19- 

W e  now suppose  x, y, z are integers  wi th  no c o m m o n  factor ,  and  satisfy (1). Then  

(2) x = z - l m o d 2 ,  y - - = 0 m o d 2 .  

Wr i t e  (1) in the fo rm 

Normr/e(2y + xc0 = 2 2 . 1 9 z  4"  

Since the only  poss ib le  c o m m o n  ideal  fac tor  of (2 y + x a) and  its con juga tes  is PE, we 
deduce  the ideal  equa t ion  

(3) (2y  -t- X0~) = P 2 P 1 9  a4  

for some in tegra l  ideal  a of K (where we have chosen  the sign of x to  ensure  divis ibi l i ty  
by t019). Since K has  class n u m b e r  1, then  (3) takes  the non- idea l  fo rm 

(4) + (2y  + x a )  = (4 + c~ - 400 1 - 2coz)er00] A r 

where  col is the pr imi t ive  roo t  of  uni ty  in K, r and  s are  integers,  and  A is an  in teger  of 
K with  n o r m  equal  to  z. Us ing  co t = co~ then  (4) m a y  be wr i t t en  

(5) _+ (2y  + xc 0 = (4 + c~ - 400 1 - -  2 c o 2 ) e r A  4 

where  w i thou t  loss of general i ty ,  0 -< r _< 3. Then  m o d u l o  4, we ob ta in  f rom (2) and  (5), 
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us ing the fact tha t  e �9 2o92 = 4o91 - 8, 

___ x ~  --- (~z - 2o92)(1 + 2o92)rA 4 

(6) -- (~ - 2 o92) A4" 

Then  m o d u l o  2, c~-= c~A 4, whence A 4 -  1 m o d  P2. However ,  N o r m  t02 = 4 and  
(A, p2) = 1 imply  A 3 -  l m o d  P2; thus  A - - l m o d p 2  f rom which it fol lows tha t  
A 4 = 1 rood  4. E q u a t i o n  (6) now gives 

+ x c~ _= e - 2 o92 rood 4,  

a con t r ad i c t i on  on  c o m p a r i n g  coefficients of 092. 

R e m a r k .  Let  p be a pr ime,  p = 3 m o d  16, sat isfying the cond i t ion  

4 p  = N o r m K / e ( 2 r  + s e  + 2to91 + uo92) 

where  r, s, t, u are integers  wi th  u -  2 r o o d  4, s = 1 m o d  2. Such pr imes  include 
19, 163, 403 . . . .  Then  a s imilar  a r g u m e n t  to  the above  shows there  can  be no r a t iona l  
po in t  on the curve 

Fv: 3 x  4 + 4 y  4 = p z  4. 

H o w e v e r  it is no t  clear  whether  in general  F v conta ins  po in t s  defined over  some cubic  
ex tens ion  of I1); it  is poss ib le  for a r a t iona l  quar t i c  curve wi th  po in ts  over  R no t  to possess  
po in t s  over  any  cubic  ex tens ion  of I1~ (and hence to  possess  po in t s  on ly  over  ex tens ion  
fields of ~ of even degree). 

I I  (b). A n o t h e r  quar t i c  curve with the p roper t i e s  of (1) is 

F: 4 x  4 + 97y4 = z 4. 

This  has  the po in t  (x, y, z ) =  (02, 3 0, 5 0 + 96) over  the cubic  extens ion  I~ (0) where  
03 + 2 02 - 60 0 - 576 = 0. But  F has  no ra t iona l  po in ts ;  we do  no t  give the details.  

No t i ce  tha t  there  are obv ious  m a p s  f rom F to each of the three el l ipt ic curves 

E l :  4 X  2 + 9 7 y  4 = z 4 

E2: 4 x  4 + 97 y2  = z 4 

E3: 4 x  4 + 97y4 = Z 2. 

Each  of these curves  has  posi t ive  r a t iona l  r ank  for it m a y  be checked tha t  the fol lowing 
are  po in ts  of infinite o rde r  on each Ei respect ively:  

(X, y, z) = (24, 1, 7) 

(x, Y, z) -= (66; 1751, 139) 

(x, y, Z) = (2, 3, 89). 

So cer ta in ly  F is t ry ing  h a r d  to have r a t iona l  poin ts !  This  p h e n o m e n o n  occurs  also in 
II  (a) in vir tue of the ident i t ies :  

3.102 + 4.14 = 19.24 

3.14 + 4.22 = 19.14 

3.54 q- 4.84 = 19.312. 

See Bremner  and  M o r t o n  [2] for fur ther  examples  of this type. 
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I I I  (a). Let  F be the quar t i c  curve over  the funct ion field ~ (t) defined by  

X 4 + (4 t 3 - -  4 t 2 -1- 1 )  2 (4 t 6 - -  6 t 4 + 16 t 3 - 12 t z + 3) y4  

= ( t  8 + 1 6 t  3 - 1 6 t  2 + 4 ) Z  4. 

Define 0 by  

347 

03 + (4 t 3 - -  4 t 2 n t- 1) 0 a + 2 t 3 (4 t 3 - 4 t 2 + 1) 0 - 2 (4 t 3 - -  4 t 2 -t-  1 )  2 = 0.  

03 - 2 t ( t  3 - 2 t  2 + 2)0 + 4( t  3 - 2 t  2 + 2) z = 0. 

By cons ider ing  spec ia l iza t ion  at  t = 0, 0 is cubic  over  t1~ (t). A n d  the fol lowing is a po in t  

of F :  
(X, Y,Z) = (0 ,2 ( t  3 - 2 t  2 + 2),02 - 2( t  3 - 2 t  2 + 2)). 

However ,  spec ia l iza t ion  of F at  t = 3 resul ts  in an  equa t ion  

(8) 484 x 4 -F 5 y4 = 9 z 4 

and  we now show tha t  (8) has  no non- t r iv ia l  r a t i ona l  solut ion,  whence F has  no po in t  over  
Q (t). A s imi lar  a r g u m e n t  m a y  be used to  tha t  of I I  (a), work ing  with the quar t i c  field 
Q ( ~ -  2420), bu t  ins tead  we give a m o r e  e l emen ta ry  p r o o f  a long  lines sugges ted  by  
Cassels.  

Ce r t a in ly  in (8) we m a y  suppose  (x, y, z) -- 1; and  it fol lows tha t  x - y = z = 1 m o d  2. 

Then  
(3z  2 + 2 2 x  2)(3z z - 2 2 x  z ) = 5 y ' ~  and  

(3z  2 + 2 2 x  2 , 3 z  2 - 2 2 x  z ) = ( 3 z  z + 2 2 x  2 , 6 z  2 ) = 1 ,  

so tha t  there  exist odd,  c o p r ime  integers  u, v sat isfying 

3 z 2 _+ 22 x 2 = 5 u 4 

3 z 2 ~ 22 x z = v 4 

y = u v .  

Define 0 by  

Since this  p o l y n o m i a l  is i r reduc ib le  over  Q (t) (by consider ing,  for example ,  spec ia l iza t ion  
at  t = 1), 0 is cubic  over  Q (t). A n d  ca lcu la t ion  shows tha t  the fol lowing is a po in t  of F: 

(X, IT, Z)  = (02 + t 2 (4 t 3 - -  4 t 2 + 1), 0, 4 t 3 - -  4 t 2 + 1). 

1 results  in the equa t ion  However ,  spec ia l iza t ion  of F at  t = 7 

(7) 3 (4 x) 4 + 4 (3 y)4 = 19 (3 z) 4 

where  x = X (�89 y = Y(�89 z = Z (�89 and  by  example  II  (a), equa t ion  (7) has  no non- t r iv ia l  
r a t i ona l  solut ion.  Accord ing ly ,  F has  no  po in t  defined over  @ (t). 

I I I  (b). Let  F be the qua r t i c  curve over  Q (t) defined by  

4 ( 3 t  2 - 8 t + 6)(t  3 - 2 t  2 + 2) 2 X  4 

+ (4 t  4 -  16t  3 + 16t  2 + 8 t -  15)Y 4 = Z 4. 
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M o d u l o  8, the  u p p e r  s ign is imposs ib le ,  a n d  so 

v 4 + 5 u 4 = 6 z 2 

v 4 - 5 u 4 = 44 x 2 . 

W r i t e  the  l a t t e r  e q u a t i o n  in the  fo rm 

(v 2 - 15u  2 - 2 2 x )  2 = 2 ( 4 v  2 - 5 u  2 + 2 2 x ) ( 7  v 2 + 5 u  2 - 4 4 x ) .  

T h e  h ighes t  c o m m o n  fac to r  of  the  th ree  t e rms  divides  

1 - 1 5  - 2 2  

4 - 5  22 = - 2 . 5 .  2112  . 

7 5 - 4 4  

N o w  ce r t a in ly  v 2 - 4 u  2 m o d  11, a n d  the  s ign o f x  m a y  be  c h o s e n  so t h a t  v 2 -= 2 x  m o d  5. 

T h e n  each  t e r m  is divis ible  by  55, a n d  s ince u, v are  odd,  t h e n  

4 v  2 - 5 u  2 + 2 2 x - l m o d 2 . T h u s  

/ ) 2  - -  15u  2 _ 22X = l l 0 R  

(9) 4 v  2 - 5 u  2 + 2 2 x  = 5 5 S  

7 v  2 + 5 u  2 - 4 4 x = l 1 0 T  

where  R 2 = ST;  a n d  t h e n  

u 2 = - 6 R -  S + 2 T  

v 2 = -  2 R  + 7 S  + 8 T  

x = - - R + S - - T .  

Since (u, v) = 1 t h e n  (S, T)  = 1 a n d  so the re  exist  c o p r i m e  in tegers  a, b w i th  R = ab, 

S = _+ b z, T =  + a 2. T h e n  f r o m  (9) us ing  a c o n g r u e n c e  m o d u l o  4, it m u s t  be  the  case  t h a t  
S = --  b 2, T = - a 2. B u t  n o w  

v 2 = -  8 a  2 - 2 a b -  7 b  2 

forc ing  a = b = 0, v = u = 0, imposs ib le .  

R e m a r k .  As in  II  (b), each  of  the  th ree  el l iptic curves  a s soc ia t ed  w i th  (8) has  pos i t ive  

r a t i o n a l  r ank ,  in  v i r tue  of  the  a r i t h m e t i c  ident i t ies :  

484.112 + 5.114 _- 9.114 

484.14 + 5.74 = 9 . 3  4 

484.14 + 5 . 4 4  =9 .142"  

W e  h a v e  n o t  b e e n  ab le  to  verify w h e t h e r  the  el l ipt ic  curves  ove r  ~ (t) a s soc ia t ed  w i th  the  

examples  of III ,  a lso h a v e  pos i t ive  rank .  

IV.  C o n s i d e r  the  qua r t i c  surface  V def ined by  F = 0 whe re  

F ( x , y ,  z, t) = x 4 + 5 1 1 y  4 - 134z  4 - 1 4 t  4. 
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Then  V con ta ins  the po in t  (x, y, z, t) = (02 - 2, 2, 0, 0) where 0 is the cubic i r ra t ional  
given by 0 3 +  2 0 2 +  2 0 - k  32 = 0 .  However,  m o d u l o  5 we have that  F(x ,y , z , t )  
_ x 4 + y4 + z 4 + t 4, and  consequent ly  V c a n n o t  con ta in  a ra t iona l  point .  It  is now 
evident  that  the form 

F(xl ,  Yl, zl, t l)  -~ 5 F(Xz ,  Y2, z2, t2) + 52 F(x3, Y3, z3, t3) 

+ 53 F (x4, Y4, z4, t4), 

c a n n o t  represent  zero over (D, bu t  does con ta in  a po in t  defined over the cubic extension 
II~ (0). F o r  d iagonal  quar t ic  forms this is best possible in  view of the result  of D a v e n p o r t  
and  Lewis [7] which states that  a d iagona l  quar t ic  form over Q in at least seventeen 
variables,  has a zero over Q. 

A p p e n d i x .  We  give now the ar i thmet ic  details of the n u m b e r  field K = tl~ (c0, 
~ 4 = _  12. Tha t  {1, ~, o)1, c~z} is an  integral  basis can  be seen as follows. Cer ta in ly  

-- i i0~2 1 + ~ - 3  0)1 - ~ + ~ - 2 ,0)2 = c~ 0)1, are integers of K. The d i sc r iminan t  of the basis 

{1, ~, 0)1, C02} is 26 33; since the pr ime (3) is tota l ly  ramified in  K, it suffices to show that  
if 

(10) r + s e  + to) 1 + uco 2 --- 0 m o d 2  

for integers r, s, t, u, then  r = s = t -= u =- 0 m o d  2. 
N o w  ( 2 ) =  p~ in K, with e -  0 m o d p 2  , and  thus from (10) we have r + t0)~ 

- 0 m o d  P2, whence r - t -- 0 m o d  2. Then  s + u0)1 = 0 m o d  P2 and  s = u -= 0 m o d  2. 
As regards the class n u m b e r  of K, the Minkowsk i  b o u n d  gives that  every ideal class 

conta ins  an  ideal of n o r m  at mos t  6. But  (2) = (e + 2 o)1) 2, (3) = (1 - 2 0)2 + 0)2) 4, and  (5) 
remains  pr ime;  so the class n u m b e r  of K is indeed one. Final ly,  no te  tha t  e = - 3 
+ 40) 1 + 2 ~  2 has n o r m  1, so is a un i t  of K. Fur ther ,  ]el = 7 .32 . . . ;  bu t  by a result  of 
De lone  and  Faddeev  [8], p. 371, there exists a fundamen ta l  un i t  in K with absolute  value 
greater t han  2 ~ i l  = 3 .64. . .  and  hence it is clear tha t  e is itself a f undam en ta l  unit .  

The au thors  were suppor ted  by an  N S F  G r a n t  dur ing  some of the research for this 
paper.  
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