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Some varieties with points only in a field extension

By

ANDREW BREMNER, D. J. LEwis and PATRICK MORTON

We are interested in the following problem. Let I" be an irreducible algebraic variety
of degree d, in projective n-space IP", defined over a field k; and suppose K is a finite
extension of k with [K:k] prime to d. If I" has a point defined over K, then does it
necessarily have a point defined over k?

Several instances of this phenomenon are known, in particular when I is a quadric in
P" [12], or a cubic plane curve [11]. Brumer [3] and Amer [1] have shown that the result
holds for the intersection of two quadrics, while Pfister [10] has shown that results of this
nature do not continue to generalize by giving an example of three quadrics in P? having
a zero in Q(i/i), but no zero in ®. Further such counterexamples involving systems of
quadrics are given by Cassels [4] and Coray [5].

Cassels and Swinnerton-Dyer have conjectured that if I is a cubic hypersurface in IP",
then the existence of a point defined over K with [K: k] prime to 3, implies the existence
of a k-rational point on I'. This conjecture is still unresolved, but Coray [6] has shown
that when n = 3, then a point on I defined over such a field K implies that I" has a point
over a field extension L of k with [L: k] = 1, 4, or 10. Finally, Coray in [6] gives an example
of a quartic curve over Q) possessing no rational point (because it possesses no S-adic
point), yet having a point over a cubic extension of Q.

We give in this note some further examples of instances where points on a variety
defined over an extension field do not imply the existence of points defined over the base
field. In (I) we give two cubics in IP? defined over @, having a common zero over a
quadratic extension of @, but having no common zero in @Q. In (I) and (I1I) we are
concerned with quartic curves in IP2. Coray [6] has shown [Cor. 6.5] that a point on such
a curve I" defined over a field K where [K: k] is odd, implies that I' has a point over a
field extension L of k with [L:k] = 1 or 3. In (IT) we give an example of such a curve in
P2 which is everywhere locally solvable, has no point defined over @, but does have a
point defined over a cubic extension of @. In (IIT) we give two similar examples defined
over the function field @ (¢). In (TV) we give a quartic form in 16 variables with a point
over a cubic extension of @), but with no point actually in @Q.

I. Let I" be the intersection of the two cubics:
x>+ 93 +22=0, xy?P—z(y?—yz+25)=0.
1+./-3
2

Then I' contains the point (x, y, z) = (0, ®, 1) where @ = . But as is well known
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[9], any rational point on I' must have xyz = 0, and it is immediate to deduce that
x=y=z=0.

II (a). Let I" be the quartic curve over @) defined by
1) I:3x*+4y*=19z*.

Now (1) is everywhere locally solvable. Indeed, it represents a curve of genus 3, so by
Weil’s estimate [13] the number N, of points modulo p on (1) satisfies the inequality

N,zp+1-[6/l,

and thus there is a p-adic point on I" provided p = 37. It is easy to check solvability for
the remaining primes.
Define the cubic irrational 6 by

0 +26%+20—-32=0.

Then by direct calculation, (x, y, z) = (6* + 2, 36, 6) is a point on I'. However we now
show that I" has no points defined over @.

We work in the extension K = @ («), where «* = —12. The following facts about K are
relegated to an appendix. An integral basis is {1, @, w,} where w; =1+ 1d?,
w,=3a+ 1o (notice that w; is a root of unity); the class number of K is 1; a funda-
mental unit is ¢ = — 3 + 4w, + 2w,; and there are the ideal factorizations

@ =9} 9=@-J/-H@+/=)=@--Ypishis,
@d+a—4w,—2w,) =p,yPq0-
We now suppose x, y, z are integers with no common factor, and satisfy (1). Then
2 x=z=1mod2, y=0mod?2.
Write (1) in the form
Normg 2y + xa) =22 - 19z*.

Since the only possible common ideal factor of (2y + x ) and its conjugates is p,, we
deduce the ideal equation

3) 2y +x0)=p,po0a’

for some integral ideal a of K (where we have chosen the sign of x to ensure divisibility
by p;o). Since K has class number 1, then (3) takes the non-ideal form

4) +Q2y+x)=@+a—4w, — 2m,)& o} A*,

where w, is the primitive root of unity in K, r and s are integers, and 4 is an integer of
K with norm equal to z. Using o, = w? then (4) may be written

(5) +Qy+x0)=@+a— 4w, — 2w, 4*

where without loss of generality, 0 < r < 3. Then modulo 4, we obtain from (2) and (5),
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using the fact that o« - 2w, = 4w, — 8§,
+xa=(a—2w,)1 + 2w, A*
(6) = (o0 — 2w,) A*.
Then modulo 2, « = aA4* whence 4* =1modp,. However, Norm p, =4 and
(4,p,) =1 imply 4% =1modp,; thus 4 =1modp, from which it follows that
A* = 1 mod 4. Equation (6) now gives
txoe=0—2w,mod4,
a contradiction on comparing coefficients of w,.
Remark. Let p be a prime, p = 3 mod 16, satisfying the condition
4p = Normg,(2r + sa + 2tw; + uw,)

where r,s, t,u are integers with u=2mod4, s=1mod2 Such primes include
19, 163, 403, ... Then a similar argument to the above shows there can be no rational
point on the curve

L:3x*+4y* =pz*.
However it is not clear whether in general I, contains points defined over some cubic
extension of @; it is possible for a rational quartic curve with points over R not to possess

points over any cubic extension of @ (and hence to possess points only over extension
fields of @ of even degree).

II(b). Another quartic curve with the properties of (1) is
I ax* +97y% =24,
This has the point (x, y, z) = (62,30, 50 + 96) over the cubic extension @ (6) where
63 +26% — 606 — 576 = 0. But I" has no rational points; we do not give the details.
Notice that there are obvious maps from I' to each of the three elliptic curves
E:4X?+97y*=2*
Eydx*+97Y%=z*
Eg: 4x* +97y* = Z2.
Each of these curves has positive rational rank for it may be checked that the following
are points of infinite order on each E; respectively:
(X,y,2)=(24,1,7)
(x, Y, z) = (66, 1751, 139)
(¥ Z)=1(2,3,89).
So certainly I' is trying hard to have rational points! This phenomenon occurs also in
II(a) in virtue of the identities:
3.10% + 414 = 19.2*
31% +42% =19.14
3.5% + 48% =19312.

See Bremner and Morton [2] for further examples of this type.
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II(a). Let I' be the quartic curve over the function field @ (¢) defined by

X*+@2—42+ 1)@ —6t* + 1662 — 1212+ 3)Y*
= (5 + 1613 — 1612 + 4 Z*.
Define 0 by
3 +@E 42+ D +263@E3 —42+ )0 -242 —42 +1)? =0.

Since this polynomial is irreducible over ® (¢) (by considering, for example, specialization
at t = 1), 0 is cubic over Q(f). And calculation shows that the following is a point of I':

X,Y,Z2)= (0% + 241> — 412 + 1), 0, 46> — 41> + 1).
However, specialization of I" at t = % results in the equation
7 34x)* +43y)*=19(32)*
where x = X (3), y = Y(3), z = Z(3); and by example II (a), equation (7) has no non-trivial

rational solution. Accordingly, I has no point defined over @ (¢).

II (b). Let I be the quartic curve over Q (t) defined by
432 — 8t +6)(t> — 212 + 22 x4
+(@4t* — 1683 + 162+ 81 — 15)Y* = Z*.
Define 6 by
03— 2t —202+2)0+4(> — 262+ 2> =0.

By considering specialization at ¢t = 0, 6 is cubic over Q) (z). And the following is a point
of I':
X, %2 =0,20—-22+2,0% -2 -2t +2).

However, specialization of I' at t = 3 results in an equation
(8) 484 x* + 5y* =9z*

and we now show that (8) has no non-trivial rational solution, whence I has no point over
Q(1). A similar argument may be used to that of II(a), working with the quartic field
Q %/ — 2420), but instead we give a more elementary proof along lines suggested by
Cassels.
Certainly in (8) we may suppose (x, y, z) = 1; and it follows that x = y = z = 1 mod 2.

Then

322+ 22x3)(3z2 - 22x5) =5y* and

B322 +22x%,322 - 22xY) =322 +22x%,628) =1,

so that there exist odd, coprime integers u, v satisfying

3224+ 22x% =5u*
322 F 2x%2 =v*
y=uv.
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Modulo 8, the upper sign is impossible, and so

v* + Sut =622
vt — Sut = 44%%.

Write the latter equation in the form
(W —15u2 —22x)> =2(dv? — Su® + 22x) (70 + 5u® — 44x).

The highest common factor of the three terms divides

1 —15 —-22
4 -5  2|=-252112,
7 5 —44

Now certainly v* = 4u* mod 11, and the sign of x may be chosen so that v* = 2 x mod 5.
Then each term is divisible by 55 and since u,v are odd, then
49% —~ 5u? + 22x = 1 mod 2. Thus

v? —15u®> —22x=110R
) 4v* —5u* +22x =558

Tv* +5u* —44x=110T
where R? = ST; and then

uw=—6R—-8S+2T

¥2=—2R+78+8T

x=—R+S~-T.
Since (4, v) = 1 then (S, T) = 1 and so there exist coprime integers a, b with R = ab,

S =+ b%, T= + a” Then from (9) using a congruence modulo 4, it must be the case that
S = — b?, T =— 4% But now

v?=—8a>—2ab —7b*
forcing a = b = 0, v = u = 0, impossible.

Remark. Asin I1(b), each of the three elliptic curves associated with (8) has positive
rational rank, in virtue of the arithmetic identities:

484.11% + 5.11* = 9.11*
484.1% 4574 =934
484.1* + 54* =9.142

We have not been able to verify whether the elliptic curves over @ (¢) associated with the
examples of 111, also have positive rank.

IV. Consider the quartic surface V defined by F = 0 where
F(x: Y, 2, t) - x4 + 511y4 — 13424 —_ 14t4
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Then V contains the point (x, y, z, t) = (8> — 2, 2, 6, 0) where 0 is the cubic irrational
given by 0% +26% 426+ 32=0. However, modulo 5 we have that F(x,y,z 1)
=x*+ y* + z* + ¢*, and consequently ¥ cannot contain a rational point. It is now
evident that the form

F(X(, 91,20, t) + SF(x3, ¥4, 25, t5) + 52F(x3,y3,z3, 13)
+ 53F(x4, Vas Zas ta),

cannot represent zero over @, but does contain a point defined over the cubic extension
@ (0). For diagonal quartic forms this is best possible in view of the result of Davenport
and Lewis [7] which states that a diagonal quartic form over QQ in at least seventeen
variables, has a zero over Q.

Appendix. We give now the arithmetic details of the number field K = Q (),
a* =—12. That {1, w,, w,} is an integral basis can be seen as follows. Certainly
14+./-3

2
{1, &, w,, w,} is 2% 3%; since the prime (3) is totally ramified in K, it suffices to show that
if
(10) r+sa+tw;+uw, =0mod?2

Wy =1+ 1% = , W, = 0@, are integers of K. The discriminant of the basis

for integers r, 5, t, u, then r = s =t = u = O mod 2.

Now (2) =p3 in K, with « =0modp,, and thus from (10) we have r + tw,
= Omod p,, whence r =t = 0mod 2. Then s + uw, = 0mod p, and s = u = 0 mod 2.

As regards the class number of K, the Minkowski bound gives that every ideal class
contains an ideal of norm at most 6. But (2) = (¢ + 2w,)%, (3) = (1 — 2w, + w,)* and (5)
remains prime; so the class number of K is indeed one. Finally, note that ¢ = — 3
+ 4w, + 2w, has norm 1, so is a unit of K. Further, |¢| = 7.32...; but by a result of
Delone and Faddeev [8], p. 371, there exists a fundamental unit in K with absolute value
greater than 2i/1_1 = 3.64... and hence it is clear that ¢ is itself a fundamental unit.

The authors were supported by an NSF Grant during some of the research for this
paper.

References

[1] M. AMER, Quadratische Formen iiber Funktionenkdrpern. Dissertation, Mainz 1976.

[2] A. BREMNER and P. MORTON, A new characterization of the integer 5906. Manuscripta Math.
44, 187-229 (1983).

[3] A. BRUMER, Remarques sur les couples de formes quadratiques. C.R. Acad. Sci. Paris 286 A,
679681 (1978). -

[4] J. W.S. CasseLs, On a problem of Pfister about systems of quadratic forms. Arch. Math. 33,
29-32 (1979).

[5] D. F. Coray, On a problem of Pfister about intersections of three quadrics. Arch. Math. 34,
403-411 (1980).

[6] D. F. Coray, Algebraic points on cubic hypersurfaces. Acta Arith. 30, 267—296 (1976).

[7]1 H. DavenporT and D. J. LEwis, Homogeneous additive equations. Proc. Royal Soc. A. 274,
443-460 (1963).

[8] B. N. DELONE and D. K. FADDEEvV, Theory of irrationalities of the third degree. Amer. Math.
Soc. Transl. 1964.



350 A. BREMNER, D. J. LEwis and P. MORTON ARCH. MATH.

[91 A. M. LEGENDRE, Mém. Acad. Roy. Sc. de I'Inst. de France 6, 41, Sec. 49 (1823).

[10] A. PrisTER, Systems of Quadratic Forms. Colloque sur les Formes Quadratiques, 2 Bull. Soc.
Math. France Mem. 59, 115-123 (1979).

[11] H. POINCARE, Sur les propriétés arithmétiques des courbes algébriques. J. Math. Pures Appl.
7, 161-233 (1901).

[12] T. A. SPRINGER, Sur les formes quadratiques d’indice zéro. C.R. Acad. Sci. Paris 234,
1517-1519 (1952).

[13] A. WEIL, Sur les courbes algébriques et les variétés qui s’en déduisent. Paris 1948.

Eingegangen am 9. 12. 1983
Anschrift der Autoren:

A. Bremner D.J. Lewis

Dept. of Pure Mathematics Dept. of Mathematics

and Mathematical Statistics The University of Michigan
16 Mill Lane Ann Arbor

Cambridge Michigan 48 109

England USA

P. Morton

Department of Mathematics
California Institute of Technology
Pasadena, California

USA



