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1 Preliminaries

The previous title takes some precautions, which are visible, but still I want
to stress them.

First, the autobiographical character. The last two decades – to be pre-
cise, the last twenty two years – I was totally dedicated to bio-computability,
one can even say that I was confiscated by this research area, so fascinating,
promising, endless in possibilities of theoretical developments and of applica-
tions. The beginning is placed in the spring of 1994, when I read a paper by
Tom Head, a wise American who later became a friend and a collaborator of
mine, who, already in 1987, proposed a formal language theory model for the
recombination operation of DNA under the influence of restriction enzymes
and ligase. He has named it the splicing operation. I will shortly describe
it later. I remember it exactly – I was in Austria, in Graz, participating in
a conference. On the one hand, I became immediately enthusiastic about
this idea – after two decades of research in formal language theory, I was
subconsciously looking for areas to apply this theory, on the other hand, I
was somewhat unsatisfied, because Head’s formalization was complex, it re-
mained, to my taste, too close to the biological reality. Right then, in the
hotel in Graz, I have imagined a simpler definition, closer to the style I was
used, I can call it Salomaa-Marcus style. Four years after that I have worked
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in this area. Until 1998, when I had a second thrill, after defining a model
inspired from the architecture and the functioning of the living cell, the first
one from a families of models which continues to grow. After that, I have
totally identified myself with membrane computing, a research area which
transformed me in a letter and which will be the territory through which I
will invite the reader in what follows. (I will sometimes use the abbreviation
MC for membrane computing.)

I return to the title. Wonders-questions, not models-results-applications,
although the former are connected to the latter. Places where the mathemati-
cian who I am by education and the computer scientist with twenty years
of theoretical research – I have graduated mathematics in 1974 – remains
still, with raised elbows, either not understanding, or expecting something
different, or faced with objects coming from biology which, seen through the
glasses of the theoretical computer scientist, suggest computability ideas-
models totally new for theoretical computer science and, much more, for
practical computer science, in the forms we know them from books and from
implementations. During billions of years of evolution (I adhere here to
the evolutionist paradigm, this is not a suitable place for an evolution ver-
sion creation discussion, furthermore, for what follows we do not need any
creationistic hypothesis, to quote a phrase assigned to Laplace, but also to
other big names of physics), life has evolved many processes and supports
for these processes of a high precision, remarkably subtly and efficient, which
can be transferred, at least at the theoretic level, to computer science. How
to do that, asks himself the mathematician-computer scientist? With what
practical consequences, asks himself the computer scientist interested in ap-
plications? Why so many computability aspects, as they were developed up
to now, look non-natural, far from the “real reality”, from the biological one?

Some of these questions get close to the science fiction (SF) frontier of
science, but I will not avoid them, as long as the science, physics in particular,
does not totally refute them as non plausible. We are placed here under the
flag of the possible, not of the probable...

There will also appear questions-wonders which are more precise, more
localized. Only part of those which I have reached, significantly fewer than
those which were possibly met by other colleagues of bio-computing. That
is why the title starts with some...

A few remarks about the style. Although I will refer to many notions,
from biology and from computer science, although in the end I will provide
a pretty comprehensive bibliography (also this one will be mainly autobio-
graphical), the discussion will be informal, without precise references.

In what concerns the bibliography, one of the items is my Reception
Discourse in the Romanian Academy, delivered on October 24, 2014, and
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having the privilege to be followed by a response by Solomon Marcus, the
Professor, always with capital initial letter. The present pages can be seen
as a continuation of the Discourse, at a more informal-colloquial level, but
also as an opportunity to pay my homage to my Professor, who constantly
used to promote the state of wondering, of questioning yourself. Sadly, the
Professor passed away in March 2016.

Above all these, this text is an invitation to the reader to wonder to-
gether...

2 How much biology? How much computability?

Before mentioning any reason to wonder-question ourselves, it could be useful
to roughly specify the framework: what/how much biology, what/how much
computability are necessary for what follows?

Mainly cellular biology, at a general level: membranes which enclose com-
partments, “protected reactors” where specific biochemical reactions take
place, involving “reactants” (from ions to large macromolecules) which swim
in an aqueous solution or they are bound on membranes or on the cytoskele-
ton, then protein channels which make possible the communication among
compartments. Many other ingredients can be added, the biologists know a
lot of things about the cell. The monograph Molecular Biology of the Cell,
by Alberts, Johnson, Lewis, Raff, Roberts, Walter, has over 1500 pages of a
large format. A true universe – of a nanometrical scale. The smallest entity
about whose alive character there is no doubt (about viruses the opinions
are mixed). A complex “factory”, at the same time robust and fragile, very
precisely and efficiently organized.

Already at this level we get an important question, but one mainly of
a biological type: what is making the difference between alive and non-
alive? Chemistry and physics cannot provide a convincing answer. The
borderline seems to be defined in terms of organization, information, in terms
of something which we cannot yet perceive, understand, and model. We may
call it soul, or vital breath, just for moving the question away.

An important detail: the today biology, chemistry, physics are much de-
veloped in the study of their object of study in terms of substances and
energy, but not also in terms of information. I do not enter into details,
this opens the gate to many questions, starting with the definition itself of
information, organization, complexity. Can we conceive information without
any support, of a substance or energy type, the other two components of
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what we use to call matter? Two more remarks: (1) biology and physics
seems to be on the verge of passing to “a new age” – for biology there were
proposed some up-dated names, such as infobiology and infobiotics, and (2)
computer science is a part of information theory, in the broad sense, there-
fore, the computational, algorithmic approach seems to be one of the ways
through which the biology and the physics will evolve in the near future.
Quantum computing seems to be one of the first steps for physics (Gruska),
bio-computability seems to be half of the path for biology.

Let us return to the cell, with a slogan-“equation” launched by Solomon
Marcus during one of the first MC meetings, in Curtea de Argeş, Romania,
2001:

Life = DNA software + membrane hardware.

It is stressed here the role played by membranes in the life of cells, thus
also motivating the name which I gave to this research area, membrane com-
puting; maybe a better name were cellular computing.

After the individual cell, I will also incidentally invoke populations of cells,
tissues, organs, colonies of bacteria, in the end, also the “thinking cell”, the
neuron.

Details, in the next sections – here, the computer science basic prerequi-
sites. First of all, Turing computability. The standard framework for most
computability research. By Turing-Church Thesis, the highest level of algo-
rithmic computability. At only 24 years, the genial Turing answered Hilbert’s
question on what can be mechanically computed, with a particular applica-
tion to the decidability in arithmetics, by introducing what is now known
under the name of Turing machine, the most general and the most convinc-
ing (for the contemporary researchers, Church, Kleene, Gödel etc., who tried
in various ways to answer Hilbert’s question) of the notion of an algorithm.
Then, by the definition of the universal Turing machine (a machine able to
simulate any particular Turing machine as soon as a code of the particular
machine, together with an input for it, are placed as an input on the tape of
the universal Turing machine), and by the theorem proving the existence of
the universal Turing machine, Turing was signing the birth certificate of the
computers as we have them today: when designing and constructing the first
(programmable, as the existence of a universal Turing machine made possi-
ble) computers, at the beginning of forties, last century, John von Neumann
was explicitly influenced by Turing ideas. From here, the name of Turing-von
Neumann computers, from here their sequential character and their theoret-
ical vulnerability to computer viruses (programs and data are placed in the
memory, with the possibility of affecting programs by other programs in the
same way as data are affected).
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At the maximal level, the Turing machine, at the lowest level of com-
putability, the finite automaton, a form of a Turing machine restricted in
an extreme extent. These are the two poles of computability to which the
bio-inspired computability is constantly referred to.

These are the two poles of the computability competence. From a practical
point of view, at least equally important is the performance, the efficiency.
In this way, it enters into the stage the famous distinction between the class
of problems which can be solved in polynomial time (with respect to the size
of the input) and the class of problems for which no polynomial algorithm is
known, but, if somebody proposes a solution (if a solution can be “guessed”),
we can check it in polynomial time. The famous complexity classes P and
NP, the (in)famous problem whether or not P = NP, the first one in the list
of “millennium problems” for whose solution the Clay Institute from USA
offers one billion dollars.

I will also invoke grammars (especially Chomsky grammars); further de-
tails will be mentioned when they will be useful.

3 Starting from the DNA

Let us start with DNA, chronologically the first investigated and a relevant
case study.

Today we are learning the language in which God created life, historically
claimed Bill Clinton in the summer of 2000, when the reading of the human
genome was completed. A language, indeed. Syntax, in the proper meaning
of the term. Four “letters”, A (adenine), C (cytosine), G (guanine), and T
(thymine), placed along two strands, with well specified pairs face to face,
the so-called Watson-Crick complementary pairs (Watson and Crick have
received the Nobel Prize, in 1962, for the discovery of the DNA structure, at
the beginning of fifties): A is always in front of T, and C always forms a pair
with G. This is the primary structure of DNA, the only one of interest here.
The secondary structure, the double helix, and the ternary one, the complex
folding, are not relevant for what it follows.

If we raise the temperature of the solution where the DNA molecules
are placed, the two strands are separated. If we decrease back the tempera-
ture, then the nucleotides look for their Watson-Crick complementary pairs
and the double stranded structure is rebuilt. Then, the restriction enzymes
– somebody called them the most intelligent tools nature provided to the
genetic engineers. They are proteins which recognize a short sequence of
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nucleotides, a pattern, a context, to come closer to linguistics, and cut the
DNA molecules, in most cases in the middle of this pattern, in most cases,
producing sticky ends, staggered strands: one of them is cut in a point, the
other one some nucleotides away; the single strands of nucleotides are sticky,
if they find their complements, then they get glued to them, completing the
double strand.

A lot of further biochemistry can be found around (for instance, ligase,
other enzymes, which help the reconstruction of the double strand, or the
directionality of the two strands, whose ends are marked with 3′ and 5′,
the biochemists know why, opposite on the two strands and preserved by the
strands after getting separated), and still more computability. Also, similarly
much linguistics – it was underlined by Solomon Marcus already in 1974, in
a paper which appeared too early, so that it did not receive the audience it
deserved.

Now, one first example – and the first surprise.
A result in formal language theory, published already in 1980 by Engel-

friet and Rozenberg, says that any language which can be recognized by a
Turing machine (equivalently: which can be generated by a Chomsky gram-
mar; in the usual terminology: recursively enumerable), hence of the most
general type among the computable languages, can be obtained starting from
a certain fixed language, that is, independent of the starting language, ap-
plying to it a sequential transducer, the simplest type of a transducer, a
finite automaton with output (one reads the input string, from left to right,
without returns, and for each read symbol one outputs one or more symbols,
also depending on a state from a finite set of states). The unique language
from which we start, the one in which there are “hidden” all computable
languages, is obtained as follows: consider the symbols 0, 1, consider their
“complements” 0′ and 1′; take a string over the symbols 0, 1 and consider
its twin, the string obtained by priming all symbols; mix the symbols of the
string with the symbols of its twin, in all possible ways, preserving the order-
ing of symbols in each string – this operation is called shuffle. Finally, collect
all strings obtained by shuffling all strings over 0, 1 with their twin strings.
This is the language we are looking for – called the twin-shuffle language over
0, 1.

Four letters, 0, 1, 0′, 1′. Maybe this was the coincidence which suggested
to Rozenberg and Salomaa the following operations: take a DNA molecule
and “read” it, from left to right, on each strand, with random speeds on the
two strands, writing 0 if we met A or T on the upper strand, 0′ if we met
them on the lower strand, 1 if we met C or G on the upper strand, and 1′ if
we met them on the lower strand. Doing this for all possible DNA molecules,
we get... exactly the twin-shuffle language over 0, 1! According to Engelfriet
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and Rozenberg theorem, if we also apply a sequential transducer, then we
obtain any computable language (and all of them, by varying the transducer).
Otherwise stated, everything which can be computed is “codified” in the
DNA molecule, what remains to do is to read the molecules as sketched
above and then to rewrite these readings with a sequential transducer. A
completely unexpected conclusion, difficult to be imagined (without having
at hand the theoretical result from 1980).

In a DNA computing book written together with Rozenberg and Sa-
lomaa, published by Springer-Verlag in 1998, there are two results which
complete the previous observation: on the one hand, we can consider only
three nucleotide-symbols, 0, 0′, 1, with the last one being its own “comple-
ment” (nature uses to be redundant, nature also loves symmetries), and, on
the other hand, we can also take into account the opposite orientation of
the two strands, that is, we can read one strand in one direction and the
second one in the opposite direction. In both cases, the result is the same,
the characterization of the computing power of the Turing machine.

Later, Vincenzo Manca proved that, in a certain precise sense, the double
stranded structure of the DNA molecule is necessary in order to obtain the
computational universality.

We already have here a beautiful wonder – and a comforting example of
using an old “purely theoretical” result in a new framework, much closer to
the reality.

4 Splicing

Let us pass now to the splicing operation introduced by Tom Head (in 1987,
hence, at the theoretical level, DNA computing started several years before
the Adleman experiment, from 1994). Recombination, cut-and-paste, with a
complete formal, syntactic formulation. If two restriction enzymes, each one
with its own pattern, cut two molecules in such a way that the sticky ends
they produce are identical, then the obtained fragments can be recombined,
the prefix of the one molecule with the suffix of the other molecule. In this
way, we pass from the two starting molecules to two new molecules.

The definition can be simplified, without losing too much from the bio-
chemical significance. First, the Watson-Crick complementarity allows for
passing from the double stranded molecules of symbols to usual strings. In
this framework, each restriction enzyme recognizes a substring and cuts some-
where in its middle, in a specified position. Two enzymes which produce iden-
tical sticky ends lead to a splicing rule, which can be written as a quadruple
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of strings, with the first pair of strings indicating the pattern recognized by
the first enzyme and the place where it cuts the string, and analogously the
second pair of strings for the second enzyme.

This simplified version of the splicing operation was much investigated in
DNA computing. In theory, as the starting point of defining a computing
model called, in a paper written together with Rozenberg and Salomaa, H
system, as a homage to Tom Head. In short, one gives a finite set of string-
axioms and a set of splicing rules, one applies the rules to the axioms, then
to the resulting strings, and so on, iteratively, possibly also selecting only
certain strings, and in this way we generate a language. Like in a Chomsky
grammar.

Two are the basic results of this area – and, between them the wonder!

On the one hand, we get a characterization of regular languages, those
recognized by finite automata (the result got several proofs, the initial ones
pretty complex), on the other hand, a characterization of the computing
power of Turing machines (this result belongs to me and the proof, somewhat
surprisingly, is simpler than the proofs of the first result mentioned above).
The difference is that in the first result we use a finite set of splicing rules,
in the second one we use an infinite set, but the set of rules is represented by
a regular language. The universality can be obtained also for a finite set of
rules, but with the use of rules controlled in various ways inspired by biology
or by the formal language theory: promoters, inhibitors, using a priority
relation, imposing a dependence on the sequence of rules used, and so on.

The technical details are not relevant, important is that we compute
either at the level of one pole of computability, or at the level of the other
pole. Everything or nothing, without equalizing any intermediate level –
and there are several such levels, defined in terms of automata or grammars.
It is worth noting that also in other frameworks, for instance, in MC, we
obtain similar results. May we infer from these results that the intermediate
levels are not natural? In a certain sense, this is the case, because, if we
think to the classes of automata which characterize the context-free and
the context-sensitive languages in Chomsky hierarchy, the push-down and
the linear bounded automata, respectively, the former have a rather ad-
hoc definition, the latter are inspired by complexity theory, the family of
languages is defined by taking into consideration a property observed during
the computation, not with respect to a static property, belonging to the
automata architecture.
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5 Computing in a natural way

The discussion can be generalized: what means to compute in a natural way?
Which data structures to use and which operations on them? Theoretical
computer science deals mainly with processing strings of symbols, especially
using the rewriting operation, replacing a substring, short in comparison with
the whole string which it is processed, with another string, also short. On the
tape of automata of all types, from the Turing machine to the finite automa-
ton, it is written a string of symbols. The Chomsky grammars, Lindenmayer
systems, Marcus contextual grammars, Post systems, Markov algorithms, all
these are processing strings. The same for Thue iterated morphisms, actually
equivalent with Lindenmayer deterministic systems.

In comparison, what we find in biology? In the case of DNA, the dou-
ble stranded molecule, and, as operations, the recombination, Tom Head’s
splicing, the separation of strands and their annealing, only rarely the point
mutations, at the level of single nucleotides. Then, in the compartments of
a cell, the multiset, the set with multiplicities associated with its elements.
In biochemistry, like in chemistry, the numbers matter. While the DNA
molecule can be considered a string, hence on the DNA string we have posi-
tional information, like in the case of numbers written in the Arabic style, in
the aqueous solution from the cell compartments the numbers are expressed
in unary. Base one is exponentially less efficient than base two – and still this
was chosen by nature/biology. A biochemical reaction can be interpreted as
a rewriting operation of a multiset: a sub-multiset is replaced by another
multiset. However, in the functioning of a cell there appear many other op-
erations, such that those of symport and antiport (I will return to them, as
they deserve a more detailed discussion), or operations by which the mem-
branes themselves evolve (division, dissolution, creation of membranes, exo-
and endo-cytosis, and so on). Similarly in what concerns the functioning of
neurons and of neural nets. I am careful not to say “the functioning of the
brain”, because, in spite of the fact that the neurologists know “everything”
about the physiology of the brain, nobody can explain how the brain becomes
mind, the organ where thinking, sensing, sentiments, conscience is (supposed
to be) placed. Hypotheses, proposals, speculations there exist, significantly
less certainty...

With all these data supports and operations with them one can define
computing models, most of them equivalent in power with Turing machines,
hence computationally complete, computing everything which can be com-
puted (we take as valid the Turing-Church thesis). The proofs are often,
if not always, constructive: we start from a Turing machine or from an
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equivalent model (normal forms for Chomsky grammars, classes of regulated
grammars with context-free rules, register machines, other devices) and we
construct an equivalent H system or, in MC, an equivalent P system. Starting
the construction from a universal Turing machine (or an equivalent model),
the biologically inspired computing model will implicitly be universal, hence
programmable.

In theory, everything is wonderful. In info. At the practical level, there
however appear two problems: the effective implementation, in vitro, of the
theoretical model, and the question whether such a bio-computer can have
also further motivations than proving that it is possible to compute in this
way. Is such a computer useful, better than an existing electronic computer,
at least from one point of view? Possible points of view are many. The
possibility to solve problems of NP (or higher) complexity in a polynomial
time is the first and the most attractive goal, but there are other ones related
to the energy efficiency, the possibility to evolve in time, to learn, to self-
repair, to deal with imprecise or incomplete data. All these are dreams for
computer science, difficult to achieve, but they are common realities in the
life of a cell, in biology in general.

Let us consider only one aspect, the massive parallelism, met ubiqui-
tously in biology. The electronic engineers, even if they cannot equalize the
biological parallelism, could put together a large number of processors, but,
on the one hand, there would appear problems related to the heating of the
computer, on the other hand, problems related to the synchronization, the
coordination of the processors. It enters the stage the so-called communica-
tion complexity: the number of bits needed for coordinating the processors
becomes comparable with the number of bits used in the computation itself.
How the nature has solved these two problems we do not know precisely.
Still less we know about how to imitate the nature’s solutions.

6 Symport and antiport operations

Let us return to the symport and antiport operations. The membranes which
provide the internal structure of the cell are constituted of so-called phospho-
lipid molecules, which have a polarized “head” and a non-polarized “tail”,
consisting of two fatty acids, hydrophobic. Thrown in water, such molecules
self organize spontaneously, forming a sphere with two layers, keeping the
fatty acids separated from the water, opposing to the internal and the exter-
nal water molecules the polarized heads. The common “enemy” and the elec-
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trical charges keep the molecules together, in a structure called fluid-mosaic,
a model proposed by Singer and Nicolson, fully accepted only in 1972. The
phospholipid molecules can move with respect to each other, but they do not
allow to large molecules to pass between them from a side to the other side of
the membrane; neither the ions can pass, because of their electrical charges.
Nature has solved the problem of communication between the interior and
the exterior of a vesicle of this type in a rather ingenious way: between
the phospholipid molecules there are intercalated proteins which function as
transmembrane channels – important to stress, of a selective type. Channels
for water (the aquaporins of Gheorghe Benga, for which a Nobel Prize was
awarded in 2003, but not to him...), natrium-potassium and natrium-calcium
pumps, and so on and so forth.

Two special types of such channels are those which support the pro-
cesses which the biologists call symport and antiport. In the first case, two
molecules, let us identify them by M1 and M2, cannot pass separately through
the symporter channel, but together they can do it, either entering the inner
“reactor”, or exiting it. In the second case, M1 and M2, placed in separated
regions, one inside and the other one outside, cannot separately pass through
the protein channel, but together they can do it, one in a direction and the
other one in the opposite direction. The protein opens the channel until the
molecules pass and then the channel is closed again.

In this manner, we obtain a way to “communicate” among the compart-
ments of a cell – with the mentioning that I call communication the passage
of objects (molecules, of any type) across a membrane. Starting from multi-
sets of objects placed in the compartments of a cell and using given symport
and antiport rules (pairs (M1,M2) associated with membranes, with speci-
fied directions to move each molecule), we can compute: we iteratively apply
the rules, until reaching a configuration where no rule can be applied. (Be-
cause the number of objects cannot be modified by symport and antiport
rules, we assume that the environment participates in the computation, as
an exhaustible source of symbols.) Surprising at the first sight, but not so
much at the second sight, we again obtain a characterization of the power of
Turing machine.

Universal computation, by communication – here lies the surprise! We
compute not by rewriting strings or multisets, but by moving objects across
borders defined by means of membranes. Does it makes sense (to try) to
construct a computer based on the symport and antiport operations? No,
in what it concerns the computing power (Turing-Church Thesis), maybe,
from the point of view of efficiency (provided that we will succeed to imple-
ment a significant level of parallelism), yes, from a point of view which is
not so much taken into consideration by the current technology, although it
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refers to an important detail: the consumption of energy, heat dissipation.
In computer science it is said that the dissipation of heat appears because
of erasing. Rewriting means first erasing and after that writing. The opera-
tions of symport and antiport do not assume erasing, we only have moving,
changing the place. Will these operations diminish/eliminate the energy loss
during a computation? This is an appealing hypothesis – but the biologists
warn us that, in order to function, many protein channels need chemical en-
ergy (obtained with the help of ATP, adenosine triphosphate, “the energy
accumulator of the cell”).

Why, at a closer examination, the universality of computing by means
of symport/antiport is not so surprising? Theoretical computer science, old
results in formal language theory, help us again. There are several charac-
terizations of recursively enumerable languages of the following type: every
language which can be recognized by a Turing machine can be obtained
starting from a context-sensitive language (recognized by a linearly bounded
automaton) and applying to it an operation which remove certain symbols
(morphisms, left or right quotients, etc.). In short, context sensitiveness and
erasing. Two features which the symport and antiport operations possess:
the fact that two molecules evolve simultaneously means context sensitivity,
while by “throwing” molecules in the environment or by collecting them in
a corner of the cell and ignoring them there, we get the erasing. The only
difficulty, for the theoretician, is the proof, the simulation of a computing
mechanism equivalent with a Turing machine by means of certain symport
and antiport operations associated with the compartments of a given ar-
rangement of membranes. There are many proofs of this type in MC – that
is, in info, but no in vivo or in vitro implementation.

7 Spiking models

Remaining close to biology, let us have a look to the way the neurons commu-
nicate to each other by means of electrical impulses of an identical shape, the
spikes. Like any cell, a neuron has a body (soma), from which a “wire” starts,
the axon, along which the spikes circulate. On the soma and in the end of the
axon there are filaments, by the contact of which one obtains synapses, the
links between neurons. We ignore here a lot of architecture and functioning
details (some of them were already captured in MC models): the axon is
covered by a protecting myelin layer, it is segmented by the so-called Ran-
vier nodes, a sort of relays amplifying the electrical impulses, the synapses
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correspond to symport/antiport operations, there also exists another class of
cells, the astrocytes, which control/help the neurons activity, depending on
the flow of spikes along their axons, and so on. We only keep in mind that
we have only one type of “objects”, the spike, and that the flow of spikes,
their frequency, the distance in time between two consecutive spikes are very
important. Of course, the functioning of a neuron, the emission of spikes
depends on the neuron contents.

Abstracting all these details, one can define a computing model of the fol-
lowing type. Neurons are placed in the nodes of a graph whose arcs represent
the axons/synapses. We start with a given number of spikes placed in each
neuron. The neurons also contain spiking rules: depending on its contents, a
neuron consumes a number of spikes and produces a number of spikes, which
are sent to all neurons reached by a synapse which starts in the neuron where
the rule was used. One obtains what is called in MC a spiking neural P sys-
tem, in short, an SN P system. In the ten years since these devices were
introduced, about 300 papers investigating them were published, from the-
ory (computing power and efficiency) to applications (even in technological
decision making, for instance, in a combination of these models with fuzzy
reasoning models – the topic is mainly explored in China).

Like in many other places in bio-computability, also in this framework one
obtains either a characterization of the power of finite automata, or of the
power of Turing machines. Again, the intermediate levels of computability
are not “natural”.

Beyond the previous observation, two further reasons of wonder appear
in this context.

The first one refers to the way the information is encoded/represented by
means of spikes, in the distance between two consecutive electrical impulses.
The time as a support of information... Similar to the Morse alphabet, but
the goal there is only the transmission of information, here we deal with
computations, even at the maximal level, that of Turing machines.

Can we use this observation for constructing computers? If data are
encoded in time, using intervals, how will then function the classical time-
space trade-off in this framework? Polynomial solutions to NP-complete
problems are obtained, in theory and also in the DNA computing experiments
and in MC theoretical approaches, by using an exponential workspace; in
the spiking neurons case, the space and the time are “superposed”, the time
efficiency seems to be lost.

The second wonder reason is related to a result which looks unexpected
at the first sight, namely, that there exist universal (in the universal Turing
machine sense) SN P systems which have a relatively small number of neu-
rons, at most of the order of hundreds. The result depends essentially on the
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type of spiking rules used in neurons and on the number of rules present in
each neuron. In short, the number of neurons depends on their complexity,
which is rather natural, but the fact that we can obtain a “programmable
universal computer” with only about one hundred neurons is unexpected, at
least with respect to the billions of neurons in the human brain and even
with respect to the algorithmic computability. Clearly, the brain does not
has as its goal (only) to compute at the algorithmic level (using the brain as
a model for computers and using the computer metaphor in the study of the
brain are useful strategies, but with soon to reach limits), but equalizing so
easy the computability upper limit is not similarly easy to explain. Are the
“neurons” of our models too complex, too powerful, or, on the other hand,
the Turing computability is not too comprehensive? It is highly probably
that both hypotheses are true. The second assumption is supported also by
other characterizations of Turing computability in bio-inspired frameworks,
using models which are simple “syntactically” or of small dimensions. The
first hypothesis raises the question how to simplify the neurons in such a way
not to lose the universality, even if this result is obtained by using a larger
number of neurons. There are research efforts in MC following this idea.

8 Hypercomputability

While it is so easy, in DNA and cellular computing, to reach the level of
algorithmic/Turing computability, it is much more difficult to pass beyond
“the Turing barrier”. This goal pertains to a branch of computability theory
called hypercomputability, with publications, conferences, dedicated authors
and also with skeptical or even acid comments. On the one hand, it is
said/hoped that passing beyond “the Turing barrier” would have much more
important practical consequences than a possible proof, even a constructive
one, of the equality P = NP (a result with a rather low plausibility). On
the other hand, up to now, the ideas on which the models able of hyperco-
mutability are based are not too many and not too realistic. In the domain
literature there are about one dozen such ideas, but Martin Davis considers
all of them tricks, supporting a myth.

Actually, Turing himself has proposed a version of his machine able of
computing more than the Turing machine, by adding an oracle, which can
answer (for free) questions, maybe questions which pass beyond the compe-
tence of the Turing machines. Several other ideas are based on squeezing
infinity or real numbers in the construction or in the functioning of the ma-
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chine. Because real numbers “are more than computable numbers” (more
precisely: the set of computable numbers has a denumerable cardinality,
while the cardinality of the set of real numbers is strictly larger), something
uncomputable is introduced in advance in the model, hence there is no sur-
prise to get a model which is more powerful than a usual Turing machine.

The same with the introduction of the infinity, even a denumerable one,
with the following remark of interest for our discussion. Adleman experiment,
of solving the problem whether a Hamiltonian path there exists in a graph,
proceeds along the following main steps: one first generates all paths in the
graph, then one eliminates all paths which do not pass through a number of
nodes equal with the number of nodes in the graph (a selection according
to the length of DNA molecules), then one removes the paths which are not
passing through node 1, node 2, etc. What remains in the end are the DNA
molecules which encode Hamiltonian paths. If no molecule survives, then
this means that no Hamiltonian path exists. Also in other experiments one
proceeds in a similar manner, that is, one starts with a large set, easy to be
generated, and one removes iteratively elements which cannot be solutions.
Otherwise stated, it is not constructed a solution, but one eliminates non-
solutions. “Sculpturing!” Computing by carving! In terms of languages,
we start from a general set of strings, maybe the total language over a given
alphabet, and we eliminate repeatedly strings. We remove the complement of
the language we want to identify. Not generating a language, as the grammars
are doing, not accepting, as the automata are doing, but rejecting the strings
which we do not want.

The family of Turing computable languages is not closed under the oper-
ation of taking the complement. Therefore, by “carving” we can “compute”
languages which are not Turing computable. To this aim we need to elimi-
nate an infinite set of strings. If in each step we remove a finite set of strings
or even an infinite but regular one, in a finite number of steps we do not get
out of the family of regular languages. Thus, either there is a step when we
remove a complex language, or the “computation” lasts an infinite number of
steps. Hypercomputability, but, agreeing with Martin Davis, the procedure
does not look as an implementable (hyper)algorithm...

It is worth noting that the physicists are not refuting as totally infeasible
the hypotheses on which the hypercomputability is grounded. Here is an SF
scenario from which the physicists are not removing the S: let us assume that
time has a 2-dimensional description, in spite of the fact that we, the humans,
perceive only one dimension of it; let us assume that a human uses a computer
which, after performing a number of steps along the dimension of the time
which can be sensed by the user, starts to work on the orthogonal direction
of time, performing an arbitrary number of steps, all of them invisible to the
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user, and then comes back and continues on the human visible dimension.
Irrespective how many steps were made on the orthogonal direction of time,
the user receives the result in a time which is essentially shorter for him.

We departed from biology, let us return to the cell. Nature creates mem-
branes with two main goals: to localize the reactions and the reactants (en-
closing them in “protected reactors”), and for creating reactors of a small
size, where the reactants are sufficiently close to each other in order to col-
lide and react, helped by the Brownian movement. Thus, smaller means
faster. Let us generalize, exaggerating “a little bit”, and assume that in
a membrane placed inside another membrane the reactions are twice faster
than the reactions in the membrane above. Let us create membranes inside
membranes, repeatedly. (In MC there are rules of this type, for increasing
the membrane architecture.) The reactions are accelerated from top down in
an exponential way. This corresponds to the accelerated automata, already
investigated in computer science since many years: the first step of a com-
putation is performed in one time unit, the second one in half of a time unit,
each step which follows in a time which is half of the time the previous step
was performed. In this way, in two time units marked on a clock external
with respect to the automaton, one performs an infinity of steps of the com-
putation. The whole computation ends in at most two external time units.
Accelerated automata of this type can solve problems beyond the power of
Turing machines (such as, the halting problem, provided already by Turing
as an example of a problem without an algorithmic solution). Exactly this
can be done also by an accelerated P system – the result appears in a pa-
per written together with Cristian Calude, now in New Zealand. Biological
motivation, hypercomputability, but Martin Davis is again right: the mem-
brane hierarchy should be arbitrarily deep in order to achieve an arbitrarily
powerful acceleration...

9 Fypercomputability

9. Let us quit the hypercomputability and pass to... fypercomputability!
This term occurred, as a game with letters-words, replacing the front h of
hypercomputability with f, from fast. This is the main expectation from bio-
computability, because it is one of the main “barriers” facing the “Turing-
von Neumann” computers: the impossibility to solve NP-hard problems in
a feasible (polynomial) time, not to speak also about NP-complete problems
(a problem is NP-complete if each NP-hard problem can be reduced to it in
a polynomial time; therefore, if an NP-complete problem could be solved in
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polynomial time, then all NP-hard problems would be solved in polynomial
time, that is, P = NP).

However, the exponentials are not at all easy to handle... Here is a simple
example, but with a strong didactic impact. Let us assume that we have a
problem, for instance, dealing with graphs, of an exponential complexity, say,
of the order of 3n; let us assume that the existing computers can solve the
problem in a reasonable time for graphs with 100 nodes. Assume now that
the technology promises us or even offers us new computers which are 1000
times faster than the current ones. A spectacular progress, not at all easy to
be obtained. A problem which is now solved in 1000 seconds will be solved
with the new technology in one second. Good, but if now we can deal with
graphs of 100 nodes, which will be the size of graphs which can be handled
with the improved computers? The answer is disappointing – graphs with
only 106–107 nodes – for the simple reason that 37 is greater than 1000. A
great technological progress leads to a derisory advance in what concerns the
size of the problems which can be solved. Not the technology is the way to
cope with the exponential complexity, we need to look for something else,
basically new. The parallelism is a path towards fypercomputability, and
there are two main strategies: starting from the beginning of the computation
with an exponential space (as in the Adleman experiment), or creating such
an exponential space during the computation.

In MC, in most cases one follows the second strategy: using biological op-
erations, such as the membrane division or the string replication, one creates
an exponential workspace in a linear time, then, using this workspace, one
solves in a polynomial time NP-complete problems. However, an exponen-
tial number of objects can also be obtained without involving the membrane
division, but using only rules of the form a → aa, repeatedly, in a paral-
lel manner. Starting from one copy of a, in n steps we get 2n copies of a.
It is rather interesting to see that this manner of obtaining an exponential
workspace is not sufficient in order to reach the desired efficiency: the so-
called Milano Theorem, proved by Claudio Zandron in his PhD thesis (the
first European PhD thesis in MC, presented in 2001; the first one in the world
was presented one year before, in India), says that any P system, even using
rules of the form of a → aa, can be simulated in polynomial time by a Turing
machine. Therefore, if such a system would solve NP-complete problems in
polynomial time, then also the Turing machine would do it, which will imply
that P = NP. Consequently (unless P = NP), the membrane division is
necessary for fypercomputability.

Again, we have encountered here a subtle and surprising aspect. An ex-
ponential number of objects, placed in a single membrane, are not sufficient
for exponentially speeding up the computation (in P systems), but if we
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separate these objects in different membranes, also exponentially many, the
fypercomputation jump is obtained. The difference is made by the localiza-
tion, the use of different rules in different membranes. In this way, there
appears a parallelism of a more complex nature, with compartments which
evolve in parallel, each of them processing, also in parallel, its own objects. I
do not know whether this difference/phenomenon has appeared also in other
frameworks – anyway not in the classic complexity theory, where the paral-
lelism is not present, because the working model is the Turing machine, a
sequential model.

10 Gaps in the computational complexity theory

Actually, the computational complexity theory, in its classic form, has sev-
eral “gaps” from the point of view of bio-computability. I return to the way
Adleman has solved the Hamiltonian path problem: he started from a given
graph, hence from an instance of the problem, has constructed an ad-hoc
“computer”, using DNA molecules directly depending on the chosen graph,
test tubes and other lab instruments, and he has found the solution (in a
linear time, as the number of biochemical operations, some of them of a mas-
sive parallelism). In the complexity theory, such an approach is not allowed,
it is required to start from the problem itself, and the algorithm/program
should be written in a polynomial time, taking as parameters the size of the
instances, not the instances themselves. In the general algorithm obtained
in this way (one says that it is uniform) one introduces the instance to be
solved. The idea is to prevent introducing the solution of an instance in the
algorithm which pretends to solve the problem, but it simply provides the
answer. Then, even for an uniform algorithm, one requests that the time
of writing it is polynomial, so that it is not possible to work on solving the
problem during the programming phase.

At the beginning of MC, a compromise between the two alternatives was
chosen in the papers which proposed polynomial solutions to NP-complete
problems: solutions which were not necessarily uniform, but at least “hon-
est”, starting from instances, but with the algorithm constructed in a polyno-
mial time. They have been called semi-uniform solutions. And now the prob-
lems appear. How the complexity classes with respect to semi-uniform solu-
tions look like and, more interesting, which are their relations with respect
to the classic complexity classes? Of course, the semi-uniform classes are
larger than the uniform ones. Are they strictly larger? Interesting enough,
there were obtained results of both types, equality as well as strict inclusion,
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depending on the definition of the considered classes. I do not enter into
further details, they become soon too technical.

Still further questions appear.
The brain (and the liver, and other organs and tissues) has a huge number

of cells, not all of them working in each moment (at least this is what it was
said some years ago). When a task appears, a problem for the brain, a
food/beverage difficult to process for the liver, further cells are called to
work. Can we use such a strategy in computer science, that is, to start
from pre-computed resources, of an arbitrary size, without containing “too
much” information, so that one cannot hide there a pre-computed solution
of the problem, then to activate the “computer” according to the difficulty
of the problem? This idea was followed in the framework of SN P systems,
where the cell/neuron division does not seem to be biologically realistic, but
it is natural to start from an arbitrarily large network of neurons, provided
in advance, without containing spikes, and to introduce the problem to be
solved, suitably encoded, in a small number of neurons, such that the network
is activated as much as necessary, and it provides then the answer. Also in
this area the theoretical developments are missing. When can we say that
the initial resources are pre-computed in a honest way, they do not contain
too much information? How the associated complexity classes can look like,
which is their relation with the existing complexity classes?

Maybe even more interesting: can the internet be used as a pre-computed
support for computations, of an arbitrary size? In a certain sense, internet
has been already used in this way – it was the case of the SETI project,
maybe of other projects, known or not.

Something more: the algorithms considered in the complexity theory are
deterministic, what it is happening in a test tube or in a cell is far from that.
However, the result is either “reliable”, in the sense that it is obtained with
a probability close to 1 (Adleman has used sufficiently many DNA molecules
so that he was “sure” that all paths in the graph were constructed in the
first phase of the experiment), either the computation, even if it is non-
deterministic, is confluent, with two possibilities: strongly confluent, that is,
after a non-deterministic phase, the computation converges to a unique con-
figuration, and after that the continuation is deterministic, or weakly/logically
confluent, that is, irrespective which was the followed path, the answer is the
same. In MC, most of the solutions were initially semi-uniform and (strongly
or weakly) confluent, after that for a while the solutions were uniform and
confluent, while in the last time most of the considered solutions are uniform
and deterministic. Once again, there appears here a challenge for the com-
plexity theory, to clarify the relationships between complexity classes defined
using non-deterministic solutions, confluent solutions (in the two versions),
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and the deterministic solutions.

11 Who is computing?

All these are challenges for the theory – also having some practical inter-
pretations and consequences. However, let us refer also to some much more
specific aspects, at least at the first sight closer to applicative computer sci-
ence. Let us compare the computer programs, as they are usually conceived,
as precise sequences of instructions, with a well specified order in which they
are executed, maybe with the ordering controlled by using labels, go to in-
structions, conditional instructions, cycles, with the “programs” in a cell
and the completely different way they are executed. In a cell, the molecules,
present in the form of multisets, react/evolve by the means of possible re-
actions. Instead of a sequence of instructions, we have a set of reactions, a
non-ordered set, without any organization, which are applied to “data” (to
the molecules) in a concurrent manner, each possible reaction in competi-
tion with other possible reactions in finding molecules to process, with many
reactions developing concomitantly if sufficient reactants are available and
if the necessary conditions are met for the reactions to take place (temper-
ature, salinity, acidity, the presence of certain catalysts and promoters, the
absence of inhibitors, and so on). There appear probabilities, stoichiomet-
ric coefficients which predict-control the frequency of applying the reactions,
depending on the population of reactants and the reaction conditions, there
appears the dependence on promoters and inhibitors, but not the precise
chain of instruction from a program in Algol-Fortran-Pascal-Basic or in any
programming language closer to our days. In a large extent, the functioning
of a cell is much more similar to the functioning of a Chomsky grammar than
to the functioning of an automaton, of a Turing machine, where the states
control the used instructions, maybe uniquely identifying them, in the case
of deterministic automata.

Can we learn something at least interesting if not even useful for com-
putability from these aspects?

Similarly in a tissue or in an organ, and still more in a colony of bacteria,
there appears a functioning “in a community” which is not at all similar to
the functioning of a set of processors put to work together. In biology, the
parallelism is not total, the processes are not perfectly synchronized, in spite
of the fact that there are rather precise “biological clocks”, circadian cycles,
annual seasons. For instance, the bacteriologists do not fully understand the
way in which the bacteria realize the so-called quorum sensing, the “silent
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communication” before reaching a threshold after which the bacteria become
aggressive. One discusses also in computer science about asynchronous com-
puting, about amorphous computing, but nature is much ahead along these
directions.

I end with another aspect of a practical interest: who is computing in
Adleman experiment (and in many other similar experiments), who is the
computer? The DNA molecules or... Adleman itself, the biochemist, the
human? Without the human control, the molecules will not do what we
expect from them to do, they will do almost nothing useful for us. It is true,
a robotic system can replace the human operator. In this framework, “the
computer” is a hybrid, and this is the plausible form of the computer of the
future.

12 Other questions

Of course, there are many other wonders-questions which are worth mention-
ing. In what concerns the DNA, we have remained at the level of the primary
structure, while neither for the protein channels we have mentioned the fact
that the shape plays a fundamental role, the coupling between surfaces is
crucial for the execution of the symport/antiport operations.

Actually, one can imagine computations based on the matching of certain
shapes (computing by shapes), a sort of puzzle game with specific rules and
restrictions, which is again universal and which can get (purely theoretical
for the time being) “implementations” in terms of DNA biochemistry.

Similarly, at the level of the brain there are many things to be discussed.
An old hypothesis claims that there are two parts of the brain, one which is
conscious, controllable, and one which is sub/inconscious; the first one sends
problems to the latter one, which proposes solutions, which are evaluated by
the cortex and, if they are real solutions, then the problem is solved, otherwise
the problem is pushed once again to the subconscious part – and the process
is iterated. There is here a dialogue between a deterministic component and a
non-deterministic one, again something new for computer science. Can such
a process be modeled, for instance, in terms of SN P systems? Has computer
science something to learn from this supposed functioning of the brain? (Let
us remember that NP is the class of problems for which a solution proposed
non-deterministically can be deterministically checked in polynomial time,
without counting any time for the “guessing” of the solution, therefore a
“bi-automaton, with one deterministic and one non-deterministic module”,
with the non-deterministic component working in no time, could be of a real
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practical interest.)

Then, concerning the learning: adaptation, evolution, learnability are
common facts in biology, almost absent in the electronic technology, with
the learning, at least, intimately present in the neural computing, a branch
of bio-computing. Even if the type of learning here looks reductionistic,
limited to the tuning of certain numerical coefficients (weights) on synapses
linking “neurons” of a rather abstract form, this approach proves to be sur-
prisingly efficient, having unexpectedly good results, comparable with the
results which another area of bio-computing has, the evolutionary comput-
ing – without escaping the so-called no free lunch theorems. Recently, the
neural computing has obtained a performance of a historical importance:
one of the best GO players in the world was defeated, in March 2016, by
AlphaGO, a..., a..., there is a problem here, as AlphaGO is not a program,
it is not a computer (of the kind it was used twenty years ago in the game
of chess, when Kasparov was defeated by Deep Blue computer). This time,
billions of GO games among human players were stored on some thousands
of computers, and a program based on neural computing has learned from
these games and then from games played alone, the program against itself,
so that, in the end, the South Korean GO player Lee Sedol, 9-dan, was de-
feated. The achievement belongs to a Google team, a detail of importance,
because a routine to efficiently search through the thousand computers was
also important.

The result is remarkable. For many years it was said that GO is the
ultimate challenge for the artificial intelligence. Now, this frontier is already
behind us. I confess that I have expected a bigger enthusiasm in the bio-
computing community after this event.

Of course, now the challenge is to extend the strategy used by AlphaGO to
other domains than GO, and I am sure that there are works in this direction.

I stop here, confident that the reader has his/her own wonders-questions
in front of biology and in front of biology relations with other disciplines,
from engineering to computer science. Anyway, the progresses in this area,
of the collaboration of biology with computer science, should not be under-
estimated...
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de Linguistique Théorique et Appliquée, 11 (2), (1974), 77-104

[16] L. Pan, T. Wu, and Z. Zhang, A bibliography of spiking neural P systems, Bulletin
of IMCS, 1, (2016), 63-78

[17] Ch. P. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
Mass., 1994
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