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SOME ZERO-ONE LAWS FOR GAUSSIAN PROCESSES'

By STAMATIS CAMBANIS AND BALRAM S. RAJPUT?,

University of North Carolina at Chapel Hill

It is shown in this paper that the paths of a real separable Gaussian
process on an interval have a number of interesting properties with proba-
bility zero on one. These properties include boundedness, bounded varia-
tion, continuity, uniform continuity, absolute continuity, a Lipschitz
property, differentiability, absence of oscillatory discontinuities.

1. Introduction. It is shown that the paths of a Gaussian process have most
of the important function properties with probability zero or one (Theorem 2).
These results are obtained by using a recently proven zero-one law for Gaussian
processes [6], [7], [8]; namely, that for a zero mean Gaussian process of function
space type satisfying certain conditions, every measurable subgroup of the func-
tion space has probability zero or one. The zero-one law is stated in Theorem 1
for a Gaussian process with arbitrary mean value.

The proofs are collected in Section 3. In Section 4 a simple proof is given
for the known expression of the Radon-Nikodym derivative of the translate of a
Gaussian measure, which is needed in the sketch of the proof of Theorem 1.

2. Zero-one laws for Gaussian processes. Let {£(¢, w), t€ T} be a real Gaussian
process defined on the probability space (Q, &, P) with mean function m(f) and
covariance function R(z,5); T is any set and & is the smallest s-algebra of
subsets of Q with respect to which the functions {{(¢, ), t € T} are measurable.
Denote by .# the completion of & with respect to P. It is the purpose of this
paper to derive classes of & -measurable events whose P-probability is either
zero or one.

Now let X be a set of real functions x on T which contains almost surely [P]
the paths of the Gaussian process £(f, ). Denote by Z/(X) the g-algebra of
subsets of X generated by sets of the form {x e X: [x(#), - - -, x(¢t,)] € B"} (#1, - -
t,e T and B* is an n-dimensional Borel set). Then the transformation ¢:
(Q, &, P) > (X, Z(X)) defined by

bo) = (o) if £ 0)eX

=0 Cif g, @) g X
is measurable, and induces a probability measure x on (X, Z(X)). The stochastic
process {x(f), e T} defined on the probability space (X, Z(X), ¢) is clearly
Gaussian with mean m(¢) and covariance function R(¢, s). Denote by Z/(X) the
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completion of Z7(X) with respect to # and by H(R) the reproducing kernel Hilbert
space determined by the covariance R. The following conditions will be assumed:

(Cl) Xis a linear space of functions under the usual operation of addition of
functions and multiplication by real scalars;
(C2) H(R) C X.

Both conditions (C1) and (C2) are easily seen to be satisfied in the following
cases: (1) X = R”, the set of all real functions on T; (2) T is a measurable set
on the real line, (¢, ) is a measurable process, and X is the set of all real measur-
able functions on T; (3) T is a metric space, the paths of ¢ are a.s. [ P] continuous
on T, and X = C(T), the set of all real continuous functions on 7.

The following theorem is essentially due to G. Kallianpur.

THEOREM 1. If conditions (C1) and (C2) are satisfied and G is a 7/(X)-measurable
subgroup of X, then u(G) = 0 or 1.

The proof of Theorem 1 for the zero mean case is given by Kallianpur [7],
[8] and Jain [6]. Specifically, the zero-one law for Z/(X)-measurable modules
over the rationals and for Z/(X)-measurable groups is proven in [7] with some
additional assumptions which are removed in [8]. The extension to Z/(X)-measur-
able groups is proven in [6]. The proof of Theorem 1 sketched in Section 3
differs slightly from the one suggested in [8] and follows closely the proof in [7]
and [6]; it may be mentioned that this proof was obtained without knowledge
of reference [8], which was brought to our attention by the referee.

COROLLARY 1. Let X be a set of real functions on T which contains the paths of
&(t, w) a.s. [P), and satisfies conditions (C1) and (C2). If Fe & is such that F =
¢~G), where G is a 7/(X)-measurable subgroup of X, then P(F) =0or 1.

By applying Corollary 1 we obtain a number of zero-one laws for path proper-
ties of a Gaussian process.

THEOREM 2. Let {£(t, ), t € T} be real separable Gaussian process on the proba-
bility space (Q, F, P), where T is an interval on the real line. Then with probability
zero or one the paths of &(t, w) are

(1) bounded on T )

(2) free of oscillatory discontinuities on T

(3) of bounded variation on every compact subinterval of T
(4) continuous on T

(3) uniformly continuous on T

(6) absolutely continuous on every compact subinterval of T
(7) (satisfy) a Lipschitz condition of order « > 0 on T

(8) differentiable on T.

The zero-one law on the boundedness of the paths is known [9]. Under the
additional assumption that the process is product measurable, it is shown in [13]
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that its paths belong to L, 1 < p < oo, with probability zero or one and neces-
sary and sufficient conditions for the two alternatives are derived. The following
sharper results are known for a mean square continuous Gaussian process {£(¢, »),
teT}. (1) With probability one the paths of £(¢, @) on T (compact interval)
either are continuous or have oscillatory discontinuities (this follows easily from
the results in [5]). (2) If &(¢, ) is also stationary, then its paths are either con-
tinuous or unbounded on every subinterval of T [1].

In the course of the proof of Theorem 2 it is shown that for a separable process
the sets of paths that have each of the stated properties are measurable, and also
explicit expressions for these sets are given. This result is of independent interest.
It should be remarked that for the measurability of the sets in (1), (2), (4) and
(5) separability relative to closed intervals suffices, while for the measurability
of the sets in (3) and (6) to (8) the separability relative to closed sets is needed.
However, in the particular case of Gaussian processes, the measurability of the
sets in (6) to (8) can be shown assuming only separability relative to closed
intervals.

Additional zero-one laws can be obtained by using the techniques employed
in the proof of Theorem 2. For instance, it is easily seen that with probability
zero or one the paths of a separable Gaussian process: (i) vanish at oo if T =
[a, c0) (f vanishes at co if for every ¢ > O there exists 0 < N(¢) < + oo such
that | f(f)] < ¢ whenever ¢t > N); (ii) have uniform right (left) limits on T (iii)
are uniformly right (left) continuous on T; (iv) are uniformly right (left) dif-
ferentiable on T.

The problem of finding necessary and sufficient conditions for the two alterna-
tives in the zero-one laws of Theorem 2 is wide open at present and seemingly
a difficult one. Sufficient conditions for a number of path properties to hold are
known, especially for stationary Gaussian processes, and some are very close to
being also necessary.

3. Proofs. The notation and assumptions introduced in Section 2 are used
here.

Proor oF THEOREM 1. For zero mean, this theorem is proven in [6], [7] with
the additional assumptions that T is a complete separable metric space and that
R(t, 5) is a continuous function on 7 X T. These assumptions are used in two
places in the proof given in [6], [7].

First they are used in concluding the validity of (i) and (ii) as stated in Section
4;i.e., that p,, ~ p, (= p)if and only if m € H(R) and that the Radon-Nikodym
derivative of p, with respect to g, is given by (1). However, as explained in
Section 4, (i) and (ii) are valid in general with no restrictive assumptions on
either T or R.

Secondly, Lemma 6 as stated and proved in [7] employs the separability of
H(R), which is implied by the above mentioned assumptions on 7'and R. If the
statement of this Lemma of [7] is modified to read as follows: “If g is a Z/(X)-



SOME ZERO-ONE LAWS FOR GAUSSIAN PROCESSES 307

measurable real function such that for every me H(R), g(x + m) = g(x) a.e. [¢],
then g(x) = constant a.e. [¢]”, then it is proven as Lemma 6 of [7], the separa-
bility of H(R) is not needed, and this modified lemma is precisely what is needed
in the course of the proof of this theorem.

This proves the theorem in the zero mean case and a careful inspection of the
proof reveals that it remains valid for arbitrary mean value.

By separability of the stochastic process {§(7, @), t € T} we mean separability
relative to closed sets of the extended real line ([2] page 52), unless otherwise
specified. This type of separability is equivalent to the following condition:
“There exists a set Q, e & with P(Q;) = 0 and a countable dense subset S of T
such that for every w € @ — Q,and every r e T — S there exists a sequence {s,}=_,
in S converging to rsuch that lim, £(s,, w) = &(t, ®)” ([2] page 59). Thisequivalent
condition for separability will play an important role in some of the proofs.
However, it will be clear from the following proofs that the weaker kind of
separability relative to closed intervals of the extended real line is sufficient for
some of the zero-one laws.

PRroOF oF THEOREM 2. If F is the set of w e Q for which each property is
satisfied we will show that Fe % and P(F) = O or 1.

Proof of (1). Let F = {we Q: sup,.; |§(t, w)| < + oo}, and

F' = {weQ: sup,. |&(f, 0)| < + o0}
= Uf=1 Nies {0 e Q: [§(1, )| < N}.

Then F’ ¢ &, and because of the separability of &, Fe & and P(F) = P(F").
Also if we take X = R” and define

G' = {xeX:sup,.s|x(t)] < + oo}
= UF=1 Nees{xe X: |x(1)] < N},

then G’ is clearly a Z/(X)-measurable subgroup of X and F’ = ¢~1(G’). Corollary
1 implies that P(F") = 0 or 1. Note that separability relative to closed intervals
only is used here.

Proof of (2). Let F = {w e Q: §(t, o) is free of oscillatory discontinuities on
T}. Itisshown in ([11] page 61) that Fe &, Similarly, if X = R” and G =
{x € X: x(¢) is free of oscillatory discontinuities on T}, then G ¢ Z(X). Since G
is a subgroup of X and F = ¢~*(G), Corollary 1 implies P(F) = 0 or 1.

Proof of (3). Let {T, = [a,, b,]};, be a sequence of compact intervals such
that T, € T, € Tand Upo, T, = T. If F = {0 € Q: &(¢, w) is of bounded vari-
ation on every compact subinterval of T}, then '

F =N Us= NPz N ery {0 € @ X1 168, ©) — 6(y, 0)] < N},

where T, (#; T}) is the class of all sets of points {£,}_, in T, such thata, = 1, <
t, < --- <t,=b, LetF begiven by the same expression as F with T, replaced
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by T, n S (here the separating set S is augmented so as to include all end points
{a, )z and {,}7_,). Then F'e¢ F and F’ = {w € Q: £(t, w) is of bounded variation
on every bounded subset of S}. By the separability of ¢ it is shown as in the
Proof of (4) that Fe % and P(F) = P(F'). If we take X = R” we have that
= {x e X: x(¢) is of bounded variation on every bounded subset of S} € Z(X)
and since G’ is a group and F’ = ¢~%(G’), Corollary 1 implies P(F') = 0 or 1.
Proof of (4). Let {T,};_, be a sequence of compact intervals such that T, C
T,.; © Tand g, T, = T. Then, noting that a function is continuous on 7' if
and only if it is uniformly continuous on every T,, we have
={weQ: (1, w) iscontinuous on T} = N, Fy,
where

F, = {weQ: &(t, ) is continuous on 7'}
, 1
= Na=1 Un= {a) eQ: SUP; e pysit—t'1sy/m §(2, @) — (7', 0)] = —n“}
, 1
= Na=1 Un=1 Neer, {‘” eQ: SUPy e 7 s1t-t/ 1s1/m (¢, @) — &(1', 0)| = _n‘}

= Ne-1Un= nteTk E,f,,,,(Tk) :

Let F, = Nyoi Un=1Naes, En w(Si), where S, = T, n S, andlet FF = N F =
{w e Q: &(t, ®) is continuous on S}. Then clearly F,’e & forall k, and F' € &,
If we take X = R” we obtain in a similar way that the set G’ = {x e X: x(?) is
continuous on S} is Z/(X)-measurable. Since G’ is clearly a group and F’ =
¢~%(G'), Corollary 1 implies P(F") = O or 1. Clearly F, c F,’. It will be shown
that separability implies F,’ — F, C Q,. Then F, e .% and P(F,) = P(F,’) and
thus Fe % and P(F) = P(F') = O or 1.

In order to prove F, — F, C Q,, it suffices to show that w ¢ F,’ — Q, implies
w e F,. Fixany o e F,' — Q,. For every fixed n, since o € F,/, there exists m
(depending on n) such that for every s € S,, » € E}, ,.(S,); i.e. such that whenever

s5eS,, |s—s <L then [&(s 0)—E(Fh o) <.
m 2n

Let te T, — S, be arbitrary but fixed. It follows by separability and the fact
that w ¢ Q, that there exists a sequence {s;}; in S, such that

lim; s; = ¢ and lim, £(s;, w) = §(¢, @) .
Then there exists integer I such that whenever i > I then

It — 5] < 21 and  |E(t, ©) — £(s;y )| < zi
If se S, with |t — 5| < (2m)~*, then, fori > I,
1 1
—s < |s— t—sl < — + —=— d
|s —s;| = |s — ¢ + | s,|_2m—|- p» an
(5, @) — £, 0)] = 600, 0) — £ )] + [£(5000) — E(5,0)] < Zi o=
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Thus whenever s € S, with |t — 5| < (2m)~? then [§(t, @) — &(s, 0)| < n7?, i.e.,
® € E} 4n(S,). Clearly E}, (T,) C E},.(S,). Since for fixed re T the process
{£(, ®) — &(t, ), ¥’ € T} is separable, it follows that E} ,.(S;) — Eq 2n(Ts) C Q.
Hence o € E} ,,(S,), @ ¢ Q, imply o € E{ ,,(T,). It is thus seen that for every n
there exists m (depending on n) such that for all te T, o € E; ,,(T},). Hence
we Nz Uz Neer EL w(Te) = F,, and the proof is complete.

This proof is presented in some detail because it is typical of the use of the
separability of the process in proving measurability of path sets and because a
similar argument is used again in this paper. It should be remarked however
that this proof uses separability relative to closed sets. As pointed out in the
Proof of (5), this zero-one law on path continuity can be proven under the weaker

kind of separability relative to closed intervals.

Proof of (5). Let F = {we Q: &(t, ») is uniformly continuous on T}. It fol-
lows from the proof of (4), that Fe & and P(F) =0 or 1. This proof uses
separability of & relative to closed sets. We now give a proof employing the
weaker kind of separability relative to closed intervals. It should be clear then,
that under the same weaker separability assumptions, the sets F, appearing in
the Proof of (4) can be similarly shown to belong to %, which proves the zero-
one law (4). Let

F' = {weQ: &(t, w) is uniformly continuous on S}
, 1
= N1 U=t Nevesiiosisym {w eQ: §(s, ) — £(5, )| < 7} .

Then F/e % and F C F'. Fixanywe F' — Q,. Thené(., w)is uniformly con-
tinuous on S, and since S is dense in T, it can be uniquely extended to a uniformly
continuous function &(+, w) on T. Now let te T — S be arbitrary but fixed.
Then

&, o) = lim,g,, &(s, ) = lim, 5,_, £(5, ®)

and the separability of & relative to closed intervals implies that lim, 5, §(s, @) =
£(t, ®) ([10] page 505). Hence £(t, 0) = &(t, w), i.e., &(f, ®) is uniformly con-
tinuousand w ¢ F. It follows that F/ — Q,  F which implies F ¢ .5 and P(F) =
P(F'). If we take X = R” we obtain in a similar way that the set G’ = {xe X:
x(#) is uniformly continuous on S} is Z/(X)-measurable. Since G is clearly a
group and F’ = ¢7Y(G’), Corollary 1 implies P(F’) = 0 or 1 which completes the
proof.

Proof of (6). Let {T,};_, be a sequence of compact intervals such that T, C
T,.,,cTand U, T, =T. If F={weQ: §(, ) is absolutely continuous on
every compact subinterval of T}, then

F =Nz Ni=: Um= N nn:(ti,zi';rk)
X {a) eQ: Y0, (6t @) — £t/ w)] < %} ,
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where T[™ (¢, t,/; T,) is the class of all sets of points {z;, #/}r_, in T, such that the
intervals {(#;, ')}z, are disjoint and with total length < m~*. Let also F’ be the
subset of Q given by the same expression as F with T, replaced by § n T,. Then
F'e Z and clearly F' = {w € Q: &(¢, w) is absolutely continuous on every bounded
subset of S}. By the separability of &, it is shown as in the Proof of (4) that
Fe & and P(F) = P(F').

This proves that F e . for every process & separable relative to closed sets.
For a Gaussian process &, by using the already established zero-one law (4), it
can be shown that F e % under the weaker condition of separability relative to
closed intervals. (This applies also to (7) and (8).) Indeed if P{w e Q: &(¢, w) is
continuous on T} = 0 then F belongs to the completed o-field &, and P(F) = 0.
On the other hand if P{w e Q: (¢, w) is continuous on T} = 1, then clearly ¢ is
separable relative to closed sets. Thus, since the zero-one law on the continuity
of paths is proven under the hypothesis of separability relative to closed interval,
the zero-one law of (6) is proven under the same hypothesis.

If we take X = R” we have that G’ = {x € X': x(7) is absolutely continuous on
every bounded subset of S}e Z/(X) and since G’ is a group and F' = ¢~(G'),
Corollary 1 implies P(F') = 0 or 1.

Proof of (7). This zero-one law is shown as (4) and (6) by noting that if F =
{0 e Q: &(t, o) satisfies a Lipschitz condition of order « on T}, for fixed a > 0,
then

F= {w €Q:sup, crirs =L Tt)__sélfs’ 2 < +°°}

= Uses Moo {06 @ supyep O =200 <
= 3°

IA

Proof of (8). This zero-one law is shown as (4) by noting that
F = {weQ: &(t, w) is differentiable on T}

w | e . 1
= nn=1 Um=1 ns,t,re T;8<t<t;|8—7|S1/m {CO € Q . max {Als A29 A3} é 7} ’

where

A = £(s, 0) — £(1, ») _ &(s, w) — &(z, w) ’

s —t S — 7T
A — &(r, w) — &(t, o) _E(‘L‘, w) — &(s, w)l
: T —t T —s ’

A, = £(t, 0) — (s, 0) _ £(1, ) — §(z, @)

t— s t—r1

4. The Radon-Nikodym derivative of the translate of a Gaussian measure. In this
section we discuss the properties of the translates of Gaussian measures used in
the proof of Theorem 1.

The notation and assumptions of Section 2 prior to Theorem 1 are adopted
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here without further explanation, and it is assumed that the mean of ¢ is zero.
Let us put P, = P and y, = ¢ and denote by &, the subspace of L,(y,) =
Ly(X, Z(X), t1,) spanned by the random variables {x(¢), t € T}. It is well known
[12] that there isan inner product preserving isomorphism between .S, and H(R),
denoted by «», such that x(7) & R(-,t) forall te T, and 5 <> m if and only if

m(t) = §x x(t)n(x) dpo(x) forall reT.

For me X the transformation <, : (X, Z(X), p) — (X, Z/(X)) defined by
Tm(¥) = X 4 m is clearly measurable and induces a probability measure p, on
(X, Z(X)). The stochastic process {x(f), e T} on the probability space (X,
Z(X), p1) is easily seen to be Gaussian with mean function m(z) and covariance
function R(z, 5). It is also clear that g, is the probability measure induced on
(X, Z(X)) by the stochastic process {§(z, w) + m(f), ¢ € T} by means of the meas-
urable transformation ¢,, : (Q, &, P,) — (X, Z/(X)) defined by ¢,,(0) = &(+, ®) +
m(+) if §(+, ®) e X and ¢, (w) = 0 if (-, w) ¢ X. It is known that

(1) pn and p, are mutually absolutely continuous if and only if m ¢ H(R), and
(i) if m e H(R), the Radon-Nikodym derivative p,, of s, with respect to s,
is given by
) Pu(¥) = €xp [n(x) — 4lI7I]"] a.e. [x]
where 7 <> m and ||+|| denotes the norm of Ly(p,).

The validity of (i) is established in [4]; it can also be obtained as a straight-
forward application of the theorem proven in [3]. The validity of (ii) is indicated
in [14]. However, since the proof of (ii) is not easily reconstructed from the
references cited in [14], an alternative simple proof is given here.

For any subset § of T let (S) be the subspace of L,(y,) spanned by the set
{x(¢), t € S}, let H(R, S) be the reproducing kernel Hilbert space of R restricted
to § X S, and let Z/(X, S) be the g-algebra of subsets of X with respect to which
the functions {x(r), 7 € S} are measurable. Clearly &(T) = <%, H(R, T)) = H(R)
and Z(X, T) = Z/(X). It is well known [12] that there is an inner product
preserving isomorphism between #(S) and H(R, S), denoted by «, such that
x(t) < R(+, 1), 1€ S, and { o fif and only if f(r) = §, x(£)¢(x) dp(x) for all £ € S.

Assume now m € H(R). Then p,(x)is Z/(X, T)-measurable and thus there exists
a countable subset S, of 7 such that p, (x) is Z/(X, S,)-measurable ([2] page 604).
Let € &, be such that 5 <> m. Then 7 is the Ly(,)-limit of a sequence {7},
of elements of L,(y,) of the form 5,(x) = XF, Ci,nX(t:,,), Where the ¢, ,’s
are real numbers and #,,eT. Hence there exists a countable subset S,
(= Uisi Uisasw, {ti..}) of T such that pe £(S,). If & = S, U S, then clearly
7€ Z£(S) and p,(x) is Z(X, §')-measurable. Let §' = {t,}=,, t, € T,-and let S
be the set of those points ¢, of §’ which are such that the elements x(ty), -+,
x(t,) of Ly(P,) are linearly independent. Then S is a countable subset of 7,
“ZS) = Ly(S') and Z(X, S) = Z/(X, §), where Z/(X, S) is the completion of
7(X, S) with respect to y,. It follows that y € Z(S) and that p,,(x) is Z(X, S)-
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measurable, which implies that p,(x) is also the Radon- -Nikodym derivative of
In Testricted to Z/(X, S) with respect to p, restricted to Z(X, S). Now an ap-
plication of the martingale convergence theorem [2] to the martingale {p,"(x),
24X, S,), 1 £n < o}, where S, = § = {S}iz1s Pw(X) = pu(x), and for 1 <
n < oo, S, = {s,}r_, and p,"(x) is the Radon-leodym derivative of p,, restricted
to Z/(X, S,) with respect to , restricted to Z(X, S,) (or equivalently an appli-
cation of Theorem 9. A of [12] to the stochastic process {x(¢), ¢ € S}) gives

2) Pn(x) = exp [C(x) — 3I[CIF] a.e. [m]

where { e £(S) and { & mg; mg being the restriction of mto S. ¢ « myg implies
m(t) = § 5 x(£)C(x) dpy(x) forall teS.

On the other hand, it follows from %, 5 5 <> m e H(R) that
m(t) = §x x(t)n(x) dpy(x) forall reT.

It follows now from 7, { € £(S) that { = » in Ly(s,), and hence (2) implies (1).
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