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Abstract: In this paper, we present the existence of n-tuple of operators on complex Hilbert space that has a

somewhere dense orbit and is not dense. We give the solution to the question stated in [11]: “Is there n-tuple

of operators on a complex Hilbert space that has a somewhere dense orbit that is not dense?” We do so by

extending the results due to Feldman [11] andLeòn-Saavedra [12] to complexHilbert space. Further illustrative

examples of somewhere dense orbits are given to support the results.
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1 Introduction

An n-tuple of operators means a finite sequence of length n of commuting continuous linear operators. The

concept of orbit comes from the theory of dynamical systems. In the context of operator theory the notion

was first used by Rolewicz [14]. Linear dynamics is mainly concerned with the behaviour of iterates of linear

transformations. However, a new phenomenon appears in an infinite-dimensional setting: linear operators

may have dense orbits. Suppose that T is continuous linear operator on a topological vector space X over the

field F(=R or C), then for an element x ∈ X, the orbit of x under T is Orb(T, x) = {x, T1x, T2x, ...} where

x ∈ X is a fixed vector. The present work is an extension of the work done by Feldman [11] on Hypercyclicity

and somewhere dense orbits.

For more literature on this topic one can see the papers by Al-shami [1], Ansari [2], Ayadi [4], Bayart

and Costakis [6], Bayart and Matheron [5], Bourdon and Feldman [7], Costakis and Hadjiloucas [10] and also

Costakis and Peris [9].

The concepts of dense orbits is defined as follows:

Definition 1.1. [14] Let T be a continuos linear operator on a topological vectors space X. For a fixed element

x ∈ X, the orbit of x under T is given by a sequence Tnx : n = 0, 1, ....

The following result due to Boyd [8] will be useful in this paper:

Theorem 1.1. [8](Kronecker’s theorem) If x is a positive irrational number, then the sequence {kx−s : k, s ∈ N}

is dense in R.
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Remark 1.1. Note that if x is either positive or negative irrational number then {kx− s : k, s ∈ N} is dense inR.

Below is the theorem due to Feldman [11] that describes the conditions under which somewhere dense orbits

are not dense.

Theorem 1.2. ([11]) If a,b>1 and ln(a)
ln(b)

is irrational, then { an

bk
: n, k ∈ N} is dense in R+.

The following definitions of Hypercyclicity and multi-hypercyclicity are important as they are part of the dis-

cussion in the examples in this section.

Definition 1.2. [3] A continuous linear operator T on topological vector space X is said to be Hypercyclic if

there is a vector x ∈ X whose orbit under T, Orb(T, x) = {x, T1x, T2x, ...} is dense in X. In this case x ∈ X is

said to be Hypercyclic vector for T if Orb(T, x) is dense in X.

Definition 1.3. [13] An operator T : X → X is multi-hypercyclic (finitely hypercyclic) provided there is a finite

subset {xi , x2, ...xn} of X such that ∪n
k=1Orb(T, xk) is dense in X.

2 Main Results

The extension of Theorem 1.2 from real number to complex number is stated below. The proof of the extended

Theorem follows closely the ideas obtained from the real case.

Theorem 2.1. Let a, b, c, d ∈ R and z1 = a + ic, z2 = b + id ∈ C. If a, b > 1 and In(z1)
In(z2)

is irrational then

{ (z1)
n

(z2)k
: n, k ∈ N} is dense in R+.

Proof. Our proof relies on reducing a fraction ( In(z1)
In(z2)

) to a fraction ( In(a)
In(b)

), and then apply Theorem 1.2. We

consider several cases as follows:

Case 2.1. Suppose that a, b, c, d ∈ R\{0} such that a, b > 1, a = c and b = d, and In(a+ic)
In(b+id)

is irrational, then

{ (a+ic)n

(b+id)k
} is dense in R+ if n = k ∈ N.

Indeed the one dimensional version of Kronecker’s theorem (Theorem 1.1) can be rephrased as follows: If θ

is a positive irrational number, then {nθ − k : n, k ∈ N} is dense in R. Now, applying Kronecker’s theorem with

θ = ln(a+ic)
ln(b+id)

gives that

{

n ln(a+ic)
ln(b+id)

− k : n = k ∈ N

}

is dense in R.

Multiplying by ln(b + id) on both sides, we obtain,

{n ln(a + ic) − k ln(b + id) : n = k ∈ N}

is dense in R. By simplifying we get,
{

ln( (a+ic)
n

(b+id)k
) : n = k ∈ N

}

is dense in R.

Thus, by taking the exponential of the above set, we have that
{

(a+ic)n

(b+id)k
: n = k ∈ N

}

is dense in R+.

Case 2.2. If a, b = 0 and c, d ∈ {R+\0} such that c, d > 1, and ln(a+ic)
ln(b+id)

is irrational, then { (a+ic)n

(b+id)k
: n = k ∈ N}

is dense in R+.

Just as in the case (i) above we have that {nθ − k : n = k ∈ N} is dense in R. By applying Kronecker’s

theorem with θ = ln(a+ic)
ln(b+id)

one has
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{

n ln(a+ic)
ln(b+id)

− k : n = k ∈ N

}

is dense in R.

Since a, b = 0, then we have,
{

n ln(ic)
ln(id)

− k : n = k ∈ N

}

is dense in R.

Multiplying by ln(id) on both sides, results into,

{n ln(ic) − k ln(id) : n = k ∈ N}

is dense in R. By simplifying, one has,
{

ln( (ic)
n

(id)k
) : n = k ∈ N

}

is dense in R.

Thus, by taking the exponential of the above set, we see that
{

(ic)n

(id)k
: n = k ∈ N

}

is dense in R+.

Hence we have
{

cn

dk
: n = k ∈ N

}

is dense in R+.

Case 2.3. If a, b > 1, c, d = 0, and In(a+ic)
In(b+id)

is irrational or relatively prime integer, then { (a+ic)n

(b+id)k
: n, k ∈ N} is

dense in R+.

Applying Kronecker’s theorem with θ = ln(a+ic)
ln(b+id)

gives that,

{

n ln(a+ic)
ln(b+id)

− k : n, k ∈ N

}

is dense in R.

Multiplying by ln(b + id) on both sides, we have that,

{n ln(a + ic) − k ln(b + id) : n, k ∈ N}

is dense in R. By simplifying, one has,
{

ln( (a+ic)
n

(b+id)k
) : n, k ∈ N

}

is dense in R.

since c, d = 0, then
{

ln( (a)
n

(b)k
) : n, k ∈ N

}

is dense in R.

Thus, by taking the exponential of the above set, we see that
{

an

bk
: n, k ∈ N

}

is dense in R+.

Case 2.4. If a, b ∈ C\{0} and ( ln(a)
n

ln(b)k
) is irrational then

{

an

bk
: n, k ∈ N

}

is dense in R+.

Let a = eqπi and b = epπi where p, q ∈ R and p ≠ q.

Applying Kronecker’s theorem with θ = ln(a)
ln(b)

gives that,

{

n ln(a)
ln(b)

− k : n, k ∈ N

}

is dense in R.

that is
{

n ln(eqπi)
ln(epπi)

− k : n, k ∈ N

}

. By simplifying, one has,

{

n qπi
pπi − k : n, k ∈ N

}

is dense in R.

then
{

n q
p − k : n, k ∈ N

}

is dense in R.

Multiplying by ln(p) on both sides, we have that

{nq − pk : n, k ∈ N} is dense in R+ or R−.
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Note: Also if p or q is positive or negative the answer can either be dense in R
+ or dense in R

− but will still

be somewhere dense.

Remark 2.1. The above cases are not exhaustive in the sense that the two cases below remain open.

The first open case is due to the fact that our requirement to reduce ln(z1)
ln(z2)

to ln(a)
ln(b)

fails and hence Theorem

1.2 can not be used.

Case 2.5. Let a, b, c, d ∈ R such that a, b > 1, c, d ≠ 0, a ≠ c, b ≠ d then ln(a+ic)
ln(b+id)

is a complex number, Hence

we can’t apply Theorem 1.2.

The second open case obeys the reduction of ln(z1)
ln(z2)

to ln(a)
ln(b)

but (z1)
n

(z2)k
∈ C if n ≠ k ∈ N}.

Case 2.6. If a, b = 0 and c, d ∈ {R+\0} such that c, d > 1, and ln(a+ic)
ln(b+id)

is irrational, but if n ≠ k, (z1)
n

(z2)k
∈ C,

therefore it can’t be dense in R+.

The following result due to Feldman [11] is useful in constructing both examples:

Corollary 2.1. ([11]) If a,b>1 are relatively prime integers, then
{

an

bk
: n, k ∈ N

}

is dense in R+.

We state and give the proof of the following proposition below to show the existence of a somewhere dense

orbit in complex plane.

Proposition 2.1. Set Mn(λ) = I+λ+λ2+...+λn−1

n . If λ and z0 are complex numbers, then the set {Mn(λ)z0}n≥1 of is

not dense in C.

Proof. Given a complex number λ and let Mnλ denoted the arithemetic mean of the power of λ ∈ C and

observe that |λ| > 1, then Mn(λ) diverge to∞.

The uniform ergodic theory deals with the asymptotic behavior of the arithmetic means

Mn(λ) = I+λ+λ2+...+λn−1

n

in the operator norm (uniform) topology, as n −→ ∞.

We will show that {Mn(λ)z0 : z0, λ ∈ C} ≠ C

M1λ = 1,

M2λ =
1+λ
2 ,

M3λ =
1+λ+λ2

3 ,

M4λ =
1+λ+λ2+λ3

4 .... Mnλ = 1+λ+λ2+λ3+...+λn−1

n .

and

Mnλz0 =
1 + λ + λ2 + λ3 + ... + λn−1

n
z0.

We consider, when |λ| > 1 and |λ| ≤ 1,

and we know that |z1 + z2| ≤ |z1| + |z2| =⇒ |

n
∑

i=1

zi| ≤

n
∑

i=1

|zi|.

So, |Mnλz0| = | 1+λ+λ
2+λ3+...+λn−1

n z0|

= 1
n |1 + λ + λ

2 + λ3 + ... + λn−1| |z0| ≤
1
n |z0|[1 + |λ| + |λ2| + |λ3| + ... + |λn−1|]

= 1
n |z0|[1 + |λ| + |λ|2 + |λ|3 + ... + |λ|n−1]

As |λ| ≤ 1, we have
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|Mnλz0| ≤
1
n |z0|[1 + |λ| + |λ|2 + |λ|3 + ... + |λ|n−1]

|Mnλz0| ≤
1
n |z0|(1 + (1) + (1)

2 + (1)3 + ... + (1)n−1)

≤ 1
n |z0|(1 + (n − 1))

= 1
n |z0|(n) = |z0|.

Therefore, |Mnλz0| ≤ |z0| . This means that Mnλz0 is contained in disc of radius z0.

If |λ| > 1

as n −→ ∞, then

Mnλz0 −→ z0 for |λ| ≤ 1 and |z0| > 1 for λ > 1.

So, Mnλz0 −→ z0 ∈ C.

Hence, {Mnλz0} ≠ C and {Mnλz0} = ̸ ∅.

Therefore, {Mnλz0}n≥1 is contained in the closed unit disk for any positive integer n and {Mnλz0}n≥1 is

somewhere dense in complex space but not dense in C.

The following Corollary due to Ansari [3] can be usedful on our results.

Corollary 2.2. (Ansari’s Theorem)([3]) If T is hypercyclic, then for every positive integer n, the operator Tn is

also hypercyclic; moreover T and Tn share the same collection of hypercyclic vectors.

Wegive the different proof of Corollary 2.2 to checkwhether the set of complex numbers has somewhere dense

orbits.

Corollary 2.3. If T is hypercyclic, then for every positive integer n, the operator Tn is also hypercyclic; moreover

T and Tn share the same collection of hypercyclic vectors.

Proof. We shall prove the n = 3 on complex case. Suppose that if T : X −→ X is hypercyclic and n is positive

integer that means Ort(T, x) is dense.

Let x ∈ X.

Now, if n = 1

Ort(T, x) = {T3nx} ∪ {T3n(Tx)} = Orb(T3x) ∪ Orb(T3, Tx).

By taking closure, we have

X = Orb(T3x) ∪ Orb(T3, Tx).

Also by appling the intersection of interior of closure, we get

int(Orb(T3x)) ∩ int(Orb(T3, Tx)) = ̸ ∅.

If x is hypercyclic vector for T then either Orb(T3x) or Orb(T3, Tx) is somewhere dense that are not dense if

and only if Ort(T, x) is dense in X by above condition. Hence, we have

Orb(T3x) ∪ Orb(T3, Tx) is dense in R.

Thus T3 is hypercyclic, if x is hypercyclic vector for T3. But also a weaker property than hypercyclicity is the

property of admitting a somewhere dense orbit by using Theorem 3.6 (Feldman 2008) and it is obviously, if

x ∈ HC(T), then Orb(x, T) is somewhere dense.

We end this paper by giving two examples showing that somewhere dense orbits are not necessarity dense.

The first example was given by Feldman [11] in real Hilbert space, and the second examples is ours which is

an extension of the first example to the complex Hilbert space.
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Example 2.1.

(i) Let I be the identity operator on the complex Hilbert space C and let v1 = i and v2 = −i. If we let

T = (T1, T2) where T1 = 2I and T2 =
1
3 I, then by Corollary 2.1 due to Feldman [11], cl(Orb(T, i)) = [0,∞)i

and cl(Orb(T, −i)) = (−∞, 0]i. Hence T has somewhere dense orbits that are not dense. Furthermore,

Orb(T, i) ∪ Orb(T, −i) is dense in C, but T is not hypercyclic. Thus T is multi-hypercyclic, but not hyper-

cyclic.

(ii) Let

T1 =

[

2i

i

]

, T2 =

[

1
3 i

i

]

, T3 =

[

i

2i

]

, T4 =

[

i
1
3 i

]

T = (T1, T2, T3, T4), and vi ,j =

[

(−1)i

(−1)j

]

where i, j ∈ {0, 1}. Then the vectors v0,0, v1,0, v1,1, v0,1 lie in

the first, second, third, and fourth quadrants of R2 respectively. Furthermore, Orb(T, vi,j) is dense in the

quadrant that contains vi,j. Thus we see that T has somewhere dense orbits that are not dense in C
2 and

that T is multi-hypercyclic but not hypercyclic. In fact, T is 4-hypercyclic, but not 3-hypercyclic (since each

of the 4 quadrants are invariant sets for T with disjoint interiors).
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