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Abstract

Automatic target recognition (ATR) for unexploded ord-

nance (UXO) detection and classification using sonar data

of opportunity from open oceans survey sites is an open re-

search area. The goal here is to develop ATR spanning

real-aperture and synthetic aperture sonar imagery. The

classical paradigm of anomaly detection in images breaks

down in cluttered and noisy environments. In this work we

present an upgraded and ultimately more robust approach

to object detection and classification in image sensor data.

In this approach, object detection is performed using an in-

situ weighted highlight-shadow detector; features are gen-

erated on geometric moments in the imaging domain; and

finally, classification is performed using an Ada-boosted de-

cision tree classifier. These techniques are demonstrated on

simulated real aperture sonar data with varying noise lev-

els.

1. Introduction

The detection and classification of undersea objects is

considerably more cost and risk effective and efficient if

it can be performed by Autonomous Underwater Vehicles

(AUVs) [16]. Therefore, the ability of an AUV to detect,

classify, and identify the targets is of genuine interest to the

Navy. Targets of interest in sonar and optical imagery vary

in appearance, e.g., intensity and geometry. It is necessary

to formulate a general definition for these objects which can

be used to detect arbitrary target-like objects in imagery col-

lected by various sensors. We can define these objects as

man-made with some inorganic geometry, which has coher-

ent structure, and whose intensity may be very close to that

of the background given the potential time lag between de-

ployment and inspection.

1.1. Objectives

This work presents methods for the automated detection

and classification of targets in cluttered and noisy sensor

data. Prior work in related areas is known in the mine-

counter-measures imaging domain [3, 7, 13, 15] but not as

well in the non-imaging domain [12, 9]. Some of these tech-

niques which are used in the algorithm are well known in

the literature[1, 18]; however, some of the features used to

classify the most statistically significant targets for the UXO

ATR problem are introduced here.

1.2. Outline

First, we will describe sonar imagery in general and the

simulated sonar imagery used here. Then we will describe

the detection of targets, continue with methods used to an-

alyze objects, i.e. feature extraction, establish criteria for

classifying these objects, and discuss a way forward.

1.3. Sonar Imagery

Sound navigation and ranging (SONAR) was developed

in WWII to aid in the detection of submarines and sea-

mines, prior sound ranging technology was used to detect

icebergs in the early 1900s. Today sonar is still used for

those purposes but now includes environmental mapping

and fish-finding. Side-looking or side-scanning sonar is a

category of sonar system that is used to efficiently create an

image of large areas of the sea floor. It may be used to con-

duct surveys for environmental monitoring or underwater

archeology. Side-scan sonar has been used to detect objects

and map bottom characteristics for seabed segmentation [2]

and provides size, shape, and texture features [8]. This

information can allow for the determination of the length,

width, and height of objects. The intensity of the sonar re-

turn is influenced by the the objects characteristics and by

the slope and surface roughness of an object. Strong returns

are brighter and darkness in a sonar image can represent

either an area obscured by an object or the absorption of

the sound energy, e.g. a bio-fouled object will scatter less

sound. Sonar system performance can be measured in many

ways, e.g. geometrical resolution, contrast resolution, and

sensitivity, to name a few. An example of real aperture sonar

images is shown in Figure 1 for an 850 kHz Edgetech sonar

on the top and an 230 kHz simulated sonar image on the

bottom.

Synthetic aperture sonar [5] (SAS), is similar to synthetic

aperture radar in that the aperture is formed artificially from
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received signals to give the appearance of a real aperture

several times the size of the transmit/receive pair. SAS is

performed by collecting a set of time domain signals and

match filtering the signals to eliminate any coherence with

the transmitted pulse. SAS images are generated by beam-

forming the time domain signals using various techniques,

e.g. time-delay, chirp scaling, or ω-k beamforming [5].

Beamforming is the process of focusing the acoustic signal

in a specific direction by performing spatio-temporal filter-

ing. This allows us to take a received collection of sonar

pings and transform the time series into images. The goal of

 

(a) Edgetech 850 kHz Image

(b) Simulated 230 kHz Image

Figure 1. Example real aperture sonar images.

ATR, here, is to classify specific UXO from within groups

of objects that have been detected in sonar imagery, see Fig-

ure 2. As shown, one can see that the objects of interest ex-

hibit strong highlights with varying shadows depths. These

edges are not necessarily unique to objects of interest, how-

ever, a similar response is demonstrated by sea-floor ripples

and background clutter.

1.4. Object Detection

The purpose of the detection stage is to investigate the

entire image and identify candidate regions that will be

more thoroughly analyzed by the subsequent feature extrac-

tion and classification stages. This is a computationally in-

tensive stage because a target region surrounding each im-

Figure 2. Example simulated target snippets.

age pixel must be evaluated. Therefore, the goal is to keep

the computations involved with each region small. The goal

of detection is to screen out the background/clutter regions

in the image and therefore reduce the amount of data that

must be processed in the feature extraction and classifi-

cation stage. The detector used here is one that inspects

the image in two separate ways. First, the probability dis-

tribution function (pdf) of the normalized intensity image

I(x, y) is solved for in order to set the threshold levels for

the shadow and highlight regions, TS and TH respectively.

For more on the pdf (first-order histogram), see the next

section on feature extraction.

Once these levels are set then then two separate images

are thresholded at the two values. Anything that meets these

limits is then analyzed further for regional continuity. This

continuity is determined quickly by convolving the regions,

with in some neighborhood, with a Gaussian mask for com-

putational efficiency resulting in two separate matrices XS

and XH representing the shadow highlight regions of inter-

est respectively. The Gaussian mask size can be set based

on expected object size. The mask acts to weight areas more

highly that are similar, e.g. if two high intensity pixels are

near each other the more likely it is that they correspond to

the same object. After the masking operations a weighted

combination of the two locality matrices XS and XH is

evaluated for target criteria as follows

XI = (XS ∧XH) ∨ ωs(XS > TSL)

∨ ωh(XH > THL)), (1)

where ωs and ωh are configurable weights on the impor-

tance of the shadow and highlight information, derived from

a priori target information. The threshold values TSL and

THL are set dynamically based on a priori clutter and en-

vironmental information. Any location (x, y) that meets a

global threshold TI is then passed on to the feature extrac-

tion and classifier stages to be analyzed further. The detec-

tion algorithm is shown in Figure 3 and an example of the

detection steps is demonstrated in Figure 4. This analysis

involves extracting a ROI, Figure 4, about (x, y) that meets

predetermined size criteria, e.g a priori target knowledge

of 1.5m spheres would determine then a fixed ROI of 3m

square based on training for that target. However, if no prior

knowledge is provided then a general ROI is considered and
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fixed at 2m square.
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Figure 4. HLS detector process from a sonar image to a detection

ROI.

2. Feature Generation

There are many different features to choose from when

analysis or characterizing an image region of interest, see

[1, 18] . In this work we will focus on generating two sets

of features, one based on statistical models of pixel distribu-

tions and the other on the response of targets to spatial filter

configurations. The statistical models are descriptors that

attempt to represent the texture information utilizing the in-

tensity distribution of the area. The spatial filters measure

the response of an area of interest and how it is changed

changed by a function of the intensities of pixels in a small

neighborhoods within this area of interest.

2.1. Statistical Models of Pixel Distributions

Geometric distribution based moment and order statis-

tic features have been in use for image analysis since the

1960s [6] and has been prominent in digital image analy-

sis through the years [17]. There are many geometric mo-

ment generating methods [14], we will focus on the use of

two types of geometric moments: Zernike moments [10]

and Hu moments [6]. The order statistics [18] methods

will be derived from the probability distribution function

and co-occurrence matrix of the image. The moments are

well known as feature descriptors for optical image process-

ing. However, they have been employed in the sonar image

processing domain in recent years []. To better understand

these features we will begin with a description of the proba-

bility distribution of the intensities within a sonar region of

interest. Whereby the image intensity I is the magnitude of

the signal of a RAS sonar image. The distribution of pixels

is represented as P (I).

2.1.1 First-Order Statistics Features

Given a random variable I of pixel values in an image re-

gion, we define the first-order histogram P (I) as

P (I) =
number of pixels with gray level I

total number of pixels in the region
. (2)

That is, P (I) is the fraction of pixels with gray level I . Let

Ng be the number of possible gray levels. Based on 2 the

following moment generating functions are defined.

Moments:

mi = E[Ii] =

Ng−1
∑

I=0

IiP (I), i = 1, 2, . . . (3)

where m0 = 1 and m1 = E[I], the mean value of I .

Central moments:

µi = E[(I − E[I])i] =

Ng−1
∑

I=0

(I −m1)
iP (I). (4)

The most frequently used moments are variance, skewness,

and kurtosis, however higher order moments are also uti-

lized. In addition to the moment features the entropy of

the distribution can also provide some insight into I . En-

tropy, here, represents a measure of the uniformity of the

histogram. The entropy H is calculated as follows

H = −E[log2P (I)] = −

Ng−1
∑

I=0

P (I)log2P (I). (5)

The closer I is to the uniform distribution, the higher the

value of H .
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Given I(x, y) a continuous image function. Its geomet-

ric moment of order p+ q is defined as

mpq =

∞
∫

−∞

∞
∫

−∞

xpyqI(x, y)dxdy (6)

If we define the central moments as

µpq =

∫ ∫

I(x, y)(x− x̄)p(y − ȳ)qdxdy (7)

where x̄ = m10

m00

and ȳ = m01

m00

. We then define the normal-

ized central moments as

ηpq =
mupq

mu
γ
00

, γ =
p+ q + 2

2
(8)

2.1.2 Hu Moments

The seven Hu moments, developed in 1962 by Hu [6], are
rotational, translational, and scale invariant descriptors that
represent information about the distribution of pixels resid-
ing within the image area of interest. Using 8 we can con-
struct the Hu moments φi, i = 1, · · · , 7 as follows

For p+ q = 2

φ1 = η20 + η02, φ2 = (η20 − η02)
2 + 4η211.

For p+ q = 3

φ3 = (η30 − 3η12)
2 + (η03 − 3η21)

2,

φ4 = (η30 + η12)
2 + (η03 + η21)

2,

φ5 = (η30 − 3η12) + (η30 + η12)[(η30 + η12)
2
− 3(η21 + η03)

2]

+ (η03 − 3η21) + (η03 + η21)[(η03 + η21)
2
− 3(η12 + η30)

2],

φ6 = (η20 − η02)[(η30 + η12)
2
− (η21 + η03)

2]

+ 4η11(η30 − η12)(η03 + η21),

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2
− 3(η21 + η03)

2]

+ (η30 − 3η12) + (η21 + η03)[(η03 + η21)
2
− 3(η30 + η12)

2].

The first six moments are invariant under reflection while

φ7 changes sign. For feature calculations we will use the

log(|φi|). We must note that these moments are only ap-

proximately invariant and can vary with sampling rates and

dynamic range changes.

2.1.3 Zernike Moments

Zernike moments can represent the properties of an im-

age with no redundancy or overlap of information between

the moments [10]. Zernike moments are significantly de-

pendent on the scaling and translation of the object in an

ROI. Nevertheless, their magnitudes are independent of the

rotation angle of the object [18]. Hence, we can utilize

them to describe texture characteristics of the objects. The

Zernike moments are based on alternative complex polyno-

mial functions, known as Zernike polynomials [19]. These

form a complete orthogonal set over the interior of the unit

circle x2 + y2 ≤ 1 and are defined as

Vpq(x, y) = Vpq(ρ, θ) = Rpq(ρ)e
(jqθ) (9)

where p ∈ Z∗ and q ∈ Z such that p − |q| is even and

|q| ≤ p, ρ =
√

x2 + y2, θ = tan−1 x
y , and

Rpq(ρ) =

(p−|q|)/2
∑

s=0

(−1)s[(p− s)!]ρp−2s

s!(p+|q|
2 − s)!(p−|q|

2 − s)!
.

The Zernike moments of an image region I(x, y) are then

computed as

Apq =
p+ 1

π

∑

i

I(xi, yi)V
∗(ρi, θi), x2

i +y2i ≤ 1 (10)

where i runs over all image pixels. Each moment Apq is

used as a feature descriptor for the region of interest I(x, y).
In addition to the features above, the energy and entropy

are calculated from ROI images that have been spatially fil-

tered to reinforce the presence of some specific characteris-

tic, e.g. vertical or horizontal edges [11]. Examples of the

spatial filters that are used here are shown in Figure 5. These

are representations of oriented Gabor and scaled Gaussian

filters. Overall, this results in a feature vector of 384 fea-

tures per training sample.

Figure 5. Example spatial filters for image characteristic enhance-

ment.

(a) Muscle SAS back-

ground snippet.

(b) Filtering results using the filters shown

in Figure 5.

Figure 6. Example spatial filtering results for a background ROI.
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(a) Muscle SAS target ob-

ject snippet.

(b) Filtering results using the filters shown

in Figure 5.

Figure 7. Example spatial filtering results for a target ROI.

3. Feature Selection

Due to the large number of features X = (x1, . . . , xt)
generated versus the number of training samples N we

will down select the features that maximize the Kullback-

Liebler (K-L) divergence for mutual information. The K-L

divergence measures how much one probability distribution

is different from another and is defined as

KL(p, q) =
∑

x

p(x) log
p(x)

q(x)
.

The goal is to reduce the burden on the classifier by remov-

ing confusing features from the training set. This should

lead to more homogeneity amongst the classes. More pre-

cisely, we maximize the following

KLt(S) =
1

N

∑

di∈S

KL(p(xt|di), p(xt|c(di))),

where S = {d1, . . . , dN} is the set of training samples and

c(di) is the class of di. This results in a feature reduction

from 384 to 41 over the training data.

4. Classification

The next step in ATR after feature extraction and fea-

ture selection, which will not be discussed here, is clas-

sification. This work focuses primarily on binary target

recognition. Classification of the targets will be done us-

ing Ada-boosted decision trees. Ada-boost is a machine

learning algorithm, formulated by Yoav Freund and Robert

Schapire[4]. It is a meta-algorithm, and can be used in con-

junction with many other learning algorithms to improve

their performance. Ada-boost is adaptive in the sense that

subsequent classifiers built are tweaked in favor of those in-

stances misclassified by previous classifiers. Ada-boost is

somewhat sensitive to noisy data and outliers. Otherwise,

it is less susceptible to the over-fitting problem than most

learning algorithms. The classifier is trained as follows:

Given a training set (x1, y1), . . . , (xm, ym) where y ∈
{−1, 1} are the correct labels of instances xi ∈ X .

• For t = 1, ..., T :

• Construct a distribution Dt on {1, . . . ,m}.

• Find a weak classifier ht : X → {−1, 1} with small

error ǫt on Dt

For example, if T = 100 then we would have the following

classifier model

Hfinal(x) = sign

(

100
∑

t=1

αtht(x)

)

. (11)

Thus, Ada-boost calls a weak classifier repeatedly in a

series of rounds. For each call the distribution Dt is updated

to indicate the importance of examples in the dataset for

classification, i.e., the difficulty of each sample. For each

round, the probability of being chosen in the next round of

each incorrectly classified example are increased (or alter-

natively, the weights of each correctly classified example

are decreased), so that the next classifier focuses more on

those examples that prove more difficult to classify. The

weak classifier used here in this work is a simple decision

tree. A decision tree predicts the binary response to data

based on checking feature values, or predictors. For exam-

ple, the following tree, in Figure 8 predicts classifications

based on six features, x1, x2, · · · , x6. The tree determines

𝑥1 < 0.5 ≥ 𝑥1 

𝑥2 < 0.5 ≥ 𝑥2 −1 

1 −1 

𝑥3 < 0.5 ≥ 𝑥3 

𝑥4 < 0.5 ≥ 𝑥4 −1 

−1 1 𝑥5 < 0.5 ≥ 𝑥5 

𝑥6 < 0.5 ≥ 𝑥6 1 

1 −1 

Figure 8. Simple binary decision trees for six features.

the class by starting at the top node, or root, in the tree and

traversing down a branch until a leaf node is encountered.

The leaf node contains the response and thus and a decision

is made as to the class of the object. As shown above in

eq. 11, the boosted tree result would then be the sign of the

sum of traversing T binary trees. For this work we chose

T = 100 and D1 is 0.5 for all samples.

5. Experiments and Datasets

The experimental setup for verification of the ATR

methodology is to perform detection, feature extraction, and
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classification on six separate datasets containing differing

levels of both noise and clutter with the same base target

set. The goal then is to demonstrate reduced performance

as environmental conditions deteriorate. All six datasets

will contain 628 targets of varying scale (length, width and

height) and rotation, examples can be seen in Figures 1 and

2. In addition, the background will include small 600 pieces

of clutter, i.e. non-target-like objects with variable rotation

and reflectance levels. This data was created over a one

square nautical mile area, thus giving us a clutter density

of 0.0185 per 10m2. However, considering our survey lane

spacing is half of the sonar range we are guaranteed to see

almost everything twice and this artificially increases the

density to 0.037 per 10m2. Two types of temporal noise are

added to the data to mimic degrading environmental con-

ditions. The first type of noise is the sea-bottom tempo-

ral noise τ which can vary from 0 to 99.99% of the mean

bottom spatial reflectance. The second type of noise is an

ambient temporal noise γ that effects both the background

and the targets and can vary from 0.0 to 9.99% of the mean

background spatial reflectance. For this work, noise varia-

tion will range from 0 to 15.0 for τ and 0 to 2.0 for γ. The

training of the classifiers was done using dataset 1 from Ta-

ble 2 and testing was performed with the remaining sets.

Table 1. Fixed parameters for the dataset of Table 2 SLS simulation

data experiments.

Target HL Range (×µ(IBK) [8, 20]

Clutter HL Range [5, 10]

Target Size(m) [.4, 3]

Clutter Size(m) [.2, .6]

6. Results

The experiments were designed to test the robustness of

the ATR algorithm against degraded data. The goal was to

demonstrate gradual and predictable behavior from the ATR

algorithm given the known environmental conditions. Re-

sults are evaluated on the probability of detection and clas-

sification PDC and the area under the ROC curve (AUC).

The results shown in Table 2 above and Figure 9 below give

us a clear picture of the performance versus known tempo-

ral noise and clutter densities. The more noisy the data be-

comes the poorer the performance and thus the ability to

distinguish between targets of interest and clutter dimin-

ishes. It is also shown that the detector struggles to find

the targets and that even when they are found the tempo-

ral noise level is so high the classifier cannot determine the

class.

Table 2. Dataset descriptions for the SLS simulation data experi-

ments and the resultant PDC and AUC for each set.

Dataset τ γ PDC [0, 1] AUC[0, 1]
0 0.0 0.00 0.922 0.968

1 2.0 0.50 N/A N/A

2 5.0 0.75 0.879 0.919

3 8.0 1.00 0.798 0.798

4 10.0 1.50 0.774 0.697

5 10.0 2.0 0.775 0.697

6 15.0 2.0 0.775 0.569
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DATA-0, AUC: 0.968

DATA-2, AUC: 0.919

DATA-3, AUC: 0.798

DATA-4, AUC: 0.697

DATA-5, AUC: 0.697

DATA-6, AUC: 0.569

Figure 9. ROC performance curves for the data listed in Table 1.

7. Conclusions:

In this paper we have presented an approach for detecting

and classifying target objects in sonar imagery with variable

background noise levels and fixed clutter density. The ex-

periments demonstrated a gradual degradation of the ATR

with increasing sea-bed and ambient temporal noise levels.

This predictable behavior then allows us the ability to uti-

lize the noise information by designing a model for envi-

ronmental characterization. This environmental character-

ization could then trigger the ATR to respond by utilizing

different features, detector thresholds, or classifier param-

eters. We believe that this would allow for a more robust

algorithm that can be applied to most sonar imagery where

the objects exhibit some response above background levels.
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