-

Sonar based Outdoor Vehicle Navigation and Collision Avoidance

Dirk Langer and Charles Thorpe
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15232

Abstract - Detecting unexpected obstacles and avoiding
collisions is an important task for any autonomous mobile
system. This paper describes an approach using a sonar system
that we implemented for the autonomous land vehicle Naviab.
The general hardware configuration of the system is shown,
followed by a description of how the system builds a jocal grid
map of its environment. The information collected in the map
can then be used for a varlety of applications in vehicle
navigation like collislon avoidance, feature tracking and
parking. A simple algorithm was implemented that can track a
static feature such as a rail, wall or an array of parked cars and
use this information to drive the vehicle. Methods for filtering
the raw data and generating the steering commands are
discussed and the implementation for collision avoidance and
its integration with other vehicle systems is described.

I. INTRODUCTION

The autonomous land vehicle Navlab has already successfully
been driven on roads and cross country. Different sensors are used
to perceive the structure of the environment and navigate the
vehicle under a variety of conditions as described for example in
[8]. The sensors mainly employed so far were colour video
cameras and the ERIM 3-D laser range finder. Detecting obstacles
and taking an appropriate decision is an important task for any
mobile system in order to navigate safely through its environment.
Obstacle detection is possible using colour video images or ERIM
range images. However, owing to the data aquisition process and
the required intensive image processing, these types of perception
systems are generally not very well suited for a quick reaction to
unexpected obstacles. Especially in the case of collision avoidance,
a sensor is needed that can supply the relevant information fast
with little data processing overhead and interact with actuators at
the level of the vehicle controller (See also {1]). Sensors that satisfy
these requirements are for example sonars, infrared sensors, pulsed
1-D laser range finders or microwave radar.

Compared to light based sensors, sonars have the advantage
that they do not get confused by transparent or black surfaces. On
the other hand, the wavelength of ultrasound is much larger than
the wavelength of light, i.e. usually around 4 mm as compared to
550 nm for visible light. Therefore, unless the transducer faces the
reflector surface in a normal direction, only rough surfaces or edges
can reflect sound waves. However, most real world outdoor
surfaces almost always have a type of surface roughness that
enables a sonar to detect the object. It was therefore decided to use
sonar sensors for the collision avoidance system of the autonomous
land vehicle Navlab. The following sections describe the sonar
system and its performance in an outdoor environment. Some
novel results were obtained in using the system for vehicle
navigation by itself and by integrating it into other vehicle
navigation systems. The system is configured in such a way that
more sensors can be added easily in the future. These sensors do

not necessarily have to be sonars but can be any other type of point
range sensor. In the future it is intended to integrate at least one
other type of range sensor into the system, most probably laser or
radar based.

II. HARDWARE CONFIGURATION

Sonar sensors have already been used successfully for indoor
mobile robots as described in [2] and [4]. An outdoor environment,
however, adds some additional constraints on the type of sensor
that can be used. Specifically the sensor should be robust against
moisture, dust particles and noise from the vehicle engine and other
sound sources.

Therefore an open type electrostatic transducer such as the
Polaroid cannot be used. Instead a closed type piezoceramic
transducer operating at a frequency of 80 kHz was selected. A
detailed description of this sensor is given in [5]. The high
operating frequency makes this sensor fairly robust against
acoustic noise, while still providing an operating range up to 6 m.
The beam angle of the sensor is approximately 5°, i.e. at the 3 dB
intensity fall off from the major axis. Based on these
characteristics, a total of five sensors was chosen in order to
provide a good area coverage in front of the vehicle with a
reasonable spatial resolution. The sensors are mounted on a guide
rail such that their position and orientation can be freely adjusted.
A typical sensor arrangement is shown in Fig. 1. Certain sensor
configurations or environments can lead to acoustic interference
between individual sensors. Therefore the hardware provides the
ability to choose the exact trigger time of each sensor. In most
circumstances the sensors are mounted such that they point away
from each other. In this case all sensors are triggered at the same
point in time. At present a measurement rate of 9 Hz is used, which
is based on the following calculations: For very good reflectors we
can assume a maximum operating range of 8 m, which corresponds
to a time of flight of sound in air of approximately 50 ms. Thus
echoes are considered during a receiving period of T,,, = 50 ms
after triggering the sensor. In order to avoid measurement errors
due to multiple echoes, only the range of the first echo is measured.
The sensors are retriggered after an additional wait period of
T, qic = 60 ms, which ensures that all detectable echoes from
previous pulses are attenuated below the detection threshold. Thus
the total cycle time T =T,,.+T,_,;, = 110 ms. Each sensor
measurement is tagged with the position of the vehicle. At present
the Navlab uses dead reckoning to estimate its position relative to
some initial point. The distance travelled is provided by an optical
encoder on the drive shaft and vehicle orientation in 3-D space is
provided by the gyroscope of an inertial navigation system. The
measurements are combined to give the x-y position and
orientation of the vehicle with respect to world coordinates. For the
position tag of a sonar measurement only the following three

IROS ‘92

parameters are used: x, y and @, where ¢ = yaw (Refer to Fig. 1).

Direction

of motion
Yworld

\/xWorld Van

Fig. 1

Sensor Configuration

The hardware of the sonar system consists of an interface
module which triggers the sensors and measures the time of flight
to the first echo returned. The interface module is accessed via
VME bus from a 68020 based CPU. This processor runs as a slave
of the vehicle controller processor in a real time environment and
takes care of data aquisition, conversion to range, position tagging
and proper timings. The map building and tracking algorithms are
presently implemented on a Sun SPARC station which
communicates with the vehicle controller via ethernet. Ethernet
communication time uncertainties can be neglected because of the
comparatively long cycle time of the sonar system.

ITI. SONAR MAP

The previously described sensor system can now be used to
build a local grid map. The grid map is called local because it
contains only information about the immediate surrounding of the
vehicle. The vehicle position is kept at a fixed point in the map. As
the vehicle moves, objects in the map are moved from cell to cell
relative to vehicle position. Once an object falls outside the map
boundary it is discarded and the information is lost. Using just a
local map has the advantage that error accumulation owing to dead
reckoning is kept small, since only relative movements are
considered. On the other hand the disadvantage is that information
is lost and thus no global information is available. However, if
desired, sequences of the output from the local map could be
combined and included in a larger global map. At present the area
covered by the local map is 16.4 m x 16.4 m. Each grid cell is taken
to cover an area of 0.4 x 0.4 m?2. Hence the map consists of 41 x 41
cells (See Fig. 2). .

T golh on
L vo‘}e mee
ar &i‘ﬂ region
\
042m
per cell
Regi
ym ~ momgmm
for obstacle
Map Origin avoidance
x

Fig.2 Sonar Map

The reason for taking such a coarse resolution for each cell was
that most applications of the system do not require a high accuracy.

Also, the sensor itself does not always provide a highly accurate
measurement. For the particular sensor chosen, the measurement
accuracy is about 1 cm. However, depending on the environment,
the sensor may also deliver noisy results. The reason lies in the
poor angular resolution of the sensor. Echoes may be detected from
an object at far range in the main lobe or from a good reflector at
closer range in a side lobe. Depending on the relative signal
strenghts and movement of the sensor, the range reading may
oscillate. A similar effect can also happen when an echo reflected
multiple times is received.

Each cell has a set of parameters or annotations associated with
it, which are described below:

1. Object Type
This parameter is used to indicate if the object in that
cell was seen at the current sensor reading, or if it was
seen at a previous reading. If it was seen only at a pre-
vious reading, then the object type indicates that it
must have moved to that particular cell due to vehicle

motion only.

2. Position
Indicates the x-y position of the object with respect to
vehicle position.

3. Count

This parameter counts the number of times an object
was detected in a particular cell.

The resolution of the grid is fairly coarse and hence a position
parameter (X, bj* Yobj) is kept to avoid gross error accumulation
when objects are transformed in the map. Only one object is kept
per grid cell. Thus measurement uncertainty is part of the grid cell
representation and any object detected within an area covered by a
particular cell is taken to belong to the same object.

Following, a short description of object transformation within
the map is given: Vehicle position and orientation are kept constant
within the map. Therefore objects in the map move with respect to
the vehicle. The vehicle’s positioning system returns vehicle
position and orientation with respect to a global frame of reference

(x, y) that is determined at the time of initialization of the system.
Since we are interested only in the movement of objects with
respect to the vehicle’s coordinate system (x,,y,), the
appropriate transformation is obtained by using the increment in
travelled distance 8s and orientation 8¢ . Depending on the type of
positioning system of the vehicle, errors due to dead reckoning are
reduced and the positioning system can be initialized
independently by using this method. Hence if the vehicle moves
from a position in a plane (x5 ¥ q&l) 10 a new position

(x5 22 @,) , then an object in the map at position (x,,,, Y1) 1S
transformed to position (x,,,, ¥,.,) as follows (Refer to Fig. 3):

2 obiea

R 2
/f{g’ - i o
£ - 2

V. Pos. 4R

Fig. 3 Object Transformation in Sonar Map

IROS *92

Position and orientation increment:

8 = J(x—x)2+ (5-y)2 . 80 = 9,-

Transformation parameters:

R=./xil+yil,a=m(1yr—"—l).a.7.=a—8<p [6))

ml

New object position (vehicle moving forward):

X = R- cos O

Ym2 = R- sinaT—Ss)

After the position of objects in the map is updated, new objects
detected by the sensors are added. A sensor measures the range R
to an object. Position and orientation of each sensor on the vehicle
are known. Hence, using the wansformation ‘vehicle
position — sensor position — map’, a new object is placed in
a cell in the map (Refer to Fig. 4). If that particular cell is already
occupied, then only the cell parameter ‘Count’ is updated,
otherwise all cell parameters are updated.

The map parameter Count is used for differentiating between
moving and stationary objects and for filtering the data. Count can
also be used to evaluate the confidence that a particular cell is
occupied by an object. A higher value of Count indicates a higher
confidence. In the case of collision avoidance for example it is
desirable to slow down the vehicle if there is an obstacle in front
and to resume driving if the obstacle moves away, like a car or
person could. Hence objects in the map in a sensor’s field of view
are deleted if a sensor does not detect them anymore. However an
object will not be deleted instantly, but only after it was not seen by
the sensor for a certain time period. This time period is defined by a
parameter called Life Time, which is given as the number of cycles
of the update sequence (Refer to Fig. 6). We can assume that the
cycle period is approximately constant. The parameter Count is
therefore updated as follows:

If an object is detected, then

1. Initially, Count, = Life Time
2. Otherwise, Count, = Count, _, +1
3. Also, Decay Amplitude = 0

If no object is detected by the sensor and Count is not equal to
zero, then

1. Calculate Decay Amplitude initially, i.e. if it is zero:
Decay Amplitude = Count, / Life Time

Decay Amplitude is calculated only once at the begin-
ning of a decay sequence. It ensures that each object
disappears after the same amount of time, i.e. Life
Time, has passed.

2. Count, = Count,_, — Decay Amplitude

y

—0
?°

Sensor at (xo, yo) p

Object

Rcos6

Fig. 4 Sensor to Object Transformation

At present, the decay algorithm is applied only to objects

appearing in the area directly in front of the vehicle. Moving
objects appearing in this area are of most concemn for safe vehicle
navigation. Therefore the velocity of the vehicle is reduced as a
function of range to the closest object detected in this area. The
velocity is set to zero if the closest range is less than a certain
minimum distance. The decay algorithm ensures that the vehicle
resumes driving when the obstacle moves away. Fig. 5 shows a plot
of the percentage of vehicle velocity set versus closest range. D,
corresponds to the maximum sensor operating range.
The parameter Count can also be used to eliminate spurious
echoes such as the ones retumned by rain droplets. In this case an
object is supposed to be actually present only, if it has been seen
consecutively for a certain number of cycle times. Since rain
droplets return echoes at random ranges as time progresses, these
returns can be filtered out and will not appear as ghost objects in
the map.

RelVelocity V

1.0 8.0 [m)

ist. D
safety Dist s D_.x

Fig. 5 Velocity control

Of course this procedure does not work in a heavy downpour
since the number of rain drops in the environment just becomes too
large.

The following figure shows the cycle for map operations:

Velocity
—*control,
Tracking, etc)

The parameter Object Type is used to indicate the type of
operation that was performed on an object in a particular grid cell.
These operations can be transformations as mentioned before, or
filtering operations like the ones decribed in the next section.

map map

C},’&‘}a‘&.‘:‘i’n”—» et — S —

Fig. 6 Updating sequence for sonar map

IROS ‘92

At present, each grid cell is associated with only three
parameters. The map structure allows an extention to other
anmotations (pointers to data structures) in the future, such as object
characteristics or triggers. In this way the sonar map could easily
be integrated into an Annotated Map such as the one described in
7.

IV. FEATURE SELECTION AND TRACKING

The data collected by the sonar map can now be used for
autonomous vehicle navigation functions. A basic navigation
function is the tracking of features in the environment and using
this information to determine a path that the vehicle can drive. The
following paragraphs describe a method by which the vehicle uses
its sonar sensors to drive on a path parallel to a feature such as a
wall, railroad track or parked cars.

Fig. 9 shows data collected in the sonar map when tracking cars
parked on the right hand side of the road. As can be seen in the
figure, the side of the cars facing the road is fairly well detected.
Usually sonar does not detect smooth surfaces very well because of
specular reflections. However, in most real world environments
such as this one, there are no perfectly smooth surfaces. In this case
the sonar receives echo returns from comers and projections like
door handles, mirrors, wheels, etc..

The vehicle is to be driven on a path parallel to the curve formed
by the parked cars, keeping a constant distance from the cars
(usually around 3 m). Therefore the parameters of that curve have
to be calculated first, using the data from the sonar map. For
reasons of computational simplicity and decreased noise sensitivity
a least square fit of a straight line was chosen. All computations are
performed with respect to the vehicle origin which is at a fixed
position in the sonar map. Data points for the line fit are selected by
choosing only data points that appear in a specific area in the sonar
map. Thus for the environment represented in Fig. 9, only the right
half of the map is searched for data points. The Position parameter
gives a data point in the map in terms of vehicle coordinates. Since
the direction of vehicle motion is along the y-axis, a line parallel to
the vehicle would have a slope of m = oo (Refer to Fig. 2; Note
that this coordinate system is defined by the vehicle’s position
system). To avoid this inconvenience, the vehicle coordinate
system is rotated anticlockwise by 90°. All following
computations are now performed with the transformed coordinates
y = —x,,, and x = y, ;. Therefore the selected data points can
now be represented as a discrete function y, = f(x;) . The sonar
sensors sometimes return a spurious echo. These outliers generally
degrade the performance of a least square fit. Hence a median filter
is applied first on the data points given by y; = f(x,) . The filter is
applied twice, using window sizes three and five cells. The two
parameters of the straight line y = mx+ ¢ can now be found by
using standard formulae for a least square fit for n data points

(x5 3;):
nYyxy;— (Xx) (XTy)
m =
nlez - (E"i)z
pB7 Xx
= — —-—m—

n n (&)

Also, the standard error of estimate is given by:

)

} J): [y;= (mx;+¢))?

S, =
Y n-2

The data trajectory parameters m and c are stored and updated
during each system cycle (Refer to Fig. 6). The line can now be
used by a path tracker to steer the vehicle (Refer to [1]). To ensure
a consistent steering response, the line fit also has to be checked for
validity. It may happen that the sensors do not detect any features
for some driving distance. One reason in the case of parked cars for
example may be a gap between cars and no reflectors on the road
edge. Here the line fit will produce no valid output. The standard
error s, is used to provide a measure of how well the data points
could be fitted. If s is too high then again the output of the line fit
is not taken to be valid. In these cases the old path parameters are
used and the vehicle will continue driving in the previously
calculated direction until it encounters features again. Since the old
path parameters are referenced to the vehicle position they still
have to be updated to compensate for vehicle movement during
one system cycle. The position and orientation increment during
one system cycle is known from . Hence m is transformed as
follows:

My, = tan(0—389) , @ = atan (m) &)

new

In order to obtain c,,,, . point P (x,,y,) is selected on the path
where it intersects the y-axis (for convenience) as shown in Fig. 7.
Using , (1) and (2) the coordinates of P in the new coordinate
system (x; ... ¥ .. Can be calculated. Hence c,,, can be
calculated by

c

m

new = Yinew ™ Mnew X 1new (6)

Fig.7 Path parameter transformation

The method described above worked well in an environment
that provided good reflectors and continous smooth features.
However, especially in the case of parked cars, problems arise
when gaps are encountered or reflectors that do not belong to the
feature being tracked are near by. A typical situation is shown in
Fig. 8. In the least square fit sequence 1 - 4, only line fits 1 and 4
track the feature. Type A data does not belong to the feature being
tracked, type B data is due to corner effects at a gap and type C data
is a noisy range measurement. Type B data can lead to an undesired
least square fit as shown by line fits 2 and 3. In order to reduce
these errors, obtain a smoother steering response and make the
system more robust against outliers, the values obtained from the
least square fit are filtered and path parameters are updated by

IROS ‘92

merging new information with past values. The method is
described in the following paragraphs:

An initial noise reduction is achieved by selecting data points
only from a small window in the sonar map: As we have some
knowledge about the environment the vehicle is driving in, we can
predict up to a certain degree where we should look for valid data
in the map. This means in practice that only data points within a
certain distance from the data trajectory are taken. This procedure
removes outliers of type A as shown in Fig. 8. Furthermore a point
is selected only if it is within a certain distance and direction from
previously selected adjacent points. This method removes outliers
of type C and ensures that most points are already grouped close to
a line segment.

Again a straight line is fitted using (3). For each distance 8s;
travelled, we obtain a new value of gradient m;. The change in
gradient is then given by

m,=m—-m,_, ™

and 3¢, is the corresponding change in vehicle orientation
during that interval. Since not all type B data is removed, there still
may remain a problem with sudden large changes in orientation as
shown by the least square fit sequence 1 - 4 in Fig. 8.

Fig. 8 Removing outliers from least square fits:
(a) Map display, (b) Typical corresponding scene

These sudden changes in orientation basically appear as median
noise. They can be filtered out by putting current and past readings
of 8m into a buffer of N values, passing a median filter across and
then averaging over N values. The buffer is implemented as an
ordered set,

Mg trer = {8m;, 8m;_,, &m;_,, ..., dmy} (8)

During each update sequence, all elements are shifted right by
one, the last element being discarded and the current result
replacing the first element. Median filtering is achieved by
replacing element m; _, with a median value, where 2k + 1 is the
maximum possible window size of the filter. Since values towards
the right in the buffer represent increasingly earlier points in time/
distance, successive applications of a median filter can be achieved
by replacing elements 8m;_, _, with the filtered value, where ¢ is
the discrete shift in time/distance. The new value m,f:"h"} of the
path parameter is then computed, compensating also for change in
vehicle orientation during the averaging interval,

N k
mirewt - %, by tan(atan(&mk) -3 w,.) ®
k=1 i=1

mp ,, is then updated by merging the current and the new value
for mp,,, using a weighted average,

{new} {1}
{t+1} _ Mpaen ’

Mpgen (10)

,where w20

In a similar fashion as described above, the path parameter
Cpaup is updated. The weight w and the number of values N control
how close the path parameters mp,,, and cp,,, should follow the
actual data points. If a lot of noise is present in the data, the path
parameters should be influenced only slightly, whereas if little
noise is present, the data should be followed closely. An estimate
of the noise present is given by the standard error s, from (4) and
w and N are adjusted accordingly. As a result the steering of the
vehicle is now much smoother.

A drawback of the method is its slow reaction to a relatively
sudden change in road direction. This effect is also due to the short
range of the ultrasonic sensors and the fact that almost no echoes
are received at large angles of incidence. In the case of featres
being tracked on the right side, the system is able to handle curves
to the right since data points slowly move away from the vehicle
and the vehicle can follow with a slight delay. On the other hand a
curve to the left poses a problem because by the time the vehicle
recognizes that it should change direction, it has usually come
already too close to the feature and has no space left to make a
sharp left turn anymore. For this reason a monitor is added which
monitors a particular area for objects towards the right hand side of
the vehicle as indicated in Fig. 2. If objects are detected in this area,
a steering radius R, necessary to avoid the closest object is
calculated. The value of R, is given by a relation between R, and
the closest distance D, similar to the one for velocity control as
shown in Fig. 5. Velocity is here replaced by steering radius and for
example for D_ between 0 and 2 m, R, varies between ~20 and
-100 m. D is defined as the closest distance between the objects
and a point at the front right edge of the vehicle. If R is now the
steering radius calculated by a path tracker as described in [1] and
the following condition is true:

R>0 oOrR<R,

then R, overrides R and the vehicle follows steering commands
issued by the monitor. Otherwise the path tracker takes over again.
Similarly a monitor can be used when tracking features on the left
side. Note that steering radii are negative when turning left and
positive when turning right.

In general the system performs well when tracking a wall or a
feature that changes curvature smoothly. When tracking parked
cars it does not perform as well in curves and fails when the road
curvature becomes sharp. The reason here is that often parked cars
are not very well aligned and even on straight road stretches parked
at different angles to each other. The maximum range of the
sensors is simply too short to detect these configurations well
enough. Fig. 9 shows a preliminary result of the vehicle tracking
parked cars, detecting a gap and preparing for reverse parking.

IROS ‘92

FEE_E N‘E—I [& WS
- - H % S 1
Sisl RN
g H 8 H <
:] e® 2] E
o : :, 8 ;. ;
E u 3
L ¢ 3 :
° ;3 g R g 2
8 E B] [[
a: B nnu E s,, 58
o < n, o]
P CRE [S
: E & % E e !
g, ; E:
e P E .
(®) ®) ©)

@

Fig.9 Tracking parked cars on the right hand side and searching for
parking space: (a) Approaching gap, (b) Detecting gap, (c) Preparing
vehicle for parking mancuvre, (d) Typical street scene.

V. RESULTS AND CONCLUSIONS

The sonar system successfully drove the Navlab on a dirt road
next to a railroad track, using the railroad to guide the vehicle.
Parking or docking maneuvres are also important autonomous
vehicle tasks. At present the sonar system is used to drive the
vehicle parallel to parked cars in a city street. Eventually the
system should be able to detect a parking space and autonomously
park the vehicle. The sonar is also successfully integrated into two
other systems that drive the Navlab. The first one is YARF ((31]),
which drives the robot on city streets. YARF uses colour vision for
road following but cannot detect if obstacles obstruct the vehicle’s
path and thus cannot adjust the velocity accordingly. The sonar
system takes over that task and sends velocity commands to YARF
via the EDDIE toolkit ([9]). The sonar is also integrated into the
new architecture DARN (Distributed Architecture for Robot
Navigation) of the Navlab. The outputs of several modules that can
drive the vehicle are used here to decide on an optimum path for

the vehicle ([6)). The sonar module sends all object positions with
respect to vehicle position from the sonar map and the system
selects an obstacle free path. Communication is again facilitated
via the EDDIE toolkit.

The sonar system proved to work reliably in a variety of
different sitations. There were no major problems with false
returns or sensor noise that could not be dealt with. One reason is
most probably that an outdoor environment like a road is generally
less cluttered than most indoor environments where autonomous
vehicles are used. OQutdoor objects tend to be large, having usually
enough comers and projections that refiect ultrasound well. Care
has to be taken in avoiding reflections from the ground. This
problem can be solved in most cases by mounting the sensor high
enough above the ground and pointing it slightly upward. The
system can also be easily integrated with other vehicle navigation
systems or adapted to other vehicles.

A drawback of using ultrasound in air is the limitation of range
and data update due to high attenuation and low speed of sound. At
present this fact does not matter that much since the system is used
only at low vehicle speeds. However, the current system design is
not limited to using only ultrasonic sensors. A microwave radar,
laser scanner or stereo camera can be used as well. In the future
therefore we intend to integrate some of these sensors.

AKNOWLEDGEMENTS

This research is partly supported by contracts from DARPA,
tided “Robot System Development and Testing” (monitored by
TACOM) and *Perception for Outdoor Navigation™ (monitored by
ETL), and partly supported by a grant from NSF titled “Annotated
Maps for Autonomous Underwater Vehicles”. The authors would
also like to thank Siemens AG for providing some of the sensors
and helpful information.

REFERENCES

[1} Omead Amidi. Integrated Mobile Robot Control. Technical Report,
Roboatics Institute, Camegie Mellon University, 1990.

[2] A.Elfes. A Sonar-Based Mapping and Navigation System. In Proc.
IEEE Conference on Robotics and Automation, 1986.

{31 Kard Kluge and Charles Thorpe. Explicit Models for Robot Road
Following. Vision and Navigation: The Carnegie Mellon Naviab.
Kluwer Academic Publishers, 1990, Chapter 3.

[4] J. Leonard and H. Durrant-Whyte. Application of Multi-Target
Tracking to Sonar-based Mobile Robot Navigation. In Proc. JEEE
Conference on Decision and Conirol, 1990.

[S} V.Magori, H. Walker. Ultrasonic Presence Sensors with Wide Range
and High Local Resolution. In JEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, Vol. C-34, No. 2, 1987

[6] David W. Payton, Kenneth Rosenblatt and David M. Keirsey. Plan
Guided Reaction. /EEE Journal on Systems, Man and Cybernetics.
December 1990

(7] C. Thorpe and J. Gowdy. Annotated Maps for Autonomous Land
Vehicles. In Proceedings of DARPA Image Understanding
Workshop, Pittsburgh PA, September 1990,

[8] Charles Thorpe, Martial Hebert, Takeo Kanade and Steven Shafer.
Toward Autonomous Driving: The CMU Navlab. Part I - Perception.
In JEEE Expert, August 1991.

{91 Charles Thorpe, Martial Hebert, Takeo Kanade and Steven Shafer.
Toward Autonomous Driving: The CMU Navlab. Part II -
Architecture and Systems. In JEEE Expert, August 1991.

