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Abstract. In most applications, a mobile robot must be able to determine its position and orientation 
in the environment using only own sensors. Orientation estimation accuracy greatly influences the 
position estimation accuracy and is therefore crucial for a reliable mobile robot pose tracking. Our 
approach to orientation estimation is based on angle histograms matching. Angle histograms are 
obtained indirectly via Hough transformation combined with a non-iterative algorithm for 
determination of the end points and length of straight-line parts contained in obtained histograms. 
Sensors used for local occupancy grid generation are sonars. Test results with mobile robot Pioneer 
2DX simulator show the capacity of this method.  
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1. INTRODUCTION 
 
Ability of a mobile robot to find or track its pose (position 
and orientation) in an unknown environment is a crucial 
feature needed for performing complex tasks over a long 
period of time [1]. The robot has to cope with two types of 
sensor uncertainties in order to map an environment:  
perception uncertainty and odometry uncertainty. The most 
common solution for this problem is to rely on dead 
reckoning methods (odometry) for a short period of time 
and then to apply additional sensors to update/correct the 
mobile robot pose [2, 3]. Dead reckoning approaches 
provide good results only for a short period of time due to 
significant error influence from wheel slippage, floor 
roughness, etc. Especially the orientation estimation is 
prone to significant error influence.  
 
A lot of research has been done to improve the orientation 
estimation. For example, better odometry models have been 
developed in [4], and additional sensors have been used in 
[3, 5]. Additional sensors can be used to compute a 
correction to the actual mobile robot pose or as additional 
measurement information in an extended odometry model. 
 
Mostly used sensors for additional measurement 
information in an extended odometry model are compass 
and gyro. Electronic compass is sensitive to magnetic 
interference that comes from ferromagnetic objects in the 
robot environment. Such objects are often present in man 
made environments including the mobile robot body and the 
noise produced by its drive system. Compass was used in 
[5] with the purpose to ensure that the robot environment is 
scanned with the same robot orientation angle at each place. 
In this way the complexity of the mobile robot pose 
tracking problem was greatly reduced because collected 
environment scans differ only in the x and y position. The 
problem is that this approach can’t be used in environments 

with significant magnetic interference and with mobile 
robots that can’t turn in spot. 
 
To overcome the above-mentioned problem another 
characteristic of man-made environments can be used. 
Many objects in such environments lie in straight lines. 
Good examples are walls and doorways. In such 
environments it is possible to use line segments for the 
correction of the estimated mobile robot pose [6]. The 
Hough transform is widely used in computer vision for edge 
detection. An efficient algorithm [7] is used to determine 
the coordinate of the extracted line end points, line length 
and the normal parameters of a straight line using the 
Hough transform. Angles between the line segments and 
positive x-axis, weighted with line segment length, form an 
angle histogram. Comparison of angle histograms and their 
use for mobile robot orientation correction is the topic of 
our research. The angle histogram of current mobile robot 
pose is convolved with the angle histogram from the 
previous mobile robot pose. But all hypothetic robot 
orientations with equal minimal matching score obtained by 
angle histograms convolution (orientation hypothesis) are 
used to determine the best orientation with minimal distance 
in comparison to predicted orientation.  
 
 

2. HOUGH TRANSFORM 
 
The Hough transform is a robust method for detecting 
discontinuous patterns in noisy images. The basic idea of 
this technique is to find curves that can be parameterized 
like straight lines, circles, ellipses, etc., in a suitable 
parameter space. Our application considers the detection of 
straight-line segments in sonar data. Several variants of 
standard Hough Transform have been proposed in the 
literature to reduce the time and space complexity. When it 
is applied to detection of a straight line, represented by 



normal parameters, the transform provides only the length 
of the normal and the angle it makes with the x-axis. The 
transform gives no information about the length or the end 
points of the line. Because of that an efficient non-iterative 
algorithm is used to determine the coordinate of the end 
points and the length and the normal parameters of a 
straight line. These line segments form an angle histogram 
[7]. 
 
A straight line, represented by the normal parameterization, 
is expressed as (Fig. 1): 
 

cos sinx yρ θ θ= + ,   (1) 
 
where ρ is the length of the normal to the line from the 
origin and θ is the angle of normal with the positive x-
direction. We assume that the origin of the x-y coordinate 
system is in the center of the input space. In the θ-ρ 
parameter plane (HT space), the line is mapped to a single 
point. Collinear points (xi, yi) in the input space, with i = 1, 
…N, constitute a sinusoidal curve in the (θ, ρ) space, which 
intersect in the point (θ, ρ) (Fig. 2), given by: 
 

 cos sini ix yρ θ θ= + .   (2) 
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Fig. 1. (x,y) points in Cartesian space before applying the 

Hough transformation. 
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Fig. 2. (x,y) points in Cartesian space become sinusoidal 

curves in Hough space. 

A sharp and distinct peak in the accumulator array is 
necessary for accurate parameterization of the line to be 
detected. The quantization resolutions ∆θ and ∆ρ determine 
the mapping of input points to accumulator cells. In this way, 
the accuracy of detected features depends very much on the 
quantization parameters ∆θ and ∆ρ. Smaller values of ∆ρ and 
∆θ result in higher accuracy with which the line parameters 
can be detected. However, if the ∆ρ and ∆θ are made too 
small, the detection of the peak becomes difficult due to the 
spread of the votes in the peak. The size of the cells in Hough 
domain in our approach is chosen to be ∆ρ= 5 [cm], ∆θ= 10 
[°]. 
 
Input space is formed by the two-dimensional distance 
readings stored in the sonar buffers. The distribution of the 
input points depends not only on the position of the sensors 
but also on the movements of the robots [8]. Fig. 3 shows an 
example of the current position of mobile robot in Hough 
domain. Points belonging to the same line reproduce 
intercepting unitary curves, which accumulate their values in 
the accumulator interception points.  
 

 
 

Fig. 3. Example of Hough transformation of current mobile 
robot scans, where the peaks (θp) are used to determine two 

columns Cq and Cr (end points of line segments). 
 
Line segment description 
The parameters of a line along with its length and 
coordinates of the end points are sometimes referred to as a 
complete line segment description [9]. Used algorithm for 
detection of those characteristics [7] is independent on the 
accuracy with which the peak in accumulator arrays for co- 
linearity detection is determined. This is a good 
characteristic because an accurate detection of the peak in 
the accumulator array is a non-trivial task. This is also the 
reason that θ value of the peak (θp) is only used to 
determine two columns Cq and Cr. 
 
Two columns Cq and Cr whose cells correspond to the two 
sets of parallel bars have their normals inclined at angles θq 
and θr respectively with the positive x-axis (Fig. 4). The 
lengths of the normals ρq

1, ρq
2, ρr

1, ρr
2 to the bars can be 

determined from an accumulator array. The lengths of the 
normals to the bars correspond to the first and last non-zero 
elements in columns Cq and Cr. These normals can be 
expressed as: 



  1 1 1cos sinq
q qx yρ θ θ= + ,     (3) 

 

1 1 1cos sinr
r rx yρ θ θ= + ,   (4) 

 

2 2 2cos sinq
q qx yρ θ θ= + ,   (5) 

 

2 2 2cos sinr
r rx yρ θ θ= + ,   (6) 

 
where Cq, Cr are q-th, r-th column in the accumulator array, 
respectively. ρ1

q and ρ1
r are the lengths of the normal to the 

bar (in the image plane) corresponding to the first non-zero 
cell in Cq and Cr respectively (which corresponds to the bar 
bi,k in the image plane containing the end point (x1, y1). ρ2

q 
and ρ2

r are the lengths of the normals to the bar (in the 
image plane) corresponding to the last non-zero cell in Cq 
and Cr respectively (which corresponds to the bar bi,k in the 
image plane containing the end point (x2, y2). 
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Fig. 4. Computation of the end points independent on θp. 

 
We can express the coordinates of end points (x1, y1) and 
(x2, y2): 
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The line length (lc) is obtained from the end points by 
 

2 2
1 2 1 2( ) ( )cl x x y y= − + − ,  (11) 

 

and parameters of the normal (ρc, θc – line parameters 
calculated from the end points of the line by using the 
method proposed in [9]) are obtained as 
 

2 1 1 2

2 2
1 2 1 2( ) ( )
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−
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, (12) 
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Angle Histograms comparison 
Line segments obtained by the Hough transformation with 
equal angle, are used to calculate the angle histogram. This 
histogram represents directly sums of the lengths of all 
edges with equal orientations. An example of angle-
histograms for the actual and previous mobile robot 
environment scan is presented in Fig. 5.  To remove small 
line segments from an angle histogram, each length is 
compared to a threshold. Threshold value is calculated for 
every sensor scan separately. Any line segment in an angle 
histogram, whose length is less than threshold for a certain 
scan, is removed. In this way, comparing of angle 
histograms give better matching results.  
 

 
Fig. 5. An example of two successive angle histograms. 

 
The analysis of measurements for comparing angle 
histograms is important, since the “intersection-
measurement’’ gives different results for matching 
histograms. Angle histogram intersection-measurement has 
been introduced for the comparison of color histograms 
[10]. In our approach, the calculation χTH

2 is used, because 
it gives the best results in mobile robot orientation tracking: 
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where Hi(j) and Hi-1(j) are current and previous angle 
histograms, respectively.  
 
The angle histogram of the current place is convolved with 
the histogram of the previous place, but all hypothetic 
orientation θj with equal minimum matching score from 
angle histogram (orientation hypotheses) are used to 



determine the best orientation. The comparison of 
orientation θj, which satisfies above criterion, with heading 
orientation gives the matching orientation value MiΘ . 
 
Mobile robot orientation is predicted using updated value of 
orientation from previous step and orientation changes due 
to navigation: 

 
( 1)P UPDi iθ θ θ= − + ∆ ,   (15) 

 
Updates of the θ coordinate are as follows: 
 

( ) ( )UPD Mj pj Mjj Dθ θ θ θ= + ⋅ − ,  (16) 
 
where 0 < D < 1 is a coefficient.  
 
 

3. TEST RESULTS 
 
Described global localization algorithm is tested using a 
Pioneer 2DX mobile robot simulator. The size of the 
environment is an 18x55m2. The experimental scenario 
includes several orientation changes due to gradient 
navigation method. Fig. 6 presents obtained results 
regarding orientation tracking with calibrated odometry and 
with proposed localization algorithm. The actual robot 
orientations are also depicted in the figure. 
 

 
Fig. 6. Obtained orientation estimation results. 

 
 

4. CONCLUSION 
 
Mobile robot orientation correction technique using 
histograms and Hough transform has been implemented and 
compared to calibrated odometry using a mobile robot 
simulator. It is shown that Hough transform in combination 
with histograms, which was used for orientation correction, 
gives better results then orientation tracking based on 
calibrated odometry.  
 
Our method of mobile robot orientation correction relies on 
the detection of straight-line features in the sonar sensor 
readings. The Hough Transform is widely used in computer 
vision for edge detection, so it is a good solution for object 

detections in man-made environment, which tend to lie in 
straight lines. The Hough Transform has a number of 
properties that are useful for self-localization, for example it 
is very robust to noisy sonar data and to occlusions of the 
lines. We used the correlation technique for orientation 
correction rather than the product of likelihoods. In this 
way, misleading sensor readings caused by multiple 
reflections are filtered out.  
 
The proposed method for mobile robot orientation 
correction is a worth alternative to the use of magnetic 
compass, particularly in environments with high magnetic 
interference.  

 
 

5. REFERENCES 
  
[1] Grisetti G., Iocchi L., Nardi D.: Global Hough 

Localization for Mobile Robots in Polygonal 
Environments, In Proc. of International Conference on 
Robotics and Automation (ICRA02), Vol. 1, 2002, 
Washington DC, USA, pp. 353-358. 

[2] Ivanjko E., Petrović I.: Extended Kalman Filter based 
Mobile Robot Pose Tracking using Occupancy Grid 
Maps, Proc. of The 12th IEEE Mediterranean 
Electrotechnical Conference–Melecon 2004, Croatia, 
2004, pp.311-314. 

[3] Goel P., Roumeliotis S. I, Sukhatme G. S.: Robust 
Localization Using Relative and Absolute Position 
Estimates, in Proc. of the IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), 
1999. 

[4] Ivanjko E., Petrović I., Perić N.: An Approach to 
Odometry Calibration of Differential Drive Mobile 
Robots, in Proceedings of Electrical Drives and Power 
Electronics International Conference EDPE'03, 
Slovakia, 2003, pp. 519-523. 

[5] Duckett T.: Concurrent map building and self-
localization for mobile robot navigation, PhD Thesis, 
University of Manchester, 2000. 

[6] Schiele B., Crowley J. L.: Comparison of Position 
Estimation Techniques Using Occupancy Grids, in 
Robotics and Autonomous Systems, Vol. 12 (3-4), 
1994, pp. 163-172. 

[7] Atiquzzaman M., Akhtar M.W.: A Robust Hough 
Transform Technique for Complete Line Segment 
Description, in Real Time Imaging, Vol. 1., 1995, pp. 
419-426. 

[8] Grossmann A., Poli R.: Robust mobile localization 
from sparse and noisy proximity readings using Hough 
transform and probability grids, Robotics and 
Autonomous Systems Vol. 37, 2001. 

[9] Atiquzzaman M., Akhtar M.W.: Determination of end 
points and length of a straight line using the Hough 
Transform, IAPR Workshop on Machine Vision 
Application, Japan, 1994, pp. 247-250. 

[10] Schiele B., Crowley J., Object Recognition using 
Multidimensional Receptive Field Histograms, in 
ECCV'96, Fourth European Conference on Computer 
Vision, Cambridge, UK, 1996. 


