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Sonar Image Segmentation Using an Unsupervised
Hierarchical MRF Model

Max Mignotte, Christophe Collet, Patrick Pérez, and Patrick Bouthemy

Abstract—This paper is concerned with hierarchical Markov Few studies describe complete approaches allowing to per-
random field (MRF) models and their application to sonar image form automatically such a segmentation of sonar images, with
segmentation. We present an original hierarchical segmentation yaqits that can be efficiently used afterward for object identi-

procedure devoted to images given by a high-resolution sonar. The . . .
sonar image is segmented into two kinds of regions: shadow (cor- fication. Some of them are based on simple, and often ad-hoc,

responding to a lack of acoustic reverberation behind each object clustering techniques (such as fuzzyneans) working on lumi-
lying on the sea-bed) and sea-bottom reverberation. The proposed nance mean and variance within small windows [3], [4]. In that
unsupervised scheme takes into account the variety of the laws case, only a coarse grain classification is obtained, and no mod-
in the distribution mixture of a sonar image, and it estimates — g|ing of the luminance within the different types of regions is
both the parameters of noise distributions and the parameters of . . .
the Markovian prior. For the estimation step, we use an iterative 'nFrOduced' This latter a_Sp_eCt results in a lack of rObUStr_'eSS for
technique which combines a maximum likelihood approach this type of methods. Similar techniques can however include
(for noise model parameters) with a least-squares method (for more advanced elements of image formation modeling [5].
MRF-based prior). In order to model more precisely the local  Unfortunately, this is not sufficient in general because the
and global characteristics of image content at different scales, ghackie noise present in sonar images affects any simple seg-
we introduce a hierarchical model involving a pyramidal label . . .
field. It combines coarse-to-fine causal interactions with a spatial mentagon §Cheme. To cope with the.se problems, Cor.ltextual In-
neighborhood structure. This new method of segmentation, called formation is important to be taken into account. This can be
scale causal multigrid (SCM) algorithm, has been successfully donea posteriorj using either morphological filters [3], [4],
applied to real sonar images and seems to be well suited to thegr MRF-based models [5]. As in many other low-level vision
segmentation of very noisy images. The experiments reported in jsq 65 (especially classification and segmentation issues), it is
this paper demonstrate that the discussed method performs better . . .
than other hierarchical schemes for sonar image segmentation. known that thg |r.1tr0c_luct|on. of conte?(tgal .de.pendenues '_S more
proper and efficient if considerealpriori within the modeling

step. Such an approach is particularly well formulated within
MRF-based modeling framework.

The advantages of this consistent statistical framework are al-
|. INTRODUCTION ready exploited in the context of sea-bottom reconstruction from

N high-resolution sonar imagery, three kinds of regions c&An9€ sonar data [6], [7]. For this task, which has received a
be visualizedechq shadow andsea-bottom reverberation larger attention than segmentation problem from sonar commu-

The echo is caused by the reflection of the acoustic Wapgy,one copes with the fusion of high resolution side-scan sonar

on an object while the shadow zone corresponds to a I48kA9€S with ind_epend_entlow resolution bathymetric data, to re-
of acoustic reverberation behind this object. The remainif§Ver @ three-dimensional (3-D) model of observed sea-floor.
information constitutes so-called sea-bottom reverberation.AS concems the segmentation of sonar images, a MRF-based
On the pictures given by a classification sonar [1], the ectfgde! is used in [5], but, as already said, this is daneos-
features are generally less discriminant than the shadow sha§&@ri, in order to “clean” the binary classification obtained
for the classification of objects lying on the sea-bed. For thieforehand by a simple clustering techniqugy contrast, we
reason, the detection of each object located on the sea-botfi#k that MRF framework should be used to capture in a joint
and its classification (as wreck, rock, man-made object, et@fd versatile way both a precise modeling of sonar luminance
are generally based on the extraction and the identification Bfthe different regions and a regularizing prior on the regions
its associated cast shadow [2]. Thus, before any classificati9rP€ recovered [8]. This is the type of approach that is investi-

step, one must segment the sonar image in terms of shad¥#d in [2]and [9], and that we further study in this paper, with
areas and sea-bottom reverberation areas. a special emphasis on the additional problem of estimating the
parameters in an automatic way.
The generic problem ofinsupervisedVlarkovian segmen-
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is that the estimation of parameters is required for the segmertase of Gaussian distribution mixtures [14], [18]. However, in
tion, while one or several segmentations are usually required fbe specific case of sonar imagery, one has to deal with a mixture
parameter estimation. To circumvent this difficulty, a schen®f laws that are not all Gaussian [1], and these techniques, like
is proposed in [10] where the estimation and the segmentatitye former ones, are not well suited. By contrast, ICE technique
are conducted alternatively. Although the method proved i®able to cope with the various non-Gaussian distributions that
converge in the case of independent Gaussian models, it is Atk relevant in this context, as experimentally demonstrated in
clear that it can be extended to spatial MRF models. BesidéH;

the method requires very heavy computations. The alternative-€t us stress out that all the abovementionned approaches rely
approach we choose to solve the unsupervised MRFE-basgythe restrictive assumption that all the underlying “hidden”
segmentation problem consists in having a two-step proce9@ss labels armdependentWhen these hidden labels are con-
First, a parameter estimation step is conducted to infer both §gered as mutually interacting within a prior Gibbs distribution
noise model parameters and the MRF model parameters. THafy, €quivalently, they are assumed to constitute a MRF), new

a second step is devoted to the segmentation itself based onPiR&Meters appear which are even more intricate to estimate.
values of estimated parameters. However, MRF modeling provides a powerful tool to incorpo-

For the parameter estimation step, we adopt an iterati te ara priori knowledge about the spatial statistics of the label

method called iterative conditional estimation (ICE) [11]—[13].'e8éi?]2]d Il\tlflalsrlzg\t/j;xvorrr:gdtgﬁn%alnthe prior knowledge about

Similar to stochastic expectation-maximization (SEM) metho?ge “scene” is incorporated within an energy function which

[14], we shall see that it offers however more flexibility in the ; . . . )
consists of a sum of appropriate local interaction potentials

choice of the actual techniques used for estimating each tyﬂsolving a few parameters. In many works that address

?f parameters. "In partlculqr, it allows to accomodate easﬂyt Egmentation and classification problems with this formalism,
complete data” based estimators that seem the better suite parameters of the prior model are either assumed to be

the different parts of the model. . known, or determined in an ad-hoc fashion [6], [7], [19]-[22].
~ The data model we introduced in [15] has proved successfihyever, in our application, it is difficult to find manually
in capt'urlng the varlety of the noise laws present' in the d'St”prpropriate values for the prior parameters since the real
tion mixture of sonar images. The parameters involved by thgenes may vary dramatically from one image to another
different laws that compose this model will be estimated in tr'(@_g_' sea-floor with pebbles, dunes, ridges, sand, etc.). Thus,
proposed scheme. As for the prior, we have introduced in [18§timating these parameters in an automatic way is a crucial
a novel hierarchical model based on both hierarchical and spgsue for the practical relevance of the labeling technique. One
tial Ising-type interactions. This prior has proven suitable for theay to estimate these parameters from a given image is to use a
purpose of segmenting sonar images with strong speckle noisieulated annealing-based method which alternates the estima-
We show here that its parameters can be estimated within ttem of parameters and the classification itself, for a number of
ICE approach, and that it can used in conjonction with aboviéerations [23]. Unfortunaltely, this method is slow even with a
mentionned data model in order to yield unsupervised sorigist order isotropic model ruled by a single parameter. In [24],
image segmentations of good quality. the algorithm is extended to Markovian prior. The resulting
This paper is organized as follows. In Section II, we detaiflerative scheme also requires a lot of computing time, and may
the estimation step for the chosen data model combined,g&t caught in local maxima without reaching a proper estimate.
this stage, with a standard spatial (anisotropic) Ising prior. THéso note that the EM formalism does not allow explicitely to
application of the estimation procedure is illustrated on bofttimate the parameters of standard (Ising or Potts) labeling
synthetic pictures and real sonar images. Section Il preseRf{rs. It only gives access to local conditional specifications
the segmentation step and the proposed hierarchical pIWJ?,'Ch define |mperfeptly 'Fhe prior. In [25], the authors propose
model that is actually used. Experimental results obtained [§//mplement the estimation of the parameters associated with
the method on real scenes are reported in Section IV, along wiflue functions as a neural network whose weights are learned

comparisons to those obtained by other classical MRF-bas;{a(i'J11 examplgs by the error backpropaga_tio_n algorithm. Th_is
approaches. Then, we conclude with some perspectives method requires a learning step from a training data set, which
' ' " can be problematic.

Considering the type of model we are going to deal with (non-
[I. PARAMETER ESTIMATION Gaussian data likelihoods such as Weibull or Rayleigh laws,
and Ising-type prior), we found more appropriate to use the ICE
framework, which is more general and flexible [26], for the in-
First, let us consider the estimation of the noise model parafarence of parameters. In the following we first briefly review
eters. To perform this task, a number of methods use the imdge ICE approach in case of generic modeling elements. We
histogram. Most of them (Fourier, polynomials, and cumulashall then specify the underlying estimators that we used in our
histogram methods) are inefficient in case of important noisentext, and further describe how the proposed ICE procedure
and cannot be used to estimate a mixture of not purely Gaussmmitialized and led.
laws [17].
. Othgr tephniqueg have been prpposed to determine a MgX-yerative Conditional Estimation
imum likelihood estimate of the noise model parameters from a
given image. Expectation maximization (EM) or stochastic ex- We consider a couple of random fields = (X,Y"), with
pectation maximization (SEM) algorithms can be used in thé = {Y;, s € S} the field of observations located on a lattite

A. Introduction
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vy | g | ve ditional expectation based @*! = (2!, !y, this iterative

uy|xs |us l:lj B |—||_J ur—\ procedure is defined as follows:
B Bo B3 on

- one takes an initial valu@(? = (¢! oy

L e o dlk+1 is computed frombl*! and fromy using
[k+1] _ T _
Fig. 1. Second-order neighborhood and associated labeling notations; the (I)w =Ej, [({)w (X)|Y - y]v (2)
four types of two-site cliques and associated parameters in the anisotropic q)E}k-l-ll =F [q)y (X, V)Y =y 3)

Ising model. ’ ) o ) )
The computation of these expectations is impossible in prac-

tice, but we can approach them thanks to the law of large num-
of N sitess, andX = {X,,s € S} the label field. Each of the bers

Y, takes its value it ;5 = {0, - - -, 255} and eachX; in {e¢g = 1] _ Lz A

shadow, ey = sea — bottom}. The distribution of(X,Y) is 2z T [(I)“”(x(l)) LA 2 (x(n))] 4)
defined, first, byPx (x), the distribution ofX supposed to be Pli+1] — 1 é 1 d 5
stationary and Markovian, and secondly, by the site-wise con- Y B n[ MCORORSNR R NN ©®)
ditional data likelihoodsPy-|x, (ys|zs), which depend on the wherez(;),i = 1,---,n are realizations drawn from the pos-
concerned class label. If the data are assumed to be indeperterior distributionPy |y o (z|y, ®1). As it turns outn = 1is
dentconditionedon the labeling procesX, one getsPy|x = sometimes found sufficient (or even better) to get good estimates

I,es Py, x,. We shall stick to this assumption throughout. Thehen convergence is reached, in case of stationary prior with
observabler is called theincomplete datavhereas” consti- low-dimensional parameter vector [11]. It is the case in our un-
tutes thecomplete dataPrior distributionPx (z) depends on supervised classification model, and we actually chose 1
some parameter vectdr,, while data likelihoodPy| x (y|x) de- in our experiments. X X
pends on another parameter vectgr. Joint and posterior dis- By letting free the choice of estimatots, and®,, the ICE
tributions Px y (x,y) = Px(z)Py|x(y|z) and Pxy (z]y) > procedure offers a great deal of flexibility which allows an effi-
Px(z) Py x(y|z) thus depend ok A (®,,®,). This depen- cient adaptation to the MRF model at hand. Contrarytq EM?type
dence will be made explicit when necessary [e.g., denoting pG&Proaches, the ICE allows to handle properly the estimation of
terior distribution asPy y.¢ (|y, ®)]. Ising-type prior parameters, using the least-squares (LSQR) es-
The single scale segmentation of sonar images in two clasdB@tor [28] introduced by Deriet al. (see Section I1-C2). As
can be viewed as a statistical labeling problem according td® ®»(,u), we used a maximum likelihood (ML) approach
global Bayesian formulation in which the posterior distributiof1at Proved well suited in our context where the speckle distri-
Pxy(x]y) o exp{—U(z,y)} has to be maximized [27]. This bution in the sonar images is not exactly known, and may vary
is the maximuna posteriori(MAP) estimation. In the standard according to experimental conditions (see Section II-C1).

case of Ising-type prior [8], the corresponding posterior energyFinally, we need two other ingredients in order to use the ICE
to be minimized is procedure, namely:

« atechnique to get an initial valde®! which is not too far
Ulz,y) = Z Ve(zs,ys) + Z Bst[l — 6(zs,2¢)] (1) from the optimal parameters. To this end we use a clus-
(s,t) tering approach which is described in Section II-D.
» a way of simulating realizations from posterior distribu-

whereW,(z,,ys) = —In Py, |x (vs]x5), & is the delta Kro- tion Py o(z|y, ®). This is performed by using the Gibbs
necker function, an@;; = J1, (2, 83 or 8, depending on sampler [29].

whether the pair of neighboring sites (relative to the second-
order neighborhood system), dique, (s, t) is horizontal, ver- C. Estimation of the Model Parameters for the Complete Data

tical_, right dia_lgonal, or left diagonal (see Fig. 1). In this energy 1) Noise model parametersThe Gaussian lam/ (i, 2),
setting, the first energy term expresses the adequacy betwgene|l.adapted degradation model to describe the luminance
observations and labels, whereas the second one is relateg- {gihin shadow regions (where noise is essentially due to elec-

the a priori. _ _ tronic aspects) [1]. We thus let
To perform the unsupervised segmentation, we have to esti-

mate the parameter vectobs and®,. To this end, we resort, Py |y ¢ (ys|eo, @) = exp <_ >
within a first step, to an iterative method of estimation called V2ro? 20
iterated conditional estimation (ICE) [11]. This method first reThe corresponding ML estimator is defined by the empirical
quires to get two estimatofs, () and®, (z, ) which provide mean and the empirical variance ¥ = #{s € S: z, = ¢ }2
respectively an estimate éf, based on a configuration, and  pixels are located in thehadowareas, we have

sCS

an estimate ob, based on a complete data configurationy). R 1

Random fieldX being unobservable, the iterative ICE proce- e, y) = No Z Yss

dure defines parameter fitsl ' and @+ at stepk + 1 as 1565”35:9“

the conditional expectations &, and®, givenY = y and the 6% (x,y) = > (-
current parameter fit@g“} and@Lk]. The fixed point of this iter- No—1 sCSw,=eq

ation corresponds to the better approximation@pbndq)y in 2Recall thate, stands for the “shadow” label while, corresponds to “sea-
terms of the mean squares error [13]. By denofifigthe con- bottom” class.
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Fig. 2. Various realizations of the second-order anisotropic Ising model, corresponding to specified parameters reported in Table I.

In the reverberation areas, Weibull law provides an appropriatéth Z = 1 — 6. Considering the following expression for the
model for luminance to cope with speckle noise phenomentwo possible values ok, X, = ¢q (shadowabel) andX, =
[30]. This law implies a shape parameter that can be estimatgd(sea-bottorrabel), for a same neighborhood configuration
from complete data. It turns out that estimated values are oft&p)_ = 7, one gets

close to 2. We thus restrict ourselves to Rayleigh law which p (ex]n) p (e1,m)
exactly corresponds to 2 shape parameter [31]. More precisely, — In -\ 2 X0, X0, 0T

we model the conditional density function for teea-bottom Px,1x,, (coln) Px. x,, (o)

class by a shifted Rayleigh laR (min, a?) =[O(co,n) — O(e1,N)]* ®.. 9)

P B.) — min{0, ys — min} where® . is the unknown parameter vector to be estimated. The
v.1x.@, (Wsler, &y) = o? model being stationary (shift-invariant), the second ratio can be
< (ys — min)2> @ approximated for each possible neighborhood configuragion
cexp| ————— ) .

202 using simple histograming:

PXS,XVS(CMW) _ #{se S:xs=e1,2, =1}
Px, x, (co,n)  #{s€ Sz, =co,2,, = e

If Ny 2 #{s € S: z; = e} is the number of pixels of the
sea-bottom regions, we obtain the following expression of the

ML estimator [1]: By substituting these empirical ratio estimates in (9), we obtain
— . 2% = 256 linear equations in four unknowns. A given combi-
min(z,y) ~ mlln{ysz zs =e} — 1, nation(e;,n) may of course not occur at all in the label fields.

& (x,y) = oA Z (y5 — min)>. In this case, we cannot obtain linear equation (9) because of
1 cSm—e, the logarithm. Moreover, neighborhood configurations such that

O(eg,n) = &(er,n) (€.9.,80(ep,n) —O(e1,n) = 0if uy # ug,
If required [cf. Fig. 4(a)], proportionsry = Py (co) and w2 # w4, v; # vs, andva # v) imply equations of type €
2 Px (e1) = 1 — 7, of the mixture of laws (independentconstant. Therefore we simply ignore these cases. The over-de-
from s) can be approximated by the empirical frequencies, i.éermined linear system of equations thus obtained is solved with
™ =~ N;/|S|. the least-squares method.

2) A priori model parametersAt this stage, we con-  This method for estimating Ising-type (and Potts-type) clique
sider the standard prior model introduced in (1). It is Barameters from histograming has been proposed by Begin
second-order anisotrogidsing model ruled by four parame-[28]- It is not iterative and provides estimated parameters that
ters®, = (B, 2,53 8)7 (see Fig. 1). The corresponding@re optimal in the least-squares sense. o
local conditional specification can be written down as fol- We now present some results of this parameter estimation
lows. If s is some site ands, denotes its neighborhood,Procedure, obtained on various realizations of the second-order
the probability thatX, = z, given some configuration ISing model, for different parameters, (see Fig. 2). Itis a
X, = (uy,us,us,us,vi,v2,03,v4)7 A 1 on the neighbor- cor_npleteAdata problem, and the estimates pr_owded by LSQR
hood (refer to Fig. 1) is estimatord,, are compared to real parameters in Tab_le I. These

few examples illustrate the accuracy that can be achieved by the
Px ix, o, (zs|n, @) x exp{—O(zs,n)"®,}  (8) method in case of observed data.
' Synthetic textures presented in Fig. 2 also show that the Ising
where model with its four parameters offers an interesting variety of
O(zs,m) A [Z(@, 1) + L (s, us), T(as, un) Eriors to capture different typgs of sea-floor: Fig. 2_(a) shows in-
omogeneous shapes reminiscent to segmentation of a pebbly
+ I, ), L(xs,v1) + L(2s,v3), Z(7s,v2)  sea-bottom; Fig. 2(b) exhibits homogeneous oriented shapes
+ I(zs,va)]* that are representative of segmented dunes; geometric shapes
3 , _ within Fig. 2(c) recall the shadows of manufactured objects;
The concept of anisotropy we refer to throughout the paper is related to

e . . . ..
dependence of local interactions on the direction modwlcthat is only on the E'g' 2(d) looks like the segmentation of an image containing
orientation. ridges of sand.
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reans Clusters for sea-bottom and shadow arsas
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Fig. 3. (a) Reak56 x 256 sonar picture (object and rock shadows on a sandy sea-floor), (b) representation of the three-component samples computed from a
partitioning of the original image into 1764 windows of stz& 6, and (c) block-wise segmentation of the original image corresponding to the clustering of sample
by thek-means procedure.

o TABLE | A number of other criteria are given in [32]. The complete al-
SPECIFIEDA priori PARAMETERS ®,. FOR THE ANISOTROPICSECOND-ORDER gorithm is as follows.
ISING MODEL, AND ESTIMATED PARAMETERS ¢, OBTAINED FROM Lo 1] 1]
REALIZATIONS 1) ChooseX initial cluster centers; -, - - -, ¢;. They could
be picked arbitrarily, but are usually defined by
Fig. B B Ji; B
e : - M=x, 1<i<K.
2) ¢ 03 03 03 03
&, 03 029 031 031 2) At the kth step, assign sampte,,, 1 < m < M, to
2b) &, 2 ] = 1 clustersi if
< k k . .
&, 177 094 —0.86 0.98 % — ) < [l — CE’ Novi#i
2c) @, 2 2 0 0 Each sample is reassigned to the cluster with the nearest
&, 193 194 —005 001 center. In the case of ties, the assignment is arbitrarily
2d) @, 1 1 1 1 chosen among the competing clusters.
¢ : (K] ; i
$, 095 093 —096 103 3) LetC;™ denote théth cluster after Step 2. Determine new
cluster centers by
(ets) _ 1
T . [6X - AT Xm
D. Initialization ! N; Z

—[*]

The initial parameter values have a significant impact on the o ee
rapidity of the convergence of the ICE procedure and on the ~ wherel; is the number of samples @&*. Thus, the new
guality of the final estimates. In our application, we use the fol-  cluster center is the mean of the samples in the cluster.
lowing method. The initial parameter values of the noise model 4) Repeat until convergence is achieveﬁJ(I] = cE’“],\ﬁ).
<I>L°1 are determined by applying a small nonoverlapping sliding Although it is possible to find pathological cases where con-
window over the image and by computing the empirical meatergence never occurs [32], the algorithm does converge in all
and variance of luminance, as well as the minimum grey levé¢sted examples. The rapidity of convergence depends on the
for each location of the window. Each window location thus praxumber of clusters, the choice of initial cluster centers, and the
vides a three-component “sampte;,,. The collected samples order in which the samples are considered. In our application,
{x1,---,xp} are then clustered into two classes, ¢; } using K = 2.
the k-means clustering procedure [32]. This algorithm uses aOne has to find a good compromise for the size of the window
similarity measure that is the Euclidean distance between saised in the constitution of samples. On the one hand, a small
ples. For a given assignment of thé samples among th&  window increases the accuracy of the segmentation, hence pro-

clusters, an objective functiohis then defined by viding a more precise estimation of the distribution mixture. On
« the other hand, decreasing the number of pixels on which the
39 . . . . . e
three attributes are computed may result in a higher misclassifi-
T=3"3" lxm =il

cation error. In our application, satisfactory results are obtained
with a6 x 6 sliding window. Fig. 3 illustrates the-means clus-
where the second sum is over all samples initheluster with tering procedure (and resulting segmentation) on a real sonar
center;. It is easy to show that for a given set of samples arighage.

of class assignmentd, is minimized by choosing; to be the ~ Once the block-wise segmentation associated to final clus-
average sample of thh cluster. For given centets, J is mini-  tering is obtained, ML estimation is applied to it to get initial
mized by assigning,,, to the cluster whose center is the closestlata parameter estima@é,o]. Based only on these parameters, a

=1 x,,€C;
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first pixel-wise ML segmentation is readily obtained according 0.02 — T g
to image hist. — |
‘pdf -
vse S, il =arg max Py, 1x,.,(s|7,, @), 0.015
A first estimation of prior parameters can then be conducted ¢
this segmentation, yielding'” = &,,(z1%)). 0.01
E. Parameter Estimation in the Incomplete Data Case 0005 bl o __—
We can now summarize the complete parameter estimatic ‘
procedure for the partially observed model defined as : 1
0 1 1
Pxjy,e(-ly, ®) x Pxjo, (:|92) 11 Py, ix, 0, s y) 0 ey levan 20 0
s€
(a)

(10) 5 convergence of the a priori model parameters
where Py ¢, is the Gibbs distribution of an Ising-type MRF ' 5 ‘! ! a1 ~e‘—
with parametersb, = (1, B2, B3, Bu)”, Py, x.,s,(-leo, ®y) 15_.»"/‘;\‘ az
(within shadow area) is a Gaussian law with paraméiers?), ‘ tad
and Py, |x, ¢, (:le1, ®,) (within sea-bottom area) is a shifted
Rayleigh law with parametet(snin, 042). % T OOV PSP UUO SUVOSSP OO SO PIOY SOSOUUNSFFE S YS MO

» Parameter initialization. As already explained, the initial g
parameter il = (2l o) is derived fromi-means 5 05
clustering of image blocks. g : : :
« ICE procedure. ®*+1] is computed fron®!* in the fol- 0 e
IOWing Way' Hix ----------- Ko Koy X ----- LT SO xx X
* Using the Gibbs samplen realizationsz yy, - - -, 05 Ls R -
x(, are simulated according to the posterior distri- ' “Begew [ e
bution Py |y, (-, q)[k])_ 0 2 4 6 8 10 12 14 16 18

Nb. iterations of the ICE procedure

* For eachr(; (i = 1---n), the parameter vectdr, )

is estimated aéx(a:(i)) by Derin et al. algorithm,
and®, is estimated a®,.(z(;),y) with the ML es-

timator of each class. X X Fig. 4. (a) Image histogram of the sonar image from Fig. 3(a) and the two
. j)[:;—i—ﬂ is obtained by averaglngbm(a:(i)), ‘Py(ﬂf(i), \gaerlgrr:\tstdegéttlijr;ince%?’?onems that are estimated. (b) Evolution od fhéori
Y)pi=1ln-
We designed a stopping criterion based on the variance of the
estimators, which is empirically computed on thdast param-  The quality of the parameter estimation is difficult to as-
eter fits (wherék is a fixed parameter). When this indicator okess in absence of “true” values to compare with. As for the
the “stability” of the procedure falls below a given thresholdjata model, we can roughly perform such an evaluation by
the sequence ab!*! is assumed to have reached an equilibriumomparing the grey level histogram of the image with the two
and the procedure is ended. One proceeds to the actual segraemponentsio (i, 52) and#, R(min, 42), of the estimated
tation using the estimated parameters. mixture weighted according to their estimated proportions. In
Note that, since shifted Rayleigh law (7) forbids luminancdsig. 4(a) we propose such a visual assessment, by superim-
belowmin, no pixel with luminance below the initial estimateposing the two weighted densities estimated from a real sonar
of min would ever be classified as “sea-bottom” afterwards. Amage, on the histogram of this image. One can appreciate the
a consequence, any new estimatendfi in the ICE procedure good fitting thus exhibited. This example illustrates the ability
would be greater or equal to the initial estimate. In order tf the model to capture, thanks to the described ICE technique,
soften this constraint (i.e., to allow a possible decreasingiaf the mixture of distributions involved in a real sonar image. The
estimate), we slightly modifie®R (min, o), such that it now values of associated prior parameter estimates for that example
associates a very low, but non-null, likelihood to pixels with are plotted against the number of iterations in Fig. 4(b). Al-
grey level lower thannin [27]. though convergence is not theoretically established, we always
We calibrate the weight of the “stochastic” aspect of the IC&bserved it in practice. Stability is reached after around 15
by choosing:, the number of realizations drawn from the positerations [requiring 60 s on a sonar picture of size 25856
terior distribution. Whem increases, empirical averaging of espels, with a 43P IBM Workstation (200 MHz)]. The original
timator & get closer to its posterior expectation, and each stapd final estimates for all parameters are given in Table II.
of the ICE procedure becomes almost deterministic. The choiceNow that we are able to estimate both the parameters of the
of a small value fom (e.g.,n = 1) can increase the efficiency mixture-based data modeling and those of the prior Ising mod-
of the method by letting largely randomized each iteration [11¢ling of the unknown labeling, we can turn our attention to the
This is what we observed in our experiments. actual classification issue itself.
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TABLE I
ESTIMATED PARAMETERS OF THEMIXTURE DATA MODEL AND
OF THE SECOND-ORDER ANISOTROPICPRIOR MODEL, FOR THE Xﬁarm,(s\,
SONAR IMAGE IN FIG. 3(a)

Initialization: k-means s
0 -0
(}[y(]ahadow) 0'16(7ro) 55(#) 286(02) X
Qgﬁ]sea—bouom) 0-84(7r1) 37(min) 952(a2)
0
q){x] Og(ﬁl) 16(ﬁ2) - 02(ﬁ3) - 02(ﬁ4) pyramidal label field X observed sonar image y

ICE d 15 iterati ! ) . . . . L
procedure (15 iterations) Fig. 5. Hierarchical labeling structure involved in the SCM method; sites in

. 0.03 25 32 light gray hold variables that interact witki! within the posterior conditional
Y(shadow) (7o) “9(w) (e?) distribution Py 1 2 .
il 0.97(x) 3B(miny 142442

Y(sea—bottom)

®; L7z 1.8 —0.6¢5,) —03,

level £+ 1

I1l. UNSUPERVISEDHIERARCHICAL SEGMENTATION

A. Introduction

In order to capture more efficiently the larger scale charactel
istics of sonar image contents, the standard second-order Isi
prior we have used so far, should be improved. This can be doi
by using a larger neighborhood structure, but this would increase
dramatically the complexity of segmentation and parameter es-
timation procedures.

To circumvent this difficulty, different multiresolution segmentation procedure (in case of known parameters), but it in-
schemes have been proposed. In [33], a tree-based hierarchig@les undesirable spatial nonstationarities. As a fact, the model
auto-regressive modeling is introduced to capture the mulig not shift-invariant since two pixels that would be adjacent
scale structure of images that are similar, to some extent,ifoterms of spatial lattice may be actually “far” apart in the
sonar images (namely, they deal with synthetic aperture radgaph structure. In [36], Katet al. introduced a novel hierar-
(SAR) images). In this case, the hierarchical approach remaitical model: they considered a pyramidal label field with a
however at the level of data modeling, and the segmentatigfiee-dimensional neighborhood system. Unfortunately, the re-
itself is then performed in the maximum likelihood (ML)sulting parameter estimation and segmentation procedures re-
sense, in-scale causality giving complete access to requitffire a lot of computing time, even for the case (considered
likelihoods. therein) where the spatial part of the prior corresponds to the

With MRF-based labeling priors we are looking at, dirst-order isotropic Ising model. Therefore, it did not appear to
multiresolution approach can be classically introduced as as a good candidate in the complex context of sonar imagery
follows: a hierarchical decomposition of the original image tavhere numerous sources of anisotropy and content variability
be segmented is computed and “similar” labeling MRF's cdre to be met (e.g. sea-floor with pebbles, dunes, ridges, sand,
proper sizes are attached to the different levels of resolutiaites or various objects, etc.)

Based on this structure, the segmentation is then performed irHerein, we propose a different hierarchical approach com-
a coarse-to-fine way, using at each level the segmentationbatiing a scale-causal specification (modeling part) with a
previous level to get an initialization [9], [34]. The problencoarse-to-fine multigrid minimization technique (algorithmic
with such approaches lies in the issue of deriving the ppart). As in [36], this model involves local interactions between
rameters of both prior model and data model at each levepatially adjacent sites as well as parent-child interactions
given those of the finest level. As for data model parametetsetween sites belonging to consecutive levels. We will refer
a consistent treatment of this issue is introduced in [34] fes this approach as scale causal multigrid (SCM). From an
Gaussian “textures.” For other data and/or prior models, th&yorithmic point of view, this structure will allow to propagate
issue remains widely open. efficiently contextual information. In terms of modeling, it

Another approach consists in devising a hierarchical labelinffers the opportunity to capture soraepriori characteristics
MRF which simply interacts with the original data (no multiresef the underlying labeling process within a range of different
olution decomposition of the data is performed in this case). gcales.
number of such models have been proposed. Bowshahin- The use of this original SCM prior for unsupervised segmen-
troduced a peculiar hierarchical MRF defined as a coarse-to-filaion requires an adaptation of the parameter estimation tech-
Markov chain of levels [35]. The associated interaction strucique we used for nonhierarchical Ising prior. This shall be ex-
ture is a quadtree. It allows to devise a noniterative two-sweppsed, after the coming presentation of the SCM approach.

Fig. 6. “Coarse-to-fine” minimization strategy.
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()

Fig. 7. Realizations of the hierarchical SCM model for the specified parameters reported in Table IlI.

B. SCM Hierarchical Modeling and Segmentation TABLE Ii
. . . . I 0 SPECIFIEDA PRIORIPARAMETERS @, FOR THESCM MODEL, AND ESTIMATED

The SCM model first consists in a hlerarchX . ¢ ) of PARAMETERS ®,, OBTAINED FROM REALIZATIONS
label fields which interact with the original imade(see Fig. 5).
Labeling X* is defined on grids* which results from the re- Fig. 8, B B B4 3,
duction of S° = S by 2¢ in each direction. The segmentation of ) @ 1 1 ) ) |
sonar images in two classes is now stated as a causal cascade of 5 001 091 -09l —090 0.94
conditionalMAP estimations F T i

. L 7b) &, 2 1 -1 1 0
&% = arg max Pyiy(z7ly), and b, 184 104 -004 084 —007
#t = arg max Pxexeny(@fa™y)  £=L-1...0. 7(c) ®, 025 025 025 025 025

X ~
(11) ¢, 026 025 026 02 021

The definition of the different inter-level transition distribu- _ _ _
tions Py« |xt+1 y is based on the monoresolution model introErom (12) and (13), simple computations provide [37]
duced in Section II-B. We first definByo| x1 y as the following ¢ ¢ ,¢+1 _ Ut ) + o, B, Tzt 2t
Gibbs distribution: (@ ey = 3 Wty + > b BaZ(al, xf)

sCS¢ (s, t)yCS*t
Pyopxry (2%t y) oc exp{=U°(2", 2!, y)}  with + Z agﬁsl(a:i,a:f):;m(s)) 14)
Uo(xoaxlay) IU(.’IZO’y) + Z /35I($2’$;)a1’ent(s)) ith st
sCSY wit
12)  waln) 2 Y Ualy,) (15)
where pe;
o o o o whereb! C S°is the2‘ x 2¢ block of the “descendants” af(see
Uz y) = E;O Vs (w5, 95) + < %:SO Pard(@s, xi) Fig. 5), andy,: = {y,: p € b'} stands for the data attached to
s€ 5,6y C s

that block. It is readily established that the intra-level clique pa-
is the energy function defined in (1) applied8, and a new rametersg‘ 2 «f3;,i = 1 - - 4, associated to the four different
parameter,3;, is introduced in inter-level clique potentials.possible orientations of cliqugs, t) c S, and the inter-level

We now derive the other inter-level transition distribution@nque parametes’ éaéﬁs are obtained by weighting those in
extending the multigrid construction technique proposed '(112) according t0°[37] 7

[37] to the two-level energy in (12). . . . .
Let T4*(k < ¢) be the “projection” fromS* to S* which o =apy =[27+2(2° - 1)),

associates, by duplication, a blockwise constant configuration ag=aj =1, of =4, (16)

on S* to any configuration oi$*. Using the multigrid approach wherea!, i = 1---5, accounts for the number of site cliques
from [37], we can define for each < L straddling two2¢ x 2¢ blocks that constitute a block clique of
PX"|X"+17Y($[|-TZ+17y) o exp{—U(z', a1, )}  with t);pei,éal;d akﬁ is the number of site cliques contained in one
2° x 2* block.
Ly £ 4 A L, 14 L4114 . . . .
US(at, 2", y) = UOX05), T () y). Conditional MAP estimation at level amounts to min-
(13) imizing U%(z%, 2% y) in z‘. The interaction structure
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1) Non-hierarchical Parameter Estimation
(a) Initialization:
— classification of 6 x 6 image blocks by k-means clustering technique

— ML fitting of a Gaussian law A (u,02) in shadow area, and of a shifted Rayleigh law R(min, a2) in

sea-bottom area => @LOI

— ML segmentation of y based on <I>£,O], and LSQR fitting of a second-order anisotropic Ising model on
this segmentation = fI’[zO] = (ﬁ£01,5£0]’ £0]7ﬂ£01)T

(b) ICE iteration:

— draw one sample z from Px|y,s(-ly, ®[¥])

ML fitting of data mixture model based on (x,y) = <I>£,k+1]

LSQR fitting of second-order anisotropic Ising model on = = <I>¥°+1]

- k+k+1
(¢) Termination:
— if var{®lk—kol ... ®[*]} >threshold return to 1.(b)
— else ®* « ¢[¥]
— ICM segmentation based on Px|y,s(:|y, ®*) = “ICM segmentation”
2) Unsupervised Hierarchical Segmentation
(a) Initialization: &, « &%, &5 « (87,855,885, 05 = 0)T
(b) Multigrid segmentation: while £ > 0, do
— initialization: if £ = L, ¥ « argmin,z W (zf,y,r), Vs; else zt « THLIGH
— starting from z¢, ICM segmentation based on Py xe+1,y,o(1371,y, @)
= “MG segmentation” at level £, ¢
—fl<£-1
(¢) Parameter re-estimation:

— ML fitting of data mixture model based on (#°,y) = @g“al

~ LSQR fitting of SCM model on (&L - .- £0) = final

d) Final segmentation: as in 2.(b) but using ®fir2! = “SCM segmentation”
g g g

Fig. 8. Unsupervised SCM segmentation algorithm.

concerned by this minimization is the following: each variablgon T“+1:{(z+1) of the labeling previously obtained at coarser
z¢ interacts with the (unknown) second-order neighborhodevel ¢ + 1 (see Fig. 6).

5

labelingz;_, with the labelz " . . of its parent provided by
minimization at level + 1, and with the block of datgy. . C. Estimation of Hierarchical Model Parameters
Finally, at coarsest level, we define The introduction of the hierarchical modeling requires to
PXL|Y($L|y) x exp{—UL(zL,)},  with re-address thg issue of parametgr estimation. This has been
L)L \A o oLor L decomposed into two steps. We first |84 = 0 and use the
U(z®,y) = U [T (@), 4] (17)  estimates of parametess,, 3, 52, 3s, and 3, provided by

Energyl " is the same as the one in (14) with= I, apart from the nonhierarchical ICE procedure described in Section 11-B,
the last inter-level term which is obviously absent in this caset.0 solve thg S%M Iak%ellng p“’b"?m (1.4[)The f!rst multigrid
We now have to deal with the coarse-to-fine recursive esﬁ_egmenr:atlorgazl Tt )fthus obtamed_ |s|u3(_ad n ]'Eu:]n to re-es-
mation (11). Each of the associated energy minimization profjiate the whole set of parameters (includifg of the SCM
!ems_'s copgd _W'th the ICM ajIQQr!thm [8]. The dgtermlnlstlc 4Since3; = 0, we deal at this stage with the multigrid MAP estimation
iterative minimization at levef is initialized by the interpola- procedure introduced in [37], based on the ICE parameter estimates.
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SO
’ .“ o :_-.
3 , M .‘
. .
(b) ICM, 98% (c) SCM, 99.15%
.
4 I
(d) MR, 98.88% (e) SMAP, 98.91% (f) MG, 98.83%

Fig. 9. (a) Synthetic sonar image of a spherical object lying on a sandy sea-floor and (b)—(f) two-class segmentation results and associatedaettes of ¢
classification.

model. Once this is done, a final SCM labeling is estimated incanfigurations# of (Xﬁ_qu,:—:em(s)) the following set of
coarse-to-fine way. We shall assess, with coming experimenggjuations:

comparisons, the |mpagt of the SCM approach in terms.of [6(co,n) — @(Cl’n)]Tqu)x

both final parameter estimates and final image segmentation,

€ 6 _ ¢ 41 _
as compared to the nonhierarchical unsupervised approach —ln #ls €St a =e, (x”s’ngm*ﬁm(s)) — 77}7
introduced in Section I. #{s € St al=co, (@b a k) ) =1}

Given the hierarchical segmentatign’ --- 21,20 = z) £=0---L-1

the ML estimation of data model parametebs remains with diagonal matrix}/* 2 diag (af ---af). Vector M‘®,
unchanged. It is provided by, (z°, ). As concerns the corresponds to the clique parameters of posterior conditional
estimation of parameter®, = (S, /2,3, 4, 4)" which Gibbs distribution (13). We obtai2® x L linear equations in
define the prior part of SCM model we need to extend thg’s. We ignore equations associated with any combination
nonhierarchical method presented in Section 1I-C2. We deriveg ) that does not occur in the label fields and equations for
this extension by expressing relation (9) at each level of thghich ©(eo,n) = ©(e1,7n). The resulting over-determined
pyramidal structure, conditioned on the labeling of abovgear system of equations is solved in the least-squares sense.
level. Using empirical approximations computed on given Like for nonhierarchical model, we present some examples
(z” .-z, 2% = ), one gets for each of tH¥¥ = 512 possible of estimation of the SCM model, based on various realizations
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‘
W

(a) (b) ICM {e) SCM

RN

o '-f.fl» | ey

(d) MR (e) SMAP (£) MG

Fig. 10. (a) Real sonar image involving object and rock shadows and (b)—(f) two-class segmentation results.

of the model itself (see these samples in Fig. 7). The obtainisdobtained by ICM from the nonhierarchical modeling (10),
estimates are compared to the specified values of the paramih estimated parameters; = (u*,0", min”, a*)T and

ters in Table IIl. It appears that the SCM model offers a largér:, = (37, 35,85, 55)%; a second hierarchical segmentation
range of modeling possibilities than the one of the monoresois-obtained by coarse-to-fine minimization on the SCM model
tion model (with the expected ability of capturing in a joint wayvith same parameters as before ghd= 0; the last segmen-
patterns of very different scales), and that good estimates oftéision is obtained as the previous one, but with re-estimated

parameters can be obtained from a given hierarchical labelipgrameters@{™® = (el glinal ppfinal ofina)T' gng
configuration. Plinal — (glinal glinal ®glinal ' glinal glinahT' |y the following,

Before we report experiments of unsupervised segmentatigg shall refer to these three outputs as the ICM, MG (for
of sonar image with SCM approach, we summarize the whaieultigrid), and SCM segmentation, respectively.
procedure in Fig. 8. We have compared on a number of images these three seg-
mentations to those obtained by two other standard techniques:
the noniterative SMAP algorithm on a quadtree proposed by
Boumanet al. [35], and a classical multiresolution (MR) ap-

The whole SCM algorithm actually provides three succeproach where a multiresolution pyramid of images is derived
sive unsupervised segmentations (see Fig. 8): the first caed a set of “similar” spatial models is considered on the dif-

IV. EXPERIMENTAL RESULTS
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(m Is) 1306 e SCM

Fig. 11. (a) Real sonar image of sandy sea-floor with the shadow of a man-made object and (b)—(f) two-class segmentation results.

ferent resolution levels. In both cases, data modeling is the sabmecareful when trying to extrapolate these results toward real
as in SCM (mixture of Gaussian and Rayleigh laws) with parareenar images. Nevertheless, we would like to note that the com-
eters®;. The only prior parameter involved by the tree-baseglete SCM approach slightly out-performs the others in terms of
model of Boumaret al.(the probability that a node of the tree ex-global classification performance, while providing a classifica-
hibits the same label as the one of its parent) has been manutitin that is visually cleaner than the others. As concerns the es-
tuned. At each level of the model used for MR segmentatiotimated parameters for this synthetic example, one can observe
the anisotropic second-order Ising MRF with paramederés that thes; parameter of SCM model remains null: this shows
used as a prior. In all experiments, MG, SCM, and MG sethat the inter-level part of the model is not relevant on this par-
mentations were obtained on three levels, whereas the SM#i¢ular synthetic image. It is not always the case however with
estimation takes place dnslog, IV levels, by definition. real sonar images, as coming experiments will show.

We first report experimental comparisons obtained on a syn-Thorough experiments have been conducted on real sonar
thetic sonar image (Fig. 9) of a spherical object lying on a saimdages. Figs. 10-12 show the ICM, MG, SMAP, MR, and
sea-bed. The image is simulated by using a ray tracing p®EM segmentation results obtained on images with various
cedure. The different segmentations obtained on this examptentents. The associated SCM parameter estimbied are
are presented in Fig. 9, along with their associated rates of cgiven in Table IV. The size of these pictures is 26@56 pixels
rect classification. As visible from the different rates of succes®srresponding to a sea-floor surface of 25425 mm. (The
(all are at least 98%), this is an easy example, and one ha$tdBM41 sonar frequency is around 500 KHz.)
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Fig. 12. (a) Real sonar image of sandy sea-floor with the cast shadow of a tire and (b)—(f) two-class segmentation results.

Let us first stress that the estimated prior parameters are quitenputation than any other technique. However, its peculiar
different according to the type of objects involved in the inputee-based neighborhood structure does not seem able to cap-
image (man-made or natural objects). In presence of smilie properly the local properties of sonar images, and this
shadows, it also turns out that estimated values of parametesdel often produces blocky segmentations at the boundaries
51 -+ B4 are significantly smaller (see Table IV). The resultingf the shadows. The other less expensive technique is non-
model is then able to extract shadows of only a few pixelserarchical ICM which also provides segmentations of lower
large while avoiding false alarms. We can also notice that tigeiality. Proposed SCM method is as expensive as MR tech-
estimated noise model parameters depend a lot on the natureiqfie for improved results, and requires twice as much time
the sea-floor (e.g., sandy or pebbly sea-floor, etc.). as the multigrid (MG) segmentation does. The latter method

In some cases (e.g., on image from Fig. 12), the final eskieing an ingredient of the former one, this was expected.
mate for/3; remains null and the SCM approach amounts to thée do believe that reported experiments demonstrate that the
multigrid segmentation, but wite multigrid refinement of all extra cost is worth the pain.
the other parameter estimatelSven in these cases, final esti- It is seen from Figs. 10-12 that SMAP, ICM, MG, and MR
mates of other parameters are different from those issued freegmentations are all plagued by a significant number of false
the first nonhierarchical ICE step. The difference between thaéarms (wrong shadow detections) due to the speckle noise ef-
parameter values which MG and SCM segmentations respéezt. In contrast, SCM performs better: it exhibits a good robust-
tively rely on can be assessed on the example from Fig. 3(@ss against speckle noise (most false alarms are eliminated)
[same image as in Fig. 10(a)] by looking&®t in Table Il and while preserving the border of shadows. The versatility of SCM
dlinal reported for Fig. 10 in Table IV. prior is further demonstrated by two other examples (Fig. 13).

Table V presents the computational cost associated to thdeed, it allows to get satisfactory segmentations even in case
different segmentations we compared. It is expressed in terafsiumerous small rocks [Fig. 13(a) and (b)], as well as in pres-
of both cpu times (on a 200 MHz 43P IBM Workstationence of sand ridges with strong orientation [Fig. 13(c) and (d)].
and number of “equivalent iterations.” One “equivalent iter- These experiments show that the shadows of both manufac-
ation” corresponds to the update &f labels. One complete tured objects and rocks are better segmented by SCM method
image sweep of ICM algorithm at level (for MR, MG, than by other methods to which it is compared. In particular, the
or SCM segmentation) thus amounts Af/4¢ equivalent it- extracted cast shadow of the manufactured object (a cylinder) in
erations. As expected, the noniterative SMAP requires leSg). 10 exhibits a regular geometric shape (contrary to the cast
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TABLE IV
ESTIMATED PARAMETERS BY SCM APPROACH ONSYNTHETIC AND REAL SONAR IMAGES

Fig. 9 Yiehadow) 0.04(r0) 1l 3552
Visea_bstiom) 0.96(r) 4l(min) 50(a2)
P! 1.0(3,) 0.8(g,) 0.4(g) 0.2(z,) 0.0gy
Fig. 10 2;‘:}1”“)) 0.03(r) 24(, 28(52)
gz‘:a_bo“om) 0.97(,,1) 32(,,”-,1) 1713(a2)
P 2.9(8) 26(3) —1) —08,) 0.1
Fig. 11 ;;?:}lzadow) 0.03(,r0) 32(#) 34(02)
Visea—bottom) 0.97(r,)  38(miny 12302
S 218y 3 —12(8,) =1y 06,
Fig. 12 ng’:adow 0.02(r) 35 10452y
;;‘:G_bo”om) 0.98(,..1) 43(min) 2272(02)
P! 2.6(3,) 2.9, —1l@) —11y O
Fig. 13() 2% u0u) 0-1(r0) 33w 66(2)
;;E‘::a_bouom) 0.9(7,1) 44(min) 3768(a2)
P 11y 0.4¢z,) —02¢,) 0.5, 024
Fig. 13(c) @2;‘::mdw) 0.13(xp) 30, 3902
;/iz‘:ela—bottom) 0.87(,,1) 40(min) 3815(a2)
P 0.07,) 1(gsy —00L(gyy 13¢5y Ugs)
TABLE V The modeling relies on the joint use of Ising-type priors and

COMPUTATIONAL COST OF THESEGMENTATION TECHNIQUES EXPRESSED IN
NUMBER OF “EQUIVALENT ITERATIONS' (TOTAL NUMBER OFSTE UPDATESN),
AND CPU TIMES, FOR 256 X 256 SONAR IMAGES

appropriate non-Gaussian conditional luminance distributions
(a Gaussian likelihood in shadow areas, but a Rayleigh likeli-
hood in sea-bottom areas). Based on these two ingredients, the
approach is composed of two parts. The first part consists in

ICM MG SCM MR SMAP { ) =4 Ul :
4 iter. 5 775 1595 195 35 a nqnh|erarch|cal _estlmatlon of all mo_del parame_ters_usmg the
flexible ICE technique. Based on limited sampling, it allows
cpu time  13s  21s 40s 32s 9s

to estimate the parameters of the two different data distribu-
tions with maximum likelihood techniques, and to recover the
different parameters of the anisotropic prior with least-squares

shadow of the rock) which is in excellent agreement with thechniques. The versatility of ICE would allow to deal with other

ground truth provided by an expert.

V. CONCLUSION

types of distributions if required. In particular, Weibull distribu-
tion (which Rayleigh law is a special instance of) can also be
used to model the sea-bottom reverberation.

In this paper, we addressed the problem of segmenting highThe initialization of the iterative parameter estimation
resolution sonar images into shadow areas and sea-bottom arg&lieme is provided by a simple clustering technique based on
Although this issue is important in many applications relying ofminance distribution in small windows. Although conver-
this kind of images, it has only received few attention in the liteBence is not theoretically established, we observed it in all
ature, where people mainly address the problems of sonar im&ggeriments (on more than thirty rezi6 < 256 sonar images,
restoration and surface reconstruction from 3-D sonar data. and one2000 x 6000 image).

For this specific unsupervised segmentation purpose, we proThe second part of the approach introduces a hierarchical

pose a complete hierarchical Markovian approach which hesmponent to perform the final segmentation. It is based on a
been validated on a number of real high resolution sonar imulti-level prior model involving both scale-causal interactions
ages. These experiments show that the proposed method allamwsd spatial interactions. The associated parameterization is de-
to get accurate and robust results for a wide range of noise leviégd in a consistent way from the one at the finest level, thanks
and image contents. to a multigrid technique. The ICE procedure previously em-
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fell

Fig. 13. (a)—(b) Real sonar image of pebbly sea-floor with no manufactured object, and associated SCM segmentation and (c)—(d) real sonardynsge of san

floor and ridges of sand, and associated SCM segmentation.

ployed is then extended to deal simultaneously with the different[2] C. Collet, P. Thourel, P. Pérez, and P. Bouthemy, “Hierarchical MRF

levels of this new prior model. This allows to refine the param-
eter estimates obtained in the first part of the approach. The final

modeling for sonar picture segmentation,” Rroc. 3rd IEEE Int.
Conf. Image Processingol. 3, Lausanne, Switzerland, Sept. 1996, pp.
979-982.

segmentation is eventually obtained by solving a coarse-to-fing3s] s. Guillaudeux and S. Daniel, “Optimization of a sonar image pro-

cascade of energy minimizations.

Like for other hierarchical approaches, the advantages of the[ 41
method are twofold. From a modeling point of view, this hier-
archical part of the approach offers an appealing ability to cap-

cessing chain: A fuzzy rules based expert system approaci®toc
OCEANS'96 Fort Lauderdale, FL, 1996, pp. 1319-1323.

S. Daniel and S. Guillaudeux, “Adaptation of a partial shape recognition
approach,” inProc. IEEE Conf. Systems, Man, Cybernetiost. 1997,

pp. 2157-2162.

turea priori characteristics of the underlying labeling process [5] S- bugelay, C. Graffigne, and J. M. Augustin, “Deep seafloor charac-

within a range of different scales. From an algorithmic point
of view, contextual information is propagated in a more effi-

terization with multibeam echosounders by image segmentation using
angular acoustic variations,” iRroc. SPIE'96 Int. Symp. Optical Sci-
ence, Engineering, Instrumentatiorol. 2847, 1996.

cient way. But based on our experiments, the proposed SCM§] V. Murino and A. Trucco, “Edge/region-based segmentation and recon-

approach seems to perform better, for sonar image segmenta-
tion, than other standard hierarchical techniques. Whereas tree-

struction of acoustic underwater images by Markov random fields,” in
Proc. Int. Conf. on Computer Vision Pattern Recogniti®anta Barbara,
CA, June 1999, pp. 408-413.

based, multiresolution, and multigrid segmentation techniqueg7] V. Murino, A. Trucco, and C. Regazzoni, “A probabilistic approach to

remain plagued by a significant number of false alarms (wrong
shadow detections), SCM technique exhibits a good robustness

the coupled reconstruction and restoration of underwater acoustic im-
ages,”IEEE Trans. Pattern Anal. Machine Intelol. 20, pp. 9-22, Jan.
1998.

against speckle noise (most false alarms are eliminated) whilgs] J. Besag, “On the statistical analysis of dirty picturels R. Statist. Soc.

preserving the border of shadows.

The complete twofold method thus allows an automatic and(®
robust extraction of shadows from a large variety of high resolu-
tion sonar images with strong speckle noise. Provided segmen-
tations can then be used for further treatments. We especial[i/o]

investigate a refined segmentation into three classieadow

sea-bottonteverberation, andchg, and the statistical identifi-
cation of objects lying on sea-floor based on the shape of thei[g 2

extracted cast shadow [38].
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