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Sonar Image Segmentation Using an Unsupervised
Hierarchical MRF Model

Max Mignotte, Christophe Collet, Patrick Pérez, and Patrick Bouthemy

Abstract—This paper is concerned with hierarchical Markov
random field (MRF) models and their application to sonar image
segmentation. We present an original hierarchical segmentation
procedure devoted to images given by a high-resolution sonar. The
sonar image is segmented into two kinds of regions: shadow (cor-
responding to a lack of acoustic reverberation behind each object
lying on the sea-bed) and sea-bottom reverberation. The proposed
unsupervised scheme takes into account the variety of the laws
in the distribution mixture of a sonar image, and it estimates
both the parameters of noise distributions and the parameters of
the Markovian prior. For the estimation step, we use an iterative
technique which combines a maximum likelihood approach
(for noise model parameters) with a least-squares method (for
MRF-based prior). In order to model more precisely the local
and global characteristics of image content at different scales,
we introduce a hierarchical model involving a pyramidal label
field. It combines coarse-to-fine causal interactions with a spatial
neighborhood structure. This new method of segmentation, called
scale causal multigrid (SCM) algorithm, has been successfully
applied to real sonar images and seems to be well suited to the
segmentation of very noisy images. The experiments reported in
this paper demonstrate that the discussed method performs better
than other hierarchical schemes for sonar image segmentation.

Index Terms—Hierarchical MRF, parameter estimation, sonar
imagery, unsupervised segmentation.

I. INTRODUCTION

I N high-resolution sonar imagery, three kinds of regions can
be visualized:echo, shadow, andsea-bottom reverberation.

The echo is caused by the reflection of the acoustic wave
on an object while the shadow zone corresponds to a lack
of acoustic reverberation behind this object. The remaining
information constitutes so-called sea-bottom reverberation.
On the pictures given by a classification sonar [1], the echo
features are generally less discriminant than the shadow shapes
for the classification of objects lying on the sea-bed. For this
reason, the detection of each object located on the sea-bottom
and its classification (as wreck, rock, man-made object, etc.)
are generally based on the extraction and the identification of
its associated cast shadow [2]. Thus, before any classification
step, one must segment the sonar image in terms of shadow
areas and sea-bottom reverberation areas.
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Few studies describe complete approaches allowing to per-
form automatically such a segmentation of sonar images, with
results that can be efficiently used afterward for object identi-
fication. Some of them are based on simple, and often ad-hoc,
clustering techniques (such as fuzzy-means) working on lumi-
nance mean and variance within small windows [3], [4]. In that
case, only a coarse grain classification is obtained, and no mod-
eling of the luminance within the different types of regions is
introduced. This latter aspect results in a lack of robustness for
this type of methods. Similar techniques can however include
more advanced elements of image formation modeling [5].

Unfortunately, this is not sufficient in general because the
speckle noise present in sonar images affects any simple seg-
mentation scheme. To cope with these problems, contextual in-
formation is important to be taken into account. This can be
donea posteriori, using either morphological filters [3], [4],
or MRF-based models [5]. As in many other low-level vision
issues (especially classification and segmentation issues), it is
known that the introduction of contextual dependencies is more
proper and efficient if considereda priori within the modeling
step. Such an approach is particularly well formulated within
MRF-based modeling framework.

The advantages of this consistent statistical framework are al-
ready exploited in the context of sea-bottom reconstruction from
range sonar data [6], [7]. For this task, which has received a
larger attention than segmentation problem from sonar commu-
nity, one copes with the fusion of high resolution side-scan sonar
images with independent low resolution bathymetric data, to re-
cover a three-dimensional (3-D) model of observed sea-floor.

As concerns the segmentation of sonar images, a MRF-based
model is used in [5], but, as already said, this is donea pos-
teriori, in order to “clean” the binary classification obtained
beforehand by a simple clustering technique.1 By contrast, we
think that MRF framework should be used to capture in a joint
and versatile way both a precise modeling of sonar luminance
in the different regions and a regularizing prior on the regions
to be recovered [8]. This is the type of approach that is investi-
gated in [2]and [9], and that we further study in this paper, with
a special emphasis on the additional problem of estimating the
parameters in an automatic way.

The generic problem ofunsupervisedMarkovian segmen-
tation is quite complex, and remains a very active domain of
research in the low-level vision community. The main difficulty

1Moreover, the classification method proposed in [5] is applied to images pro-
vided by a low frequency sonar, where the pixel resolution is around400�400

m. We suspect that the proposed model is not well-suited to the high resolution
sonar images we wish to segment for object classification purposes.
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is that the estimation of parameters is required for the segmenta-
tion, while one or several segmentations are usually required for
parameter estimation. To circumvent this difficulty, a scheme
is proposed in [10] where the estimation and the segmentation
are conducted alternatively. Although the method proved to
converge in the case of independent Gaussian models, it is not
clear that it can be extended to spatial MRF models. Besides,
the method requires very heavy computations. The alternative
approach we choose to solve the unsupervised MRF-based
segmentation problem consists in having a two-step process.
First, a parameter estimation step is conducted to infer both the
noise model parameters and the MRF model parameters. Then,
a second step is devoted to the segmentation itself based on the
values of estimated parameters.

For the parameter estimation step, we adopt an iterative
method called iterative conditional estimation (ICE) [11]–[13].
Similar to stochastic expectation-maximization (SEM) methods
[14], we shall see that it offers however more flexibility in the
choice of the actual techniques used for estimating each type
of parameters. In particular, it allows to accomodate easily the
“complete data” based estimators that seem the better suited to
the different parts of the model.

The data model we introduced in [15] has proved successful
in capturing the variety of the noise laws present in the distribu-
tion mixture of sonar images. The parameters involved by the
different laws that compose this model will be estimated in the
proposed scheme. As for the prior, we have introduced in [16]
a novel hierarchical model based on both hierarchical and spa-
tial Ising-type interactions. This prior has proven suitable for the
purpose of segmenting sonar images with strong speckle noise.
We show here that its parameters can be estimated within the
ICE approach, and that it can used in conjonction with above-
mentionned data model in order to yield unsupervised sonar
image segmentations of good quality.

This paper is organized as follows. In Section II, we detail
the estimation step for the chosen data model combined, at
this stage, with a standard spatial (anisotropic) Ising prior. The
application of the estimation procedure is illustrated on both
synthetic pictures and real sonar images. Section III presents
the segmentation step and the proposed hierarchical prior
model that is actually used. Experimental results obtained by
the method on real scenes are reported in Section IV, along with
comparisons to those obtained by other classical MRF-based
approaches. Then, we conclude with some perspectives.

II. PARAMETER ESTIMATION

A. Introduction

First, let us consider the estimation of the noise model param-
eters. To perform this task, a number of methods use the image
histogram. Most of them (Fourier, polynomials, and cumulate
histogram methods) are inefficient in case of important noise
and cannot be used to estimate a mixture of not purely Gaussian
laws [17].

Other techniques have been proposed to determine a max-
imum likelihood estimate of the noise model parameters from a
given image. Expectation maximization (EM) or stochastic ex-
pectation maximization (SEM) algorithms can be used in the

case of Gaussian distribution mixtures [14], [18]. However, in
the specific case of sonar imagery, one has to deal with a mixture
of laws that are not all Gaussian [1], and these techniques, like
the former ones, are not well suited. By contrast, ICE technique
is able to cope with the various non-Gaussian distributions that
are relevant in this context, as experimentally demonstrated in
[1].

Let us stress out that all the abovementionned approaches rely
on the restrictive assumption that all the underlying “hidden”
class labels areindependent. When these hidden labels are con-
sidered as mutually interacting within a prior Gibbs distribution
(or, equivalently, they are assumed to constitute a MRF), new
parameters appear which are even more intricate to estimate.
However, MRF modeling provides a powerful tool to incorpo-
rate ana priori knowledge about the spatial statistics of the label
field, and it is thus worth the pain.

Using Markovian modeling, the prior knowledge about
the “scene” is incorporated within an energy function which
consists of a sum of appropriate local interaction potentials
involving a few parameters. In many works that address
segmentation and classification problems with this formalism,
the parameters of the prior model are either assumed to be
known, or determined in an ad-hoc fashion [6], [7], [19]–[22].
However, in our application, it is difficult to find manually
appropriate values for the prior parameters since the real
scenes may vary dramatically from one image to another
(e.g., sea-floor with pebbles, dunes, ridges, sand, etc.). Thus,
estimating these parameters in an automatic way is a crucial
issue for the practical relevance of the labeling technique. One
way to estimate these parameters from a given image is to use a
simulated annealing-based method which alternates the estima-
tion of parameters and the classification itself, for a number of
iterations [23]. Unfortunaltely, this method is slow even with a
first order isotropic model ruled by a single parameter. In [24],
the algorithm is extended to Markovian prior. The resulting
iterative scheme also requires a lot of computing time, and may
get caught in local maxima without reaching a proper estimate.
Also note that the EM formalism does not allow explicitely to
estimate the parameters of standard (Ising or Potts) labeling
priors. It only gives access to local conditional specifications
which define imperfectly the prior. In [25], the authors propose
to implement the estimation of the parameters associated with
clique functions as a neural network whose weights are learned
from examples by the error backpropagation algorithm. This
method requires a learning step from a training data set, which
can be problematic.

Considering the type of model we are going to deal with (non-
Gaussian data likelihoods such as Weibull or Rayleigh laws,
and Ising-type prior), we found more appropriate to use the ICE
framework, which is more general and flexible [26], for the in-
ference of parameters. In the following we first briefly review
the ICE approach in case of generic modeling elements. We
shall then specify the underlying estimators that we used in our
context, and further describe how the proposed ICE procedure
is initialized and led.

B. Iterative Conditional Estimation

We consider a couple of random fields , with
the field of observations located on a lattice
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Fig. 1. Second-order neighborhood and associated labeling notations; the
four types of two-site cliques and associated parameters in the anisotropic
Ising model.

of sites , and the label field. Each of the
takes its value in and each in

shadow , sea bottom . The distribution of is
defined, first, by , the distribution of supposed to be
stationary and Markovian, and secondly, by the site-wise con-
ditional data likelihoods , which depend on the
concerned class label . If the data are assumed to be indepen-
dentconditionedon the labeling process , one gets

. We shall stick to this assumption throughout. The
observable is called theincomplete datawhereas consti-
tutes thecomplete data. Prior distribution depends on
some parameter vector , while data likelihood de-
pends on another parameter vector. Joint and posterior dis-
tributions and

thus depend on . This depen-
dence will be made explicit when necessary [e.g., denoting pos-
terior distribution as .

The single scale segmentation of sonar images in two classes
can be viewed as a statistical labeling problem according to a
global Bayesian formulation in which the posterior distribution

has to be maximized [27]. This
is the maximuma posteriori(MAP) estimation. In the standard
case of Ising-type prior [8], the corresponding posterior energy
to be minimized is

(1)

where , is the delta Kro-
necker function, and , , or depending on
whether the pair of neighboring sites (relative to the second-
order neighborhood system), orclique, is horizontal, ver-
tical, right diagonal, or left diagonal (see Fig. 1). In this energy
setting, the first energy term expresses the adequacy between
observations and labels, whereas the second one is related to
thea priori.

To perform the unsupervised segmentation, we have to esti-
mate the parameter vectors and . To this end, we resort,
within a first step, to an iterative method of estimation called
iterated conditional estimation (ICE) [11]. This method first re-
quires to get two estimators and which provide
respectively an estimate of based on a configuration, and
an estimate of based on a complete data configuration .
Random field being unobservable, the iterative ICE proce-
dure defines parameter fits and at step as
the conditional expectations of and given and the
current parameter fits and . The fixed point of this iter-
ation corresponds to the better approximations ofand in
terms of the mean squares error [13]. By denotingthe con-

ditional expectation based on , this iterative
procedure is defined as follows:

• one takes an initial value ;
• is computed from and from using

(2)

(3)

The computation of these expectations is impossible in prac-
tice, but we can approach them thanks to the law of large num-
bers

(4)

(5)

where are realizations drawn from the pos-
terior distribution . As it turns out, is
sometimes found sufficient (or even better) to get good estimates
when convergence is reached, in case of stationary prior with
low-dimensional parameter vector [11]. It is the case in our un-
supervised classification model, and we actually chose
in our experiments.

By letting free the choice of estimators and , the ICE
procedure offers a great deal of flexibility which allows an effi-
cient adaptation to the MRF model at hand. Contrary to EM-type
approaches, the ICE allows to handle properly the estimation of
Ising-type prior parameters, using the least-squares (LSQR) es-
timator [28] introduced by Derinet al. (see Section II-C2). As
for , we used a maximum likelihood (ML) approach
that proved well suited in our context where the speckle distri-
bution in the sonar images is not exactly known, and may vary
according to experimental conditions (see Section II-C1).

Finally, we need two other ingredients in order to use the ICE
procedure, namely:

• a technique to get an initial value which is not too far
from the optimal parameters. To this end we use a clus-
tering approach which is described in Section II-D.

• a way of simulating realizations from posterior distribu-
tion . This is performed by using the Gibbs
sampler [29].

C. Estimation of the Model Parameters for the Complete Data

1) Noise model parameters:The Gaussian law, ,
is a well-adapted degradation model to describe the luminance

within shadow regions (where noise is essentially due to elec-
tronic aspects) [1]. We thus let

(6)

The corresponding ML estimator is defined by the empirical
mean and the empirical variance. If 2

pixels are located in theshadowareas, we have

2Recall thate stands for the “shadow” label whilee corresponds to “sea-
bottom” class.
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Fig. 2. Various realizations of the second-order anisotropic Ising model, corresponding to specified parameters reported in Table I.

In the reverberation areas, Weibull law provides an appropriate
model for luminance to cope with speckle noise phenomenon
[30]. This law implies a shape parameter that can be estimated
from complete data. It turns out that estimated values are often
close to 2. We thus restrict ourselves to Rayleigh law which
exactly corresponds to 2 shape parameter [31]. More precisely,
we model the conditional density function for thesea-bottom
class by a shifted Rayleigh law

(7)

If is the number of pixels of the
sea-bottom regions, we obtain the following expression of the
ML estimator [1]:

If required [cf. Fig. 4(a)], proportions and
of the mixture of laws (independent

from can be approximated by the empirical frequencies, i.e.,
.

2) A priori model parameters:At this stage, we con-
sider the standard prior model introduced in (1). It is a
second-order anisotropic3 Ising model ruled by four parame-
ters (see Fig. 1). The corresponding
local conditional specification can be written down as fol-
lows. If is some site and denotes its neighborhood,
the probability that given some configuration

on the neighbor-
hood (refer to Fig. 1) is

(8)

where

3The concept of anisotropy we refer to throughout the paper is related to the
dependence of local interactions on the direction modulo2�, that is only on the
orientation.

with . Considering the following expression for the
two possible values of , (shadowlabel) and

(sea-bottomlabel), for a same neighborhood configuration
, one gets

(9)

where is the unknown parameter vector to be estimated. The
model being stationary (shift-invariant), the second ratio can be
approximated for each possible neighborhood configuration,
using simple histograming:

By substituting these empirical ratio estimates in (9), we obtain
linear equations in four unknowns. A given combi-

nation may of course not occur at all in the label fields.
In this case, we cannot obtain linear equation (9) because of
the logarithm. Moreover, neighborhood configurations such that

(e.g., if ,
, , and imply equations of type 0

constant. Therefore we simply ignore these cases. The over-de-
termined linear system of equations thus obtained is solved with
the least-squares method.

This method for estimating Ising-type (and Potts-type) clique
parameters from histograming has been proposed by Derinet al.
[28]. It is not iterative and provides estimated parameters that
are optimal in the least-squares sense.

We now present some results of this parameter estimation
procedure, obtained on various realizations of the second-order
Ising model, for different parameters (see Fig. 2). It is a
complete data problem, and the estimates provided by LSQR
estimator are compared to real parameters in Table I. These
few examples illustrate the accuracy that can be achieved by the
method in case of observed data.

Synthetic textures presented in Fig. 2 also show that the Ising
model with its four parameters offers an interesting variety of
priors to capture different types of sea-floor: Fig. 2(a) shows in-
homogeneous shapes reminiscent to segmentation of a pebbly
sea-bottom; Fig. 2(b) exhibits homogeneous oriented shapes
that are representative of segmented dunes; geometric shapes
within Fig. 2(c) recall the shadows of manufactured objects;
Fig. 2(d) looks like the segmentation of an image containing
ridges of sand.
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Fig. 3. (a) Real256 � 256 sonar picture (object and rock shadows on a sandy sea-floor), (b) representation of the three-component samples computed from a
partitioning of the original image into 1764 windows of size6�6, and (c) block-wise segmentation of the original image corresponding to the clustering of sample
by thek-means procedure.

TABLE I
SPECIFIEDa priori PARAMETERS� FOR THEANISOTROPICSECOND-ORDER

ISING MODEL, AND ESTIMATED PARAMETERS �̂ OBTAINED FROM

REALIZATIONS

D. Initialization

The initial parameter values have a significant impact on the
rapidity of the convergence of the ICE procedure and on the
quality of the final estimates. In our application, we use the fol-
lowing method. The initial parameter values of the noise model

are determined by applying a small nonoverlapping sliding
window over the image and by computing the empirical mean
and variance of luminance, as well as the minimum grey level,
for each location of the window. Each window location thus pro-
vides a three-component “sample” . The collected samples

are then clustered into two classes using
the -means clustering procedure [32]. This algorithm uses a
similarity measure that is the Euclidean distance between sam-
ples. For a given assignment of the samples among the
clusters, an objective function is then defined by

where the second sum is over all samples in theth cluster with
center . It is easy to show that for a given set of samples and
of class assignments, is minimized by choosing to be the
average sample of theth cluster. For given centers, is mini-
mized by assigning to the cluster whose center is the closest.

A number of other criteria are given in [32]. The complete al-
gorithm is as follows.

1) Choose initial cluster centers . They could
be picked arbitrarily, but are usually defined by

2) At the th step, assign sample , , to
cluster if

Each sample is reassigned to the cluster with the nearest
center. In the case of ties, the assignment is arbitrarily
chosen among the competing clusters.

3) Let denote theth cluster after Step 2. Determine new
cluster centers by

where is the number of samples in . Thus, the new
cluster center is the mean of the samples in the cluster.

4) Repeat until convergence is achieved ( ).
Although it is possible to find pathological cases where con-

vergence never occurs [32], the algorithm does converge in all
tested examples. The rapidity of convergence depends on the
number of clusters, the choice of initial cluster centers, and the
order in which the samples are considered. In our application,

.
One has to find a good compromise for the size of the window

used in the constitution of samples. On the one hand, a small
window increases the accuracy of the segmentation, hence pro-
viding a more precise estimation of the distribution mixture. On
the other hand, decreasing the number of pixels on which the
three attributes are computed may result in a higher misclassifi-
cation error. In our application, satisfactory results are obtained
with a sliding window. Fig. 3 illustrates the-means clus-
tering procedure (and resulting segmentation) on a real sonar
image.

Once the block-wise segmentation associated to final clus-
tering is obtained, ML estimation is applied to it to get initial
data parameter estimate . Based only on these parameters, a
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first pixel-wise ML segmentation is readily obtained according
to

A first estimation of prior parameters can then be conducted on
this segmentation, yielding .

E. Parameter Estimation in the Incomplete Data Case

We can now summarize the complete parameter estimation
procedure for the partially observed model defined as

(10)

where is the Gibbs distribution of an Ising-type MRF
with parameters ,
(within shadow area) is a Gaussian law with parameters ,
and (within sea-bottom area) is a shifted
Rayleigh law with parameters .

• Parameter initialization. As already explained, the initial
parameter fit is derived from -means
clustering of image blocks.

• ICE procedure. is computed from in the fol-
lowing way.

• Using the Gibbs sampler, realizations ,
are simulated according to the posterior distri-

bution .
• For each , the parameter vector

is estimated as by Derin et al. algorithm,
and is estimated as with the ML es-
timator of each class.

• is obtained by averaging
.

We designed a stopping criterion based on the variance of the
estimators, which is empirically computed on thelast param-
eter fits (where is a fixed parameter). When this indicator of
the “stability” of the procedure falls below a given threshold,
the sequence of is assumed to have reached an equilibrium
and the procedure is ended. One proceeds to the actual segmen-
tation using the estimated parameters.

Note that, since shifted Rayleigh law (7) forbids luminances
below , no pixel with luminance below the initial estimate
of would ever be classified as “sea-bottom” afterwards. As
a consequence, any new estimate of in the ICE procedure
would be greater or equal to the initial estimate. In order to
soften this constraint (i.e., to allow a possible decreasing of
estimate), we slightly modified , such that it now
associates a very low, but non-null, likelihood to pixels with a
grey level lower than [27].

We calibrate the weight of the “stochastic” aspect of the ICE
by choosing , the number of realizations drawn from the pos-
terior distribution. When increases, empirical averaging of es-
timator get closer to its posterior expectation, and each step
of the ICE procedure becomes almost deterministic. The choice
of a small value for (e.g., can increase the efficiency
of the method by letting largely randomized each iteration [11].
This is what we observed in our experiments.

Fig. 4. (a) Image histogram of the sonar image from Fig. 3(a) and the two
weighted mixture components that are estimated. (b) Evolution of thea priori
parameter estimateŝ� .

The quality of the parameter estimation is difficult to as-
sess in absence of “true” values to compare with. As for the
data model, we can roughly perform such an evaluation by
comparing the grey level histogram of the image with the two
components, and , of the estimated
mixture weighted according to their estimated proportions. In
Fig. 4(a) we propose such a visual assessment, by superim-
posing the two weighted densities estimated from a real sonar
image, on the histogram of this image. One can appreciate the
good fitting thus exhibited. This example illustrates the ability
of the model to capture, thanks to the described ICE technique,
the mixture of distributions involved in a real sonar image. The
values of associated prior parameter estimates for that example
are plotted against the number of iterations in Fig. 4(b). Al-
though convergence is not theoretically established, we always
observed it in practice. Stability is reached after around 15
iterations [requiring 60 s on a sonar picture of size 256256
pels, with a 43P IBM Workstation (200 MHz)]. The original
and final estimates for all parameters are given in Table II.

Now that we are able to estimate both the parameters of the
mixture-based data modeling and those of the prior Ising mod-
eling of the unknown labeling, we can turn our attention to the
actual classification issue itself.
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TABLE II
ESTIMATED PARAMETERS OF THEMIXTURE DATA MODEL AND

OF THE SECOND-ORDER ANISOTROPICPRIOR MODEL, FOR THE

SONAR IMAGE IN FIG. 3(a)

III. U NSUPERVISEDHIERARCHICAL SEGMENTATION

A. Introduction

In order to capture more efficiently the larger scale character-
istics of sonar image contents, the standard second-order Ising
prior we have used so far, should be improved. This can be done
by using a larger neighborhood structure, but this would increase
dramatically the complexity of segmentation and parameter es-
timation procedures.

To circumvent this difficulty, different multiresolution
schemes have been proposed. In [33], a tree-based hierarchical
auto-regressive modeling is introduced to capture the multi-
scale structure of images that are similar, to some extent, to
sonar images (namely, they deal with synthetic aperture radar
(SAR) images). In this case, the hierarchical approach remains
however at the level of data modeling, and the segmentation
itself is then performed in the maximum likelihood (ML)
sense, in-scale causality giving complete access to required
likelihoods.

With MRF-based labeling priors we are looking at, a
multiresolution approach can be classically introduced as
follows: a hierarchical decomposition of the original image to
be segmented is computed and “similar” labeling MRF’s of
proper sizes are attached to the different levels of resolution.
Based on this structure, the segmentation is then performed in
a coarse-to-fine way, using at each level the segmentation at
previous level to get an initialization [9], [34]. The problem
with such approaches lies in the issue of deriving the pa-
rameters of both prior model and data model at each level,
given those of the finest level. As for data model parameters,
a consistent treatment of this issue is introduced in [34] for
Gaussian “textures.” For other data and/or prior models, the
issue remains widely open.

Another approach consists in devising a hierarchical labeling
MRF which simply interacts with the original data (no multires-
olution decomposition of the data is performed in this case). A
number of such models have been proposed. Boumanet al. in-
troduced a peculiar hierarchical MRF defined as a coarse-to-fine
Markov chain of levels [35]. The associated interaction struc-
ture is a quadtree. It allows to devise a noniterative two-sweep

Fig. 5. Hierarchical labeling structure involved in the SCM method; sites in
light gray hold variables that interact withX within the posterior conditional
distributionP .

Fig. 6. “Coarse-to-fine” minimization strategy.

segmentation procedure (in case of known parameters), but it in-
duces undesirable spatial nonstationarities. As a fact, the model
is not shift-invariant since two pixels that would be adjacent
in terms of spatial lattice may be actually “far” apart in the
graph structure. In [36], Katoet al. introduced a novel hierar-
chical model: they considered a pyramidal label field with a
three-dimensional neighborhood system. Unfortunately, the re-
sulting parameter estimation and segmentation procedures re-
quire a lot of computing time, even for the case (considered
therein) where the spatial part of the prior corresponds to the
first-order isotropic Ising model. Therefore, it did not appear to
us as a good candidate in the complex context of sonar imagery
where numerous sources of anisotropy and content variability
are to be met (e.g. sea-floor with pebbles, dunes, ridges, sand,
tires or various objects, etc.)

Herein, we propose a different hierarchical approach com-
bining a scale-causal specification (modeling part) with a
coarse-to-fine multigrid minimization technique (algorithmic
part). As in [36], this model involves local interactions between
spatially adjacent sites as well as parent-child interactions
between sites belonging to consecutive levels. We will refer
to this approach as scale causal multigrid (SCM). From an
algorithmic point of view, this structure will allow to propagate
efficiently contextual information. In terms of modeling, it
offers the opportunity to capture somea priori characteristics
of the underlying labeling process within a range of different
scales.

The use of this original SCM prior for unsupervised segmen-
tation requires an adaptation of the parameter estimation tech-
nique we used for nonhierarchical Ising prior. This shall be ex-
posed, after the coming presentation of the SCM approach.
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Fig. 7. Realizations of the hierarchical SCM model for the specified parameters reported in Table III.

B. SCM Hierarchical Modeling and Segmentation

The SCM model first consists in a hierarchy of
label fields which interact with the original image(see Fig. 5).
Labeling is defined on grid which results from the re-
duction of by in each direction. The segmentation of
sonar images in two classes is now stated as a causal cascade of
conditionalMAP estimations

and

(11)

The definition of the different inter-level transition distribu-
tions is based on the monoresolution model intro-
duced in Section II-B. We first define as the following
Gibbs distribution:

with

(12)

where

is the energy function defined in (1) applied to, and a new
parameter, , is introduced in inter-level clique potentials.
We now derive the other inter-level transition distributions
extending the multigrid construction technique proposed in
[37] to the two-level energy in (12).

Let be the “projection” from to which
associates, by duplication, a blockwise constant configuration
on to any configuration on . Using the multigrid approach
from [37], we can define for each

with

(13)

TABLE III
SPECIFIEDA PRIORIPARAMETERS� FOR THESCM MODEL, AND ESTIMATED

PARAMETERS �̂ OBTAINED FROM REALIZATIONS

From (12) and (13), simple computations provide [37]

(14)

with

(15)

where is the block of the “descendants” of(see
Fig. 5), and stands for the data attached to
that block. It is readily established that the intra-level clique pa-
rameters, , , associated to the four different
possible orientations of clique , and the inter-level
clique parameter are obtained by weighting those in
(12) according to [37]

(16)

where , , accounts for the number of site cliques
straddling two blocks that constitute a block clique of
type , and is the number of site cliques contained in one

block.
Conditional MAP estimation at level amounts to min-

imizing in . The interaction structure
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Fig. 8. Unsupervised SCM segmentation algorithm.

concerned by this minimization is the following: each variable
interacts with the (unknown) second-order neighborhood

labeling , with the label of its parent provided by
minimization at level , and with the block of data .

Finally, at coarsest level, we define

with

(17)

Energy is the same as the one in (14) with , apart from
the last inter-level term which is obviously absent in this case.

We now have to deal with the coarse-to-fine recursive esti-
mation (11). Each of the associated energy minimization prob-
lems is coped with the ICM algorithm [8]. The deterministic
iterative minimization at level is initialized by the interpola-

tion of the labeling previously obtained at coarser
level (see Fig. 6).

C. Estimation of Hierarchical Model Parameters

The introduction of the hierarchical modeling requires to
re-address the issue of parameter estimation. This has been
decomposed into two steps. We first let and use the
estimates of parameters , and provided by
the nonhierarchical ICE procedure described in Section II-B,
to solve the SCM labeling problem (11).4 The first multigrid
segmentation thus obtained is used in turn to re-es-
timate the whole set of parameters (including of the SCM

4Since� = 0, we deal at this stage with the multigrid MAP estimation
procedure introduced in [37], based on the ICE parameter estimates.
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Fig. 9. (a) Synthetic sonar image of a spherical object lying on a sandy sea-floor and (b)–(f) two-class segmentation results and associated rates of correct
classification.

model. Once this is done, a final SCM labeling is estimated in a
coarse-to-fine way. We shall assess, with coming experimental
comparisons, the impact of the SCM approach in terms of
both final parameter estimates and final image segmentation,
as compared to the nonhierarchical unsupervised approach
introduced in Section II.

Given the hierarchical segmentation
the ML estimation of data model parameters remains
unchanged. It is provided by . As concerns the
estimation of parameters which
define the prior part of SCM model we need to extend the
nonhierarchical method presented in Section II-C2. We derived
this extension by expressing relation (9) at each level of the
pyramidal structure, conditioned on the labeling of above
level. Using empirical approximations computed on given

, one gets for each of the possible

configurations of the following set of
equations:

with diagonal matrix diag . Vector
corresponds to the clique parameters of posterior conditional
Gibbs distribution (13). We obtain linear equations in

’s. We ignore equations associated with any combination
that does not occur in the label fields and equations for

which . The resulting over-determined
linear system of equations is solved in the least-squares sense.

Like for nonhierarchical model, we present some examples
of estimation of the SCM model, based on various realizations
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Fig. 10. (a) Real sonar image involving object and rock shadows and (b)–(f) two-class segmentation results.

of the model itself (see these samples in Fig. 7). The obtained
estimates are compared to the specified values of the parame-
ters in Table III. It appears that the SCM model offers a larger
range of modeling possibilities than the one of the monoresolu-
tion model (with the expected ability of capturing in a joint way
patterns of very different scales), and that good estimates of its
parameters can be obtained from a given hierarchical labeling
configuration.

Before we report experiments of unsupervised segmentation
of sonar image with SCM approach, we summarize the whole
procedure in Fig. 8.

IV. EXPERIMENTAL RESULTS

The whole SCM algorithm actually provides three succes-
sive unsupervised segmentations (see Fig. 8): the first one

is obtained by ICM from the nonhierarchical modeling (10),
with estimated parameters and

; a second hierarchical segmentation
is obtained by coarse-to-fine minimization on the SCM model
with same parameters as before and ; the last segmen-
tation is obtained as the previous one, but with re-estimated
parameters and

. In the following,
we shall refer to these three outputs as the ICM, MG (for
multigrid), and SCM segmentation, respectively.

We have compared on a number of images these three seg-
mentations to those obtained by two other standard techniques:
the noniterative SMAP algorithm on a quadtree proposed by
Boumanet al. [35], and a classical multiresolution (MR) ap-
proach where a multiresolution pyramid of images is derived
and a set of “similar” spatial models is considered on the dif-
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Fig. 11. (a) Real sonar image of sandy sea-floor with the shadow of a man-made object and (b)–(f) two-class segmentation results.

ferent resolution levels. In both cases, data modeling is the same
as in SCM (mixture of Gaussian and Rayleigh laws) with param-
eters . The only prior parameter involved by the tree-based
model of Boumanet al.(the probability that a node of the tree ex-
hibits the same label as the one of its parent) has been manually
tuned. At each level of the model used for MR segmentation,
the anisotropic second-order Ising MRF with parametersis
used as a prior. In all experiments, MG, SCM, and MG seg-
mentations were obtained on three levels, whereas the SMAP
estimation takes place on levels, by definition.

We first report experimental comparisons obtained on a syn-
thetic sonar image (Fig. 9) of a spherical object lying on a sand
sea-bed. The image is simulated by using a ray tracing pro-
cedure. The different segmentations obtained on this example
are presented in Fig. 9, along with their associated rates of cor-
rect classification. As visible from the different rates of success
(all are at least 98%), this is an easy example, and one has to

be careful when trying to extrapolate these results toward real
sonar images. Nevertheless, we would like to note that the com-
plete SCM approach slightly out-performs the others in terms of
global classification performance, while providing a classifica-
tion that is visually cleaner than the others. As concerns the es-
timated parameters for this synthetic example, one can observe
that the parameter of SCM model remains null: this shows
that the inter-level part of the model is not relevant on this par-
ticular synthetic image. It is not always the case however with
real sonar images, as coming experiments will show.

Thorough experiments have been conducted on real sonar
images. Figs. 10–12 show the ICM, MG, SMAP, MR, and
SCM segmentation results obtained on images with various
contents. The associated SCM parameter estimates are
given in Table IV. The size of these pictures is 256256 pixels
corresponding to a sea-floor surface of 25 m25 mm. (The
DUBM41 sonar frequency is around 500 KHz.)
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Fig. 12. (a) Real sonar image of sandy sea-floor with the cast shadow of a tire and (b)–(f) two-class segmentation results.

Let us first stress that the estimated prior parameters are quite
different according to the type of objects involved in the input
image (man-made or natural objects). In presence of small
shadows, it also turns out that estimated values of parameters

are significantly smaller (see Table IV). The resulting
model is then able to extract shadows of only a few pixels
large while avoiding false alarms. We can also notice that the
estimated noise model parameters depend a lot on the nature of
the sea-floor (e.g., sandy or pebbly sea-floor, etc.).

In some cases (e.g., on image from Fig. 12), the final esti-
mate for remains null and the SCM approach amounts to the
multigrid segmentation, but witha multigrid refinement of all
the other parameter estimates. Even in these cases, final esti-
mates of other parameters are different from those issued from
the first nonhierarchical ICE step. The difference between the
parameter values which MG and SCM segmentations respec-
tively rely on can be assessed on the example from Fig. 3(a)
[same image as in Fig. 10(a)] by looking at in Table II and

reported for Fig. 10 in Table IV.
Table V presents the computational cost associated to the

different segmentations we compared. It is expressed in terms
of both cpu times (on a 200 MHz 43P IBM Workstation)
and number of “equivalent iterations.” One “equivalent iter-
ation” corresponds to the update of labels. One complete
image sweep of ICM algorithm at level (for MR, MG,
or SCM segmentation) thus amounts to equivalent it-
erations. As expected, the noniterative SMAP requires less

computation than any other technique. However, its peculiar
tree-based neighborhood structure does not seem able to cap-
ture properly the local properties of sonar images, and this
model often produces blocky segmentations at the boundaries
of the shadows. The other less expensive technique is non-
hierarchical ICM which also provides segmentations of lower
quality. Proposed SCM method is as expensive as MR tech-
nique for improved results, and requires twice as much time
as the multigrid (MG) segmentation does. The latter method
being an ingredient of the former one, this was expected.
We do believe that reported experiments demonstrate that the
extra cost is worth the pain.

It is seen from Figs. 10–12 that SMAP, ICM, MG, and MR
segmentations are all plagued by a significant number of false
alarms (wrong shadow detections) due to the speckle noise ef-
fect. In contrast, SCM performs better: it exhibits a good robust-
ness against speckle noise (most false alarms are eliminated)
while preserving the border of shadows. The versatility of SCM
prior is further demonstrated by two other examples (Fig. 13).
Indeed, it allows to get satisfactory segmentations even in case
of numerous small rocks [Fig. 13(a) and (b)], as well as in pres-
ence of sand ridges with strong orientation [Fig. 13(c) and (d)].

These experiments show that the shadows of both manufac-
tured objects and rocks are better segmented by SCM method
than by other methods to which it is compared. In particular, the
extracted cast shadow of the manufactured object (a cylinder) in
Fig. 10 exhibits a regular geometric shape (contrary to the cast
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TABLE IV
ESTIMATED PARAMETERS BY SCM APPROACH ONSYNTHETIC AND REAL SONAR IMAGES

TABLE V
COMPUTATIONAL COST OF THESEGMENTATION TECHNIQUES, EXPRESSED IN

NUMBER OF “EQUIVALENT ITERATIONS” (TOTALNUMBER OFSITE UPDATES/N),
AND CPU TIMES, FOR256� 256 SONAR IMAGES

shadow of the rock) which is in excellent agreement with the
ground truth provided by an expert.

V. CONCLUSION

In this paper, we addressed the problem of segmenting high
resolution sonar images into shadow areas and sea-bottom areas.
Although this issue is important in many applications relying on
this kind of images, it has only received few attention in the liter-
ature, where people mainly address the problems of sonar image
restoration and surface reconstruction from 3-D sonar data.

For this specific unsupervised segmentation purpose, we pro-
pose a complete hierarchical Markovian approach which has
been validated on a number of real high resolution sonar im-
ages. These experiments show that the proposed method allows
to get accurate and robust results for a wide range of noise levels
and image contents.

The modeling relies on the joint use of Ising-type priors and
appropriate non-Gaussian conditional luminance distributions
(a Gaussian likelihood in shadow areas, but a Rayleigh likeli-
hood in sea-bottom areas). Based on these two ingredients, the
approach is composed of two parts. The first part consists in
a nonhierarchical estimation of all model parameters using the
flexible ICE technique. Based on limited sampling, it allows
to estimate the parameters of the two different data distribu-
tions with maximum likelihood techniques, and to recover the
different parameters of the anisotropic prior with least-squares
techniques. The versatility of ICE would allow to deal with other
types of distributions if required. In particular, Weibull distribu-
tion (which Rayleigh law is a special instance of) can also be
used to model the sea-bottom reverberation.

The initialization of the iterative parameter estimation
scheme is provided by a simple clustering technique based on
luminance distribution in small windows. Although conver-
gence is not theoretically established, we observed it in all
experiments (on more than thirty real sonar images,
and one image).

The second part of the approach introduces a hierarchical
component to perform the final segmentation. It is based on a
multi-level prior model involving both scale-causal interactions
and spatial interactions. The associated parameterization is de-
rived in a consistent way from the one at the finest level, thanks
to a multigrid technique. The ICE procedure previously em-
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Fig. 13. (a)–(b) Real sonar image of pebbly sea-floor with no manufactured object, and associated SCM segmentation and (c)–(d) real sonar image of sandy sea
floor and ridges of sand, and associated SCM segmentation.

ployed is then extended to deal simultaneously with the different
levels of this new prior model. This allows to refine the param-
eter estimates obtained in the first part of the approach. The final
segmentation is eventually obtained by solving a coarse-to-fine
cascade of energy minimizations.

Like for other hierarchical approaches, the advantages of the
method are twofold. From a modeling point of view, this hier-
archical part of the approach offers an appealing ability to cap-
ture a priori characteristics of the underlying labeling process
within a range of different scales. From an algorithmic point
of view, contextual information is propagated in a more effi-
cient way. But based on our experiments, the proposed SCM
approach seems to perform better, for sonar image segmenta-
tion, than other standard hierarchical techniques. Whereas tree-
based, multiresolution, and multigrid segmentation techniques
remain plagued by a significant number of false alarms (wrong
shadow detections), SCM technique exhibits a good robustness
against speckle noise (most false alarms are eliminated) while
preserving the border of shadows.

The complete twofold method thus allows an automatic and
robust extraction of shadows from a large variety of high resolu-
tion sonar images with strong speckle noise. Provided segmen-
tations can then be used for further treatments. We especially
investigate a refined segmentation into three classes (shadow,
sea-bottomreverberation, andecho), and the statistical identifi-
cation of objects lying on sea-floor based on the shape of their
extracted cast shadow [38].
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