SONCeraft: A Tool for Construction, Simulation and
Analysis of Structured Occurrence Nets

Bowen Li, Brian Randell, Anirban Bhattacharyya, Talal Alharbi, and Maciej Koutny
School of Computing, Newcastle University
Newcastle upon Tyne NE1 7RU, UK
{bowen.li2, brian.randell, anirban.bhattacharyya, talal.alharbi, maciej.koutny }@ncl.ac.uk

Abstract—This paper presents SONCraft - an open source tool
for editing, simulating, and analysing Structured Occurrence Nets
(SONs), which is a Petri net-based formalism for portraying the
behaviour of complex evolving systems. The tool is implemented
as a Java plug-in within the Workcraft platform, which is a flex-
ible framework for the development and analysis of Interpreted
Graph Models. SONCraft provides an easy to use graphical
interface that facilitates model entry, supports interactive visual
simulation, and allows the use of a set of analytical tools. We
give an overview of SONCraft functionality and architecture.

Index Terms—SONCeraft, system modelling and analysis, struc-
tured occurrence nets, complex evolving systems

I. INTRODUCTION

The concept of Structured Occurrence Nets (SONs) [8],
[17] is an extension of that of Occurrence Nets (ONs) [4].
ONs are directed acyclic graphs that represent causality and
concurrency information concerning a single execution of a
system. The SONs formalism has been introduced to facilitate
the portrayal and analysis of the behaviours, and in particular
failures, of complex evolving systems. Such systems are com-
posed of a large number of sub-systems which may proceed
concurrently and interact with each other and with the external
environment while their behaviour is subject to modification
by other systems. Examples include a large hardware system
which suffers component break-downs, reconfigurations and
replacements, a large distributed system whose software is
being continually updated (or patched), a gang of criminals
whose membership is changing, and an operational railway
system that is being extended. (In these latter cases we are
regarding crimes and accidents as types of failure.) The un-
derlying idea of a SON is to combine multiple related ONs by
using various formal relationships (in particular, abstractions)
in order to express dependencies among the component ONSs.
By means of these relations, a SON is able to portray a more
explicit view of system activity, involving various types of
communication between subsystems, and of system upgrades,
reconfigurations and replacements than is possible with an
ON, so allowing one to document and exploit behavioural
knowledge of (actual or envisaged) complex evolving systems.

Communication Structured Occurrence Nets (CSONs) are
a basic variant of structured occurrence nets that enable
the explicit representation of synchronous and asynchronous
interaction between communicating subsystems. (The original
occurrence net concept provided no means of distinguishing

the events and states that resulted from different subsystem’s
activities.) A CSON is composed of a set of distinct component
ONs representing separate subsystems. When it is determined
that there is a potential for an interaction between subsystems,
an asynchronous or synchronous communication link can be
made between events in the different subsystems’ ONs via a
special element called a channel place!.

b0 fo b1 f1 b2
© 1 0 1 O
; i
O¢ oF
© 1 -0 1 O
c0 e0 ct et c2

Fig. 1. A CSON with two interacting occurrence nets.

Figure 1 shows a CSON which consists of two interacting
occurrence nets connected via two channel places (portrayed
graphically by bold circles). The thick dashed connection
between events fj and eq is an asynchronous communication,
which means that ey cannot happen before fy. Events f; and
ey are connected via a single channel place with undirected
arcs, indicating the two connected events can only be executed
synchronously and behave as a transaction. Such communica-
tions entail token instantaneously picked up by the other party
via channel place and provide possibility to execute multiple
events in a single step.

A second variant of structured occurence nets, Behavioural
Structured Occurrence nets (BSONs), conveys information
about the evolution of individual systems. They use a two-
level view to represent an execution history, with the lower
level providing details of its behaviours during the different
evolution stages represented in the upper level view. Thus a
BSON gives information about the evolution of an individual
system, and the phases of the overall activity are used to
represent each successive stage of the evolution of this system.

Figure 2 shows a simple example of a BSON portraying
an (off-line) system update. The upper level represents a

!Communication relations were represented by a directed dashed line
between two events in the original definition of CSONs [8]. The notion of
a channel place, which was introduced later [7], is a more flexible means of
representing such relations.

ON',
Ver1.0 Updates Ver2.0

S :l Q

N,

Q

\
\ON,

® 11O O—
b0 fo b1 c0

go

Fig. 2. A BSON example portraying (off-line) system update.

version change caused by a system update event — in effect
it shows the behaviour of the “updater”, be this a person or
an automated system. The lower level represents the detailed
behaviour of the system before and after the update. The
dashed lines between the two levels are used to capture the
some new causal dependencies between the two types of
behaviours. Intuitively, it represents the ‘happened before’
relationship of the events.

A third variant, Temporal Structured Occurrence Nets
(TSONs), allows the use of temporal abstraction to define
atomic actions, i.e. actions that appear to be instantaneous
to their environment. The effective use of atomicity can
significantly reduce the cognitive complexity of structured
system behaviours, by defining “abbreviated” parts of systems,
whose detailed behaviours are collapsed and hidden within a
lower level and replaced by simple symbols in an upper level
representation.

The concept of the three basic SON variants mainly con-
cerns the modelling of single executions of a system, and there
is lack of any direct way of representing the possibility that
a system might rise to possible alternative behaviours. The
idea of adding alternates to SONs initially arose from [18]
and was further extended in [9] for the propose of modelling
and analysing system activities, e.g. major (cyber) crimes or
accidents, that are likely to give result in a mass of contradic-
tory or uncertain evidence regarding the actual activity. In an
Alternative SON, multiple SONs (scenarios) can be merged
into a single structure by ‘gluing’ common states together.
So a state shared by more than one scenario can branch
to multiple events with each corresponding to a different
scenario; the different branches can subsequently merge from
their respective end events to a single state, with the result
that different scenarios share the same state. Therefore, the
representation of such structure is more flexible than branching
processes [6] since in such processes two branches outgoing
from a condition will never meet again.

Figure 3 shows an example of Alternative SONs involving
two scenarios. The model describes the behaviours of a suspect
car. We assume that there is no further information captured
after “At Jesmond”, where there are two roads that the driver
can potentially take to Ashington. In order to assist with
the analysis of which road the driver did actually take, the
hypotheses can be represented using the alternative behaviours
“Takes A189” and “Takes A1068”.

D: 0030-0040
Takes A189 On A189

At Central Station

-)O—»D—» At Jesmond
Start: 0900-0900 D: 0005-0010

Takes A1068 On A1068
D: 0050-0060

At Ashington

ona1s O—[1O

D: 0010-0010 End: 1000-1000

Fig. 3. The modelling of alternate scenarios with time information using
Alternative and Time SONs.

In [5], we introduced time information to the SONs concept.
This was motivated by the fact that time is another commonly
required and indeed often unavoidable feature of complex
investigations of various types of system “Failure”; in crime or
accident investigations, for example, it is important to establish
the sequence in which events have occurred (i.e. the chain
of events) and to establish the time durations between events.
This was in order to help to determine causes and their effects,
e.g. by eliminating infeasible hypothesized scenarios from
a conjectured criminal act. We also allowed for uncertainty
involving time - specifically, uncertainty about the time of
occurrence or the duration of an event, and the time at which
a state comes into existence, or how long it lasts.

The visual editing of SONSs, their extensions, w.r.t. time
and alternatives, verification, simulation, and analysis are the
functionalities supported by the SONCraft toolkit. The toolkit
is implemented as a plug-in module within Workcraft [15], a
system that provides a flexible framework for the development
and analysis of Interpreted Graph Models (IGM) [14]. The
framework is built using a plugin-based architecture and
supports run-time scripting, which makes it easily extensi-
ble to new IGM-based formalisms, and to the provision of
support for their analyses and verification. It also provides
a GUI environment that facilitates model entry and supports
interactive visual simulation, together with convenient “single-
click” verification. So far several modules have been imple-
mented and supported by the platform, including Structured
Occurrence Nets (SONCraft), Petri nets, and other Petri net
based formalisms, e.g. STGs [21] and CPOGs [12]. A detailed
Workecraft description and manual can be found in [3].

In the remainder of this paper we give an overview of
SONCeraft functionality and architecture. The present version
of SONCraft deals with the three types of SON variants
mentioned above, i.e. CSONs, BSONs, and TSONs. In Sec-
tion II, we present the key functionality offered by SONCraft.
Section III describes the tool architecture and the way in
which SONCeraft is integrated with the Workcraft framework.
Section IV provides a comparison with other tools for SON-
Craft. Section V provides installation information. Section VI
concludes the paper and outlines ongoing and future work.
An associated technical report [10] contains formal definitions,
properties, and the algorithms that are used in the implemen-
tation.

II. FUNCTIONALITY

This section presents an overview of the major features
provided by SONCeraft.

A. SONCraft overview

Main menu Editor tabs Property editor

OB D0 B
Editor
window < T T B T
N @ 0o oo O 04 O BN gi
| [e] [e] [e] o Qs tEo:I::r
® D O an| O 0 d -0 -0:0-0 0 o)
O+ o e o5 © Six.ioDoke
O o R
S~ Tool
O o' Q) controls
1
/ >~ Workspace

Utility windows

Fig. 4. SONCraft interface.

The graphical interface of SONCraft is depicted in Figure 4.
The Main menu provides functions to manage, edit and analyse
models. For example, the Tools menu provides a set of analysis
tools for checking models, and there is a vector graphics export
function in the File menu. (All SON models shown in Section I
were imported directly from SONCraft.) The Editor tabs line
shows the names of all of the opened models and allows the
user to choose which one is to be displayed in the Editor
window. The latter is the place for the user to create, edit and
simulate a SON model.

SONCraft defines a series of graphical nodes and connection
types. These are displayed in the Editor tools panel that allows
the user to create, edit SON-based model and also save the
models as XML format. The Property editor panel at the top-
right of Figure 4 is used to support various visual node-editing
operations, e.g. to change the label, colour, or position of a
node. The Tool controls panel provides access to the extended
functionality of a selected tool. For example, when the con-
nection tool is activated, the user is able to switch between
various connections in order to construct different types of
SON abstractions. The Workspace window lists opened or
imported SON model files. One can also operate on a SON
model file (delete, save, etc). The Utility window is used for
showing additional information concerning the progress of
currently executed tasks, verification results, and information
about any errors that may have occurred during execution.

B. Editor tools

SONCeraft offers a set of editor tools for constructing and
editing SON models. Some generic tools for editing models
are directly inherited from the Workcraft framework, including
selection, text note, flip horizontal, flip vertical, etc. Other

tools for constructing SON models, defined specifically in
SONCeraft, are as follows:

e The SON component toolkit contains a group of buttons
for creating SON-based components in the editor window.
The toolkit contains condition, event, and channel place
creators, where the first two creators are used for con-
structing ONs, and the latter is for CSON construction.

o The Connection tool is used for creating relations be-
tween nodes. The tool provides several connection types
that can be chosen to construct different abstractions. The
tool also offers a basic relation validation facility, based
on the SON definition. Any invalid user operation, e.g.
connecting two conditions, will trigger an error message.
However, not all user errors are detected at this stage;
those that cannot be detected immediately can be checked
using the verification tool — see the section C below.

o The Group tool allows the user to combine a set of nodes
(in particular, conditions, events, and ON relations) into
a group. In SONCeraft, an ON is not recognised as such
until it has been delineated as a group. Thus, a SON
model in SONCraft is generally composed of a set of
groups representing component ONs, and the relations
(abstractions) between the groups’ components.

e The Block tool creates atomic actions in TSONs. Sim-
ilarly to the group tool, a block in SONCraft is im-
plemented as a container holding a set of user-selected
components. It can be collapsed into a single node
causing its components to be hidden.

C. Structural analysis tool

The structural analysis tool provides the user with a set of
structural verification algorithms that can be used to validate
a model. It is important to verify the correctness of structure
before further analysis, otherwise the results are likely to
be incorrect. The verification criteria follow from the formal
definitions and properties introduced in [8], [10]. The tool
consists of two sub-checkers:

The relation property checker deals with the relation-based
correctness of a SON model. The checking includes conflict-
freeness, phase decomposition, component ONs disjointness,
and advanced connection type checking. The acyclic property
checker focuses on the acyclicity condition of SONs. The
verification of such a property comes down in practice to
searching strongly connected components (SCC) in a SON
model. The checker applies Tarjan’s algorithm [20] as a core
engine to compute maximal SCCs. Depending on the variant
of SONSs involved, a specific filter is used in order to obtain
the desired results.

D. Simulator

SONCeraft offers a built-in simulator for ONs, CSON:s,
BSONSs, and TSONs. The underlying semantics of SON-based
simulation follows the firing rules presented in [10]. When the
function is activated, the initial marking is then automatically
set, and all enabled events highlighted. The simulation can
then be conducted either manually or automatically, by firing

a succession of enabled events, causing tokens to move,
event highlighting to be updated, and the simulation record
augmented. Simulations can be perfornmed either forwards,
to investigate what further activity was caused, or backwards,
to investigate the cause(s) of a given situation.

The simulation tool controls provide the means to analyse
and navigate a previously recorded simulation. There are two
sources of data for a simulation record: a ‘branch’ records
the firing sequence of events that were executed by explicitly
clicking the enabled nodes of the model, and ‘traces’ are
automatically generated from the external tools, e.g. the reach-
ability tool. Thus one is able to generate simulation records
from different executions in order to perform a comparison.
The panel also provides access to several additional simulation
functions, most of which relate to the simulation traces or
branches (see Figure 5).

Tool controls X

) $Aqu

<J

=na| [
Bl | B | -
Trace Branch
> on2/e0, on3/e3
> on1/e0
> on2/e16, on3/e0
> ond/ed
> onl/e15
> on2/e2, on3/el
> ont/e7
> ond/e5, on3/e2, on2/e3
> ond/e3
> ond/e6

> ond/ed, on3/e0, on2/e16
> on1/e15

> on2/e2, on3/el

> onl/e7

> ond/eb, on3/e2, on2/e3
> ond/e3

> ond/e6

Fig. 5. Simulation control panel.

The SON simulator provides a simple failure analysis func-
tion, called error tracing. When the failure analysis function
is on, each event has an associated fault bit, a ‘1’ or a ‘0’.
This bit can be used to indicate whether one wishes to regard
the event as faulty, with ‘1’ indicating a simulated fault. An
error count is also shown in the editor window below each
condition, and is set initially to ‘0’. This count cannot be
changed manually by the user. Rather, it is automatically
calculated during simulation to indicate for each condition the
number of faults that have been passed on the forward route
to that condition.

E. Scenario generator

The scenario generator aims to generate particular scenario
in a SON model with alternative behaviours. The tool applies
the basic SONs execution semantics to simulate the model
automatically using maximum parallelism. Nodes with alter-
native behaviours will be recorded as different scenarios. The
tool also provides a set of easy to use features including save,
remove, and display records. The generated scenario can be
used in other analysis tools, such as time consistency and
reachability checking. Figure 6 shows the interface of scenario
generator. The “save list” column displays all saved scenarios,

and the “scenario” column shows the details of the selected
scenario.

Tool controls)
L O @& W
Save List Scenario

Senario 1
Senario 2

190/el
g0/c0
g0/e0
g0/cl
90/c2
:gO/eA
g0/cS
q0/e7
90/c6

Fig. 6. Scenario generator with two saved scenarios

F. Time mode

The time mode was originally developed to display of the
time information for basic SON model and offers related
analysis algorithms (see [5] for details). To improve the solver,
we enhanced its functionalities to additionally support for
analysing time information in Alternative SONs (as shown in
Figure 3). A time property setting tool allows for specifying
the time information of a given node in a SON model. Users
can either manually or automatically set the information. For
each manually input value (which can take the form of a set
of bounds) the tool verifies whether or not the value is well-
defined (e.g. the start time must be earlier than the end time).
The tool also estimates time bounds for nodes with unspeci-
fied time intervals. Depending on the user selection different
strategies will be chosen based on forward or backward DFS
(Depth First Search) and the time information on the path.

(-] Consistency Verification Result

File
Create partial time information map -
Node:g0/cO
-Estimated duration = 0000-0000 Estimated finish = 0840-0855
Node:g0/c6
-Estimated start = 1005-1020 Estimated duration = 0000-0000
INode with complete time information:

Running ON consistency checking task

Node:g0/cO

-start=0900-0900 finish=0840-0855 duration=0000-0000

[ERROR] Node inconsistency: minStart(g0/c0)[900] > minFinish(g0/c0)[840]

[ERROR] Node inconsistency: maxStart(g0/c0)[900] > maxFinish(g0/c0)[855]

[ERROR] Node inconsistency: start(g0/c0) + duration(g0/c0)=[0900-0900] is not consistent with finish(g0/c0)[0840-0855]
(ERROR] Node inconsistency: finish(g0/c0) - duration(g0/c0) =[0840-0855] is not consistent with start(g0/c0)[0900-0300],
[ERROR] Node inconsistency: finish(g0/c0) - start(g0/c0)=[0000-00-5] is not consistent with duration(g0/c0)[0000-0000]
Node:g0/c6

-start=1005-1020 finish=1000-1000 duration=0000-0000

[ERROR] Node inconsistency: minStart(g0/c6)[1005] > minFinish(g0/c6)[1000]

[ERROR] Node inconsistency: maxStart(g0/c6)[1020] > maxFinish(g0/c6)[1000]

[ERROR] Node inconsistency: start(g0/c6) + duration(g0/c6)=[1005-1020] is not consistent with finish(g0/c6){1000-1000]
[ERROR] Node inconsistency: finish(g0/c6) - duration(g0/c6) =[1000-1000] is not consistent with start(g0/c6)[1005-1020],
[ERROR] Node inconsistency: finish(g0/c6) - start(g0/c6)=[0000-00-5] is not consistent with duration(g0/c6)[0000-0000]

Running BSON consistency checking task.

\Verification-Result : 10 Error(s)

Fig. 7. Time consistency result of the scenario “Takes A1068” in Figure 3.

A time consistency checking tool provides consistency ver-
ification for the time value and bounds information that is

specified. Such checking aims to find any ‘gap’ or ‘overlap’
between successive times. The tool provides a user interface
for additional settings. For example, the user can either choose
to verify the time information of a particular scenario or of a
single node. Figure 7 shows a consistency verification result
of the scenario “Takes A1068” displayed in Figure 3. The
result shows a number of errors regarding the inconsistency
between the start and end time of the scenario. For example,
the estimated time that the car was at Ashington based on
presented information is between 8:40-8:55. This is calculated
by performing a forward DFS and accumulating the time
information on the path. However, such a value is inconsistent
with the specified time 10:00.

G. Reachability Tool

SONCeraft provides a tool for checking the reachability
problem. This Reachability Checker is used to establish, e.g.
whether a given marking can be reached from the initial
marking. The main idea of the algorithm is to compute all
the causal predecessors of required nodes (i.e. markings) and
check that none of the required nodes is consumed by their
causal predecessors. If the marking is reachable, a request can
be made for the trace that leads to the marking to be passed
to the simulation tool for playback or further analysis.

III. ToOOL ARCHITECTURE

SONCeraft is written in JAVA making it accessible on all
platforms for which there exists a JVM. The architecture
depicted in Figure 8 shows a detailed view of the integration
between the Workcraft framework and SONCraft.

Workcraft

Use plug-ins to provide functionality

Core framework

Visualisation

Services

Plug-in
manager

External process|
management

Serialisation

Use

senices | SONCraft (Plug-in module)

Model
definition

Model

I
<;| definition
L

L
: 1 Settings
I
"
.

,,,,,,,,,,,,

Structure Time

Verification

Editor tools Simulation Reachability

Fig. 8. Tool architecture.

A. Workcraft architecture

The Workcraft framework consists of the following three
parts:

The Core framework is in charge of the initialisation of
Workcraft, managing plug-ins and provision of common ser-
vices to the plug-ins. When the program starts up, services
such as the configuration manager and the framework GUI
are initialised. This is followed by the initialising of the plug-
in manager, which provides the facility for loading all existing
plug-ins. On shut-down, Workcraft saves the configuration of
the framework; it restores it on the next start-up.

I
Consistency |~
I

The Plug-in manager is responsible for scanning and load-
ing all plug-in modules which have been registered to the
manager. A plug-in module is a related collection of plug-ins
that together implement a specific functionality, for instance
the SONs module.

The Services are fully managed by Workcraft and accessible
to the plug-ins. The GUI service provides the facilities for
creating editor, tool, and information windows. A number
of advanced GUI capabilities, such as the multiple docu-
ment interface and full-screen mode, are also supported. The
Visualisation service facilities provide editing functions for
the node types defined by any model, for instance, drawing,
transformation, and auxiliary editing operations. The Task
management service is responsible for executing all external
process tasks — it maintains the list of all running tasks and
uses a separate thread for their parallel execution.

B. SONCraft integration

SONCeraft is deployed in the Workcraft framework as an
individual plug-in module. There are three main components
inside the module:

The Model definition component describes the basic features
of a SON model. The component is divided into mathematical
and visual models in order to avoid mixing unrelated respon-
sibilities. Both models extend the Workcraft Petri-nets plugin
with a number of additional SON-based node and connection
types. The mathematical model describes all the semantics
concerning model integrity — it keeps information such as
connection types, node names, etc. The visual model provides
all the information concerning model visualization. The model
classes defines how to draw and present the model, keep
information such as colors, position, etc.

The Settings component records default properties of a SON
model and stores them in a configuration XML file. The
Workcraft start-up process loads the stored settings and allows
other components to read their configuration variables.

The Tools component consists of all the editor and analysis
tools described in Section II. The implementation of each built-
in component tool uses the interfaces provided by Workcraft
services and other components. In particular, the development
of each tool’s graphical interfaces rely on the GUI and
visualisation services for node placement, trace table creation,
etc. The implementation of the various algorithms are based
on the mathematical model defined in the model definition
component.

IV. COMPARISON WITH OTHER TOOLS

Currently, SONCraft is the only tool that supports of
modelling and analysing systems using SONs. There are
existing tools for modelling concurrency and alternatives in
a system’s behaviour based on occurrence nets. POD [16]
relies on labelled partial orders and occurrence nets to build
up concurrent and causal relations on the activities of an
event log for the process discovery. Workcraft’s CPOG plug-in
implements Conditional Partial Order Graphs [12] - a model
that can be used for graph-based representation for complex

concurrent systems, whose behaviour could be thought of as a
collection of many partial order scenarios. However, none of
these tools facilitate the explicit structuring and modelling of
system evolution or communication.

Numerous time extensions have been proposed for Petri
nets, and they are well supported by tools such as the CPN
Tool [19]. However, most of them only consider time infor-
mation as an abstraction at the level of system specification,
and research on attaching time information to the level of
system behaviour is limited. Moreover, there is lack of research
on, and tool support for, modelling uncertainty, consistency
checking, and computation missing time information.

V. AVAILABILITY

The latest version of SONCraft is available from the
Workcraft homepage [3]. It is necessary to have a compatible
Java Runtime Environment (JRE) version 7 or higher in order
to run the platform and SONCraft. There is no automatic
installer for the platform; to install it, the files from the link
archive need to be extracted manually. A comprehensive online
SONCeraft user manual can be found in [1], and [2] provides
a tutorial showing how to use SONCraft for modelling and
analysing crimes and accidents.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the SONCraft tool-kit for
the construction, checking, simulation and analysis of SONSs.
SONCeraft provides an easy to use graphical interface that
enables the user to construct models easily and quickly, and
offers a powerful simulator and a set of analytical tools. The
SONs concept and the SONCraft are now being extended to
include further facilities, as described below. An interesting
and practically important property of the SONs and its appli-
cation is support for associating probability estimates. Such
an idea has been addressed in [11]. Briefly, a user will be
able to annotate particular nodes and relations with some form
of probability estimates, which indicate the current degree of
accuracy of their representation. This probability information
can guide the analysis of the likelihood of different scenarios.
Integrating SONCraft with a probabilistic analyser such as [13]
is a possibility.

In Time SONSs, associating time information with SON
execution semantics and its implementation are left for future
work. (The determination of whether an event is enabled
not only be determined by marked states, but also by the
consistency of the time information provided by the event and
its input states.)

To date, SONCraft has been assessed and experimented
with using a variety of manually-entered artificial trial models,
the ongoing work includes integrating the system with an
existing large-scale DBMS-based crime investigation support
system. Such integration will, we expect, provide the most
practical means of assessing the effectiveness of the system’s
facilities for structuring and hence coping with, realistic large
and complex evolving models.

ACKNOWLEDGMENT

The authors would like to thank Danil Sokolov and
Stanislavs Golubcovs for their helpful advice. The work
is supported by UK EPSRC EP/K001698/1 UNderstanding
COmplex system eVolution through structurEd behaviouRs
(UNCOVER) project.

REFERENCES

[11 SONCraft online user manual, https://workcraft.org/help/son_plugin/.
[2] SONCraft Tutorial, https://workcraft.org/tutorial/modelling/son/start/.
[3] Workcraft homepage, http://workcraft.org.

[4] E. Best and R. Devillers, “Sequential and concurrent behaviour in petri
net theory.” Theoretical Computer Science, vol. 55, no. 1, pp. 87-136,
1987.

[5] A. Bhattacharyya, B. Li, and B. Randell, “Time in structured occurrence
nets,” in Proceedings of the International Workshop on Petri Nets and
Software Engineering 2016, 2016, pp. 35-55.

[6] J. Engelfriet, “Branching processes of petri nets,” Acta Informatica,
vol. 28, no. 6, pp. 575-591, 1991.

[7]1 J. Kleijn and M. Koutny, “Causality in structured occurrence nets,”
in Dependable and Historic Computing, vol. 6875. Springer Berlin
Heidelberg, 2011, pp. 283-297.

[8] M. Koutny and B. Randell, “Structured occurrence nets: A formalism for
aiding system failure prevention and analysis techniques,” Fundamenta
Informaticae, vol. 97, no. 1, pp. 41-91, Jan. 2009.

[9]1 B. Li, “Visualisation and analysis of complex behaviours using struc-

tured occurrence nets,” Ph.D. dissertation, School of Computing Science,

University of Newcastle, 01 2017.

B. Li, B. Randell, and M. Koutny, “Soncraft: A tool for construction,

simulation and verification of structured occurrence nets,” School of

Computing Science, Newcastle University, Tech. Rep. CS-TR-1493,

2016.

M.Koutny and B.Randell, “Structured occurrence nets: incomplete, con-

tradictory and uncertain failure evidence,” School of Computing Science,

Newecastle University, Tech. Rep. CS-TR-1170, 2009.

A. Mokhov and A. Yakovlev, “Conditional partial order graphs: Model,

synthesis, and application,” Computers, IEEE Transactions on, vol. 59,

no. 11, pp. 1480-1493, Nov 2010.

M.Z.Kwiatkowska, G.Norman, and D.Parker, “PRISM 4.0: verification

of probabilistic real-time systems,” in Computer Aided Verification -

23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-

20, 2011. Proceedings, 2011, pp. 585-591.

I. Poliakov, “Interpreted graph models,” Ph.D. dissertation, School of

Electrical, Electronic and Computer Engineering, Newcastle University,

2011.

1. Poliakov, V. Khomenko, and A. Yakovlev, “Workcraft—a framework

for interpreted graph models,” in Applications and Theory of Petri Nets.

Springer Berlin Heidelberg, Jun. 2009, pp. 333-342.

H. Ponce de Ledn, C. Rodriguez, and J. Carmona, “POD - A tool for

process discovery using partial orders and independence information,”

in Proceedings of the BPM Demo Session 2015 Co-located with the
13th International Conference on Business Process Management (BPM

2015), Innsbruck, Austria, September 2, 2015., 2015, pp. 100-104.

B. Randell, “Occurrence nets then and now: the path to structured

occurrence nets,” in Applications and Theory of Petri Nets. Springer

Berlin Heidelberg, Jun. 2011, pp. 1-16.

B. Randell and M. Koutny, “Structured occurrence nets: Incomplete,

contradictory and uncertain failure evidence,” School of Computing

Science, Newcastle University, Tech. Rep. CS-TR-1170, Sep. 2009.

A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S.

Stissing, M. Westergaard, S. Christensen, and K. Jensen, “Cpn tools for

editing, simulating, and analysing coloured petri nets,” in Proceedings of

the 24th International Conference on Applications and Theory of Petri

Nets, ser. ICATPN’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp.

450-462.

R. Tarjan, “Depth first search and linear graph algorithms,” SIAM

Journal on Computing, 1972.

A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli, “A unified

signal transition graph model for asynchronous control circuit synthesis,”

in Proceedings of the 1992 IEEE/ACM International Conference on

Computer-aided Design, ser. ICCAD ’92. Los Alamitos, CA, USA:

IEEE Computer Society Press, 1992, pp. 104-111.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

