
Song Search and Retrieval by Tapping

Geoffrey Peters, Caroline Anthony, and Michael Schwartz

School of Computing Science, Faculty of Business Administration, and Cognitive Science Program, Simon Fraser University
8888 University Drive, Burnaby, BC, Canada, V5A 1S6

gpeters@sfu.ca, canthony@sfu.ca, mpschwar@sfu.ca

Abstract
We present an interactive, web based system for musical
song search and retrieval, using rhythmic tapping as the
primary means of query input. Our approach involves
encoding the input rhythm as a contour string, and using
approximate string matching to determine the most likely
match with songs in the database.

Introduction and Previous Work
It would be desirable and useful to have a content-based
search mechanism for music that does not rely on
knowledge of metadata such as name, composer, or related
keywords. We present an online, web based system1 that
allows the user to tap a portion of the rhythm of a song in
order to search for it.
 The motivation behind research in this area ranges from
the highly academic to practical commercial applications.
Melucci et al (1999) emphasize that music is an important
form of cultural expression, and with increasing digital
access, librarians want more effective methods for
organizing and retrieving it than current text-based ones.
Kosugi et al (2000) describe a Karaoke machine that lets
users select the song they want by singing part of it.
 There are several commonalities among existing
research into content-based music search and retrieval
systems. The works that we examined each described some
sort of matching algorithm, though some varied in which
aspects of musical structure were used in the analysis (e.g.
pitch, melody, rhythm). They also all tried to allow for and
deal with errors to varying degrees. There was also much
variation in the format of the input query for the content-
based search. Some used MIDI input, while others used
forms such as query by humming.
 The overriding focus in most of these works is on the
melody of songs, since that is the musical component most
easily identifiable by musically untrained users (Melucci et
al, 1999). Query-by-humming systems (Kline & Glinert,
2003; Kosugi et al, 2000) include the ability to process a
simplified form of human vocal performance (in Kosugi et
al’s case, allowing only the syllable ‘ta’) to find the
melody, which is just an extra step before they face the

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.
1 Web: http://cgi.sfu.ca/~gpeters/tapper/tapper.cgi

same problem as the others, which is how to analyze the
songs and find matches. Here we see some differences.
Melucci et al (1999) use the notion of melodic surface
being segmented into phrases, where correspondences
between songs can be found. Kline & Glinert (2003), as
well as Kosugi et al (2000) focused on trying to improve
robustness against specific types of user errors, and Kline
& Glinert noted that the expected user error will exceed the
abilities of most prior systems’ limited error handling.
 Some researchers have found ways to transform the
problem domain from that of searching music to searching
text. Tseng (1999), for example, encodes the melodic
(pitch) contour as a string, so that existing approximate text
matching algorithms can be leveraged. In our approach, we
encode the rhythmic contour as a string, which is based on
note durations instead of pitches. For the matching process
itself we saw n-grams and Hidden Markov Models
discussed, as well as minimum edit distance algorithms, of
which we chose to use Sun & Manber’s (1992) fast
approximate string matching implementation.

Our Approach

User Input Method. By accessing our web page, visitors
can tap the rhythm of a song’s melody using the space bar
on their computer keyboard. Our Java applet will generate
a MIDI file, which is sent to our application server for
analysis, and the database will be searched. The search
results indicating the name of the songs best matching the
input will be displayed in the user’s web browser.
Alternatively, a MIDI file can be created using a MIDI
keyboard, and sent to our server for analysis. Once the
MIDI input is received by our server, it will be passed to
our MIDI analyzer module.
MIDI Analyzer Module. Our implementation takes a
MIDI file containing a monophonic sequence of notes, and
analyzes the rhythm to generate a rhythmic contour string.
In this discussion, we consider a “rhythm” to be the
sequence of note durations and rests in the MIDI file, and
we consider a “beat” to be the length of time from the start
of a note to the beginning of the next note. Our MIDI
analyzer module is programmed to normalize the durations
of the beats, in order to eliminate any global tempo
dependence when searching for matches. To normalize the
durations, the average duration of a beat is calculated, and

AAAI-05 Intelligent Systems Demonstrations / 1696

then each beat’s duration is divided by the average
duration, resulting in an average note having a duration of
1. For a particular song that is being analyzed, the graph of
the normalized duration can be plotted per beat, as beats
progress through time. It can be observed that each song
has a somewhat unique “duration function”, by comparing
these “duration plots” for various songs. An example
duration plot for the children’s song “Are You Sleeping” is
shown in Figure 1.

0

0.5

1

1.5

2

2.5

0 5 10 15

Figure 1 – “Are You Sleeping” Duration Plot

The goal of the MIDI Analyzer Module is to encode this
duration information as a rhythmic contour string, so
approximate string matching can be used. The rhythmic
contour is calculated by finding the difference in duration
of each pair of consecutive beats. It may be illustrative to
examine a plot of the rhythmic contour for an example
song (Figure 2), and compare it to the duration plot for the
same song (Figure 1).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16

Figure 2 – “Are You Sleeping” Rhythmic Contour Plot

Once the rhythmic contour has been calculated, it is
encoded as a string using the algorithm described in Figure
3. The result of the algorithm is that a song of n+1 beats is
encoded into a string with n characters, with the three
symbols s, d, and u (meaning the duration stays the same,
goes down, or up, respectively).
 Each song in the library database has been pre-processed
and a contour string was generated and stored for each. A
contour string is also generated for the search input. Then,
the approximate string matching algorithm from Sun &
Manber (1992) is used to calculate the edit distance
between the input string and each string in the database.
The edit distance is defined as the number of operations
needed to transform one string into another string. The
song in the database with a corresponding contour string
that has the least edit distance to the input’s contour string
is considered to the most likely song for which the user is
searching.

Algorithm for duration contour string generation.

Input: duration contour values (c1…cn), threshold T
Output: contour string (s)

For each duration contour value (ci) do:
 If abs(ci) < T then Append “s” to string s
 Else if ci < 0 then Append “d” to string s
 Else if ci > 0 then Append “u” to string s

Figure 3

Results. By experimentation we found that around 15
notes should be entered to get accurate search results with
a database of 30 children’s songs. The algorithm used
allows for successful matching even by non-musicians who
make errors in their search input. However, the system is
only able to find songs which have been previously added
to the database, so a training feature will be added in the
future to allow visitors to train the system.

Conclusion
Our interactive web site demonstrates that rhythmic
tapping can be an effective means of song search and
retrieval, at least for a database with a limited number of
songs. Such a tool could potentially be useful in a
children’s game which teaches the concept of rhythm, and
on a larger scale could be used as a search method for an
online music store. Our intention is to expand the
software’s capabilities by adding a training feature, but in
its current form it is sufficient as a “proof of concept”.

References
Kline, R.L., and Glinert, E.P. 2003. Music: Approximate
matching algorithms for music information retrieval using
vocal input. In Proceedings of the eleventh ACM
international conference on Multimedia, 130-139. New
York, NY: ACM Press.
Kosugi, N., Nishihara, Y., Sakata, T., Yamamuro, M., and
Kushima, K. 2000. A practical Query-by-humming system
for a large music database. In Proceedings of the eighth
ACM international conference on Multimedia, 333-342.
New York, NY: ACM Press.
Melucci, M., and Orio, N. 1999. Musical information
retrieval using melodic surface. In Proceedings of the
fourth ACM conference on Digital libraries, 152-160. New
York, NY: ACM Press.
Sun, W., and Manber, U. 1992. Fast text searching:
allowing errors. In Communication of the ACM. 35(10),
83-91. New York, NY: ACM Press.
Tseng, Y.H. 1999. Content-based retrieval for music
collections. In Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in
information retrieval, 176-182. New York, NY: ACM
Press.

AAAI-05 Intelligent Systems Demonstrations / 1697

