
NASA - TM - 34858

SONIC BOOM MEASUREMENT NASA-TM-84858 19820026310 **TEST PLAN** FOR SPACE SHUTTLE STS-2 REENTRY

Prepared by Herbert R. Henderson

November 1981

31215

Norman State State

λ٩

c

1

1 ¥

ð

π,

. . .

· · ·

PHIL PROPERTY

SEC 2 3 1982

tele an an televistic grand Star Starting Muchica ana chiadad

APPROVAL AUTHORITY

SONIC BOOM MEASUREMENT TEST PLAN FOR SPACE SHUTTLE STS-2 REENTRY

Approval:

olloway

Paul F. Holloway Director for Space Langley Research Center

Approval:

(0)

Dr. Andrew E. Potter, Manager Space Environmental Office Johnson Space Center

Approval:

Dr. Glynn S. Lunney, Manager Space Shuttle Program Office Johnson Space Center

N82-34186#

TABLE OF CONTENTS

PAGE

ंच

......

.

Preface	
Purpose of Test Plan 1	
Introduction	
Measurement Plan 2	
General Scope 2	
Procedures	
Atmospheric Measurements	
Rawinsondes	
Time Synchronization	
Communications	
General Flight Plan 7	
Sonic Boom Measurement System	
Station 1 - Event Times	
- Pressure Level Assignments	
- Calibration and Overpressure Settings 12	
Station 2 - Event Times	
- Pressure Level Assignments	
- Calibration and Overpressure Settings 15	
Station 3 - Event Times	
- Pressure Level Assignments	
- Calibration and Overpressure Settings 18	
Station 4 - Event Times	
- Pressure Level Assignments	
- Calibration and Overpressure Settings 21	

i

TABLE OF CONTENTS Con't.

	St	at	ic	n	4	-	- {	Eve	ent	: 1	in	ies	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	19
						-	- 1	Pre	ess	sur	e	Le	eve	el	As	si	gn	me	ent	s		•	•	•	•	•	٠	•	•	•	•	20
						-	- (Cal	it	ora	iti	ior	n a	ind	10)ve	erp	ore	ess	sur	re	Se	ett	:ir	ngs	5	•	•	•	•	•	21
Table 1		•	•	•	, •	•	•	•	•	•	•	•	•	•	٠	•	•	•	•			•	•		•	•	•	•	•	•	•	22
Table 2		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	23
Figure 1	1	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	24
Figure 2	2	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Reference	çes	;	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
Distrib	uti	or	n I	.i	st	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	27

PREFACE

This document relates to an overall plan which describes the Space Shuttle STS-2 Sonic Boom Measurement Program and is supplied as a detail guide and formal documentation for measurement procedures, system specifications, and general information for others involved in the program. By way of review, the Space Shuttle STS-2 will be launched from complex 39A at the Kennedy Space Center, Florida, into a 120 nautical mile circular orbit for the first five orbits transferring then to a 137 nautical mile circular orbit with a 38 degree inclination. Deorbit should occur to accomplish a landing at a pre-selected, primary, secondary or contingency landing site. The deorbit maneuver is initiated at 123 hours, 12 minutes, 04 seconds, ground elapsed time during the 83rd orbit, with subsequent landing on Rogers Lakebed at Edwards Air Force Base, CA. Runway 23 will be the primary runway, 15 the backup, and 04 the alternate.

In the event of deviations from the normal reentry plan, Northrup Strip at White Sands Missile Range (the designated backup to EAFB) could become the pre-selected primary landing site. Should this occur the subject sonic boom measurement test plan will not provide for the reentry sonic boom measurements.

PURPOSE OF TEST PLAN

This test plan is designed to provide information, guidance, and assignment of responsibilities for the acquisition of sonic boom and atmospheric measurements, timing correlation, communications and other necessary supporting tasks. Specifically included are details such as mobile data acquisition station locations, measurement systems calibration levels, predicted sonic boom overpressure levels, overpressure level assignment for each data acquisition station, data recording times on and off, universal coordinated time, and measurement system descriptions.

INTRODUCTION

The first in a series of sonic boom ground measurements associated with the reentry of STS-1 were successfully accomplished in April 1981. These measurements were acquired at 11 stations located along the ground flight track from over the Pacific coastline to landing and at various lateral conditions using a total of 45 microphones. Details of the test plan are given in reference 1. The purpose of these measurements was to permit an evaluation of the accuracy of the sonic boom theory, based upon aircraft, Apollo, and Skylab measurements as applied to the Space Shuttles configuration and operational parameters. In addition, these STS-1 measurements were directed at fulfilling the commitment made in the Space Shuttle Environmental Impact Statement to validate preflight prediction technology.

Detailed analysis of the STS-1 sonic boom data is currently underway and comparisons with predictions are forthcoming. Initial examination of the measured data was as expected in terms of signature shape, overpressure levels and the area in which the higher overpressures would be experienced. However, not enough measurements were available in the latter region to define the highest sonic boom overpressures generated.

The purpose of the present measurement effort is to better define the overpressure in the area of Edwards Air Force Base proper where the highest levels are predicted to occur. Measurement stations will be concentrated under the reentry flight track approximately 3 n mi apart in an area east of Mojave, California to the landing site.

MEASUREMENT PLAN

General Scope

This measurement plan consists of deploying four data acquisition stations which will be mobile units (vans) along and under the STS-2 reentry flight

track into the Edwards Air Force Base area (see figure 1). These stations (see tables 1 and 2 respectively for theoretical predictions and approximate station locations) will provide six intermediate band FM channels of Sonic Boom Data, universal time synchronization and voice annotation. They will also be supported with atmospheric measurements (rawinsonde system) at one of the four positions, along with met data obtained from U.S. Air Force at Edwards Air Force Base. All measurements will be correlated with the vehicle reentry flight track along with atmospheric and vehicle operation conditions. Program responsibilities are also identified (see figure 2).

Procedures

Stations 1 - 4

- a. Each day a fresh tape will be used for precals, annotated according to procedures. If reentry occurs this day the precal tape will also be used for post cals. After precals a fresh tape will be loaded for reentry data. This tape will be annotated only when "recorders on" command is given. If reentry does not occur this tape will be used for the next days precals.
- b. Two hour warm-up all instrumentation.
- c. All sonic boom and meteorological measurement related activities will operate through the sonic boom coordinator console position located in building 4800 at Dryden Flight Research Facility.
- d. Voice communications between all measurement stations and the sonic boom coordinator console will utilize FM low band communication techniques.
- e. Use of transceivers will be held to a minimum. There will be no communication between measurement stations unless your station is called. If an instrumentation failure exists, call Sonic Boom Coordinator and the appropriate personnel will be notified.
- f. All tape recorder data channels will be calibrated at both pre and post

flight situations using a precision one volt RMS source to verify center frequency stability.

- g. All microphones will be calibrated at pre and post flight conditions using 130dB sound pressure level at a fixed frequency of one kHz.
- h. All information pertaining to calibrations, overpressure levels, and amplifier gains will be recorded on the assigned voice annotation channel.
- i. While recording data, including all calibrations, Greenwich Mean Time (GMT) will be recorded on the assigned timing channel.
- j. Sonic Boom Coordinator will give "recorders on" and "recorders off" command for all sonic boom measurement stations during STS-2 reentry. However, a time delay is anticipated from the recorders on command to boom arrival.
- k. All pertinent data will be recorded on data sheets; i.e., microphone number, tape channel number, calibration levels, weather conditions, aircraft in vicinity of station while calibrating instrumentation, etc.
- Stations experiencing any problems affecting this sonic boom measurement program will notify Sonic Boom Coordinator as soon as possible.
- m. There will be no radio frequency transmission during data recording.

Atmospheric Measurements

Past experience gained on aircraft, Apollo, Skylab, and Shuttle Sonic Boom Measurement Programs have shown that it is necessary to have atmospheric information since temperature and wind gradients and low level turbulence can significantly affect the sonic boom ground exposure patterns.

Therefore atmospheric data at the surface and aloft will be obtained by using the rawinsonde technique. Rawinsonde systems furnished and operated by personnel from the Atmospheric Science Division at the Marshall Space Flight Center will be located at one sonic boom measurement site which will be positioned under the STS-2 reentry track.

<u>RAWINSONDE</u> - The RAWIN System is a transportable radio direction finder. It is designed to track a balloon-borne radiosonde automatically. A radiosonde signal containing meteorological information in the form of amplitude or frequency modulation is received, amplified and detected by this system. The detected signal is passed to separate equipment in the system where it is recorded. By reference to calibration data for the radiosonde, this recorded information is converted to values of temperature, humidity, and pressure. Recording of time versus progressive changes of the elevation and azimuth positions of the ascending balloon package, as determined by tracking of the signal from the radiosonde, are made so that they can be later converted to wind speed and direction.

The radiosonde consists of a transmitter, modulator, antenna, battery, and pressure, temperature, and humidity sensing elements. The radiosonde, parachute and train weighs about four pounds and can be carried to an altitude of about 30 km by a helium-filled balloon.

The battery furnishes power to the modulator and transmitter. The transmitter operates in the 1660 - 1700 megahertz (mHz) band and its carrier is amplitude modulated by an audiofrequency pulse, the rate of which is determined by the pressure, temperature and humidity sensing eléments.

The RAWIN set automatically tracks the balloon-borne radiosonde by continuous homing on the radiosonde signal to horizontal distances of about 125 miles and altitudes of up to 30 km. The equipment recorder records the azimuth and elevation angles of the position of the radiosonde versus time.

Time Synchronization

In order to fully benefit from ground Sonic Boom Measurements Precision Time Synchronization is necessary. Specifically a real-time track (range time) is necessary for later data interpretation processes (ray tracing, and shock wave arrival times, etc.) which require that the time, atmospheric conditions, vehicle

operating conditions and the STS-2 reentry flight track information be known relative to the time the sonic boom was received at a particular measuring station. Therefore the following time synchronization concept will be utilizied.

Precise time synchronization between 4 Sonic Boom data acquisition Stations and the STS-2 reentry trajectory will be obtained from the "GOES" satellites, (Geostationary Operational Environmental Satellite). These satellites belong to the National Oceanic and Atmospheric Administration, which calls for the positioning of one satellite of approximately 135 degrees west longitude, another at 75 degrees west longitude, and a third to be an in-orbit spare. These satellites are in orbit 36,000 kilometers above the equator, they travel at about 11,000 kilometers per hour and remain continuously above the same spot on earth, they are thus termed geostationary. Since they always have the same regions of earth in view, they can provide 24 hour, continuous service.

The sonic boom measuring stations are equipped with satellite synchronized time code clocks which have been designed to receive and decode timing information from the NOAA "GOES" satellite which transmits on a frequency of 468 mHz, the displayed time as well as the electrically outputed time will be universal coordinated time (UTC), more commonly referred to as Greenwich Mean Time (GMT). This time base will be recorded on magnetic tape using an IRIG-B format of day-of-year, hours, minutes, and seconds to an accuracy of ± 1.0 milli second traceable to the National Bureau of Standards.

Communications

A voice circuit (dedicated hard line communication link) will be available from the space radiation analysis group (SRAG) console No. 386 in mission control located at the Johnson Space Center to the Sonic Boom Coordinator Console position located in building 4800 at the Dryden Flight Research Facility in order that the

program principal investigator may respond to possible STS-2 reentry profile anomalies.

Primary voice communications between Dryden Flight Research Facility and four sonic boom and one meteorological measurement stations will utilize a narrow band FM system transmitting and receiving on 40.870 mHz frequency. All sonic boom related communications traffic will operate through the Sonic Boom Coordinator console position located in building 4800 at Dryden Flight Research Facility.

General Flight Plan

The STS-2 will be a 124.2 hour flight launched from the Kennedy Space Center on November 4, 1981, at 12 00 Greenwich Mean Time (GMT). The flight test will be achieved in a 120 nautical mile circular orbit for the first five orbits transferring then to a 137 nautical mile circular orbit with a 38 degree inclination, with a 1 hour launch window (as a minimum) being provided. The nominal deorbit maneuver is thrust initiated at 123 hours GET during the 83rd orbit with entry interface occurring at 400,000 feet altitude with subsequent landing on Rogers Lakebed runway 23 at Edwards Air Force Base, CA at 9:11 a.m. PDT on November 9, 1981. There will be landing opportunities at EAFB on at least five orbits each day. All landings (nominal, abort, and contingency) except AOA will be no earlier than 15 minutes prior to sunrise and no later than 15 minutes after sunset.

Sonic Boom Measurement System

Proven aircraft and large spacecraft sonic boom data acquisition systems are to be utilized for ground level sonic boom measurements during STS-2 reentry. These systems have been used in previous aircraft, Apollo, Skylab, and Shuttle sonic boom programs and consist of pressure transducers, Dynagages (oscillatordetector circuit), instrumentation amplifiers, FM magnetic tape recorders, and satellite time code receivers. Specifically, the pressure transducer is a commercially available condenser microphone with a high frequency response to 10 kHz

when used with the model DG-605 Dynagage system, with the low end frequency response of approximately -5 dB at -.01 Hz. The low end frequency response is made possible by modifying the configuration of the chamber vent behind the microphone diaphram. Basically, the size of the vent was diminished thereby reducing the atmospheric pressure bleed rate. This procedure will allow adequate provisions for system balancing, temperature and, atmospheric pressure changes during field operations.

The Dynagage consists of a radio frequency oscillator coupled to a diode detector circuit whereby small changes in capacity of the pressure transducer will produce relatively large changes in the diode detector. The output of the detector is therefore proportional to the pressure applied to the tranducer diaphram. The Dynagage output is fed into an instrumentation amplifier which provides a gain of 0 to 60 dB in steps of 2 dB with a flat frequency response of D.C. to 20 kHz.

The measurement system will utilize frequency modulated magnetic tape recorders operating at 30 ips in the intermediate band with a frequency response of D.C. to 10 kHz. Electrical power will be furnished by portable gasoline generators. This instrumentation will be mounted in commercially available vehicles (vans). Each measuring station will utilize four microphones co-located in a 4 x 4 ft ground board (necessary to obtain true ground pressures with the incident and reflected waves exactly in phase). The data from these ground level microphones will provide information for direct comparison with predicted sonic boom overpressure levels based on measured wind tunnel data along with measured overpressure data obtained during STS-1 reentry and will identify areas where the highest overpressure levels are predicted to occur during the orbiter reentry.

All microphones will be covered with wind screens consisting of two layers of cheesecloth which will minimize effects of surface winds on the microphone readings and also to provide shade from the sun and protection from blowing sand

particles. The output of the microphones will be routed through the instrumentation amplifiers thus allowing for the setting of a range of overpressure levels a precaution necessary to allow for discrepancies in the predictive method for sonic boom theory (it is not verified at this time if the predictive method really applies to blunt bodies at high angle of attack) or anomalous overpressures caused by unusual atmospheric or focusing conditions. Each station will record 6 channels of overpressure data, time code signal, and voice annotation.

A complete scan through all data channels is repeated at regular intervals while the data acquisition station is operational. As the orbiter passes over the coast of California on a descending track to a landing the scanning of all data channels will be continuous until data acquisition is terminated. All tape recorder data channels will be calibrated using a precision voltage source to verify center frequency stability. Laboratory calibration of the microphone systems to determine frequency response is performed at regular intervals, utilizing an infrasonic pistonphone technique. In the field a fixed frequency (1 kHz) sound pressure level calibration will be performed at both "pre" and "post" flight conditions and will establish the amplitude sensitivity of the system which will verify an end-toend acoustical calibration.

DAY 1 (LAUNCH)

1. Arrive at measurement station at launch time.

2. Ready to record data, 2 hours, 46 min after launch.

DAY 2

3. Arrive at measurement station, 23 hours, 35 min after launch.

4. Ready to record data 1 day plus, 1 hour, 5 min after launch.

Day 3

5. Arrive at measurement station, 49 hours, 02 min after launch.

6. Ready to record data 2 days plus, 2 hours, 32 min after launch.

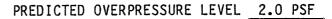
Day 4

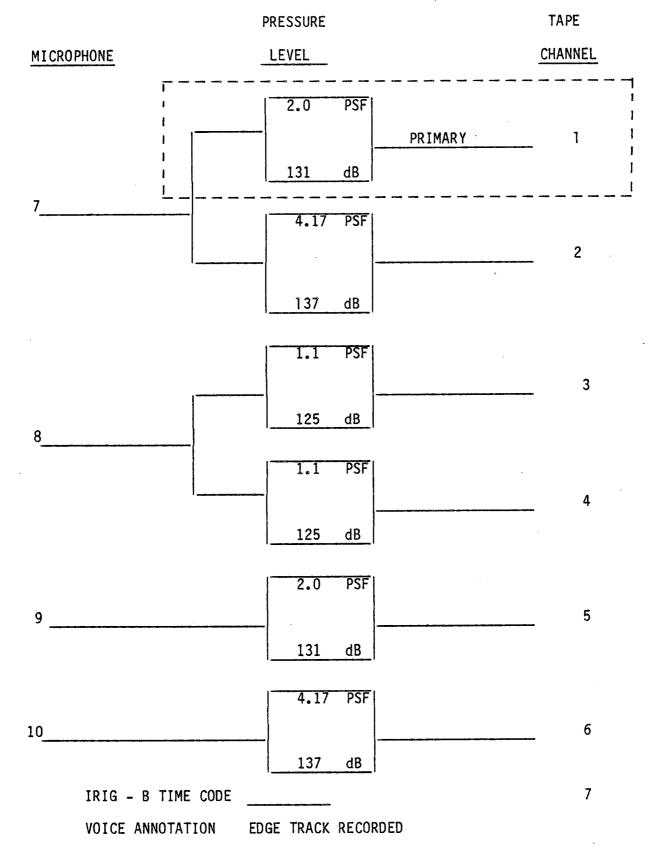
7. Arrive at measurement station, 72 hours, 34 min after launch.

8. Ready to record data 3 days plus, 2 hours, 24 min after launch.

Day 5

9. Arrive at measurement station, 96 hours, 46 min after launch.


10. Ready to record data 4 days plus, 2 hours, 16 min after launch.


Day 6

Arrive at measurement station, 120 hours, 38 min after launch.
Ready to record data 5 days plus, 2 hours, 08 min after launch.
"Recorders On" command will be given by Sonic Boom Coordinator.

STATION RELEASE

14. Sonic Boom Coordinator will advise station release time for each day.

CALIBRATION AND OVERPRESSURE LEVEL SETTINGS

CONSOLE STATION	21	DATE OPERATOR										
SYSTEM NUMBER	D.G TUNES	CAL. D.G ATTN. SETTING	SETTINGS B.B. AMP. SETTING	ASSIGNED RUN LEVELS	RUN SE D.G ATTN. SETTING	TTINGS B.B. AMP. SETTING	TAPE CH					
	<u>3.3</u> at <u>56</u>	18	1 <u>10</u>	<u>131 dB</u>		1 12	1					
			2 <u>10</u>	<u>137 dB</u>		2 _6	2					
8	<u>4.2</u> at <u>45</u>		3 <u>14</u>	125 dB		3 12	3					
			4 <u>14</u>	125 dB		4 12	_4					
9	<u>3.3</u> at <u>46</u>		5 <u>8</u>	<u>131 dB</u>	_18	5 _4_	_5_					
10	<u>4.2</u> at <u>47</u>	9		<u>137 dB</u>	_15		6					

Cal. Level 130 dB, set system gain for 2 vpp input to tape recorder.

 $\frac{\text{NOTE:}}{\text{Avoid setting D.G attn. below 6 dB if possible.}}$

DAY 1 (LAUNCH)

1. Arrive at measurement station at launch time.

2. Ready to record data, 2 hours, 46 min after launch.

<u>DAY 2</u>

3. Arrive at measurement station, 23 hours, 35 min after launch.

4. Ready to record data 1 day plus, 1 hour, 5 min after launch.

Day 3

5. Arrive at measurement station, 49 hours, 02 min after launch.

6. Ready to record data 2 days plus, 2 hours, 32 min after launch.

Day 4

7. Arrive at measurement station, 72 hours, 34 min after launch.

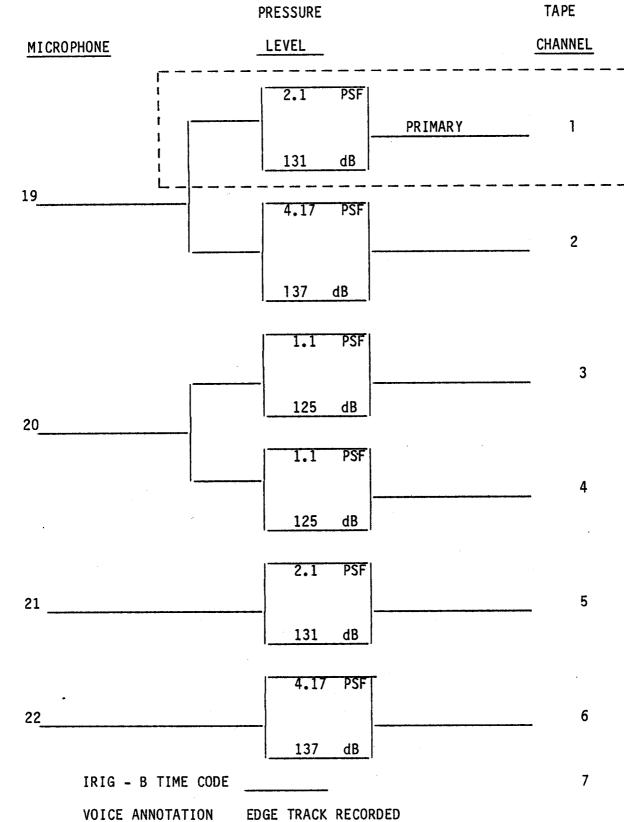
8. Ready to record data 3 days plus, 2 hours, 24 min after launch.

Day 5

9. Arrive at measurement station, 96 hours, 46 min after launch.

10. Ready to record data 4 days plus, 2 hours, 16 min after launch.

Day 6


Arrive at measurement station, 120 hours, 38 min after launch.
Ready to record data 5 days plus, 2 hours, 08 min after launch.

13. "Recorders On" command will be given by Sonic Boom Coordinator.

STATION RELEASE

14. Sonic Boom Coordinator will advise station release time for each day.

PREDICTED OVERPRESSURE LEVEL 2.1 PSF

VOICE ANNOTATION

CALIBRATION AND OVERPRESSURE LEVEL SETTINGS

CONSOLE STATION	<u> </u>	DATE OPERATOR								
SYSTEM NUMBER	D.G TUNES	CAL. D.G ATTN. SETTING	SETTINGS B.B. AMP. SETTING	ASSIGNED RUN LEVELS	RUN SE D.G ATTN. SETTING	TTINGS B.B. AMP. SETTING	TAPE CH			
19	<u>3.3</u> at <u>42</u>	15	1 _6	131 dB	21	1 _6	1			
			2 _6	<u>137 dB</u>		2 _0	_2			
	• • • • • • • • • • • • • • • • • • • •			an a	na na span a praco provinska od anista do sinista					
_20	<u>3.2</u> at <u>43</u>	18	3 <u>10</u>	125 dB	18	3 10	3			
			4 <u>10</u>	<u>125 dB</u>		4 <u>10</u>				
	<u>3.2</u> at <u>45</u>		5 <u>8</u>	<u>131 dB</u>	_18	5 _2_	_5_			
_22	<u>4.0</u> at <u>45</u>	9		<u>137 dB</u>	_21		6			

<u>Cal. Level 130 dB</u>, set system gain for <u>2 vpp</u> input to tape recorder.

.

NOTE: D.G attn. setting must satisfy 2 B.B. amp settings where applicable. Avoid setting D.G attn. below 6 dB if possible.

DAY 1 (LAUNCH)

1. Arrive at measurement station at launch time.

2. Ready to record data, 2 hours, 46 min after launch.

DAY 2

3. Arrive at measurement station, 23 hours, 35 min after launch.

4. Ready to record data 1 day plus, 1 hour, 5 min after launch.

Day 3

5. Arrive at measurement station, 49 hours, 02 min after launch.

6. Ready to record data 2 days plus, 2 hours, 32 min after launch.

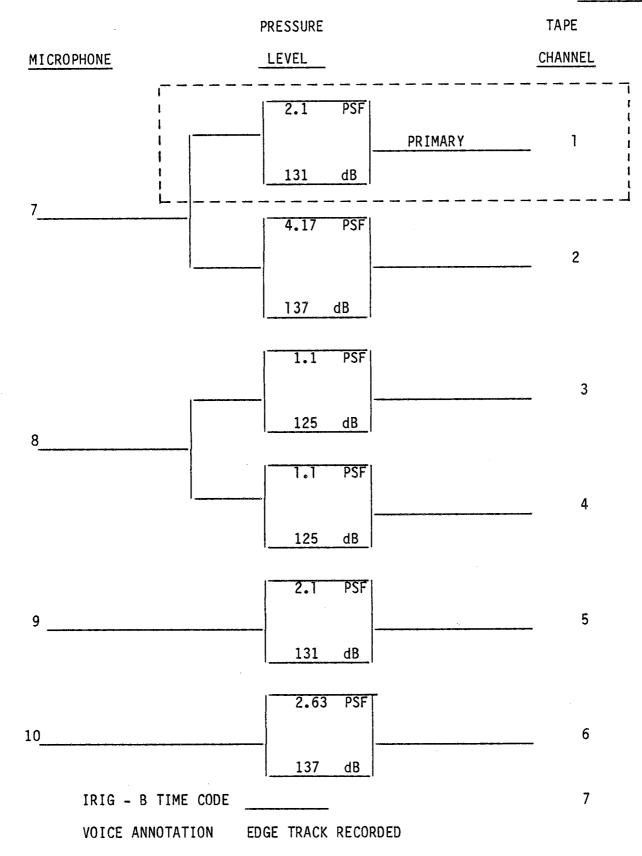
Day 4

7. Arrive at measurement station, 72 hours, 34 min after launch.

8. Ready to record data 3 days plus, 2 hours, 24 min after launch.

Day 5

9. Arrive at measurement station, 96 hours, 46 min after launch.
10. Ready to record data 4 days plus, 2 hours, 16 min after launch.


Day 6

Arrive at measurement station, 120 hours, 38 min after launch.
Ready to record data 5 days plus, 2 hours, 08 min after launch.
"Recorders On" command will be given by Sonic Boom Coordinator.

STATION RELEASE

14. Sonic Boom Coordinator will advise station release time for each day.

PREDICTED OVERPRESSURE LEVEL 2.1 PSF

CALIBRATION AND OVERPRESSURE LEVEL SETTINGS

CONSOLE STATION	<u> </u>	3 OPERATOR										
SYSTEM NUMBER	D.G TUNES	CAL. D.G ATTN. SETTING	SETTINGS B.B. AMP. SETTING	ASSIGNED RUN LEVELS	RUN SE D.G ATTN. SETTING	TTINGS B.B. AMP. SETTING	TAPE CH					
	<u>4.0</u> at <u>51</u>	18	1	<u>131 dB</u>	21	1 _8_	1					
			2 <u>8</u>	<u>137 dB</u>		2 _6_	_2					
							<u></u>					
	<u>4.2</u> at <u>46</u>		3 <u>8</u>	125 dB	15	3 8	3					
			4 <u>8</u>	<u>125 dB</u>		4 <u>8</u>						
	<u>3.3</u> at <u>51</u>		5 <u>10</u>	<u>131 dB</u>	_21	5 <u>10</u>	_5_					
14	<u>4.3</u> at <u>46</u>		, in the second seco	<u>137 dB</u>	_18		_6					

Cal. Level 130 dB, set system gain for 2 vpp input to tape recorder.

 $\underbrace{ \text{NOTE:} }_{\text{Avoid setting D.G attn. below 6 dB if possible.}} \text{ B.B. amp settings where applicable.}$

EVENT TIMES

STATION - 4

DAY 1 (LAUNCH)

1. Arrive at measurement station at launch time.

2. Ready to record data, 2 hours, 46 min after launch.

<u>DAY 2</u>

3. Arrive at measurement station, 23 hours, 35 min after launch.

4. Ready to record data 1 day plus, 1 hour, 5 min after launch.

Day 3

5. Arrive at measurement station, 49 hours, 02 min after launch.

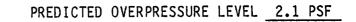
6. Ready to record data 2 days plus, 2 hours, 32 min after launch.

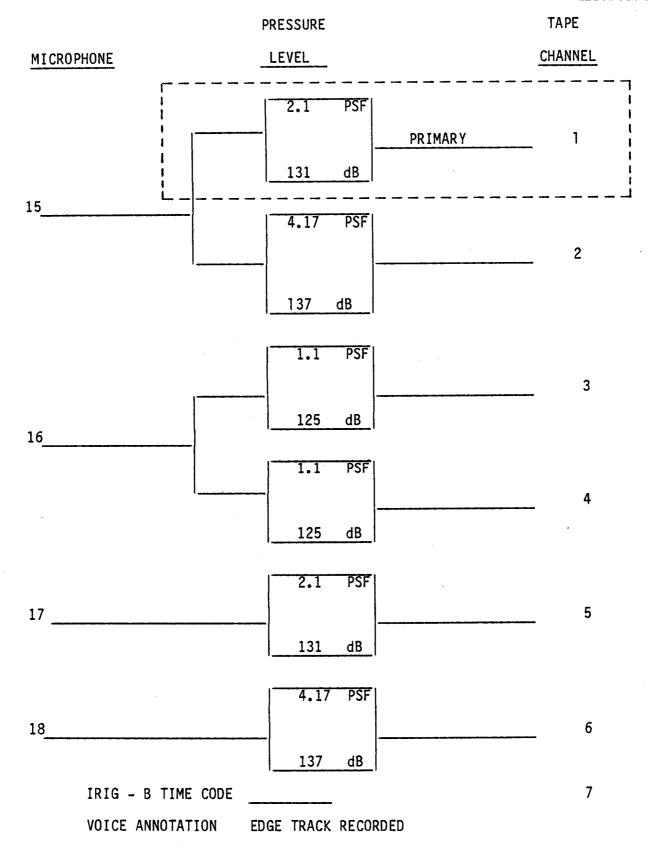
Day 4

7. Arrive at measurement station, 72 hours, 34 min after launch.

8. Ready to record data 3 days plus, 2 hours, 24 min after launch.

Day 5


9. Arrive at measurement station, 96 hours, 46 min after launch.
10. Ready to record data 4 days plus, 2 hours, 16 min after launch.


Day 6

Arrive at measurement station, 120 hours, 38 min after launch.
Ready to record data 5 days plus, 2 hours, 08 min after launch.
"Recorders On" command will be given by Sonic Boom Coordinator.

STATION RELEASE

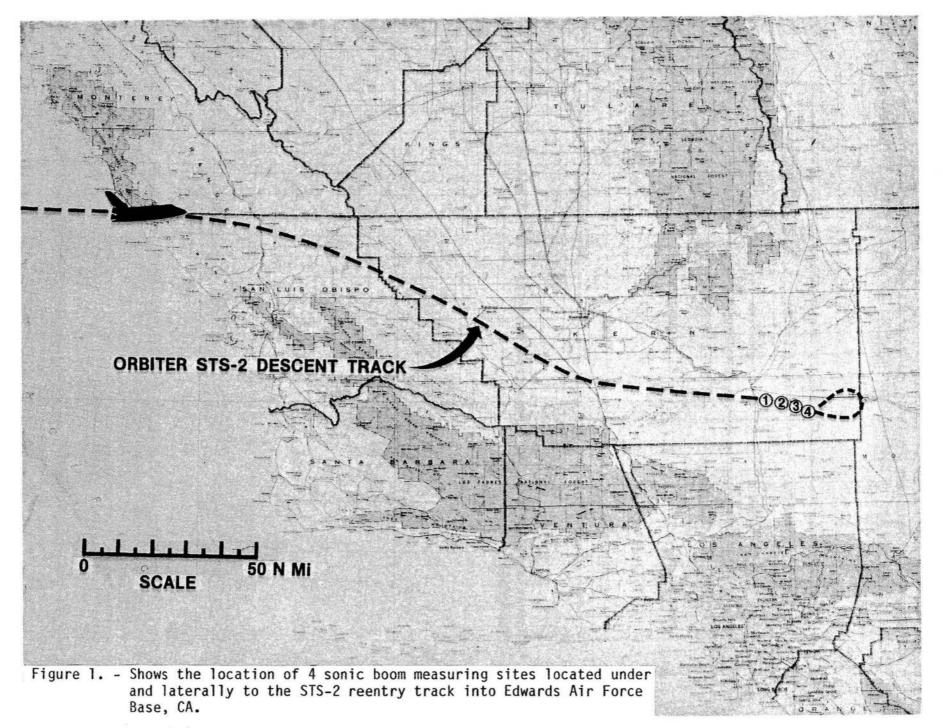
14. Sonic Boom Coordinator will advise station release time for each day.

CALIBRATION AND OVERPRESSURE LEVEL SETTINGS

CONSOLE	4						
STATION SYSTEM	4 D.G	CAL.	SETTINGS	OPER.	<u></u>	TTINGS	TAPE CH
NUMBER	TUNES	D.G ATTN. SETTING	B.B. AMP. SETTING	ASSIGNED RUN LEVELS	D.G ATTN. SETTING	B.B. AMP. SETTING	
	<u>4.0</u> at <u>52</u>	18	1	<u>131 dB</u>	24	1 <u>10</u>	1
			2 _8	137 dB		2 _4	_2
		n <u>en en e</u> n de suis esta de la contra de la contra d	a can the st Res (Red McDatasy Is) - a can be a can be	<u></u>	na an a		an a
	<u>4.0</u> at <u>47</u>	_21	3 <u>12</u>	125 dB	15	3 <u>8</u>	3
			4 <u>12</u>	<u>125 dB</u>		4 <u>8</u>	
	<u>4.4</u> at <u>47</u>		5 <u>8</u>	<u>131 dB</u>		5 _4_	
18	<u>3.1</u> at <u>51</u>			<u>137 dB</u>	_18		6

Cal. Level 130 dB, set system gain for 2 vpp input to tape recorder.

NOTE: D.G attn. setting must satisfy 2 B.B. amp settings where applicable. Avoid setting D.G attn. below 6 dB if possible.


		•			
FLIGHT MACH NUMBER	FLIGHT ALTITUDE, (ft)	[∆] p (PSF)	LATERAL DISTANCE FROM GROUND TRACK (n mi)	LONGITUDE, DEG, W	LATITUDE, DEG, N
1.84	72,700	2.0	0	118.04	34.96
1.75	70,700	2.1	0	117.99	34.96
1.63	67,750	2.1	0	117.94	34.95
1.53	65,200	2.1	2.2	117.87	34.98

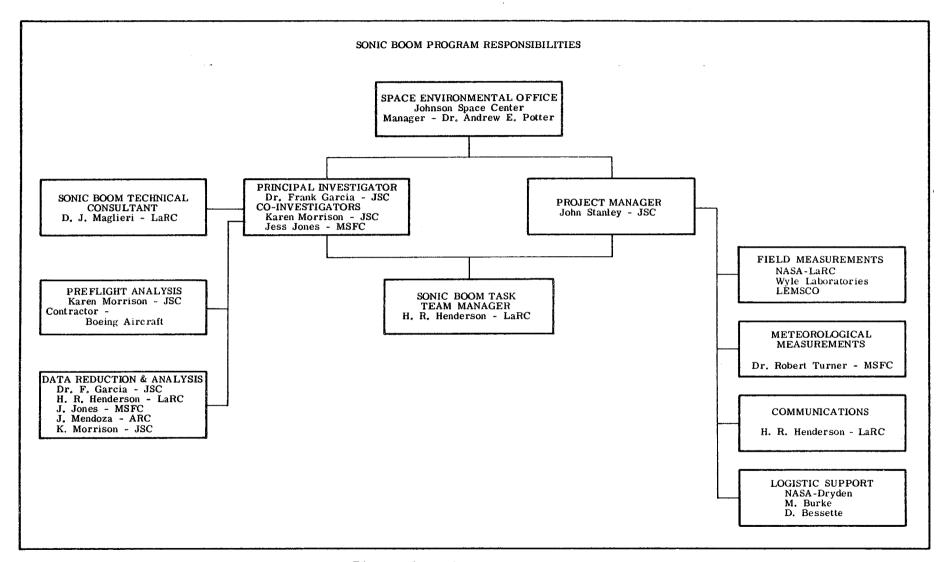
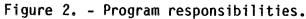

Table 1.- The STS-2 Sonic Boom Theoretical Predictions for Edwards Air Force Base, CA Area.

Table	2	Approximate	Positi	oning	Informa	atior	i for S	STS-2	Sonic Boom
		Measuring S	tations	for	Edwards	Air	Force	Base,	, CA Area.


	STATION, NO/NAME	* LONGITUDE, DEG, w	* LATITUDE, DEG, N
1	DeStanzo Ranch	118.04	34.96
<u>,</u> 2	Bissell	117.99	34.96
3	Buckhorn	117.94	34.95
4	North Base	117.87	34.98

* Approximate positioning information obtained from 7.5 minute series topographic maps.

. -

•

25

والمراجع والمراجع والمنافع والمتحم والمراجع والمراجع والمراجع

1. Henderson, H. R.: Sonic Boom Measurement Test Plan for Space Shuttle STS-1 Reentry. NASA April 1981.

NASA Langley Research Center Hampton, VA 23665

> 107/P. F. Holloway 249/D. J. Maglieri 163A/G. C. Ashby 325/H. R. Henderson 270/E. B. Pritchard 325/W. G. Ayers 118/R. C. Goetz 462/H. G. Morgan 235/W. B. Jones 238/H. K. Holmes 238/R. B. Lewis 460/H. H. Hubbard 905/H. W. Carlson

NASA Marshall Space Flight Center Huntsville, AL 35812

> Code ED-23/Jess H. Jones Code ES-84/Robert E. Turner Code ED-31/G. A. Wilhold

NASA Johnson Space Center Houston, TX 77058

> Code LA5/T. McElmurry Code EX/B. G. Jackson Code LA/Dr. Glynn S. Lunney Code EX/Dr. Frank Garcia, Jr. Code SN-3/Dr. Andrew E. Potter Code SN-3/John Stanely (15 copies) Code EX-4/Karen Morrison Code LM/C. C. Gay Code EA/R. O. Piland Code EA/R. O. Piland Code EA-4/H. A. Louviere Code EA/Dr. Max Faget Code FM-42/J. A. Field

NASA Dryden Flight Research Facility Edwards, CA 93523

> Code P-SO/M. Burk Code P-SO/Dennis Bessette Code F-D/J. A. Manke Code F-FCP/F. L. Fulton Code F-FC/D. L. Mallick Code F-TSE/R. B. Cohn Code F-TSE/J. H. Havenner

NASA Headquarters Washington, DC 20546

Code EBT-8/R. J. Bendura Code MXR-4/Paul Wetzel Code RJH-2/J. A. Suddreth Code RTF-6/Clinton E. Brown

NASA Ames Research Center Moffett Field, CA 94035

Code FAR/R. M. Hicks Code FAR/J. P. Mendosa

NASA Kennedy Space Center Kennedy Spae Center, FL 32899

Code DF-EMS/Dr. A. Koller Code TI-INS-12/G. Gibson

Wyle Laboratories Scientific Services Group 3200 Magruder Blvd. Hampton, VA 23666

> John J. Wood Dave Hilliard Tom Baxter E. M. Davis F. M. Chilcott

National Academy of Engineering Aeronautics & Space Engineering Board Attn: John P. Taylor 2101 Constitution Avenue, NW Washington, DC 20418

Lockheed Electronics & Support Co. LEMSCO Houston, TX 77058

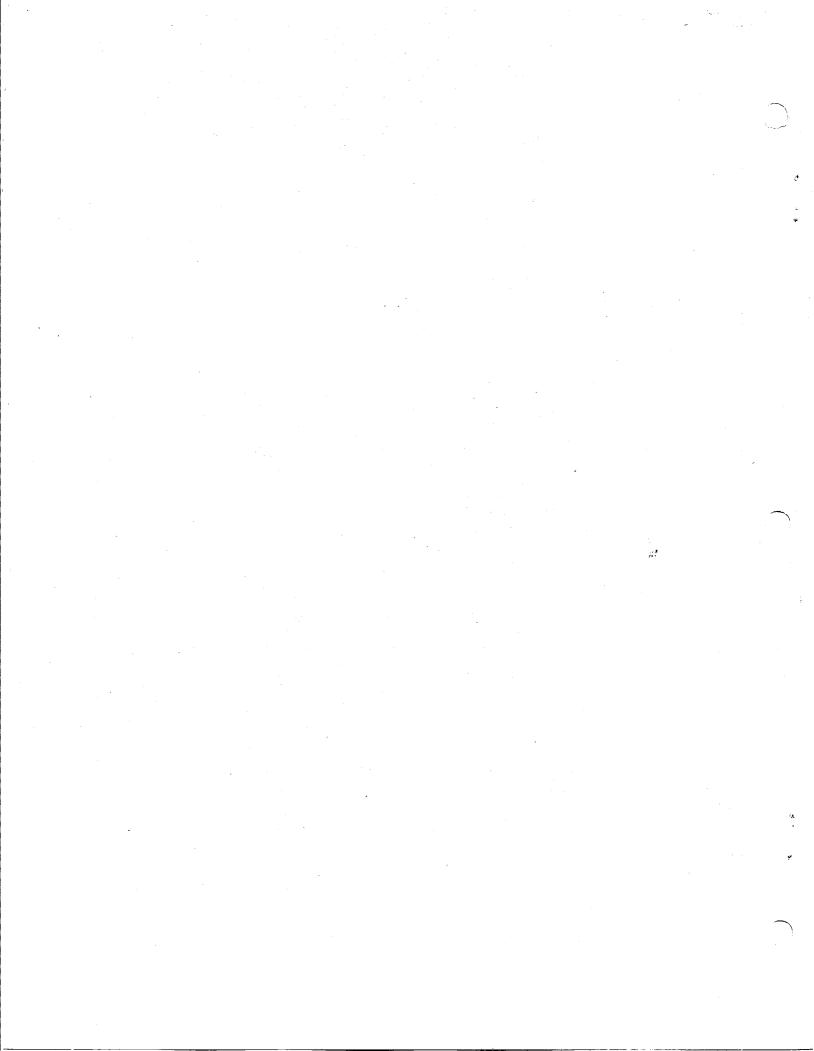
> Ed Reyna Robert Steger Jerry Winkler

U.S. Air Force

Code OEHL/Maj. James Rock (5 copies) Brooks AFB San Antonio, TX 78235

DISTRIBUTION LIST, Cont.

Mr. Charles Nixon AFAMRL/BBA Wright Patterson AFB, OH 45433


Capt. Dan Tilsner (3 copies) Code SD/SGX Headquarters Space Director P.O. 92960 Worldway Los Angeles, CA 90009

Lt. Col. R. C. Wooten (5 copies) SD/DEV P.O. Box 9296-WPC Los Angeles, CA 90009

DDMS/Fred Schwartz Manned Spaceflight SPT OPS Patrick AFB, FL 32925

U.S. Air Force Tactical Air Command Attn: Code DEEV/Mr. T. L. Lord Chief, Environmental Planning Division Langley Air Force Base, VA 23665

Major Bill Gauntt Headquarters U.S. Air Force Code X00 Pentagon Washington, DC 20330

