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SUMMARY

A method which provides sonic-boom-minimizing equivalent area distributions

for supersonic cruise conditions is described. This work extends previous anal-

yses to permit relaxation of the extreme nose bluntness which is required by

conventional low-boom shapes and includes propagation in a real atmosphere.

The procedure provides area distributions which minimize either shock strength

or overpressure. The minimizing Whitham F-functions for the pressure signatures

are also included.

INTRODUCTION

Sonic-boom levels produced by future generation supersonic transports must

be considered if their supersonic flight paths, and thus their economic success,

are not to be severely restricted. It is generally believed that the best

approach to this problem is to include low-boom constraints early in the design

process. The procedure described herein provides this constraint in the form

of an equivalent area distribution which depends on the design conditions of

aircraft weight (lift) and length, and on cruise Mach number and altitude.

Sonic-boom-minimization studies, by Jones, Seebass, and George for uniform

and isothermal atmospheres have been reported in references I to 6. These anal-

yses have been extended to a real atmosphere in reference 7. All these studies

have indicated that the minimizing area distribution is characterized by a blunt-

ness in the leading portion of the area distribution, i.e., the aircraft nose

region. Because extreme nose bluntness produces large drag, a method of relaxing

the bluntness requirement is needed to offer the opportunity for compromise between

blunt-nose, low-boom and sharp-nose, low-drag configurations.

This analysis extends the work of Seebass and George (ref. 6) and Darden

(ref. 7) to include nose-bluntness relaxation. Because questions still remain

regarding the type of pressure signature and the level of overpressure which

are acceptable, either a minimum-shock or a minimum-overpressure signature may

be produced for given cruise conditions and nose length.

This analysis has been incorporated into a computer program which is

described in the appendix of this paper.

SYMBOLS

Although values are given in both SI and U.S. Customary Units, the calcu-

lations for the investigation were made in U.S. Customary Units.

Notation used in the computer printout is given in parentheses.



A

Ae

Ae(l )

a

B

C

CD

D

ray-tube area

equivalent area

equivalent area at equivalent length I

speed of sound

slope of rise in F-function (eq. (20))

height of F-function at balancing point

drag coefficient

constant in F-function equation

F (F and FTAU)

G

H

h (Z)

I

K (RFK)

z (L)

M

P

P

S

t

u

V

W (WG)

w (W-TILDE)

Whitham F-function

area of F-function to front balance point

height of spike in F-function

airplane altitude

impulse of pressure signature, 1 P dt

_p >0

reflection factor

equivalent length of airplane

Mach number

pressure perturbation

ambient pressure

Ap (Delta P) overpressure

slope of balancing line

time

speed

total area, _W/pu 2

airplane weight

weight parameter,

V

B(Z - yf) 5/2



x,y

yf (YF)

Yr (T)

z (r)

8z (BR)

Y

F

8

n

(LAM)

axial distances

width of forward spike in F-function

position of rear area balancing

vertical distance of signal from airplane axis

advance of acoustic rays

= (S 2 _ ] )I/2

shifting factor for axial position

ratio of specific heats, 1.4 for air

y+1

2

Dirac delta function

fraction of balancing line slope used in defining F-function

axial position at which F-function becomes negative

]

Mach angle, sin -] -

M

dummy integration variable

density

Subscripts:

a

f

g

h

o

r

s

Y

ambient

front shock

ground

altitude of initial waveform

minimum-overpressure signature

rear shock

minimum-shock signature

axial position



yf axial position of front area_balance

z vertical distance of signal from airplane axis

First and second derivatives with respect to distance are denoted by single
and double primes, respectively.

BACKGROUND

Sonic-boom-minimization studies are based primarily on currently accepted
sonic-boom prediction methods. Thesemethods, outlined in figure I, are exten-
sions of work done by Whitham (ref. 8), Walkden (ref. 9), and Hayes (ref. ]0).

From the complex aircraft configuration and its lift distribution, an equivalent

area distribution is defined. This equivalent area distribution then defines

the Whitham "F-function" through the following integral relation:

] _0 y Ae" d_
F(y) 2_ (y _ _)1/2

(])

This F-function represents a distribution of sources which causes the same dis-

turbances as the aircraft at some distance from the aircraft.

Because the pressure signal propagates at the local speed of sound, and

each point of the signal advances according to its amplitude, the signal is dis-

torted at the ground and, theoretically, can be multivalued. The physically

unrealistic multiple values of pressure are, however, eliminated by the intro-

duction of shocks. Shock location, based on the observation that for weak dis-

turbances the shock bisects the angle between two merging characteristic lines,

is determined by a balancing of the signature areas within loops on either side

of the shocks. This procedure is demonstrated by the shaded areas of the dis-

torted signal in figure 1.

For present-day supersonic aircraft, the propagation distance (altitude)

and the pattern of shock coalescence have been such that, at ground level, only

two shocks remain in the signature. These two shocks have a linear pressure

variation between them (as seen in fig. 2), thus the name "far-field N-wave."

For this wave, the shape of the generating aircraft has an effect on the magni-

tude but no effect on the shape of the resulting signature. For a sufficiently

long and slender aircraft, it was found that the ground wave form may possibly

not have attained its N-shape remaining instead a mid-field wave. Because the

shape of the aircraft does influence the shape of a mid-field pressure signature,

aircraft shaping has now become a powerful tool in reducing the sonic boom.

The F-functions for the lower bound of an N-wave (refs. I and 2) and for

the lower bound of the bow shock in a mid-field signature (refs. 3 and 4) led

to the form of the minimizing F-function assumed by Seebass and George for the

entire signature. Lung (ref. 11) later proved this to be the minimizing form

by "bang-bang" control theory.
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Commonto all of these minimizing forms of the F-function is a Dirac delta

function at y = 0. This infinite impulse corresponds to an infinite gradient

at the nose of the equivalent area distribution. Aircraft designed to match

these area distributions generally have extremely blunt nose shapes which result

in substantial drag. This result, though seemingly paradoxical, can be explained

by the created shock-attenuation pattern in which the shock strengths, and there-

fore the drag, are greatest near the aircraft. Because of special shaping and

area growth, secondary shocks from other aircraft components do not overtake and

enhance the bow shock during the propagation of the wave front. (See fig. 3.)

The net result of this process is weaker shocks at larger distances because of

attenuation, but an overall increase in drag. In contrast, notice that the bow

shock is weaker on the sharp-nosed aircraft, but coalescence with stronger shocks

from rearward components causes a much stronger shock at mid- and far-field dis-

tances. If an aircraft configuration is to incorporate boom-minimization features

and not suffer aerodynamic penalties which inordinately affect its flight effi-

ciency, range, payload, productivity, and so forth, then means must be provided

for including nose-bluntness sensitivity in design trade-off studies.

ANALYSIS

The following is a brief description of the Seebass-George minimization

scheme with modifications to provide propagation through the real atmosphere

(ref. 7) and control over the bluntness of the area distribution and thereby

the drag of the configuration. The assumed form for the class of minimizing

F-functions is shown in figure 4. In mathematical terms it may be expressed

as:

F(y) = 2yH/yf

F(y) = C(2y/yf - I) - H(2y/yf - 2)

F(y) = B(y - yf) + C

F(y) = B(y - yf) - D

(0 < y < yf/2) (2a)

(yf/2 < y < yf) (2b)

(yf < y < l) (2c)

(l _ y < l) (2d)

In these equations H, B, C, D, and _ are unknown coefficients which are

determined by the cruise conditions of the aircraft, by nose length, by the pre-

scribed ratio of bow to rear shock, and by the signature parameter being mini-

mized. Types of signatures studied include flat-topped signatures in which over-

pressure is minimized with B = 0 and signatures in which F(y) is allowed to

rise between yf and _ with a resulting minimum shock followed by a pressure

rise as illustrated in figure 4. The value of B in this form of F(y) may

range between 0 and S. Recall that the Whitham function F(y) represents the

shapecharacteristics of the pressure signature and is defined in reference ]0

and equation (1) in terms of the equivalent area distribution as:

d_



Crucial to this minimization technique is the fact that equation (I) is an Abel

integral equation which may be inverted to give the function A e in terms of

the F-function. When this function is evaluated at 2, the result is:

Ae(7 ) = 4 F(y) (Z - y)]/2 dy
(3)

Upon substituting the minimizing form of the F-function into equation (3) and

integrating, the following equation for the development of cross-sectional area

is obtained:

A e (x) =

32 H

]5 yf
x5/2 l<x Yfl 8- - + -

- - - (3yf + 2x) + --C
3

'--("1 ' '+ (3yf + 2x) - --H + -- B(3yf + 2x) - --Byf + -

15\yf/ 3 ]5 3 3

8

- ] (x - l)-(x - I) 3/2(C + D) (4)

3

where ] (x - 7) is the Heaviside unit step function. A typical form of the

resulting area distribution, Ae, is seen in figure 4.

If the effects of aircraft wake and engine exhaust are neglected, and, if

the aircraft cross-section area is zero at its base, then the area at I is

entirely due to cruise lift or

W 32 H

Ae(1 ) = -- =

pu 2 ] 5 yf

25/2 + __ - -- +

15
2Z (2C - 4H) + 5(2H - C

'--("--1 '+ 4(I - yf) 3/2 3yf + 21) + -- C + (3yf + 21) - - H

L_yf/ 3 ] 5\yf/ 3

2 2 2 8

+ -- B(3yf + 21) - - Byf + - C - -(I - X) 3/2(C + D)

]5 3 3 3

(5)



The first constraint imposed upon F(y) is that the front area balance must

occur at y = yf, where yf is the first point at which F(y) = C, that is,

_0 yf (_Yf (_yf
F(y) dy = G = i F(yf) = I C

2 2

(6)

For the real atmosphere, the advance (ref. 9) of any point of the signal is given

by

(28)I/2 P \Qha/ \ZhA/ 8

where z is the vertical distance of the signal from the aircraft axis, z h

is the vertical distance of the initial waveform from the aircraft axis, A and

A h are ray-tube areas determined from

Ah I I/2 z dz

Zh A h -- "
(Sz2 - I)I/

(8)

and F = (y + I)/2. The initial waveform must be defined away from the aircraft,

because the F-function only can represent the body shape accurately at several

body lengths away, and the acoustical theory used in describing the propagation

of the signal fails near the aircraft. The slope of the balancing line is pro-

portional to the reciprocal of the advance at any point of the signal; thus,

(28) I/2 F(y)

S = = -- (9)

_h _pahll/2(A hzhAll/2M _yFMh3 _ \--/ -- dz
P \Qha/

For the rear area balancing to occur between points _ and Yr, then

_Yr I
F(y) dy = -(zFB - yf) - D + F(Yr__)J (Yr - _)

2
(10)

where Yr is the unknown second intersection point of the rear area balancing

line with F(y). If a cylindrical wake is assumed, F(y) and its integral for



y > 2 can be expressed in terms of F(y)

as follows:

for y < 7 according to reference ]

F(y) = -

] CZ (Z - _)]/2

1T(y - Z) ]/2 _ Y -

F(_) d_ (y > Z) (I])

2 _Z _/Yr - Z\ ]/2_Yr F(y)dY = - --IT F(_) tan-lk[ _-; d_
(y > Z) (] 2)

It is necessary to define F(y) and its integral for y > _ in this way for

optimization problems, since aircraft geometry and thus the Whitham function

can be varied arbitrarily only in the range 0 _ y _ _. The constraint on the

ratio of shocks is given by

Pf

w

Pr

C

D - B(Z - yf) + F(Yr)

(]3)

To insure that Yr is an intersection point of F(y)

then

F(Yr) = S(y r - _) + B(Z - yf) - D

and the balancing line,

(14)

and the slope of F(y) at Yr must be less than S.

Solving the system of equations ((5), (6), (]0), (13), and (14)) provides

values for the constants H, C, D, _, and Yr" One difficulty of this mini-

mization approach is that, as yet, there is no precise definition of the rise

time that will allow the ear to detect only the bow shock and not to be sensi-

tive to the peak as well. With the values of the coefficients known, the mini-

mizing F-function and the area distributions may be determined by equations (2)

and (4).

To convert F(y) into pressure near the airplane, the following equation

is used:

-a_ = yM2F
h (28Zh)]/2

(1 5)

and on the ground



( l''210gag Ij2
pg = i Ph

\ Ag/ \Phah /

(16)

Finally, by using a ground reflection factor

converted into the ground signature by

K, the pressure perturbations are

Apg = PgK (]7)

The ground-level signature is presented by the signature shown in figure 4.

By taking the limit as yf ÷ 0 and by using L'Hospital's rule, the expres-

sion for area development given above (eq. (4)_ reduces to the following delta

function form as given by Seebass and George (ref. 6):

16 8 8

A e(x) = 4Gx I/2 + __ Bx5/2 + _ Cx3/2 _ ] (x - l)-(x - I)3/2(C + D)

15 3 3

(18)

SPECIAL CASES

Special types of pressure signatures occur for large or small values of

~ ~ Bw I

the weight parameter w, where w = -- . These special cases

pu 2 B(7 - yf) 5/2

include signatures with no bow shock, signatures with no shocks, and signatures

in which the rear shock is less than the bow shock without restriction (fig. 5).

Values of W may be checked to indicate when the special calculations are

necessary.

No Bow Shock

For no bow shock, the expression for total area reduces to the yf = 0

form (eq. (18)) automatically. Using the facts that G = _C 2 and _ = Z at

the minimum length necessary for no shock, the resulting quadratic in C may

be solved explicitly to give

where

C = -- -+ +

T] 3 15 2 BZ

8w 1

v=-- B = Sq S =-

pu 2

(0_<-n$1)

(]9)

(20)



For no bow shock (C = 0) equation (] 9) reduces to

V 16

BZ5/2 ] 5

(21)

in the minimum shock signature.

No Shocks

To eliminate both shock waves, G and C are zero and there must be no

discontinuity in F at Z. In fact, both F(y) and F'(y) must be continuous

at 7 and thus Ae'(X) and Ae"(x) must be zero there, since A e is constant

for x > 7. With no shocks,

16 8

Ae(_ ) = -- BZ5/2 - D(_ - i) 3/2 (22)
15 3

By taking the first and second derivatives and solving the two resulting equa-

tions simultaneously

2

=_ _ (23)

3

2n
D = -- (24)

3e

Substituting these values back into the expression for A e gives

V

w : -- _< 0.47407 (25)

BI5/2

No Restriction on Rear Shock

Values of I < Z in the minimizing F-function result because of restric-

tions on the rear shock. For short lengths, high weights, etc., or other combina-

tions which give large values of W, the rear shock is less than the bow shock

I0



without restriction. In these instances I = 7 and the system of equations is
solved without restricting the ratio of rear to front shock:

2yh
F(y) = -- (0 < y < yf/2) (26a)

Yf

\Yf \Yf

(yf/2 < y < yf) (26b)

F(y) = B(y - yf) + C (yf/2 _ y _ _) (26c)

Substituting this expression for F into equation (3) and integrating gives a

quadratic equation in C which can be solved explicitly. Values for C, h,

I, Z, and B are now established. For the rear area balance to occur at Yr

F(y) dy = 2[B(Z - yf) - D + F(Yr) 3 (Yr - _)
(27)

also, Yr must be an intersection point for F(y) and balance point, or

F(Y r) = s(y r - Z) + B(Z - yf) - D (28)

Combining these equations

Yr F(y) dy

Yr- Z = (29)

]-[2F(Yr) - S(y r - i)_
2

which may be solved iteratively for Yr with

] _Z (Z - _)1/2

F(Yr) = - _0 F(_) d_ (30)
IT(yr _ _)I/2 Yr -

1]



and

:SO _<Yr 'llJ:F(y) dy : - - F(_) tan -I [ _- dE
(31)

Substituting back into equation (28) gives the required value for D.

Values of w producing the special cases are shown in figure 5. Typical

values giving these extreme w's at M = 2.7, z = 18 288 m (60 000 ft),

W = 272 155 kg (600 000 Ib) would be Z = 33.5 m (]]0 ft) for no restriction

on the rear shock and Z = ]67.64 m (550 ft) for no bow shock. These values

may vary slightly with yf as seen.

TYPICAL RESULTS

Except as indicated otherwise, all results shown are for the following con-

ditions: Mach number, 2.7; altitude, 18 288 m (60 000 ft); weight, 272 155 kg

(600 000 ib); equivalent length, 91.44 m (300 ft); reflection factor, 2.0; ratio

of bow to rear shock pressure, ]; and B = 0.5S. The value of the front balancing

point yf determines the length of the conical nose region of the equivalent area

distribution and is the controlling factor for drag when all of the other flight

conditions remain constant. Referring again to figure 4, this position is indi-

cated On the F-function and the corresponding area distribution.

The effect that varying yf has on the equivalent area distributions for

both the minimum-shock and minimum-overpressure signatures is seen in figure 6.

Each of the distributions was determined from the inversion formula which defines

the effective area corresponding to the minimizing F-function for a given value

of yf. Values of the overpressure and impulse which correspond to these distri-

butions have been inserted for reference. Recall that the impulse is the integral

of the positive portion of the pressure signature, as indicated in the signatures

at the top of figure 6. Note that the lowest values of overpressure and impulse

for these conditions occur when the area distribution has an infinite gradient at

the nose. As yf increases, the longer conical nose region, generated to reduce

drag, also causes an increase in overpressure and impulse. Thus, extensive trade-

off studies between drag and boom levels would be necessary in any aircraft design

studies. The ratio of the increase in overpressure and impulse for both types of

signatures as a function of the ratio of nose length to airplane length yf/Z is

seen more easily in figure 7. With increasing values of yf, note that the area

under the peak portion of the F-function also increases but not in the same pro-

portions. Therefore, to achieve the necessary total area, the level of the con-

stant portion of the F-function also must increase, thereby producing a higher

level of Ap and I. For illustrative purposes, the nose spike of the F-function

for yf = 0 has been drawn with a finite width. For this condition, the spike is

defined mathematically as a pulse of zero width and infinite height which never-

theless has a finite area. In these figures, Ap is the level of overpressure at

the bow shock and represents the initial "bang" heard by the ear when a sonic boom

occurs.
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The variations of overpressure level and the corresponding drag levels are
seen in figure 8. To develop the corresponding variation of drag with yf, the
assumption is madethat necessary configuration changes would be confined to
the fuselage forebody itself. The increment in drag produced by these changes
was calculated using the near-field program of reference 12 and then applied to
drag values for a typical arrow-wing SSTconfiguration. As seen in figure 8,
there is a sharp decline in drag as the blunt nose is converted to a conical
region. Thus, the boomlevels could be reduced significantly without prohibi-
tive drag penalties by defining the proper ratio yf/Z.

The actual trend of overpressure with length is seen in figure 9. The low-
est curve represents the yf = 0 case, the higher ones increasing with yf.
In all instances observe that overpressure levels decrease with length. Though
these results are for minimum-overpressure signatures, similar trends are found
to exist for the minimum-shocksignatures.

CONCLUDINGREMARKS

The analysis for a sonic-boom minimization method has been presented. The

method, which represents an extension of previous work, provides the minimizing

equivalent area distribution with relaxation of the nose-bluntness requirement

for given cruise conditions and includes propagation in the standard atmosphere.

The minimizing Whitham F-functions for the minimum-overpressure or minimum-shock

signature are also included.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

November 13, 1978
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APPENDIX

COMPUTER PROGRAM DESCRIPTION AND FLOW CHART

This program calculates the Whitham F-function and the corresponding equiv-

alent area distribution which produce the mlnimum-overpressure or minimum-shock

signature. The solution is based on five governing equations: total area growth

_eq. (5)), front area balancing point _eq. _6)), rear area balancing point

(eq. (10)), ratio of front to rear shock (eq. (13)), and the area balancing line

at the rear balancing point (eq. (]4)). These five equations reduce to two non-

linear equations in two unknowns which are solved iteratively using the Newton-

Raphson and a combination of the secant and bisection methods.

In calculating the advance of the wave front the standard atmosphere has

been used except for an area near the aircraft axis where it is necessary to

assume a uniform atmosphere.

This program was coded for the Control Data 6600 computer in Fortran IV.

The field length required is 100 000 octal units. Program SEEB is available

as LAR ]]979 from

COSMIC

Suite ]12 Barrow Hall

University of Georgia

Athens, GA 30602

The flow chart of program SEEB is on the following page.

M

Z

L

WG

YF

IPRINT

RKF

INPUT DESCRIPTION

Cruise Mach number (].25 to 3.0)

Cruise altitude (20 000 to ]00 000 ft (6096 to 30 480 m))

Airplane equivalent length (200 to 700 ft (60.96 to 213.36 m))

Gross weight of airplane (200 000 to ] 000 000 Ib (90 720 to

453 600 kg))

Balancing point in F-function to determine the front shock

(0 _ yf/Z _ 0.2) (Default = 0.0 delta function)

= 0 Iterations on Lambda and T not printed.

= ] Iterations printed.

(Default = 0)

Reflection factor.

(Default = 2.0.)

14



APPENDIX

Initialize

Program

Print

LAM = 2/3L
T = L

H = C = 0

' Interpolate

to find new

L for given

DELTA P

itable

table

Read /

es

Calculate 1
advance

Check

W-TILDE

shock

No bow

shock or

regula

No bow

_,,,,ISHOCK

restrictior

on rear shock

Iterate

on T

Iterate on

LAM

ition

Stop

LAM = L

iterate to

find T.

Print

slg.

ILEN = No

I?

First

time?

,Yes

Slope

I?

Increment

slope

Yes

IS : O?

Decrease
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BLEN

PRPF

WIWG

ISIG

IS

PERCEN

ICH

ILEN

IYF

APPENDIX

Factor determining where iteration on T begins.

(Default = 3.0)

T = BLEN- L

Ratio of rear to front shock

(Default = ].0)

Percentage of gross weight remaining at start of cruise.

W = WIWG'WG (Default = ].0)

= ] Area, F-function and pressure signature are printed.

= 0 Only the pressure signature is printed.

(Default = 0)

= 0 Minimum-shock and minimum-overpressure signatures.

= ] Minimum-overpressure signature only.

= 2 Minimum-shock signature only.

(Default = 0)

Factor determining the difference in the slope of the balancing line

and the rise portion of the minimum-shock F-function. Slope of rise

= Slope of balancing line minus PERCEN times slope of balancing line.

(Default = 0.5)

Indicates whether the altitude or Mach number changed after the initial

run and the advance must be recalculated.

= 0 No change.

= ] Mach number or altitude did change.

(Default = 0)

= 0 Find _p for given input conditions.

= ] Iterate to find lengths necessary to give Ap = 0.5, 0.6, 0.7,

0.8, 0.9, and i.0 psf. A full set of flight conditions includ-

ing length must be input.

(Default = 0)

= 0 Delta function used in F-function.

= I Nonzero value of yf used.

If the value of yf is less than I, the program automatically uses

the delta function in the F-function.

(Default = 1)

]6



APPENDIX

OUTPUT DESCRIPTION

The output consists of a listing of input conditions, the solution coeffi-

cients, solution tables, and summary values. Codes exist so that only the pres-

sure signature is printed, the F-function, area, and pressures are printed, or

extensive printout occurs during iterations.

The axial position of the front balancing point is

The advance factor on the ground is e.

Altitude is given in feet and kilometers.

Gross weight is given in pounds.

Cruise weight is given in pounds and kilograms.

WIWG

W-TILDE

Total Area

ISLOPE

H, B, C,

Y f"

= Ratio of beginning cruise weight to gross weight.

~ Bw

P u2 n(Z - yf) 5/2

Bw

pu 2

= Code for signature type

0 = Flat-top minimum overpressure

] = Minimum shock

D, LAM, and yf are coefficients in equations for F-function and

area distribution.

X

X - BR

DELTA P

P], P2

(Yr : T; _ = LAM)

= Axial position for F-function and area distribution near

aircraft.

= x - 8z = Shifted axial position for pressure signature on the

ground.

= dp = Overpressure levels corresponding to x - 8z.

= Overpressure levels in pressure signature. P] and P2 at

same X - BR indicate a shock.
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APPENDIX

SAMPLE CASE

1.2. ! :.3-- ! qZ=_d'il'il'!{'!,l'l,HI3=61.'iOOL'IO.l], I --'" "_ F,, T-;={I, •....-._, F'ERCEH=. 5, ","FL=. !_.:

00000 0000000 0

l _ 3 4 _ 6 7 8 9 I_111_7311 1516

ll1111111111111i

22222222222 2222

3 3333 33333 3 3

44444 444 444444
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For this sample case an "IS" value of zero was used to produce both a

minimum-overpressure solution and a minimum-shock solution.
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