

 	· · · · · · · ·	 	 	
 12			 - · ·	

_- . . .

in the second second

· · · · · · · · · · · · · · · · · · ·	 		 		 -
	 				 ٠
					_
	 				-
	 	·· · -			
	 			 	 1
	 		 		-
					-
	 				-
	 		 	 	 -

e .	
	en e
	· · · · · · · · · · · · · · · · · · ·
_	
	· · · · · · · · · · · · · · · · · · ·
	<u> </u>
	And a start Adaption
-	
=	
-	· · · · · · · · · · · · · · · ·
-	
-	
=	ne and a second s
	·
-	
-	
-	

NASA Technical Paper 1348

Sonic-Boom Minimization With Nose-Bluntness Relaxation

Christine M. Darden Langley Research Center Hampton, Virginia

Scientific and Technical Information Office

. . .

SUMMARY

A method which provides sonic-boom-minimizing equivalent area distributions for supersonic cruise conditions is described. This work extends previous analyses to permit relaxation of the extreme nose bluntness which is required by conventional low-boom shapes and includes propagation in a real atmosphere. The procedure provides area distributions which minimize either shock strength or overpressure. The minimizing Whitham F-functions for the pressure signatures are also included.

INTRODUCTION

Sonic-boom levels produced by future generation supersonic transports must be considered if their supersonic flight paths, and thus their economic success, are not to be severely restricted. It is generally believed that the best approach to this problem is to include low-boom constraints early in the design process. The procedure described herein provides this constraint in the form of an equivalent area distribution which depends on the design conditions of aircraft weight (lift) and length, and on cruise Mach number and altitude.

Sonic-boom-minimization studies, by Jones, Seebass, and George for uniform and isothermal atmospheres have been reported in references 1 to 6. These analyses have been extended to a real atmosphere in reference 7. All these studies have indicated that the minimizing area distribution is characterized by a bluntness in the leading portion of the area distribution, i.e., the aircraft nose region. Because extreme nose bluntness produces large drag, a method of relaxing the bluntness requirement is needed to offer the opportunity for compromise between blunt-nose, low-boom and sharp-nose, low-drag configurations.

This analysis extends the work of Seebass and George (ref. 6) and Darden (ref. 7) to include nose-bluntness relaxation. Because questions still remain regarding the type of pressure signature and the level of overpressure which are acceptable, either a minimum-shock or a minimum-overpressure signature may be produced for given cruise conditions and nose length.

This analysis has been incorporated into a computer program which is described in the appendix of this paper.

SYMBOLS

Although values are given in both SI and U.S. Customary Units, the calculations for the investigation were made in U.S. Customary Units.

Notation used in the computer printout is given in parentheses.

A	ray-tube area
A _e	equivalent area
A _e (l)	equivalent area at equivalent length l
a	speed of sound
в	slope of rise in F-function (eq. (20))
с	height of F-function at balancing point
CD	drag coefficient
D	constant in F-function equation
F (F and H	TAU) Whitham F-function
G	area of F-function to front balance point
н	height of spike in F-function
h (Z)	airplane altitude
I	impulse of pressure signature, $\int_{P>0}^{P} dt$
K (RFK)	reflection factor
l (L)	equivalent length of airplane
М	Mach number
P	pressure perturbation
p	ambient pressure
∆p (Delta	P) overpressure
S	slope of balancing line
t	time
u	speed
v	total area, β₩/ρu ²
W (WG)	airplane weight
₩ (W-TILD	(E) weight parameter, $\frac{V}{B(l - y_f)^{5/2}}$

.

2

-

x,y	axial distances
Yf (YF)	width of forward spike in F-function
у _г (Т)	position of rear area balancing
z (r)	vertical distance of signal from airplane axis
α	advance of acoustic rays
β	$= (M^2 - 1)^{1/2}$
βz (BR)	shifting factor for axial position
Υ	ratio of specific heats, 1.4 for air
Г	$=\frac{\gamma+1}{2}$
δ	Dirac delta function
η	fraction of balancing line slope used in defining F-function
λ (LAM)	axial position at which F-function becomes negative
u	Mach angle, sin ⁻¹ -
F	M
ξ	M dummy integration variable
ξ ρ	M dummy integration variable density
ξ ρ Subscript	M dummy integration variable density s:
ξ ρ Subscript a	M dummy integration variable density s: ambient
ξ ρ Subscript a f	M dummy integration variable density s: ambient front shock
ξ ρ Subscript a f g	M dummy integration variable density s: ambient front shock ground
ξ ρ Subscript a f g h	M dummy integration variable density s: ambient front shock ground altitude of initial waveform
ξ ρ Subscript a f g h o	M dummy integration variable density s: ambient front shock ground altitude of initial waveform minimum-overpressure signature
ξ ρ Subscript a f g h o r	M dummy integration variable density s: ambient front shock ground altitude of initial waveform minimum-overpressure signature rear shock
ξ ρ Subscript a f g h o r s	M dummy integration variable density s: ambient front shock ground altitude of initial waveform minimum-overpressure signature rear shock minimum-shock signature

yf axial position of front area, balance

z

vertical distance of signal from airplane axis

First and second derivatives with respect to distance are denoted by single and double primes, respectively.

BACKGROUND

Sonic-boom-minimization studies are based primarily on currently accepted sonic-boom prediction methods. These methods, outlined in figure 1, are extensions of work done by Whitham (ref. 8), Walkden (ref. 9), and Hayes (ref. 10). From the complex aircraft configuration and its lift distribution, an equivalent area distribution is defined. This equivalent area distribution then defines the Whitham "F-function" through the following integral relation:

$$F(y) = \frac{1}{2\pi} \int_0^y \frac{A_e''}{(y - \xi)^{1/2}} d\xi$$
 (1)

This F-function represents a distribution of sources which causes the same disturbances as the aircraft at some distance from the aircraft.

Because the pressure signal propagates at the local speed of sound, and each point of the signal advances according to its amplitude, the signal is distorted at the ground and, theoretically, can be multivalued. The physically unrealistic multiple values of pressure are, however, eliminated by the introduction of shocks. Shock location, based on the observation that for weak disturbances the shock bisects the angle between two merging characteristic lines, is determined by a balancing of the signature areas within loops on either side of the shocks. This procedure is demonstrated by the shaded areas of the distorted signal in figure 1.

For present-day supersonic aircraft, the propagation distance (altitude) and the pattern of shock coalescence have been such that, at ground level, only two shocks remain in the signature. These two shocks have a linear pressure variation between them (as seen in fig. 2), thus the name "far-field N-wave." For this wave, the shape of the generating aircraft has an effect on the magnitude but no effect on the shape of the resulting signature. For a sufficiently long and slender aircraft, it was found that the ground wave form may possibly not have attained its N-shape remaining instead a mid-field wave. Because the shape of the aircraft does influence the shape of a mid-field pressure signature, aircraft shaping has now become a powerful tool in reducing the sonic boom.

The F-functions for the lower bound of an N-wave (refs. 1 and 2) and for the lower bound of the bow shock in a mid-field signature (refs. 3 and 4) led to the form of the minimizing F-function assumed by Seebass and George for the entire signature. Lung (ref. 11) later proved this to be the minimizing form by "bang-bang" control theory.

4

-

Common to all of these minimizing forms of the F-function is a Dirac delta function at y = 0. This infinite impulse corresponds to an infinite gradient at the nose of the equivalent area distribution. Aircraft designed to match these area distributions generally have extremely blunt nose shapes which result in substantial drag. This result, though seemingly paradoxical, can be explained by the created shock-attenuation pattern in which the shock strengths, and therefore the drag, are greatest near the aircraft. Because of special shaping and area growth, secondary shocks from other aircraft components do not overtake and enhance the bow shock during the propagation of the wave front. (See fig. 3.) The net result of this process is weaker shocks at larger distances because of attenuation, but an overall increase in drag. In contrast, notice that the bow shock is weaker on the sharp-nosed aircraft, but coalescence with stronger shocks from rearward components causes a much stronger shock at mid- and far-field distances. If an aircraft configuration is to incorporate boom-minimization features and not suffer aerodynamic penalties which inordinately affect its flight efficiency, range, payload, productivity, and so forth, then means must be provided for including nose-bluntness sensitivity in design trade-off studies.

ANALYSIS

The following is a brief description of the Seebass-George minimization scheme with modifications to provide propagation through the real atmosphere (ref. 7) and control over the bluntness of the area distribution and thereby the drag of the configuration. The assumed form for the class of minimizing F-functions is shown in figure 4. In mathematical terms it may be expressed as:

 $\mathbf{F}(\mathbf{y}) = 2\mathbf{y}\mathbf{H}/\mathbf{y}_{\mathbf{f}} \qquad (0 \le \mathbf{y} \le \mathbf{y}_{\mathbf{f}}/2) \qquad (2a)$

 $F(y) = C(2y/y_{f} - 1) - H(2y/y_{f} - 2) \qquad (y_{f}/2 \le y < y_{f}) \qquad (2b)$ $F(y) = B(y - y_{f}) + C \qquad (y_{f} \le y < \lambda) \qquad (2c)$

$$\mathbf{F}(\mathbf{y}) = \mathbf{B}(\mathbf{y} - \mathbf{y}_{\mathbf{f}}) - \mathbf{D} \qquad (\lambda \le \mathbf{y} < l) \qquad (2d)$$

In these equations H, B, C, D, and λ are unknown coefficients which are determined by the cruise conditions of the aircraft, by nose length, by the prescribed ratio of bow to rear shock, and by the signature parameter being minimized. Types of signatures studied include flat-topped signatures in which overpressure is minimized with B = 0 and signatures in which F(y) is allowed to rise between y_f and λ with a resulting minimum shock followed by a pressure rise as illustrated in figure 4. The value of B in this form of F(y) may range between 0 and S. Recall that the Whitham function F(y) represents the shape characteristics of the pressure signature and is defined in reference 10 and equation (1) in terms of the equivalent area distribution as:

$$F(y) = \frac{1}{2\pi} \int_0^y \frac{A_e''}{(y - \xi)^{1/2}} d\xi$$

Crucial to this minimization technique is the fact that equation (1) is an Abel integral equation which may be inverted to give the function A_e in terms of the F-function. When this function is evaluated at l, the result is:

$$A_{e}(l) = 4 \int_{0}^{l} F(y) (l - y)^{1/2} dy$$
(3)

Upon substituting the minimizing form of the F-function into equation (3) and integrating, the following equation for the development of cross-sectional area is obtained:

$$A_{e}(x) = \frac{32}{15} \frac{H}{y_{f}} x^{5/2} + 1\left(x - \frac{y_{f}}{2}\right)^{\frac{8}{15}} \left(x - \frac{y_{f}}{2}\right)^{3/2} \left[\left(\frac{3y_{f}}{2} + 2x\right)\left(\frac{1}{y_{f}}\right)(2C - 4H) + 5(2H - C)\right] + 1(x - y_{f}) 4(x - y_{f})^{3/2} \left[\left(\frac{2C}{y_{f}}\right)\left(-\frac{2}{15}\right)(3y_{f} + 2x) + \frac{2}{3}C + \frac{4}{15}\left(\frac{H}{y_{f}}\right)(3y_{f} + 2x) - \frac{4}{3}H + \frac{2}{15}B(3y_{f} + 2x) - \frac{2}{3}By_{f} + \frac{2}{3}C\right] - 1(x - \lambda)\frac{8}{3}(x - \lambda)^{3/2}(C + D)$$
(4)

where l(x - l) is the Heaviside unit step function. A typical form of the resulting area distribution, A_e , is seen in figure 4.

If the effects of aircraft wake and engine exhaust are neglected, and, if the aircraft cross-section area is zero at its base, then the area at l is entirely due to cruise lift or

$$A_{e}(l) = \frac{W}{\rho u^{2}} = \frac{32}{15} \frac{H}{Y_{f}} l^{5/2} + \frac{8}{15} \left(l - \frac{Y_{f}}{2} \right)^{3/2} \left[\left(\frac{3Y_{f}}{2} \right) + 2l \left(\frac{1}{Y_{f}} \right) (2C - 4H) + 5(2H - C) \right] + 4(l - Y_{f})^{3/2} \left[\left(\frac{2C}{Y_{f}} \right) \left(- \frac{2}{15} \right) (3Y_{f} + 2l) + \frac{2}{3}C + \frac{4}{15} \left(\frac{H}{Y_{f}} \right) (3Y_{f} + 2l) - \frac{4}{3}H + \frac{2}{15}B(3Y_{f} + 2l) - \frac{2}{3}BY_{f} + \frac{2}{3}C \right] - \frac{8}{3}(l - \lambda)^{3/2}(C + D)$$
(5)

The first constraint imposed upon F(y) is that the front area balance must occur at $y = y_f$, where y_f is the first point at which F(y) = C, that is,

$$\int_0^{y_f} F(y) \, dy = G = \frac{\alpha_{yf}}{2} F(y_f) = \frac{\alpha_{yf}}{2} C$$
(6)

For the real atmosphere, the advance (ref. 9) of any point of the signal is given by

$$\alpha_{\rm y} = \frac{\Gamma M_{\rm h}^3 F({\rm y})}{(2\beta)^{1/2}} \int_0^z \frac{P_{\rm h}}{p} \left(\frac{\rho a_{\rm h}}{\rho_{\rm h} a}\right)^{1/2} \left(\frac{A_{\rm h}}{z_{\rm h} A}\right)^{1/2} \frac{M}{\beta} dz$$
(7)

where z is the vertical distance of the signal from the aircraft axis, z_h is the vertical distance of the initial waveform from the aircraft axis, A and A_h are ray-tube areas determined from

$$\frac{A_{h}}{z_{h}A} = \left[M_{h} \left(1 - \frac{1}{M_{z}^{2}} \right)^{1/2} \int_{0}^{z} \frac{dz}{(M_{z}^{2} - 1)^{1/2}} \right]^{-1}$$
(8)

and $\Gamma = (\gamma + 1)/2$. The initial waveform must be defined away from the aircraft, because the F-function only can represent the body shape accurately at several body lengths away, and the acoustical theory used in describing the propagation of the signal fails near the aircraft. The slope of the balancing line is proportional to the reciprocal of the advance at any point of the signal; thus,

$$S = \frac{(2\beta)^{1/2}}{\Gamma M_h^3 \int_0^h \frac{p_h}{p} \left(\frac{\rho a_h}{\rho_h a}\right)^{1/2} \left(\frac{A_h}{z_h A}\right)^{1/2} \frac{M}{\beta} dz} = \frac{F(y)}{\alpha_y}$$
(9)

For the rear area balancing to occur between points l and y_r , then

$$\int_{l}^{Y_{r}} \mathbf{F}(\mathbf{y}) \, d\mathbf{y} = \frac{1}{2} \left[\mathbf{B}(l - \mathbf{y}_{f}) - \mathbf{D} + \mathbf{F}(\mathbf{y}_{r}) \right] (\mathbf{y}_{r} - l)$$
(10)

where y_r is the unknown second intersection point of the rear area balancing line with F(y). If a cylindrical wake is assumed, F(y) and its integral for

y > l can be expressed in terms of F(y) for y < l according to reference l as follows:

$$F(y) = -\frac{1}{\pi(y-l)^{1/2}} \int_0^l \frac{(l-\xi)^{1/2}}{y-\xi} F(\xi) d\xi \qquad (y > l)$$
(11)

$$\int_{l}^{y_{r}} F(y) \, dy = -\frac{2}{\pi} \int_{0}^{l} F(\xi) \, \tan^{-1} \left(\frac{y_{r} - l}{l - \xi} \right)^{1/2} \, d\xi \qquad (y > l) \qquad (12)$$

It is necessary to define F(y) and its integral for y > l in this way for optimization problems, since aircraft geometry and thus the Whitham function can be varied arbitrarily only in the range $0 \le y \le l$. The constraint on the ratio of shocks is given by

$$\frac{P_{f}}{P_{r}} = \frac{C}{D - B(l - y_{f}) + F(y_{r})}$$
(13)

To insure that y_r is an intersection point of F(y) and the balancing line, then

$$F(y_r) = S(y_r - l) + B(l - y_f) - D$$
 (14)

and the slope of F(y) at y_r must be less than S.

Solving the system of equations ((5), (6), (10), (13), and (14)) provides values for the constants H, C, D, λ , and y_r . One difficulty of this minimization approach is that, as yet, there is no precise definition of the rise time that will allow the ear to detect only the bow shock and not to be sensitive to the peak as well. With the values of the coefficients known, the minimizing F-function and the area distributions may be determined by equations (2) and (4).

To convert F(y) into pressure near the airplane, the following equation is used:

$$\left(\frac{\mathbf{P}}{\mathbf{P}_{a}}\right)_{h} = \frac{\gamma M^{2} \mathbf{F}}{(2\beta \mathbf{z}_{h})^{1/2}}$$
(15)

and on the ground

$$\mathbf{P}_{g} = \left(\frac{\mathbf{A}_{h}}{\mathbf{A}_{g}}\right)^{1/2} \left(\frac{\rho_{g}\mathbf{a}_{g}}{\rho_{h}\mathbf{a}_{h}}\right)^{1/2} \mathbf{P}_{h}$$
(16)

Finally, by using a ground reflection factor K, the pressure perturbations are converted into the ground signature by

$$\Delta \mathbf{p}_{\mathbf{g}} = \mathbf{P}_{\mathbf{g}}\mathbf{K} \tag{17}$$

The ground-level signature is presented by the signature shown in figure 4.

By taking the limit as $y_f \neq 0$ and by using L'Hospital's rule, the expression for area development given above (eq. (4)) reduces to the following delta function form as given by Seebass and George (ref. 6):

$$A_{e}(x) = 4Gx^{1/2} + \frac{16}{15}Bx^{5/2} + \frac{8}{3}Cx^{3/2} - 1(x - \lambda)\frac{8}{3}(x - \lambda)^{3/2}(C + D)$$
(18)

SPECIAL CASES

Special types of pressure signatures occur for large or small values of the weight parameter \tilde{w} , where $\tilde{w} = \frac{\beta W}{\rho u^2} \frac{1}{B(l - y_f)^{5/2}}$. These special cases

include signatures with no bow shock, signatures with no shocks, and signatures in which the rear shock is less than the bow shock without restriction (fig. 5). Values of \tilde{w} may be checked to indicate when the special calculations are necessary.

No Bow Shock

For no bow shock, the expression for total area reduces to the $y_f = 0$ form (eq. (18)) automatically. Using the facts that $G = \alpha C^2$ and $\lambda = l$ at the minimum length necessary for no shock, the resulting quadratic in C may be solved explicitly to give

$$C = \frac{Bl}{\eta} \left[-\frac{2}{3} \pm \left(\frac{4}{9} - \frac{8\eta}{15} + \frac{\eta}{2} \frac{V}{Bl^{5/2}} \right) \right]^{1/2}$$
(19)

where

$$\mathbf{v} = \frac{\beta \mathbf{w}}{\alpha \mathbf{u}^2} \qquad \mathbf{B} = S\eta \qquad \mathbf{S} = \frac{1}{\alpha} \qquad (0 \le \eta \le 1) \qquad (20)$$

For no bow shock (C = 0) equation (19) reduces to

$$\tilde{w} = \frac{v}{B_l 5/2} \le \frac{16}{15}$$
(21)

in the minimum shock signature.

No Shocks

To eliminate both shock waves, G and C are zero and there must be no discontinuity in F at l. In fact, both F(y) and F'(y) must be continuous at l and thus $A_e'(x)$ and $A_e''(x)$ must be zero there, since A_e is constant for x > l. With no shocks,

$$A_{e}(l) = \frac{16}{15} B l^{5/2} - \frac{8}{3} D(l - \lambda)^{3/2}$$
(22)

By taking the first and second derivatives and solving the two resulting equations simultaneously

$$\lambda = \frac{2}{3} l \tag{23}$$

$$D = \frac{2\eta}{3\alpha}$$
(24)

Substituting these values back into the expression for A_e gives

$$\tilde{w} = \frac{V}{Bl^{5/2}} \leq 0.47407$$
 (25)

No Restriction on Rear Shock

Values of $\lambda < l$ in the minimizing F-function result because of restrictions on the rear shock. For short lengths, high weights, etc., or other combinations which give large values of \tilde{w} , the rear shock is less than the bow shock without restriction. In these instances $\lambda = l$ and the system of equations is solved without restricting the ratio of rear to front shock:

$$F(y) = \frac{2yh}{y_f} \qquad (0 \le y \le y_f/2) \qquad (26a)$$

$$F(y) = C\left(\frac{2y}{y_f} - 1\right) - h\left(\frac{2y}{y_f} - 2\right)$$
 (26b)

$$F(y) = B(y - y_f) + C \qquad (y_f/2 \le y \le l) \qquad (26c)$$

Substituting this expression for F into equation (3) and integrating gives a quadratic equation in C which can be solved explicitly. Values for C, h, λ , l, and B are now established. For the rear area balance to occur at y_r

$$\int_{l}^{t} F(y) \, dy = \frac{1}{2} \left[B(l - y_{f}) - D + F(y_{r}) \right] (y_{r} - l)$$
(27)

also, y_r must be an intersection point for F(y) and balance point, or

$$F(y_{r}) = s(y_{r} - l) + B(l - y_{f}) - D$$
(28)

Combining these equations

$$y_{r} - l = \frac{\int_{l}^{y_{r}} F(y) \, dy}{\frac{1}{2} \left[2F(y_{r}) - S(y_{r} - 1) \right]}$$
(29)

which may be solved iteratively for y_r with

$$F(y_r) = -\frac{1}{\pi(y_r - l)^{1/2}} \int_0^l \frac{(l - \xi)^{1/2}}{y_r - \xi} F(\xi) d\xi$$
(30)

and

$$\int_{l}^{Y_{r}} F(y) \, dy = -\frac{2}{\pi} \int_{0}^{l} F(\xi) \, \tan^{-l} \left(\frac{y_{r} - l}{l - \xi} \right)^{1/2} \, d\xi \tag{31}$$

Substituting back into equation (28) gives the required value for D.

Values of \tilde{w} producing the special cases are shown in figure 5. Typical values giving these extreme \tilde{w} 's at M = 2.7, z = 18 288 m (60 000 ft), W = 272 155 kg (600 000 lb) would be l = 33.5 m (110 ft) for no restriction on the rear shock and l = 167.64 m (550 ft) for no bow shock. These values may vary slightly with yf as seen.

TYPICAL RESULTS

Except as indicated otherwise, all results shown are for the following conditions: Mach number, 2.7; altitude, 18 288 m (60 000 ft); weight, 272 155 kg (600 000 lb); equivalent length, 91.44 m (300 ft); reflection factor, 2.0; ratio of bow to rear shock pressure, 1; and B = 0.5S. The value of the front balancing point y_f determines the length of the conical nose region of the equivalent area distribution and is the controlling factor for drag when all of the other flight conditions remain constant. Referring again to figure 4, this position is indicated on the F-function and the corresponding area distribution.

The effect that varying y_f has on the equivalent area distributions for both the minimum-shock and minimum-overpressure signatures is seen in figure 6. Each of the distributions was determined from the inversion formula which defines the effective area corresponding to the minimizing F-function for a given value of yf. Values of the overpressure and impulse which correspond to these distributions have been inserted for reference. Recall that the impulse is the integral of the positive portion of the pressure signature, as indicated in the signatures at the top of figure 6. Note that the lowest values of overpressure and impulse for these conditions occur when the area distribution has an infinite gradient at the nose. As yf increases, the longer conical nose region, generated to reduce drag, also causes an increase in overpressure and impulse. Thus, extensive tradeoff studies between drag and boom levels would be necessary in any aircraft design studies. The ratio of the increase in overpressure and impulse for both types of signatures as a function of the ratio of nose length to airplane length y_f/l is seen more easily in figure 7. With increasing values of y_f , note that the area under the peak portion of the F-function also increases but not in the same proportions. Therefore, to achieve the necessary total area, the level of the constant portion of the F-function also must increase, thereby producing a higher level of Δp and I. For illustrative purposes, the nose spike of the F-function for $y_f = 0$ has been drawn with a finite width. For this condition, the spike is defined mathematically as a pulse of zero width and infinite height which nevertheless has a finite area. In these figures, Δp is the level of overpressure at the bow shock and represents the initial "bang" heard by the ear when a sonic boom occurs.

The variations of overpressure level and the corresponding drag levels are seen in figure 8. To develop the corresponding variation of drag with y_f , the assumption is made that necessary configuration changes would be confined to the fuselage forebody itself. The increment in drag produced by these changes was calculated using the near-field program of reference 12 and then applied to drag values for a typical arrow-wing SST configuration. As seen in figure 8, there is a sharp decline in drag as the blunt nose is converted to a conical region. Thus, the boom levels could be reduced significantly without prohibitive drag penalties by defining the proper ratio y_f/l .

The actual trend of overpressure with length is seen in figure 9. The lowest curve represents the $y_f = 0$ case, the higher ones increasing with y_f . In all instances observe that overpressure levels decrease with length. Though these results are for minimum-overpressure signatures, similar trends are found to exist for the minimum-shock signatures.

CONCLUDING REMARKS

The analysis for a sonic-boom minimization method has been presented. The method, which represents an extension of previous work, provides the minimizing equivalent area distribution with relaxation of the nose-bluntness requirement for given cruise conditions and includes propagation in the standard atmosphere. The minimizing Whitham F-functions for the minimum-overpressure or minimum-shock signature are also included.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 November 13, 1978

COMPUTER PROGRAM DESCRIPTION AND FLOW CHART

This program calculates the Whitham F-function and the corresponding equivalent area distribution which produce the minimum-overpressure or minimum-shock signature. The solution is based on five governing equations: total area growth (eq. (5)), front area balancing point (eq. (6)), rear area balancing point (eq. (10)), ratio of front to rear shock (eq. (13)), and the area balancing line at the rear balancing point (eq. (14)). These five equations reduce to two nonlinear equations in two unknowns which are solved iteratively using the Newton-Raphson and a combination of the secant and bisection methods.

In calculating the advance of the wave front the standard atmosphere has been used except for an area near the aircraft axis where it is necessary to assume a uniform atmosphere.

This program was coded for the Control Data 6600 computer in Fortran IV. The field length required is 100 000 octal units. Program SEEB is available as LAR 11979 from

> COSMIC Suite 112 Barrow Hall University of Georgia Athens, GA 30602

The flow chart of program SEEB is on the following page.

INPUT DESCRIPTION

м	Cruise Mach number (1.25 to 3.0)
Z	Cruise altitude (20 000 to 100 000 ft (6096 to 30 480 m))
L	Airplane equivalent length (200 to 700 ft (60.96 to 213.36 m))
WG	Gross weight of airplane (200 000 to 1 000 000 1b (90 720 to 453 600 kg))
YF	Balancing point in F-function to determine the front shock $(0 \leq y_f/l \leq 0.2)$ (Default = 0.0 delta function)
IPRINT	= 0 Iterations on Lambda and T not printed.
	<pre>= 1 Iterations printed. (Default = 0)</pre>
RKF	Reflection factor. (Default = 2.0)

- BLEN Factor determining where iteration on T begins. T = BLEN·L (Default = 3.0)
- PRPF Ratio of rear to front shock (Default = 1.0)
- WIWG Percentage of gross weight remaining at start of cruise. W = WIWG·WG (Default = 1.0)
- ISIG = 1 Area, F-function and pressure signature are printed.
 - = 0 Only the pressure signature is printed.
 (Default = 0)
- IS
- = 0 Minimum-shock and minimum-overpressure signatures.
 - = 1 Minimum-overpressure signature only.
 - = 2 Minimum-shock signature only.
 (Default = 0)
- PERCEN Factor determining the difference in the slope of the balancing line and the rise portion of the minimum-shock F-function. Slope of rise = Slope of balancing line minus PERCEN times slope of balancing line. (Default = 0.5)
- ICH Indicates whether the altitude or Mach number changed after the initial run and the advance must be recalculated.
 - = 0 No change.
 - = 1 Mach number or altitude did change.
 (Default = 0)
- ILEN = 0 Find Δp for given input conditions.
 - = 1 Iterate to find lengths necessary to give △p = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 psf. A full set of flight conditions including length must be input. (Default = 0)
- IYF = 0 Delta function used in F-function.
 - = 1 Nonzero value of y_f used.

If the value of yf is less than 1, the program automatically uses the delta function in the F-function. (Default = 1)

OUTPUT DESCRIPTION

The output consists of a listing of input conditions, the solution coefficients, solution tables, and summary values. Codes exist so that only the pressure signature is printed, the F-function, area, and pressures are printed, or extensive printout occurs during iterations.

The axial position of the front balancing point is yf.

The advance factor on the ground is α .

Altitude is given in feet and kilometers.

Gross weight is given in pounds.

Cruise weight is given in pounds and kilograms.

WIWG = Ratio of beginning cruise weight to gross weight.

- W-TILDE = $\tilde{w} = \frac{\beta W}{\rho u^2} \frac{\alpha}{\eta (l y_f)^{5/2}}$
- Total Area = $\frac{\beta W}{\alpha u^2}$

ISLOPE = Code for signature type

0 = Flat-top minimum overpressure

1 = Minimum shock

H, B, C, D, LAM, and y_f are coefficients in equations for F-function and area distribution. (y_r = T; λ = LAM)

- X = Axial position for F-function and area distribution near aircraft.
- $X BR = x \beta z$ = Shifted axial position for pressure signature on the ground.
- DELTA P = Δp = Overpressure levels corresponding to x βz .

 P_1, P_2 = Overpressure levels in pressure signature. P_1 and P_2 at same X - BR indicate a shock.

SAMPLE CASE

\$INPUT M=2.7, Z=60000.0, WG=600000.0, L=300.0, IS=0, ISIG=1, PERCEN=.5, YFL=.1\$

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

For this sample case an "IS" value of zero was used to produce both a minimum-overpressure solution and a minimum-shock solution.

	TERS WEIGHT=272155,38KILOGRAMS AREA= 40.69SQUAF	•	A * 976.263	. 3.022	T LENGTH = 300.03U	N FACTOR = 2.000
KLBUTIUN//	H≈ 91.44Mê1	ISLOPE	TGTAL AREA	W-TILUE	EQUIVALENI	REFLECTION
AND AKÊA DIST	TERS LFNG1	1.000	600000.000	600000.000	60000.000	2.700
IČ TION	IKILOME	•	¢ −1 ×	н Тн	H	۰
א ה ר	.= 18.28.	WIWG	CRUISE WE	GKOSS WÈIG	ALTITUDE	MACH NO

MINIMUM-OVERPRESSURE SOLUTION

OUTPUT

SLOPE OF F(T) AT T = .50389657E+03 IS -.10948755E-05 F(T)* -.13437939E-01 SLOPE OF BALANCING LINE* .26967727É-03 H= .34622393E+00 B= 0. C= .5486Z00E-01 C= .54324500E-01 D= .68324200E-01 LAM= .57369490E+03 T= .33000000E+02 YF= .33000000E+02

APPENDIX

		-			
	×	Ľ.	ARSA	X-8R	DELTA P
-	•0	•	• 3		
i N	.25000E+01	•577040E-01	.243301E+00		
ŝ	•500000E+01	<pre>.115408E+00</pre>	137632E+01		
t	• 75000CE+01	<pre>.1731125+00</pre>	 379269E+01 		
5	I00000E+02	•230816E+00	 778564E+01 		
9	 125000E+02 	 286520E+00 	136010E+02		
7	150000E+02	346224E+00	214547E+02		
ω	 175000 E+02 	 297684E+00 	 310941E+02 		
0	200000E+02	<u> 249145E+00</u>	415082E+02		
10	225000E+02	200605E+00	<pre>.521392E+02</pre>		
11	•250000E+02	 152065E+00 	• 626039E +02		
12	275000E+02	 103526E+00 	 725978E+02 		
13	300000E+02	<pre>.549863E-01</pre>	 818641E+02 	173897E+03	106221E+01
14	341491E+02	<pre>.549863E-01</pre>	• 95 76 89E + 02	169748£+03	<pre>.106221E+01</pre>
15	382981E+02	•549863E-01	•108821E+03	165598E+03	• 106221E+01
16	•424472E+02	 549863E-01 	 121422E+03 	161449E+03	•106221E+01
17	465962E+02	•549863E-01	.133758E+03	157300E+03	•106221E+01
18	• 507453E+02	•549863E - 01	145938E+03	153151E+03	•106221E+01
19	• 548943E+02	<pre> •549863E-01</pre>	I58032E+03	149002E+03	•I06221E+01
20	• 5 90434E+02	•5498635-01	• 170088E+03	I44853E+03	•106221E+01
21	•631924E+02	<pre>.549863E-01</pre>	• 182140E +03	-•140704E+03	106221E+01
22	<pre>•673415E+02</pre>	•549803E-01	194214E+03	136555E+03	<pre>.106221E+01</pre>
23	•714905E+02	•549863E-01	 206329E+03 	132406E+C3	•106221E+01
24	 756396E+02 	•549863E-01	 218500E+03 	128257E+03	<pre>.106221E+01</pre>
25	797886E+02	<pre>.549863E-01</pre>	• 230 737E + 03	124108E+03	<pre>.106221E+01</pre>
26	839377E+02	•549863E-01	•243051E+03	-•119959E+03	 106221E+01
27	880867E+02	•549863E-01	 255448E+03 	115810E+03	106221E+01
28	•922358ë+02	•549863E-01	• 267934E+03	111661E+03	 106221E+01
29	963848E+02	•549663E-01	•280514E+03	107512E+03	106221E+01
30	100534E+03	<pre>.549863E-01</pre>	•293191E+03	103363E+03	•106221E+01
31	104683E+03	•549863E=01	 305969E+03 	992137E+02	106221E+01
32	 108832E+03 	<pre>.549863E-01</pre>	 318549E+03 	950646E+02	 106221E+01
33	112981E+03	 549863E-01 	. 331834E+03	909156E+02	.106221E+01
34	 117130E+03 	•549863E - 01	 344926E+03 	867665E+02	106221€+01
35	121279E+03	•549863E-01	 358125E+03 	826175E+02	.106221E+01
36	 125428E+03 	•549863E-01	371432E+03	- .784684E+02	 106221E+01
37	 129577E+03 	•549863E-01	 344849E+03 	 743194E+02	106221E+01
38	 133726 £+03 	• 549863E-01	 398375E+03 	701703E+02	 106221E+01
39	137875E+03	•549863E-01	<pre>.412012E+03</pre>	660213E+02	•106221E+01

MINIMIZING FTAU AND AREA TABLES

APPENDIX

DELTA P	•106221£+01	•106221E+01	.106221E+01	•106221E+01	•106221E+01	.106221E+01	•106221E+01	•106221E+01	•106221E+01	.106221E+01	.106221E+01	.106221E+01	106221E+01	.106221E+01	• 106221E+01	• 106221E+01	•106221E+01	•106221E+01	 106221E+01 	 106221E+01 	106221E+01	•106221E+01	 106221E+01 	•106221E+01	+106221E+01	• 106221E+01	• 106221E+01	106221E+01	•106221E+01	1062216+01	 106221E+01 	•106221E+01	131987E+01	131987E+01	131967E+01	131987E+01	131987E+01	131987E+01	131987E+01	131947E+01
X = B R	618722E+02	577232E+02	535741E+02	494251E+02	452760E+02	411270E+02	369779E+02	328289E+02	286798E+02	245308E+02	203817E+02	162327E+02	120836E+02	793457E+01		 363529E+00 	•451258E+01	866163E+01	<pre>.128107E+02</pre>	 169597E+02 	•211088£+02	252578E+02	294069E+02	 335559E+02 	377050E+02	•418540E+C2	•460031E+02	501521E+02	•543012E+02	•584502E+02	•625993E+02	•667483E+02	 524010E+03 	 525058E+03 	 526106E+03 	•527154E+03	•528203E+03	•529251E+03	•530299E+03	•531347E+03
AREA	•425759E+03	•439616E+03	453584E+03	• 467663E+03	•481852E+03	•496151E+03	•510560E+03	525079E+03	•539707E+03	 554444E+03 	 569290E+03 	•584244E+03	 599306£+03 	<pre>•614475E+03</pre>	•6297j1E+03	• 645134E+03	 660623E+03 	•676218E+03	• 691917E +03	 707721E+03 	 723630E+03 	 739642E+03 	•755757E+03	 771974E+03 	 788294E+03 	<pre> • 804716E+03 </pre>	•821238E+03	<pre>.837862E+03</pre>	 854585E+03 	• 671409E+03	•888331E+U3	•905353E+03	•905394E+03	•909351E+03	 913026E+03 	•916516E+03	•919850E+03	•923077E+03	•926181E+03	•929184E+63
u.	.549863E-01	 549863E-01 	•549863E-01	•549863E-01	<pre>•549863E-01</pre>	 549863E-01 	<pre>.549863E-01</pre>	• 549863E-01	<pre>.549863E-01</pre>	<pre>.549863E-01</pre>	<pre>.549863E-01</pre>	•549863E-01	 549863E-01 	•549863ë-01	•549863E-UI	•549863E-01	<pre>.549863E-01</pre>	<pre>.549863E-01</pre>	•549863E-01	<pre>.549863E-01</pre>	•549863E-01	•549863E-01	 549863E-01 	•549863E-01	•549863E-01	•549863E-01	•549863E-01	 549863E-01 	•549863E-01	•549863E-01	•549863E - 01	•549863E-01	683242E-01	683242E-01	683242E-01	683242E-01	683242E-01	683242E-01	683242E-01	683242Ë-01
×	 142024E+03 	•146173E+03	 150322E+03 	<pre>.154472E+03</pre>	154621E+03	 162770E+03 	166919E+03	 171068E+03 	 175217E+03 	 179366E+03 	 183515E+03 	I87664E+03	 191413E+03 	 195962E+03 	•200111E+03	204260E+03	 208409E+03 	 212558E+03 	• 2 16 70 7E + 03	 220856E+03 	•225005E+03	 229154E+03 	• 233303E+03	 237453E+03 	• 241602E+03	•245751E+03	• 249900E+03	 254049E+03 	• 258198E+03	• 262347E+03	• 266496E+03	• 270645 ± + 03	•270655E+03	•271703E+03	•272751±+03	•2737996+03	• 274847E+03	 275895E+03 	•276943E+03	•277991E+03
	40	41	42	43	44	45	46	47	48	49	50	51	5.2	5 0	4	ŝ	56	57	58	59	60	61	62	63	4	65	66	67	68	69	21	71	72	73	74	25	76	77	78	62

	×	ш.	AREA	X – B.R	DELTA P
80	•274039E+03	683242E-01	• 932093E+03	• 532395E+03	-•131987E+01
81	 280087E+03 	683242E-01	.934915E+03	• 533443E+03	131987E+01
d 2	 281135E+03 	683242E-01	• 937654E+03	534491E+03	131987E+01
83	<pre>.282183E+03</pre>	683242E-01	•940316E+03	•535539E+03	
84	<pre>.283231E+03</pre>	683242E-01	. 942905E+03	•536587E+03	131987E+01
85	284279E+03	083242E-01	•945423E+03	•537635E+03	131987E+01
86	285327E+03	683242E-01	• 947874E+03	• 538683E+03	131967E+01
87	 286375E+03 	683242E=01	 950260E+03 	•539731E+03	131987E+01
d 8	<pre>.287424E+03</pre>	683242E-01	952585E+03	•540779E+03	131987E+01
89	268472E+03	6832426-01	• 954849E+03	•541827E+03	131987E+01
90	289520E+03	683242E-01	•957055E+03	•54287 5E+03	131987E+01
16	• 290568E+03	683242E-01	• 95 92 05 E + 03	•543923E+03	131987E+01
92	 291616E+03 	683242E-01	 961301E+03 	•544971E+03	131967E+01
63	292664±+03	683242E-01	• 963343E+03	546019E+03	131987E+01
94	<pre>.293712E+03</pre>	683242 <u>-01</u>	•965334E+03	•547067E+03	131987E+01
95	294760E+03	683242E-01	• 967275E+U3	•548115E+03	131987E+01
96	295808E+03	683242E-01	 969166E+03 	•549163 E +03	
97	 296856E+03 	683242E-01	•971010E+03	 550211E+03 	
98	•297904E+03	683242E-01	•972806E+03	• 551259E+03	131987E+01
66	298952E+03	683242E-01	• 974557E+03	•552307E+03	131987E+01
100	 300000E+03 	683242E-01	 976263E+03 	 553355 E+03 	131987E+01
101	• 301000E+03	315728E+00		<pre>.147176E+04</pre>	+ 609916E+01
102	 301760E+03 	246547E+00		<pre>.121599E+04</pre>	476274E+01
103	 302520E+03 	211033E+00		 108506E+04 	-+407668E+01
104	 303280E+03 	I88209E+00		<pre>.100118E+04</pre>	363578E+01
105	*304040E+03			•941127E+03	331894E+01
106	.304800£+03	159203E+00		<pre>.995148E+03</pre>	
107	 305560E+03 	149073E+00		858345E+03	287977E+01
106	 30632 uE+03 	140668E+00		 827937E+03 	271740E+01
109	 307080E+63 	133526E+00		802213E+03	257942E+01
110	• 307840E+03	-. 127344E+00		•780047E+03	245999E+01
111	 308600E+03 	121913E+00		 760668E+03 	235508E+01
112	 309360E+03 	117084 E+00		*743524E+03	226180E+01
113	 310120E+03 	I12749E+00		728208E+03	217805E+01
114	 310880€+03 	108823E+00		<pre>.714411E+03</pre>	-+210222E+01
115	•311640E+03	-•105243E+00		 701897E+03 	203307E+01
116	 312400€+03 	101959É+00		<pre>.690477E+03</pre>	196961E+01
117	.313160E+03	9892865-01		•680001E+03	-•191108E+01
118	 313920E+03 	961201E-01		<pre>.670347E+03</pre>	185683E+01
119	•314680E+03	935063E-01		<pre>.661414E+03</pre>	180633E+01

4-11-1-4-

-

DELTA P	175916E+01	171495E+01	-•167339E+01			152884F+01		127484E+01	118000E+01	109935E+01	102968E+01	968723E+00	914832E+00	866766E+00	823571E+00	784502E+00	748964E+00	 716476E+00 	6866446+00	659141E+00	633695E+00	610075E+00	588084E+00	567556E+00	>48345E+00	530325E+00	513365E+00	497431E+00	482377E+00	468147E+00	454675E+00	441901E+00	429772E+00	418239E+00	407260E+00	396796E+00	386810E+00	377272£+00	368150E+00
X-BR	•653120E+03	• 645393E+03	• 6381 / 5 E + 03	• 0314135703 - 6750685403	- 0 - 0 0 0 0 E + 0 3	•613468E+03	• 590232E+03	•572067E+03	•557540E+03	•545737E+C3	<pre>.536041E+03</pre>	<pre>.528019E+03</pre>	•521352E+03	•515803E+03	<pre>.511190E+03</pre>	 507368E+03 	• 504224E+03	•501666E+03	<pre>.499618E+03</pre>	•498016E+03	<pre>.496810E+03</pre>	• 495954E+03	<pre>*495410E+03</pre>	<pre>.495148E+03</pre>	•495138E+03	•495357E+03	• 495 783 E + 03	 496399E+03 	<pre>.497187E+03</pre>	<pre>.498133E+03</pre>	<pre>499225E+03</pre>	<pre> • 500451E+03</pre>	•501801E+03	• 503265E+03	•504836E+03	• 506505E+03	• 508266 E+03	•510113E+03	512040E+03
AREA																																							
u	910646E-01					791416E-01	718336E-01	659931E-01	610536E-01	569087E-01	533021E-01	501467E-01	473570E-01	448684E-01	426328E-01	406104E-01	387708E-01	370890E-01	355447E-01	341210E-01	326037E-01	 315810E - 01	304427E-01	293600E-01		2745276-01	265758E-01	257499E-01	249706E-01	242340E-01	235366E-01	2287542-01	222475E-01	216505E-01	210822ĕ-01	205405E-01	200236E-01	195298E-01	- . 190576E-01
×	• 315440E+03	• 3 1 6 6 6 0 E + 0 3 3 1 6 6 6 6 4 6 3	• 317720E403	.318480E+03	•319240E+03	• 320000E+03	323678E+03	 327356E+U3 	 331034E+03 	•334712E+03	 338390E+03 	•342068E+03	• 3457465+03	• 349423E+03	•353101E+03	• 356779E+03	•360457E+03	•364135E+03	•367813E+03	•371491E+03	375169E+03	 378847±+03 	 382525E+03 	•386203E+03	•389881E+03	• 393559E+03	• 397237E+03	• 400914E+03	•404592E+03	• 408270E+03	•411948E+03	<pre>4156266+03</pre>	<pre>+419304E+03</pre>	<pre>.422982E+03</pre>	 426660E+03 	• 430338c+03	•434016E+03	•437694E+03	•441372E+03
	120	122	123	124	125	126	127	128	129	130	131	132	133	134 .0-	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149 160	120	151	152	153	154	155	156	157	158	159

DELTA P	336928E-01 321526E-01
X – B R	•142508E+04 •146439E+04
AREA	
u.	174413E-02 166441E-02
×	•141861E+04 •145822E+04
	2 00 2 01

.

PRESSURE SIGNATURE	P1 P2	0.0000 1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0022	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1.0622	1 0433
	Х-В.К	-173.8966	-169.7475	-165.5985	-161.4434	-157.3004	-153.1513	-149.0023	-144.8532	-140.7042	-136.5551	-132.4061	-128.2570	-124.1080	-119.9589	-115.6099	-111.6608	-107.5118	-103.3627	-99.2137	-95.0646	-90.9156	-86.7665	-82.6175	-78.4684	-74.3194	-70.1703	-66.0213	-61.8722	-57.7232	-53.5741	-49.4251	-45.2760	-41.1270	-36.9779	-32.8289	-28.6798	-24.5308	-20.3817

.

·

.

APPENDIX

26

and the local sector of th

5 d	-1.3199
Pl	
Х – В R	 542.8731 543.9231

APPENDIX

14	-1.3199	L18E+01 3E+01 3622118E+01 +01 +00
X – B.R	544.9711 546.0192 546.0192 548.1153 548.1153 549.1633 559.2113 559.2074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5553.3074 5554 35560 9110.228 956.5276 1111.072.834 1111.076 52276 112268.0980 112268.0980 112268.0980 112268.0980 112268.0980 112268.0980 112268.0760 112268.0980 112268.0980 112268.0760 1233.9647 1233.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.9747 1234.97477 1234.97477 1234.97477 1234.97477 1234.974777 123	FRONT SHOCK = .106221 REAR SHOCK = .1062211 Maximum Pressure = .10 W-Tilde = .332213076 LAMBDA/L = .902149076 IMPULSE .139224866+00

29	-1-316 -1-316	-1-319	-1•310 -1•310	-1.31	6 G N N I I	21	-17	 12	10	60	-08	00	-•06	-02	-•02	- 05	- 04	+0	-•03	-•03	-03	 0 D • I

APPENDIX

-

(LAM-YF)/(L-YF) = "89127741£+00 LOCATION DF FRDNT SHOCK -.17389657E+03 LOCATION DF REAR SHOCK -.55335546E+03 LOCATION DF REAR SHOCK -.55335546E+03 TIME BETWEEN SHOCKS .27823509E+00 CHARAČTEKISTIC UVERPRESSUKE .20015429E+01

IMPULSE 6.67PA-SEC MAX PRES= 50.66PA BDW SHOCK = 50.06PA REAR SHUCK = 50.86PA

CHARACTERISTIC OVERPR- 95-63PA PUSITION OF REAR SHOCK= 158.66METERS POSITION OF BOW SHOCK+ -> 3.00METERS

SOLUTION
STRENGTH
AINIMUM-SHOCK

.

SHOCK MINIMIZATION IN THE REAL ATMOSPHERE AFTER SEEBASS AND GEORGE

POSITIVE VALUE OF YF USED IN F-FUNCTION

CONDITIONS

MACH NU	w	2.700	REFLECTION FACTOR =	2 • 000
ALTITUDE	×	6000.000	EQUIVALENT LENGTH =	300°00E
GROSS WEIGHT	Ħ	000.00000000000000000000000000000000000	₩-T1LDE	6 • 0 4 4
CRUISE WEIGHT	M	600000.000	TOTAL AREA -	976.263
WING	•	1.000	I SLOPĘ	1

AREA= 90.6954UARE METERS 540.36 WEIGHT=272155.38K1L0GRAMS FDR THIS MACH NUMBER AND ALTITUDE. THE LENGTH REQUINED TO ELIMINATE THE BUN SHOCK IS LENGTH= 91.44METERS ALTITUDE= 18.286K ILOMÉTERS

14-747 THE LENGTH REQUIRED TO ELIMINATE BUTH SHUCKS IS .500 TIMES LOWER THAN SLOPE JF BALANCE LINE RISE TIME SLOPE IS

CDEFFICIENTS FUR F FUNCTION AND AREA DISTRIBUTION//

 30249124E+00
 13483854E-03
 51533600E-01
 10213117E+00
 25165915E+03
 49109360E+03 1.000

L AM = T = Y F =

3000000€+02

•69734012E-06 ΙS SLOPE DF F(T) AT T = .44109360t+33 | F(T)= -14191141E-01 .26967727E-03 SLOPE DF BALANCING LINE= .26967727E-03

-

		IIW	NIMIZING FTAU AND A	REA TABLES	
	×	u	AREA	Х-ВК	DELTA P
Ч	•0	•0	•0		
2	250000E+01	.504152E-01	 212569E+00 		
'n	•50000E+01	 100830E+00 	<pre>.120247E+01</pre>		
4	 750000E+01 	•151246Ê+UO	•331363E+01		
ŝ	•100000E+02	•201661E+00	.640221E+01		
9	 125000E+02 	 252076E+00 	 118830E+02 		
2	150000E+02	•302491E+00	 187447E+02 		
30	 175000E+02 	 260665E+00 	 271649E+02 		
•	 200000€+02 	 218639E+U0 	 362790E+02 		
10	 225000E+02 	<pre>.177012E+00</pre>	•455916E+02		
11	•250000E+02	•135186E+00	•547747E+02		
12	 275000E+02 	•933599E-01	• 635650E+02		
13	 300000E+02 	•515336E-01	 717400E+02 	161094E+03	<pre> . 995514E+00 .</pre>
14	•338217E+02	•5204895-01	• 831264E+02	159183E+03	•100547E+01
15	 376434E+02 	<pre>.525642E-01</pre>	. 938973E+02		.101542E+01
16	•414651E+02	•530795E-01	104353E+03	155361E+03	•102538E+01
17	+452868E+02	•535949E-01	 114638E+03 	153450E+03	.103533£+01
18	•491085E+02	<pre>.541102E-01</pre>	 124839E+U3 	151539E+03	104529E+01
19	•529303E+02	 546255E-01 	•135013E+03	149628E+03	105524E+01
20	 567520E+02 	•551408 E -01	 145199E+03 	147718E+03	.106520E+01
21	• 605737E+02	•556561E-01	• 155428E+03	145807E+03	•107515E+01
22	• 043954E+02	<pre>.561714E-01</pre>	 165723E+03 	143896E+03	<pre>.108511E+01</pre>
23	<pre>.682171E+02</pre>	 566867E-01 	176100E+03	141985E+03	109506E+01
24	 720388E+02 	•572021E-01	 186574E+03 	1 40074E+03	110502E+01
25	 758605E+02 	•577174E-01	 1 371 56E +03 	138163E+03	•111497E+01
26	 796822E+02 	 582327E-01 	 207656E+03 	136252E+03	•112493E+01
27	835039E+02	•587480E-01	• 218681E+03	134342E+03	<pre>.113488E+01</pre>
28	 873256E+02 	 592633E=01 	• 229637E+03	132431E+C3	• 114483E+01
29	•911474E+02	• 597786E-01	•240732E+G3	130520E+03	115479E+01
30	•949691E+02	<pre>.602939E-01</pre>	• 251969E+03	128609±+03	I16474E+01
31	 987908E+02 	 608093E-01 	• 263353E+U3	126698E+03	•117470E+01
32	.102612E+03	<pre>.613246E-01</pre>	 274887E+03 	124787E+03	 118465E+01
33	 106434E+03 	•618399E-01	 286575E+03 	122877E+03	•119461E+01
34	<pre>.110256E+03</pre>	<pre>.623552E-01</pre>	•298421E+03	120966E+03	 120456E+01
35	<pre>.114078E+03</pre>	.628705E-01	 310425E+03 	<u>1</u> 19055E+03	• 121452E+01
36	 1178996+03 	 633858E-01 	 322592E+03 	117144E+03	122447E+01
37	•121721E+03	•639011E-01	•334923E+03	115233E+03	•123443E+01
38	 125543E+U3 	•644165E-01	 347420E+03 	113322E+03	<pre>.124438E+01</pre>
39	•129364ë+03	•649318E-01	 360095E+03 	111411E+03	125434E+01

APPENDIX

BR DELTA P	501E+03 +126429E+01 500E+03 1226429E+01		0/9E+03 • L2842UE+UL	768E+03 • 129410E+01	857E+03 .130411E+01	463E+02	354E+02	245E+02 • 133397E+01	137E+02	028E+02 .135388E+01	920E+02	811E+02 •137379E+01	7036+02 .1383756+01	594E+02 • 139370E+01	486E+02 •140366E+01	:3776+02 • 141361E+01	1268E+02 •142357E+01	160E+02	051E+02 •144348E+01	943E+02 •145343E+01	834E+02	1726E+02	617E+02 •148330E+01	509E+02 • 149325E+01	,400E+02 • 150320E+01	7292E+02	1183E+02	074E+02 • 153307E+01	3966E+02 .154302E+01)857E+02	1749E+02 • 156293E+01	2640E+02 • 157289E+01	7551E+03 -•139555E+01)414E+03	1277E+03 -•138655E+01	2140E+03 -•138206E+01	3003E+03 -•137756E+01	3866E+03 -•137307E+0	4729E+03 136857E+0;	1967991000
AREA X-E	372920E+031095 005024E+031075		360105E+03 -•T036	+12458E+03 -+1037	+25987E+031016	+39692E+039994	+53576E+03 9803	+67638E+03 9612	+81881E+03 -•9421	+96305E+03923(510911E+03 -•9039	525700E+038848	540673E+03 865	555831E+03	571175E+038274	586705E+038083	502423E+03 -•7892	518329 <u>5</u> +03 -•770	5344236+03751(550708E+03 -•731	567183E+03 -•7128	543849E+03 693	700707E+03674(717758E+03655!	735002E+03 -•636	752440E+03 -•617	770073E+03 -•598;	787901E+03 -•579	805925E+03 -•559	824145E+03 -•540	842563E+03 521	861179E+03 -+502	861227E+03 •519	668764E+03 •520	875575E+03 •521	881927E+03 •522	887914E+03 •523	893592E+03 •523	8989395+03 .524	
. ц.	•654471E-01 •3	• 024024E=U1 • 3	•664777E-01	•669930E-01 •4	•675083E-01 •4	•680237È-01 •4	•685390E-01	.690543E-01 .4	.695696E-014	•700649E-01 •4	.706002E-01 .5	• 711155E-01 • 5	•716308E-01 •5	•721462E-01 •5	•726615E-01 •5	•731768E-01 •5	• 736921E-01 • 6	•742074E-01 •6	•747227E-01 •6	•752380E-01 •6	•757534E-01 •6	•762687E-01 •6	• 767840E-01	•772493E-01	• 778146E-01	• 7832996-01	•788452E-01	• 793606E-01	• 798759E-01	.803912E-01 .	. 809065E-01 .	.814218E-01 .{	7224166-01 .	7200896-01 .	717761E-01 .	715434E-01 .	713106E-01 .	710779E-01	708451E-01	
×	•133186E+03	• T 3 7008E+03	•140830E+03	•144651E+03	 1,48473E+03 	152295E+03	<pre>.156116E+03</pre>	.1 59938£+03	1637606+03	<pre>.167582E+03</pre>	<pre>.171403E+03</pre>	 175225E+03 	<pre>.179047E+03</pre>	• 182868E+03	 186690E+U3 	<pre>.190512E+03</pre>	.1 94334E+03	<pre>.198155E+03</pre>	•201977E+03	.205799E+03	209620E+03	. 213442E+03	•217264E+03	<pre>.221045E+03</pre>	<pre>.224907E+03</pre>	• 2.28729E+03	•232551E+03	 236372E+03 	<pre>.240194E+03</pre>	<pre>.244016E+03</pre>	247837E+03	251659E+03	<pre>.251669E+03</pre>	 253395E+03 	•255121E+03	<pre>.256847E+03</pre>	 258574E+03 	260300E+03	 262026E+03 	
	4	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	•

UELTA P		135508E+01	135059E+01	134609E+01	134159E+01	133710E+01	133260E+01	132810E+01	-•132361E+01	131911E+01	131462E+01	131012E+01	130562E+01	-+130113E+01	129663E+01	129214E+01	128764E+01	128314E+01	127865E+01	127415E+01	126966E+01	520736E+01	409229E+01	352522E+01	316264E+01	290276E+01	270324E+01	254289E+01	240974E+01	229646E+01	219825E+01	211181E+01	203480E+01	196551E+01	190261E+01	184512E+01	179224E+01	174333E+01	169769E+01	J65548E+01
X-8R	•526455E+03	527318E+03	<pre>.528181E+03</pre>	<pre>.529044E+03</pre>	.529907E+03	•530771E+03	<pre>.531634E+03</pre>	•532497E+03	• 533360E+03	•534223E+03	 535086E+03 	• 5 3 5 9 4 9 E + 0 3	•536812E+03	•537675E+03	•538538E+03	<pre>*539401E+03</pre>	•540264E+03	<pre>.541127E+03</pre>	<pre>.541990E+03</pre>	•542853E+03	<pre>.543716E+03</pre>	 130058E+04 	 108729E+04 	•979203E+03	910364E+03	•861238E+03	•823699E+03	 793679E+03 	 768832E+03 	•747897E+03	 729804E+03 	 713972E+03 	•699950E+03	•587408E+C3	•676096E+03	<pre>.665820E+03</pre>	•656423E+03	<pre>.647800E+03</pre>	•639837E+03	•632458E+03
AREA	• 909102E+03	. 913837E+03	•918380E+03	• 922743E+03	•926938E+03	 930972E+03 	•9348 35E+0 3	938592E+03	•942191E+03	•945657E+03	 948995E+03 	•952211E+03	•955308E+03	•958291E+03	961163E+03	• 963929E+03	•966591E+03	•969153E+03	•971617±+03	•973936E+03	•976263E+03																			
u	703796E-01	701469E-01	699142ē-01	696814E-01	694487E-01	692153E-01	689832E-01	687504E-01	685177E-01	682849E-01	680522E-01	6781946-01	675867E-01	673540E-01	-+671212E-01		666557E-01	664230E-01	-*661902E-01	659575E-01	657 <u>247</u> E-01	269563E+00	211841E+00	182486E+00	163717E+00	150264E+00	I39935E+00	131635E+00	-•124742E+00	118878E+00	113794E+U0	109320E+G0	105333E+00	101746E+00	984903E-01	955142E-01	927766E-01	902449E-01	878925E-01	856975E-01
×	<pre>.265478E+03</pre>	267204E+03	 268930E+03 	 270656E+03 	 272382E+03 	*274108E+03	2 75 835 E+03	 277561E+03 	279287E+03	 281013E+03 	 282739E+03 	 284465E+03 	•286191E+03	287917E+03	 289643E+03 	<pre>.291369E+03</pre>	 293096E+03 	•294822E+03	.296548E+03	2 382 74 E+03	 300000E+03 	•301000E+03	 301760€+03 	 302520E+03 	 303280E+03 	 304040E+03 	•304800E+03	 305560E+03 	•306320E+03	 307080 E+03 	• 307840E+03	•308600E+03	 309360E+03 	•310120E+03	 310880E+03 	 311640E+03 	 3124005+03 	 313160±+03 	313920E+03	•314680E+03
	80	81	82	83	84	85	86	87	88	8 9	06	16	92	93	64	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	116	119

DELTA P	-*161577E+01 -*157846F+01	154329E+01	151006E+01	147858E+01	I44869E+01	I42025E+01	130726E+01	121346E+01	113378E+01	106491 ē +01	100456E+01	-* 3 51084E+00	-•903270E+00	\$60186E+00	821110E+00	785465E+00	752790E+00	722705E+00	694897E+00	669102E+00	-*645101E+00	622704E+00	-*601748E+00	582095E+00	563622E+00	-*546223E+00	-*529805E+00	514285E+00	499589E+00	465654E+00	472419E+00	459833E+00	447849E+00	436424E+00	425520E+00	415101E+00	405136£+00	395596E+00	386454E+00
X - B.R.	•625595E+03 •619193E+03	•613202E+03	.607583E+03	•602300E+03	₩597322E+03	•592623E+03	<pre>*574357E+03</pre>	•559773E+03	•547900E+03	<pre>*538102E+03</pre>	↓ 529939 E +03	•523096E+03	<pre>.517340E+03</pre>	<pre>*512492E+03</pre>	<pre>*508413E+03</pre>	*504993E+03	<pre>.502142E+03</pre>	<pre>*499789E+03</pre>	<pre>.497873E+03</pre>	<pre>*496344E+03</pre>	•495158E+03	•494281E+03	•493680E+03	•493330E+03	•493205E+03	•493288E+03	• 493558E+03	•494001E+03	•494602E+03	495348E+03	•496230E+03	<pre>.497236E+03</pre>	#498357E+03	499586E+03	•500915E+03	• 502337E+03	•503846E+03	• 505 436 E + 03	<pre>.507103E+03</pre>
AKEA																																							
u.	836419E-01 817103E-01	7988985-01	781645E-01	765397E-01	7499246-01	735203E-01	676714E-01	628157E-01	586910E-01	551258E-01	520017E-01	492336 Ē -01	467585E-01	445283E-01	425054E-01	406603E-01	389688E-01	- . 374114E-01	359719E-01	346366E-01	333942E-01	322348E-01	311500E-01	301326E-01	291764E-01	282757E-01	274258E-01	266224E-01	258617E-01	251403E-01	244552E-01	238036E-01	231833E-01	225918E-01	220274E-01	214880E-01	209722E-01	204784E-01	Z00051E-01
×	•315440ē+03 •316200E+03	•316960E+03	317720E+03	•318480E+03	 319240E+03 	 320000E+03 	 323422E+03 	 326844E+03 	*330266E+03	• 3 3 3 6 8 7 E + 0 3	 337109E+03 	•340531E+03	•343953E+03	347375E+03	 350797 E+03 	•354219E+03	•357641E+03	 361062E+03 	•364484E+03	 367906E+03 	.371328±+03	374750E+03	373172E+03	 381594E+03 	•385016E+03	388437E+03	 391859E+03 	 395281E+03 	 3.98703E+03 	•402125E+03	•405547E+03	408969E+03	•412391E+03	•415812E+03	<pre>.419234E+03</pre>	422656E+03	426078E+03	429500E+03	•432922E+03
	120	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	136	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159

DELTA P	
X - BR	 5089426+03 5125186+03 5125186+03 5125186+03 51643461403 52205036+03 52205036+03 52205036+03 5220316826+03 533640246+03 533640116+03 533640116+03 533640116+03 533640116+03 5779866+03 533691366+03 6480636+03 5779866+03 5779866+03 533691366+03 6480636+03 57793666+03 6977656+03 57793666+03 57793666+03 6977656+03 6977656+03 6977656+03 6977666+03 6977666+03 110776366+03 110984666+04 110984666403 110984666404 110984666404 110984666404 110984666404 110984666404 110984666404 110984666404 110984666404 110984666404 1109846666404 1109846666404 1109846666404 110984666404 110984666404 1100776566660404 11007765666404
AREA	
u.	1955126-01 1955126-01 1869706-01 1869706-01 17793566-01 1775356-01 1775356-01 1775356-01 1585976-01 1555976-01 1586076-01 1555976-01 15956966-01 14450866-01 1445086-01 1445086-01 1445086-01 1445086-01 1445086-01 1445086-01 1445086-01 129666-02 25819966-02 25819666-02 25819666-02 25819666-02 25819666-02 25819666-02 25819666-02 25819966-02 1996676-02 1996676-02 1996676-02
×	 430344E+03 439766E+03 4450031E7603 4550031E703 4560031E703 4550031E703 4550031E703 4550031E703 4550031E703 455875E703 46714066703 4774066703 4774066703 4774066703 4774066703 4774066703 4774066703 4774066703 4774066703 4774066703 4774003 4774003 4774003 4774003 4774003 4774003 4774003 4774003 4774003 48425066703 4945156703 4945156703 4945156703 4945156703 49452156703 4945203 4945203 110766986704 11076886704 13312336404 13312336404
	483654822100836554822100983655482210088365666666666666666666666666666666666

UELTA P	330955E-01 315544E-01
x-BR	.144135E+04 .148195E+04
AREA	
Ľ	171321E-02 163344E-02
×	<pre>.143500E+04 .147589E+04</pre>
	200 201

APPENDIX

PRESSURE SIGNATURE

ΡZ	. 9955	1.0055	1-0154	1-0353	1.0453	1.0552	1.0652	1.0752	1.0851	1.0951	1.1050	1.1150	1 1260	1-1448	1.1548	1.1647	1.1747	1.1847	1.1946	1.2046	1+2145	1•2245	1 2665	1 2562	1 2662	1.2742	1.2842	1.2942	1.3041	1•3141	1.3240	1.3340	1.3439	1.3539	1.3038	1.3738
۲d	0•000																																			
X-BR	-161.0936 -159.1827	-157.2719	-155.3610	-153.4502	-151.5393	-149.6285	-147.7176	-145.8068	-143.8454 -143.0023	-141.9071 -140.0742		-136.2525	-134.3416	-132.4308	-130.5199	-123.6091	-126.6942	-124.7874	-122.8765	-120.903/ -114 0640	-117.1420	-115.2331	-113.3222	-111.4114	-109.5005	-107.5897	-105.6788	-103.7680	-101-8571	-99-9403		-96-1245	-94 • ČIST	-46.3028		TTOLOD

•82.7466 1.4037 •82.7466 1.4037 •82.7466 1.4037 •82.7466 1.4037 •82.7466 1.4037 •82.7466 1.4037 •77.0160 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0160 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •77.0161 1.4736 •71.2834 1.4736 •71.2834 1.4736 •71.2834 1.4736 •71.2834 1.4736 •71.2834 1.4736 •71.2834 1.4736 •71.2834 1.4737	X-8R	Id	7 6 4 5 1
-04.05944 -4.037 -78.9208 -4.035 -78.9208 -4.435 -78.9208 -4.435 -78.9208 -4.435 -78.9208 -4.435 -78.9208 -4.435 -78.9208 -4.435 -78.0160 -4.435 -78.0509 -4.435 -69.3726 -4.433 -61.2640 -4.483 -61.2640 -4.483 -61.2640 -4.483 -55.9907 -4.493 -57.9907 -1.4933 -57.9907 -1.4933 -55.9966 1.4933 -55.04139 1.5132 -55.29465 1.5530 -55.29466 1.5733 -55.29465 1.5733 -55.201400 1.5733 552.1400 1.5733 552.1400 1.5733 552.1400 1.5533 552.1400 1.5533 552.1400 1.5533 552.1400 1.5533 552.1400 1.5533 552.1400 1.5533	-86.5703		7505 1
-77.0160 -80.8377 -78.1051 -78.1051 -78.1051 -78.1051 -78.1051 -78.1051 -78.1051 -77.0150 -77.4015 -77.4015 -77.4015 -67.4017 -61.770 -55.5509 -65.5509 -61.7705 -52.4139 552.	-84.6544		
-77.0160 -77.0160 -77.0160 -77.0161 -77.0160 -77.0160 -77.0160 -77.0160 -77.0160 -77.0160 -77.0160 -65.5509 -65.5509 -65.5509 -65.5509 -65.5509 -65.5509 -65.5509 -65.5509 -61.7292 -55.9916 -57.900 -57.900 -57.9105 -52.1709 -52.1709 -52.1709 -52.1709 -52.1700 -52.1709 -52.5555 -1.3100 -1.31000 -1.31000 -1.31	-82.7486		1 • 403 1
-78.9208 -77.0160 -75.1051 -75.1051 -75.1051 -73.1943 -69.3726 -69.55609 -61.7292 -63.6400 -55.9966 -1.3770 -1.3770 -1.3770 -1.376 -1.3770 -1.376 -1.326	-60.8377		1.4136
-77.0160 -78.1051 -73.1943 -73.1943 -67.451 -67.4515 -67.4517 -67.4517 -67.4517 -61.7292 -61.7292 -61.7292 -59.9966 -59.9966 -59.9966 -57.909 -52.1400 521.2770 -52.1400 521.2770 -52.1400 523.1400 522.1400 522.1400 522.1400 522.1400 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 -1.1.373 531.633 533.3597 -1.1.373 532.4966 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.330 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 533.3597 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.373 534.5527 -1.1.3357 -1.1.373 534.5527 -1.1.3357 -1.1.3357 -1.1.3357 -1.1.3357 -1.1.337 -1.1.3357 -1.1.337 -1.	-78.9208		1.4236
-75.1051 -73.1943 -73.1943 -69.3726 -69.3726 -69.3726 -61.7292 -61.7292 -61.7292 -61.7292 -61.7292 -55.9966 -57.9966 -57.9966 -52.9966 -52.9966 -52.9966 -52.9966 -52.1400 522.1400 522.1400 522.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.16336 -1.377 -1.377 -1.376 534.227 532.5957 -1.376 534.227 -1.376 523.16336 523.16336 523.4966 -1.377 -1.376 -1.376 -1.377 -1.376 523.16336 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 523.4966 -1.376 523.4966 -1.376 523.4966 -1.376 523.4966 -1.376 523.4966 -1.376 -1.376 -1.376 -1.337 534.227 -1.337 535.997 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.336 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.337 534.227 -1.337 -1.337 -1.336 -1.337 -1.337 -1.337 -1.336 -1.337 -1.336 -1.337 -	-77.0160		1.4335
-73.1943 -73.1943 -67.4617 -65.5509 -65.5509 -65.5509 -65.5509 -61.7292 -59.8183 -55.9966 -55.9966 -55.9966 -55.9966 -55.9966 -52.1400 519.5509 519.5509 522.1400 523.1400 522.1400 523.14000 523.14000 523.14000 523.14000 523.14000 523.14000 523.14000 523.14000 523.14000 523.14000 523.140000 523.140000 523.14000000000000000000000000000000000000	-75.1051		1.4435
-71.2834 -71.2834 -65.5509 -65.5509 -63.6509 -63.6509 -63.6509 -51.65132 -55.9976 -55.9966 -55.9966 -55.9966 -52.9966 -52.1749 -52.9966 -52.04139 520.4139 520.4139 520.4139 521.5705 -52.1400 523.0031 523.4139 524.7292 525.44966 -1.377 522.4966 -1.377 522.4966 -1.377 522.4966 529.0444 529.04139 521.277 531.6336 521.2770 523.24139 523.4139 524.7227 533.4550 523.4139 524.7227 534.7227 544.7	-73.1943		1.4534
-69.3726 -67.4617 -65.5509 -63.6400 -61.7292 -59.9966 -57.9074 -57.9074 -57.9074 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.3103 522.1400 523.14000 523.14000 523.14000 523.14000 523.14000 523.14000000000000000000000000000000000000	-71.2834		1.4634
$\begin{array}{c} -67.4617 \\ -65.5509 \\ -63.5509 \\ -63.5400 \\ -61.7292 \\ -57.9074 \\ -55.9966 \\ -57.9074 \\ -57.9074 \\ -57.909 \\ -50.2640 \\ 519.5509 \\ 520.4139 \\ 520.4139 \\ 520.4139 \\ 520.4139 \\ 520.4139 \\ 522.1400 \\ -1.337 \\ 513.335 \\ 532.355 \\ -1.337 \\ 532.4966 \\ -1.337 \\ -1.33$	-69.3726		1.4733
-65.5509 -63.6400 -61.7292 -61.7292 -51.400 -52.9966 -52.9966 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1700 522.4139 522.4139 522.4139 522.4139 522.4139 522.4553 522.555555 522.555555555555555555555	-67.4617		I. 4833
-63.6400 -61.7292 -59.8183 -57.9074 -57.9074 -55.9966 -52.9966 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.1749 -52.2640 -52.2640 -52.2640 -52.2640 -52.2640 -52.2770 -1.3976 -1.3776 -1.3776 -1.3776 -1.3766 -1.3766 -1.3766 -1.3766 -1.3766 -1.3766 -1.3766 -1.37	-65.5509		1.4932
-61.7292 -59.8183 -57.9074 -55.9966 -55.9966 -52.9966 -52.1749 -52.1749 -52.1749 -52.1749 520.4139 520.4139 520.4139 522.1400 522.1414 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.14144 572.141444 572.14144 572.14144 572.14144 572.14144 573.14144 573.1414444444444444444444444444444444444	-63.6400		1.5032
-59.8183 -57.9074 -55.9966 -57.90857 -52.9966 -52.04139 520.4139 520.4139 520.4139 520.4139 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.1400000000000000000000000000000000000	-61.7292		1.5132
-57.9074 -55.9966 -54.0857 -52.1749 -52.1749 -50.2640 520.4139 520.4139 521.2770 521.2770 522.1400 523.0031 523.0031 523.661 523.1400 523.1400 523.6922 523.6922 524.7292 524.7292 524.7292 524.7292 528.414 -1.3364 -1.3376 532.4966 533.4966 533.4966 533.4966 533.4966 533.4966 533.4966 533.4966 533.4966 533.4966 533.4966 533.6977 533.6977 533.647 533.647 533.6475 534.227 534.227 534.227 534.227 534.227 535.9975 534.227 534.227 535.9975 534.227 535.9975 535.9975 534.227 535.9975 535.9975 534.227 535.9975 535.9966 534.227 535.9975 534.227 535.9975 535.9975 534.227 535.9975 535.9975 534.227 535.9975 534.227 534.227 535.9975 534.227 534.227 535.9975 534.227 534.227 534.227 534.227 534.227 535.9975 534.227 537.237 534.227 544.227 54	-59.8183		1•5231
-55.9966 -52.0857 -52.1749 -52.1749 -52.2640 520.4139 520.4139 521.2770 521.2770 522.1400 522.1400 522.1400 523.9661 523.0031 524.7292 524.7292 524.7292 524.7292 525.5922 528.1614 528.4553 528.4553 528.4553 528.4553 528.4553 531.6336 529.9075 532.4966 529.9075 531.6336 528.1614 -1.3564 -1.3564 -1.3564 -1.3564 -1.3376 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.3376 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.33776 -1.3377777777777777777777777777777777777	-57.9074		1.5331
-54.0857 -52.1749 -50.2640 519.5509 520.4139 5210.2770 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.14000 522.1400000000000000000000000000000000000	-55 • 9966		1•5430
-52.1749 -50.2640 519.5509 520.4139 521.2770 521.2770 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 523.1400 524.7292 532.4966 532.4966 533.3597 531.6336 532.4966 533.3597 531.6336 533.3597 531.6336 533.3597 531.6336 533.3597 531.6336 533.3597 531.6336 533.3597 533.5506 533.5506 533.5506 533.5506 533.5506 533.5506 533.5507 533.5506 533.5506 533.5507 533.5507 533.5506 533.5507 533.5507 533.5507 533.5507 533.5507 533.5507 533.5507 533.5505 533.5507 533.5507 533.5505 533.5507 533.5507 533.5505 533.5507 533.550505 533.5505505 533.550505 533.55050505 533.55050505 533.55	-54.0857		1.5530
-50. 2640 520. 4139 520. 4139 521. 2770 522. 1400 522. 1400 523. 0031 524. 7292 524. 7292 524. 7292 525. 5922 525. 5922 525. 5922 525. 5922 525. 5922 525. 5922 525. 5922 525. 5922 525. 5928 511. 377 511. 377 511. 359 511. 359 522. 4966 522. 4966 522. 4966 522. 4966 533. 3597 531. 6336 533. 535. 9488 535. 9488 535. 9488 535. 9488 535. 9488	-52 •1749		1.5629
519-5509 520-4139 521-2770 521-2770 522-1400 523-0031 523-0031 523-0031 524-7292 524-7292 524-7292 524-7292 524-7292 524-7292 524-7292 524-7292 524-7292 524-7292 522-922 522-922 522-14-37 51-1-359 51-1-359 51-1-328 51-1	-50.2640		1.5729
520.4139 521.2770 522.1400 523.0031 523.0031 524.7292 524.7292 524.7292 524.7292 524.7292 524.7292 524.7292 524.7292 524.7705 524.7705 524.7705 524.7705 522.4966 529.9075 531.6336 532.4966 533.3597 534.2227 534.2227 534.2227 535.9488 535.9488	519.5509		-1-3955
522.1400 522.1400 523.0031 523.0031 524.7292 524.7292 524.7292 524.7292 525.5922 526.4553 526.4553 526.4553 526.4553 526.4553 526.4553 526.4553 527.31d3 528.4966 529.00444 529.00444 529.0075 531.6336 531.6336 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 532.4966 533.3597 533.3597 533.3597 535.99488 533.3597 535.99488 533.3597 533.3597 533.3500 535.99488 533.3500 535.99488 535.99488 535.99488 535.99488 535.99488	520.4139		1195.1
522.1400 523.0031 524.7292 524.7292 524.7292 525.5922 526.4553 526.4553 526.4553 528.1814 528.1814 528.1814 528.1814 528.1814 528.1814 528.1814 529.0075 530.7705 531.6336 532.4966 533.4966 533.4966 533.4966 534.2227 534.2227 535.99488 -1.328 535.9488	521.2770		
523.0031 524.7292 524.7292 525.5922 525.5922 526.4553 526.4553 526.4553 526.4553 526.4553 527.31d3 528.1814 -1.356 529.0075 530.7705 531.6336 532.4966 532.4966 533.3597 -1.370 -1.13700 -1.137000 -1.137000 -1.137000 -1.137000 -1.13700000 -1.13700000000000000000000000000000000000	522.1400		-T-3821
523.8661 524.7292 525.5922 525.5922 526.4553 526.4553 526.4553 528.1814 528.1814 529.9075 530.7705 530.7705 531.6336 532.4966 532.4966 533.597 534.2227 51.0858 535.9488 -1.310	523.0031		0// C • T +
524. 7292 525. 5922 526. 4553 526. 4553 528. 1814 529. 0444 529. 0075 530. 7705 531. 6336 531. 6336 532. 4966 533. 3597 -1. 346 -1. 346 -1. 328 533. 3597 -1. 328 534. 2227 -1. 319 535. 9488 -1. 310	523.8661		7070 F
525.4553 522.4553 522.4553 522.4553 522.49075 530.7705 531.6336 532.4966 533.4567 -1.337 -1.323 -1.323 -1.323 -1.323 534.2227 -1.319 535.9488 -1.310	524.7292		-1-3065
527.3143 528.1814 529.0444 529.0075 530.7705 530.7705 531.6336 532.4966 533.3597 534.2227 534.2227 535.0858 535.9488	223.2966		
528.1814 529.0444 529.0075 530.7705 531.6336 532.4966 533.3597 533.3597 534.2227 534.2227 535.0858 535.0858	220.4333 721 2323		
528.1814 529.0444 529.0075 530.7705 531.6336 532.4966 533.3597 533.3597 534.2227 51.319 535.0858 535.0858	72 (•3103		
529.0444 529.9075 530.7705 531.6336 532.4966 533.3597 534.2227 535.0858 -1.319 535.9488	728.1814 722		
529.9075 530.7705 531.6336 532.4966 533.3597 534.2227 534.2227 535.9488 -1.319 535.9488	529.0444		
530.7705 531.6336 532.4966 533.3597 534.2227 535.0858 -1.319 535.9488 -1.310	529 . 9075		
531.6336 532.4966 533.3597 533.3597 534.2227 535.0858 -1.319 -1.319 535.9488	530.7705		-1.33/1
532.4966 533.3597 534.2227 535.0858 -1.319 -1.319 -1.310 -1.314	531.6336		-T+3326
533.3597 -1.323 534.2227 -1.319 535.0858 -1.314 -1.314 535.9488 -1.310	532.4966		-1-328
534.2227 -1.319 535.0858 -1.314 535.9488 -1.314	533.3597	-	-1-3236
535.0858	534.2227		-1.3191
535.9488 -1.310	535.0858		-1.3146
	535.9488		-1.310

.

c c

38

APPENDIX

P 2		
Pl	- T - Z 697	99551394E+U0 551394E+00 • 15728875E+01 2614E+01 6383E+00 13E+00
X – 8 R	536.8119 5337.6749 5339.5340 5339.5340 5410.25641 5541.99902 5411.99902 542.0564 5442.0992 5442.0992 5442.0902 648.0022 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.74555 722.745555 722.745555 722.7455555 722.74555555 722.745555555555555555555555555555555555	FRONT SHOCK # REAR SHOCK # MAXIMUM PRESSURE W-TILDE #

	9		۰.		<u>م</u>	-	Ŷ	\sim	N	4	ω	-	SO	m	σ	ŝ	ŝ	0	0	2	m	ч	ŝ	Ω	δ	Ŷ	2		~	9	9	Ð		9
	ົທ	-	Ō	N	~	ŝ	æ	4	+	6		\sim	0	0	ŝ	0	σ	Ō	N	.0	0	4	5	ŝ		Ð	ŝ	ŝ	О	ro	6	4	$\hat{}$	-
	0	0	σ	σ	Ø	30	2	2	~	ъ	2	Ю	Ó	4	2		¢.	Φ	-30	2	9	9	ŝ	ŝ	5	4	4	4	4	3	ŝ	ŝ	ŝ	ŝ
	3	ŝ	2	2	N	2	2	2	2	\sim	N	1	-		H	-	Ċ	0	0	0	0	0	0	0	0	0	0	0	\circ	0	0	\circ	0	0
N			•	٠											٠	٠			•				•			•	•	•	•	•	•		٠	•
n .	-		-	-	-	-1	-	-1	1	1		- 1	1	1	- 1	- 1	1	ł	1	- F	4	1	-	1	1		1	1	1	1	1	- E		1

(LAM-YF)/(L-YF) = .82095941E+00 LOCATION DF FRONT SHDCK -.16109360E+U3 LOCATION UF REAR SHDCK .54371528E+03 LOCATION UF REAR SHDCK .256964908E+00 TIME 4ETWEEN SHDCKS .256964908E+00 CHARACTERISTIC OVERPRESSURE .21553217E+01

IMPULSE 6.90PA-SEC MAX PKES= 75.31PA BOW SHOCK= 47.67PA REAR SHOCK= 47.67PA

CHARACTERISTIC OVERPR# 103.20PA POSITION UF REAR SHOCK= 165.72METERS POSITION OF BOW SHUCK= -49.10METERS

DISTANCE FROM BOW SHOCK TO PMAX= 110.63 FEET TIME FROM BOW SHOCK TO PMAX= .04 SEC

REFERENCES

- Jones, L. B.: Lower Bounds for Sonic Bangs. J. Roy. Aeronaut. Soc., vol. 65, no. 606, June 1961, pp. 433-436.
- 2. Jones, L. B.: Lower Bounds for Sonic Bangs in the Far Field. Aeronaut. Q., vol. XVIII, pt. 1, Feb. 1967, pp. 1-21.
- Seebass, R.: Minimum Sonic Boom Shock Strengths and Overpressures. Nature, vol. 221, no. 5181, Feb. 15, 1969, pp. 651-653.
- 4. George, A. R.: Lower Bounds for Sonic Booms in the Midfield. AIAA J., vol. 7, no. 8, Aug. 1969, pp. 1542-1545.
- George, A. R.; and Seebass, R.: Sonic Boom Minimization Including Both Front and Rear Shocks. AIAA J., vol. 9, no. 10, Oct. 1971, pp. 2091-2903.
- Seebass, R.; and George, A. R.: Sonic-Boom Minimization. J. Acoust. Soc. America, vol. 51, no. 2 (pt. 3), Feb. 1972, pp. 686-694.
- 7. Darden, Christine M.: Minimization of Sonic-Boom Parameters in Real and Isothermal Atmospheres. NASA TN D-7842, 1975.
- Whitham, G. B.: The Flow Pattern of a Supersonic Projectile. Commun. Pure & Appl. Math., vol. V, no. 3, Aug. 1952, pp. 301-348.
- 9. Walkden, F.: The Shock Pattern of a Wing-Body Combination, Far From the Flight Path. Aeronaut. Q., vol. IX, pt. 2, May 1958, pp. 164-194.
- Hayes, Wallace D.: Linearized Supersonic Flow. Ph. D. Thesis, California Inst. Technol., 1947.
- 11. Lung, Joseph Lui: A Computer Program for the Design of Supersonic Aircraft To Minimize Their Sonic Boom. M.S. Thesis, Cornell Univ., 1975.
- 12. Marconi, Frank; Salas, Manuel; and Yaeger, Larry: Development of a Computer Code for Calculating the Steady Super/Hypersonic Inviscid Flow Around Real Configurations. Volume I - Computational Technique. NASA CR-2675, 1976.

Figure 1.- Sonic-boom prediction methods.

Figure 2.- Pressure-signature propagation.

Sharp nose

Blunt nose

44

.....

Figure 4.- Illustration of the theoretical concepts of near-field sonic boom.

λ - Υ_f ι - У_f

. .

1. Report No. NASA TP-1348	2. Government Access	on No.	3. Recipi	ient's Catalog No.						
4. Title and Subtitle			5. Repor	t Date						
SONIC-BOOM MINIMIZATION	WITH NOSE-BLUNTN	ESS RELAX	ATION 6. Perfor	ming Organization Code						
7. Author(s) Christine M. Darden			8. Perfor L-	ming Organization Report No. -12464						
0. Performing Organization Name and Addre	se	<u> </u>	10. Work 5(Unit No.)5-09-23-11						
NASA Langley Research (Hampton, VA 23665	- Center	11. Contract or Grant No.								
12 Soonsoring Agency Name and Address	<u> </u>	13. Type of Heport and Period Co Technical Paper								
National Aeronautics ar Washington, DC 20546	nd Space Administr	ation	14. Spons	soring Agency Code						
15. Supplementary Notes										
A procedure which provi for supersonic cruise of analyses to permit rela low-boom shapes and ind provides area distribut	des sonic-boom-mi conditions is desc axation of the ext cludes propagation tions which minimi	nimizing ribed. T reme blur in a rea ze either	equivalent are This work exter ntness required al atmosphere. c shock strengt	ea distributions nds previous d by conventional The procedure th or overpressure.						
17. Key Words (Suggested by Author(s)) Sonic-boom minimization Impulse Pressure signature Equivalent area	n	18. Distribut Unci	ion Statement Lassified – Un.	limited						
		L	Su.	bject Category U2						
19. Security Classif. (of this report) Unclassified	20. Security Classif, (of this Unclassified	page) I	21. No. of Pages 50	22. Price ⁻ \$4.50						

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1979

-