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Abstract— Identifying and interpreting fetal standard
scan planes during 2-D ultrasound mid-pregnancy exam-
inations are highly complex tasks, which require years
of training. Apart from guiding the probe to the correct
location, it can be equally difficult for a non-expert to iden-
tify relevant structures within the image. Automatic image
processing can provide tools to help experienced as well
as inexperienced operators with these tasks. In this paper,
we propose a novel method based on convolutional neural
networks, which can automatically detect 13 fetal standard
views in freehand 2-D ultrasound data as well as provide
a localization of the fetal structures via a bounding box.
An important contribution is that the network learns to
localize the target anatomy using weak supervision based
on image-level labels only. The network architecture is
designed to operate in real-time while providing optimal
output for the localization task. We present results for real-
time annotation, retrospective frame retrieval from saved
videos, and localization on a very large and challenging
dataset consisting of images and video recordings of full
clinical anomaly screenings. We found that the proposed
method achieved an average F1-score of 0.798 in a realis-
tic classification experiment modeling real-time detection,
and obtained a 90.09% accuracy for retrospective frame
retrieval. Moreover, an accuracy of 77.8% was achieved on
the localization task.

Index Terms— Convolutional neural networks, fetal ultra-
sound, standard plane detection, weakly supervised
localisation.

I. INTRODUCTION

A
BNORMAL fetal development is a leading cause of

perinatal mortality in both industrialised and develop-

ing countries [28]. Overall early detection rates of fetal
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abnormalities are still low and are hallmarked by large varia-

tions between geographical regions [1], [6], [15].

The primary modality for assessing the fetus’ health is

2D ultrasound due to its low cost, wide availability, real-time

capabilities and the absence of harmful radiation. However,

the diagnostic accuracy is limited due to poor signal to noise

ratio and image artefacts such as shadowing. Furthermore,

it can be difficult to obtain a clear image of a desired view if

the fetal pose is unfavourable.

Currently, most countries offer at least one routine ultra-

sound scan at around mid-pregnancy between 18 and 22 weeks

of gestation [28]. Those scans typically involve imaging

a number of standard scan planes on which biometric

measurements are taken (e.g. head circumference on the trans-

ventricular head view) and possible abnormalities are identi-

fied (e.g. lesions in the posterior skin edge on the standard

sagittal spine view). In the UK, guidelines for selecting and

examining these planes are defined in the fetal abnormality

screening programme (FASP) handbook [22].

Guiding the transducer to the correct scan plane through

the highly variable anatomy and assessing the often hard-to-

interpret ultrasound data are highly sophisticated tasks, requir-

ing years of training [20]. As a result these tasks have been

shown to suffer from low reproducibility and large operator

bias [7]. Even identifying the relevant structures in a given

standard plane image can be a very challenging task for certain

views, especially for inexperienced operators or non-experts.

At the same time there is also a significant shortage of skilled

sonographers, with vacancy rates reported to be as high as

18.1% in the UK [31]. This problem is particularly pronounced

in parts of the developing world, where the WHO estimates

that many ultrasound scans are carried out by individuals with

little or no formal training [28].

A. Contributions

With this in mind, we propose a novel system based on

convolutional neural networks (CNNs) for real-time automated

detection of 13 fetal standard scan planes, as well as localisa-

tion of the fetal structures associated with each scan plane

in the images via bounding boxes. We model all standard

views which need to be saved according to the UK FASP

guidelines for mid-pregnancy ultrasound examinations, plus
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Fig. 1. Overview of proposed SonoNet: (a) 2D fetal ultrasound data
can be processed in real-time through our proposed convolutional neural
network to determine if the current frame contains one of 13 fetal standard
views (here the 4 chamber view (4CH) is shown); (b) if a standard view
was detected, its location can be determined through a backward pass
through the network.

the most commonly acquired cardiac views. The localisation

is achieved in a weakly supervised fashion, i.e. with only

image-level scan plane labels available during training. This

is an important aspect of the proposed work as bounding

box annotations are not routinely recorded and would be too

time-consuming to create for large datasets. Fig. 1 contains

an overview of the proposed method. Our approach achieves

real-time performance and very high accuracy in the detection

task and is the first in the literature to tackle the weakly-

supervised localisation task on freehand ultrasound data.

All evaluations are performed on video data of full

mid-pregnancy examinations.

The proposed system can be used in a number of ways.

It can be employed to provide real-time feedback about the

content of a image frame to the operator. This may reduce the

number of mistakes made by inexperienced sonographers and

could also be applied to automated quality control of acquired

images. We also demonstrate how this system can be used to

retrospectively retrieve standard views from very long videos,

which may open up applications for automated analysis of

data acquired by operators with minimal training and make

ultrasound more accessible to non-experts. The localisation

of target structures in the images has the potential to aid

non-experts in the detection and diagnosis tasks. This may be

particularly useful for training purposes or for applications in

the developing world. Moreover, the saliency maps and bound-

ing box predictions improve the interpretability of the method

by visualising the hidden reasoning of the network. That way

we hope to build trust into the method and also provide an

intuitive way to understand failure cases. Lastly, automated

detection and, specifically, localisation of fetal standard views

are essential preprocessing steps for other automated image

processing such as measurement or segmentation of fetal

structures.

This work was presented in preliminary form in [2]. Here,

we introduce a novel method for computing category-specific

saliency maps, provide a more in-depth description of the

proposed methods, and perform a significantly more thorough

quantitative and qualitative evaluation of the detection and

localisation on a larger dataset. Furthermore, we significantly

outperform our results in [2] by employing a very deep

network architecture.

B. Related Work

A number of papers have proposed methods to detect

fetal anatomy in videos of fetal 2D ultrasound sweeps

(e.g. [20], [21]). In those works the authors have been aiming

at detecting the presence of fetal structures such as the skull,

heart or abdomen rather than specific standardised scan planes.

Yaqub et al. [34] have proposed a method for the categori-

sation of fetal mid-pregnancy 2D ultrasound images into seven

standard scan planes using guided random forests. The authors

modelled an “other” class consisting of non-modelled standard

views. Scan plane categorisation differs significantly from

scan plane detection since in the former setting it is already

known that every image is a standard plane. In standard plane

detection on a real-time data stream or video data, standard

views must be distinguished from a very large amount of

background frames. This is a very challenging task due to

the vast amount of possible appearances of the background

class.

Automated fetal standard scan plane detection has been

demonstrated for 1–3 standard planes in short videos of

2D fetal ultrasound sweeps [8], [10], [23], [24]. The earlier of

those works rely on extracting Haar-like features from the data

and training a classifier such as AdaBoost or random forests

on them [23], [24], [35].

Motivated by advances in computer vision, there has

recently been a shift to analyse ultrasound data using CNNs.

The most closely related work to ours is that by

Chen et al. [10] who employed a classical CNN architecture

with five convolutional and two fully-connected layers for the

detection of the standard abdominal view. During test time,

each frame of the input video was processed by evaluating

the classifier multiple times for overlapping image patches.

The drawback of this approach is that the classifier needs to

be applied numerous times, which precludes the system from

running in real-time. In [8], the same authors extended the

above work to three scan planes and a recurrent architecture

which took into account temporal information, but did not aim

at real-time performance.

An important distinction between the present study and all

of the above works is that the latter used data acquired in single

sweeps while we use freehand data. Sweep data are acquired

in a fixed protocol by moving the ultrasound probe from the

cervix upwards in one continuous motion [10]. However, not

all standard views required to determine the fetus’ health status

are adequately captured using a sweep protocol. For example,

imaging the femur or the lips normally requires careful manual

scan plane selection. Furthermore, data obtained using the

sweep protocol are typically only 2–5 seconds long and consist

of fewer than 50 frames [10]. In this work, we consider data

acquired during real clinical abnormality screening exami-

nations in a freehand fashion. Freehand scans are acquired

without any constraints on the probe motion and the operator
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moves from view to view in no particular order. As a result

such scans can last up to 30 minutes and the data typically

consists of over 20,000 individual frames for each case. To our

knowledge, automated fetal standard scan plane detection has

never been performed in this challenging scenario.

A number of works have been proposed for the supervised

localisation of structures in ultrasound. Zhang et al. [35]

developed a system for automated detection and fully super-

vised localisation of the gestational sac in first trimester

sweep ultrasound scans. Bridge and Noble [5] proposed a

method for the localisation of the heart in short videos using

rotation invariant features and support vector machines for

classification. In more recent work, the same authors have

extended the method for the supervised localisation of three

cardiac views taking into account the temporal structure of

the data [4]. The method was also able to predict the heart

orientation and cardiac phase. To our knowledge, the present

work is the first to perform localisation in fetal ultrasound in

a weakly supervised fashion.

Although, weakly supervised localisation (WSL) is an active

area of research in computer vision (e.g. [27]) we are not aware

of any works which attempt to perform WSL in real-time.

II. METHODS

A. Data

Our dataset consisted of 2694 2D ultrasound examinations

of volunteers with gestational ages between 18–22 weeks

which have been acquired and labelled during routine screen-

ings by a team of 45 expert sonographers according to the

guidelines set out in the UK FASP handbook [22]. Those

guidelines only define the planes which need to be visualised,

but not the sequence in which they should be acquired. The

large number of sonographers involved means that the dataset

contains a large number of different operator-dependent exam-

ination “styles” and is therefore a good approximation of the

normal variability observed between different sonographers.

In order to reflect the distribution of real data, no selection

of the cases was made based on normality or abnormality.

Eight different ultrasound systems of identical make and model

(GE Voluson E8) were used for the acquisitions. For each

scan we had access to freeze-frame images saved by the

sonographers during the exam. For a majority of cases we

also had access to screen capture videos of the entire fetal

exam.

1) Image Data: A large fraction of the freeze-frame images

corresponded to standard planes and have been manually

annotated during the scan allowing us to infer the correct

ground-truth (GT) label. Based on those labels we split the

image data into 13 standard views. In particular, those included

all views required to be saved by the FASP guidelines, the four

most commonly acquired cardiac views, and the facial profile

view. An overview of the modelled categories is given in

Table I and examples of each view are shown in Fig. 7.

Additionally, we modelled an “other” class using a number

of views which do not need to be saved according to the FASP

guidelines but are nevertheless often recorded at our partner

hospital. Specifically, the “other” class was made up from the

TABLE I

OVERVIEW OF THE MODELLED CATEGORIES

arms, hands and feet views, the bladder view, the diaphragm

view, the coronal face view, the axial orbits view, and views

of the cord-insert, cervix and placenta. Overall, our dataset

contained 27731 images of standard views and 6856 of “other”

views. The number of examples for each class ranged from

543 for the profile view to 4868 for the brain (tv.) view. Note

that a number of the cases were missing some of the standard

planes while others had multiple instances of the same view

acquired at different times.

2) Video Data: In addition to the still images, our dataset

contained 2638 video recordings of entire fetal exams, which

were on average over 13 minutes long and contained over

20000 frames. 2438 of those videos corresponded to cases for

which image data was also available. Even though in some

examinations not all standard views were manually annotated,

we found that normally all standard views did appear in the

video.

It was possible to find each freeze-frame image in its

corresponding video if the latter existed. As will be described

in more detail in Sec. II-D we used this fact to augment

our training dataset in order to bridge the small domain gap

between image and video data. Specifically, the corresponding

frames could be found by iterating through the video frames

and calculating the image distance of each frame to the freeze-

frame image. The matching frame was the one with the

minimum distance to the freeze-frame.

As is discussed in detail in Sec. III, all evaluations were

performed on the video data in order to test the method in

a realistic scenario containing motion and a large number of

irrelevant background frames.

B. Preprocessing

The image and video data were preprocessed in five steps

which are summarised in Table II and will be discussed in

detail in the following.

Since, in this study, we were only interested in structural

images we removed all freeze-frame images and video frames

containing colour Doppler overlays from the data. We also

removed video frames and images which contained split views

showing multiple locations in the fetus simultaneously.
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Fig. 2. Overview of proposed network architectures. Each network consists of a feature extractor, an adaptation layer, and the final classification
layer. All convolutional operations are denoted by squared brackets. Specifically, we use the following notation: [kernelsize × number of kernels /
stride]. The factor in front of the squared brackets indicates how many times this operation is repeated. Max-pooling is always performed with a
kernel size of 2×2 and a stride of 2 and is denoted by MP. All convolutions are followed by a batch normalisation layer before the ReLu activation,
except the SmallNet network, for which no batch normalisation was used.

TABLE II

DATA PREPROCESSING SUMMARY

To prevent our algorithm from learning the manual anno-

tations placed on the images by the sonographers rather than

from the images themselves, we removed all the annotations

using the inpainting algorithm proposed in [33].

We rescaled all image and frame data and cropped a

224×288 region containing most of the field of view but

excluding the vendor logo and ultrasound control indicators.

We also normalised each image by subtracting the mean

intensity value and dividing by the image pixel standard

deviation.

In order to tackle the challenging scan plane detection

scenario in which most of the frames do not show any of the

standard scan planes, a large set of background images needed

to be created. The data from the “other” classes mentioned

above were not enough to model this highly varied category.

Note that our video data contained very few frames showing

standard views and the majority of frames were background.

Thus, it was possible to create the background class by ran-

domly sampling frames from the available video recordings.

Specifically, we sampled 50 frames from all training videos

and 200 frames from all testing videos. While we found that

50 frames per case sufficed to capture the full variability of the

background class during training, we opted for a larger number

of background frames for the test set in order to evaluate

the method in a more challenging and realistic scenario. This

resulted in a very large background class with 110638 training

images and 105611 testing images. Note that operators usually

hold the probe relatively still around standard planes, while

the motion is larger when they are searching for views. Thus,

in order to decrease the chance of randomly sampling actual

standard planes, frames were only sampled where the probe

motion, i.e. image distance to previous video frame, was above

a small threshold. Note that the location in the video of

some of the standard scan planes could be determined by

comparing image distances to the freeze frames as described

earlier (see Sec. II-A). However, this knowledge could not be

used to exclude all standard views for the background class

sampling because it only accounted for a very small fraction

of standard views in the video. The videos typically contained

a large number of unannotated standard views in the frames

before and after the freeze frame, and also in entirely different

positions in the video.

The images from the “other” category were also added

to the background class. Overall the dataset including the

background class had a substantial (and intentional) class

imbalance between standard views and background views.

For the test set the standard view to background ratios were

between 1:138 and 1:1148, depending on the category.

In the last step, we split all of the cases into a training

set containing 80% of the cases and test set containing

the remaining 20%. The split was made on the case level

rather than the image level to guarantee that no video frames

originating from test videos were used for training. Note that

not all cases contained all of the standard views and as a result

the ratios between test and training images were not exactly

20% for each class.

C. Network Architecture

Our proposed network architecture, the sonography net-

work or SonoNet, is inspired by the VGG16 model which

consists of 13 convolutional layers and 3 fully-connected

layers [30]. However, we introduce a number of key changes

to optimise it for the real-time detection and localisation

tasks. The network architectures explored in this work are

summarised in Fig. 2.

Generally, the use of fully-connected layers restricts the

model to fixed image sizes which must be decided during

training. In order to obtain predictions for larger, rectan-

gular input images during test time, typically the network

is evaluated multiple times for overlapping patches of the

training image size. This approach was used, for example,

in some related fetal scan plane detection works [8], [10]. Fully

convolutional networks, in which the fully-connected layers
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have been replaced by convolutions, can be used to calculate

the output to arbitrary images sizes much more efficiently

in a single forward pass. The output of such a network is

no longer a single value for each class, but rather a class

score map with a size dependent on the input image size [19].

In order to obtain a fixed-size vector of class scores, the class

score maps can then be spatially aggregated using the sum,

mean or max function to obtain a single prediction per class.

Fully convolution networks have been explored in a number

of works in computer vision (e.g. [17], [25]), and in medical

image analysis, for example for mitosis detection [9].

Simonyan and Zisserman [30] proposed training a tradi-

tional model with fully-connected layers, but then converting it

into a fully convolutional architecture for efficient testing. This

was achieved by converting the first fully-connected layer to a

convolution over the full size of the last class score map (i.e. a

7×7 convolution for the VGG16 network), and the subsequent

ones to 1×1 convolutions. In the case of 224×288 test images

this would produce 1×14 class score maps for each category.

In this work we use the spatial correspondence between

class score maps with the input image to obtain localised

category-specific saliency maps (see Sec. II-F). Consequently,

it is desirable to design the network such that it produces

class score maps with a higher spatial resolution. To this end,

we forgo the final max-pooling step in the VGG16 architecture

and replace all the fully-connected layers with two 1×1 con-

volution layers. Following the terminology introduced by

Oquab et al. [25], we will refer to those 1×1 convolutions as

adaptation layers. The output of those layers are K class score

maps Fk , where K is the number of modelled classes (here

K = 14, i.e. 13 standard views plus background). We then

aggregate them using the mean function to obtain a prediction

vector which is fed into the final softmax. In this architec-

ture the class score maps Fk have a size of 14×18 for an

224×288 input image. Note that each neuron in Fk corre-

sponds to a receptive field in the original image creating the

desired spatial correspondence with the input image. During

training, each of the neurons learns to respond to category-

specific features in its receptive field. Note that the resolution

of the class score maps is not sufficient for accurate localisa-

tion. In Sec. II-F we will show how Fk can be upsampled to

the original image resolution using a backpropagation step to

create category-specific saliency maps.

The design of the last two layers of the SonoNet is similar

to work by Oquab et al. [25]. However, in contrast to that

work, we aggregate the final class score maps using the mean

function rather than the max function. Using the mean function

incorporates the entire image context for the classification

while using the max function only considers the receptive field

of the maximally activated neuron. While max pooling aggre-

gation may be beneficial for the localisation task [25], [26],

we found the classification accuracy to be substantially lower

using that strategy.

Since we are interested in operating the network in real-

time, we explore the effects of reducing the complexity

of the network on inference times and detection accuracy.

In particular, we investigate three versions of the SonoNet. The

SonoNet-64 uses the same architecture for the first 13 layers

as the VGG16 model, with 64 kernels in the first convolutional

layer. We also evaluate the SonoNet-32 and the SonoNet-16

architectures, where the number of all kernels in the network

is halved and quartered, respectively.

In contrast to the VGG16 architecture, we include batch

normalisation in every convolutional layer [16]. This allows

for much faster training because larger learning rates can be

used. Moreover, we found that for all examined networks using

batch normalisation produced substantially better results.

In addition to the three versions of the SonoNet, we also

compare to a simpler network architecture which is loosely

inspired by the AlexNet [18], but has much fewer parameters.

This is also the network which we used for our initial results

presented in [2]. Due to the relatively low complexity of this

network compared to the SonoNet, we refer to it as SmallNet.

D. Training

We trained all networks using mini-batch gradient descent

with a Nesterov momentum of 0.9, a categorical cross-entropy

loss and with an initial learning rate of 0.1. We subsequently

divided the learning rate by 10 every time the validation

error stopped decreasing. In some cases we found that a

learning rate of 0.1 was initially too aggressive to converge

immediately. Therefore, we used a warm-up learning rate of

0.01 for 500 iterations [14]. Since the SmallNet network did

not have any batch normalisation layers it had to be trained

with a lower initial learning rate of 0.001.

Note that there is a small domain gap between the annotated

image data and the video data we use for our real-time

detection and retrospective retrieval evaluations. Specifically,

the video frames are slightly lower resolution and have been

compressed. In order to overcome this, we automatically iden-

tified all frames from the training videos which corresponded

to the freeze-frame images in our training data. However,

as mentioned in Sec. II-A not all cases had a corresponding

video, such that the frame dataset consisted of fewer instances

than the image dataset. To make the most of our data while

ensuring that the domain gap is bridged, we combined all of

the images and the corresponding video frames for training.

We used 20% of this combined training dataset for validation.

In order to reduce overfitting and make the network more

robust to varying object sizes we used scale augmentation [30].

That is, we extracted square patches of the input images for

training by randomly sampling the size of the patch (between

174×174 and 224×224) and then scaling it up to

224×224 pixels. To further augment the dataset, we randomly

flipped the patches in the left-right direction, and rotated them

with a random angle between −25° and 25°.

The training procedure needed to account for the significant

class imbalance introduced by the randomly sampled back-

ground frames. Class imbalance can be addressed either by

introducing an asymmetric cost-function, by post-processing

the classifier output, or by sampling techniques [13], [36].

We opted for the latter approach which can be neatly integrated

with mini-batch gradient descent. We found that the strategy

which produced the best results was randomly sampling mini-

batches that were made up of the same number of standard
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Fig. 3. Examples of saliency maps. Column (a) shows three different
input frames, (b) shows the corresponding class score maps Fk obtained
in the forward pass of the network, (c) shows saliency maps obtained
using the method by Springenberg et al. [32] and (d) shows the saliency
maps resulting from our proposed method. Some of the unwanted
saliency artefacts are highlighted with arrows in (c).

planes and background images. Specifically, we used 2 images

of each of the 13 standard planes and 26 background images

per batch.

The optimisation typically converged after around 2 days of

training on a Nvidia GeForce GTX 1080 GPU.

E. Frame Annotation and Retrospective Retrieval

After training we fed the network with cropped video frames

with a size of 224×288. This resulted in K class score

maps Fk with a size of 14×18. Those where averaged in

the mean pooling layer to obtain a single class score ak for

each category k. The softmax layer then produced the class

confidence ck of each frame. The final prediction was given

by the output with the highest confidence.

For retrospective frame retrieval we calculated and recorded

the confidence ck for each class over the entire duration of an

input video. Subsequently, we retrieved the frame with the

highest confidence for each class.

F. Weakly Supervised Localisation

After determining the 14×18 class score maps Fk and the

image category in a forward pass through the network, the fetal

anatomical structures corresponding to that category can then

be localised in the image. A coarse localisation could already

be achieved by directly relating each of the neurons in Fk

to its receptive field in the original image. However, it is

also possible to obtain pixel-wise maps containing information

about the location of class-specific target structures at the

resolution of the original input images. This can be achieved

by calculating how much each pixel influences the activation

of the neurons in Fk . Such maps can be used to obtained much

more accurate localisation. Examples of Fk and corresponding

saliency maps are shown in Fig. 3.

In the following we will show how category-specific

saliency and confidence maps can be obtained through an addi-

tional backward pass through the network. Secondly, we show

how to post-process the saliency maps to obtain confidence

maps from which we then extract a bounding box around the

detected structure.

1) Category-Specific Saliency Maps: Generally, category-

specific saliency maps Sk can be obtained by computing how

much each pixel in the input image X influences the current

prediction. This is equivalent to calculating the gradient of the

last activation before the softmax ak with respect to the pixels

of the input image X .

Sk =
∂ak

∂ X
. (1)

The gradient can be obtained efficiently using a backward

pass through the network [29]. Springenberg et al. [32] pro-

posed a method for performing this back-propagation in a

guided manner by allowing only error signals which contribute

to an increase of the activations in the higher layers (i.e. layers

closer to the network output) to back-propagate. In particular,

the error is only back-propagated through each neuron’s ReLU

unit if the input to the neuron x , as well as the error in the

next higher layer δn are positive. That is, the back-propagated

error δn−1 of each neuron is given by

δn−1 = δnσ(x)σ (δn), (2)

where σ(·) is the unit step function. Examples of saliency

maps obtained using this method are shown in Fig. 3b. It can

be observed that those saliency maps, while highlighting the

fetal anatomy, also tend to highlight background features,

which adversely affects automated localisation.

In this work, we propose a method to generate significantly

less noisy, localised saliency maps by taking advantage of

the spatial encoding in the class score maps Fk . As can be

seen in Fig. 3a, the class score maps can be interpreted as

a coarse confidence map of the object’s location in the input

frame. In particular, each neuron hn
k (X) in Fk has a receptive

field in the original image X . In our preliminary work [2],

we backpropagated the error only from a fixed percentile P

of the most highly activated neurons in Fk to achieve a

localisation effect. However, this required heuristic selection

of P . In this paper, we propose a more principled approach.

Note that very high or very low values in the saliency map

mean that a change in that pixel will have a large effect on the

classification score. However, those values do not necessarily

correspond to high activations in the class score map. For

example, an infinitesimal change in the input image may not

have a very large impact if the corresponding output neuron is

already very highly activated. Conversely, another infinitesimal

change in the input image may have a big impact on a neuron

with low activation, for example by making the image look

less like a competing category. To counteract this, we preselect

the areas of the images which are likely to contain the object

based on the class score maps and give them more influence

in the saliency map computation. More specifically, we use

the activations hn
k (X) in Fk to calculate the saliency maps

as a weighted linear combination of the influence of each

of the receptive fields of the neurons in Fk . In this manner,

regions corresponding to highly activated neurons will have

more importance than neurons with low activations in the
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Fig. 4. Examples of saliency map post-processing for two challenging
views: (a) shows two input images, (b) shows the resulting confidence
maps for those images, and (c) shows the resulting bounding boxes.

resulting saliency map. In the following, we drop the subscripts

for the category k for conciseness. We calculate the saliency

map S as

S =

∑

n

hn
>0(X)

∂hn(X)

∂ X
, (3)

where hn
>0 are the class score map activations thresholded

at zero, i.e. hn
>0 = hnσ(hn). By thresholding at zero we

essentially prevent negative activations from contributing to

the saliency maps. Note that it is not necessary to back-

propagate for each neuron hn separately. In fact, the saliency

can still be calculated in a single back-propagation step, which

can be seen by rewriting Eq. 3 as

S =

∑

n

1

2

∂(hn
>0(X))2

∂ X
=

1

2

∂e
T F>0 ◦ F>0e

∂ X
, (4)

where F>0 is the class score map thresholded at zero, ◦ is

the element-wise matrix multiplication and e is a vector with

all ones. The first equality stems from the chain-rule and the

observation that hn
>0hn

= hn
>0hn

>0, and the second equality

stems from rewriting the sum in matrix form.

Examples of saliency maps obtained using this method are

shown in Fig. 3c. It can be seen that the resulting saliency

maps are significantly less noisy and the fetal structures are

easier to localise compared to the images obtained using the

approach presented in [32].

2) Bounding Box Extraction: Next, we post-process saliency

maps obtained using Eq. 4 to obtain confidence maps from

which we then calculate bounding boxes. In a first step,

we take the absolute value of the saliency map S and blur

it using a 5×5 Gaussian kernel. This produces confidence

maps of the location of the structure in the image such as the

ones shown in Fig. 4b. Note that even though both structures

are challenging to detect on those views, the confidence maps

localise them very well, despite artefacts (shadows in row 1)

and similar looking structures (arm in row 2).

Due to the way the gradient is calculated structures that

appear dark in the images (such as cardiac vessels) will

usually have negative saliencies and structures that appear

bright (bones) will usually have positive saliencies in Sk .

We exploit this fact to introduce some domain knowledge

into the localisation procedure. In particular, we only consider

TABLE III

CLASSIFICATION SCORES FOR THE FOUR EXAMINED

NETWORK ARCHITECTURES

TABLE IV

FRAME RATES IN FPS FOR THE DETECTION (FORWARD PASS),

LOCALISATION (BACKWARD PASS) AND THE TWO COMBINED

positive saliencies for the femur, spine and lips, and we only

consider negative saliencies for all cardiac views. We use both

positive and negative for the remainder of the classes.

Next, we threshold the confidence maps using the Isodata

thresholding method proposed in [11]. In the last step, we take

the largest connected component of the resulting mask and

fit the minimum rectangular bounding box around it. Two

examples are shown in Fig. 4c.

III. EXPERIMENTS AND RESULTS

A. Real-Time Scan Plane Detection

In order to quantitatively assess the detection performance

of the different architectures we evaluated the proposed

networks on the video frame data corresponding to the freeze-

frames from the test cohort including the large amount of

randomly sampled background frames. We measured the algo-

rithm’s performance using the precision (TP / (TP + FP)) and

recall (TP / (TP + FN)) rates as well as the F1-score, which

is defined as the harmonic mean of the precision and recall.

In Table III we report the average scores for all examined

networks. Importantly, the average was not weighted by the

number of samples in each category. Otherwise, the average

scores would be dominated by the massive background class.

In Table IV we furthermore report the frame rates achieved

on a Nvidia Geforce GTX 1080 GPU1 for the detection task

alone, the localisation task alone and both of them combined.

There is no consensus in literature over the minimum frame

rate required to qualify as real-time, however, a commonly

used figure is 25 frames per second (fps), which coincides

with the frame rate our videos were recorded at.

From Tables III and IV it can be seen that SonoNet-64

and SonoNet-32 performed very similarly on the detection

task with SonoNet-64 obtaining slightly better F1-scores, but

failing to perform the localisation task at more than 25 fps.

The SonoNet-32 obtained classification scores very close to

the SonoNet-64 but at a substantially lower computational

cost, achieving real-time in both the detection and localisation

tasks. Further reducing the complexity of the network led to

1The system was furthermore comprised of an Intel Xeon CPU E5-1630 v3
at 3.70GHz and 2133 MHz DDR4 RAM.
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Fig. 5. Class confusion matrix for SonoNet-32.

TABLE V

DETAILED CLASSIFICATION SCORES FOR SonoNet-32

more significant deteriorations in detection accuracy as can be

seen from the SonoNet-16 and the SmallNet network. Thus,

we conclude that the SonoNet-32 performs the best out of the

examined architectures which achieve real-time performance

and we use that architecture for all further experiments and

results.

In Table V we show the detailed classification scores for

the SonoNet-32 for all the modelled categories. The right-

most column lists the number of test images in each of the

classes. Additionally, the class confusion matrix obtained with

SonoNet-32 is shown in Fig. 5. The results reported for this

classification experiment give an indication of how the method

performs in a realistic scenario. The overall ratio of standard

planes to background frames is approximately 1:24 meaning

that in a video on average 1 second of any of the standard

views is followed by 24 seconds of background views. This is

a realistic reflection of what we observe in clinical practice.

Some of the most important views for taking measurements

and assessing the fetus’ health (in particular the brain views,

the abdominal view and the femur view) were detected with

Fig. 6. Examples of video frames labelled as background but classified
as one of three standard views. The first three columns were randomly
sampled from the set of false positives and are in fact correct detections.
The last column shows manually selected true failure cases.

F1-scores of equal to or above 0.9, which are very high scores

considering the difference in number of images for the back-

ground and foreground classes. The lowest detection accura-

cies were obtained for the profile view, the right-ventricular

outflow tract (RVOT) and the three vessel view (3VV). The

two cardiac views – which are only separated from each other

by a slight change in the probe angle and are very similar

in appearance – were often confused with each other by the

proposed network. This can also be seen in the confusion

matrix in Fig. 5. We also noted that for some views the method

produced very high recall rates with relatively low precision.

The Spine (sag.) view and the profile view were particularly

affected by this. We found that for a very large fraction of those

false positive images, the prediction was in fact correct, but the

images had an erroneous background ground-truth label. This

can be explained by the fact that the spine and profile views

appear very frequently in the videos without being labelled

and thus many such views were inadvertently sampled in the

background class generation process. Examples of cases with

correct predictions but erroneous ground-truth labels for the

profile and spine (sag.) classes are shown in the first three

columns of Fig. 6. We observed the same effect for classes

which obtained higher precision scores as well. For instance,

we verified that the majority of background frames classified

as Brain (Cb.) are actually true detections. Examples are also

shown in Fig. 6. All of the images shown in the first three

columns of Fig. 6 are similar in quality to our ground-truth

data and could be used for diagnosis. Unfortunately, it is

infeasible to manually verify all background images. We there-

fore conclude that the precision scores (and consequently

F1-scores) reported in Tables III and V can be considered

a lower bound of the true performance.

For a qualitative evaluation, we also annotated a number

of videos from our test cohort using the SonoNet-32. Two

example videos demonstrating the SonoNet-32 in a real

clinical exam are available at https://www.youtube.com/

watch?v=4V8V0jF0zFc and https://www.youtube.com/

watch?v=yPCvAdOYncQ.
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Fig. 7. Results of retrospective retrieval for two example subjects. The respective top rows show the ground truth (GT) saved by the sonographer.
The bottom rows show the retrieved (RET) frames. For subject (a) all frames have been correctly retrieved. For subject (b) the frames marked with
red have been incorrectly retrieved.

B. Retrospective Scan Plane Retrieval
We also evaluated the SonoNet-32 for retrospective retrieval

of standard views on 110 random videos from the test cohort.

The average duration of the recordings was 13 min 33 sec

containing on average 20321 frames. The retrieved frames

were manually validated by two clinical experts in obstetrics

with 11 years and 3 years of experience, respectively. The

time-consuming manual validation required for this experi-

ment precluded using a larger number of videos. Table VI sum-

marises the retrieval accuracy (TP / (P + N)) for 13 standard

planes. We achieved an average retrieval accuracy of 90.09%.

As above, the most challenging views proved to be the

cardiac views for which the retrieval accuracy was 82.12%.

The average accuracy for all non-cardiac views was 95.52%.

In contrast to the above experiment, the results in this section

were obtained directly from full videos, and thus reflect the

true performance of the method in a real scenario.

The retrieved frames for two cases from the test cohort are

shown in Fig. 7 along with the ground truth (GT) frames saved

by the sonographers. In the case shown in Fig. 7a, all views
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Fig. 8. Examples of weakly supervised localisation using the SonoNet-32. The first three columns for each view show correct bounding boxes
marked in green (IOU ≥ 0.5), the respective last columns shows an example of an incorrect localisation marked in red (IOU < 0.5). The ground
truth bounding boxes are shown in white.

TABLE VI

RETRIEVAL ACCURACY FOR SonoNet-32

have been correctly retrieved. It can be seen that most of

the retrieved frames either matched the GT exactly or were

of equivalent quality. We observed this behaviour through-

out the test cohort. However, a number of wrong retrievals

occasionally occurred. In agreement with the quantitative

results in Tab. VI, we noted that cardiac views were affected

the most. Fig. 7b shows a case for which two cardiac views

have been incorrectly retrieved (marked in red).

C. Weakly Supervised Localisation

We quantitatively evaluated the weakly supervised local-

isation using SonoNet-32 on 50 images from each of the

13 modelled standard scan planes. The 650 images were

manually annotated with bounding boxes which were used as

ground truth. We employed the commonly used intersection

over union (IOU) metric to measure the similarity of the

automatically estimated bounding box to the ground truth [12].

Table VII summarises the results. As in [12], we counted a

bounding box as correct if its IOU with the ground truth was

equal to or greater than 0.5. Using this metric we found that on

average 77.8% of the automatically retrieved bounding boxes

were correct. Cardiac views were the hardest to localise with

an average accuracy of 62.0%. The remaining views obtained

an average localisation accuracy of 84.9%.

In Fig. 8 we show examples of retrieved bounding boxes

for each of the classes. From these examples, it can be

seen that our proposed method was able to localise standard

planes which are subject to great variability in scale and

appearance. Qualitatively very good results were achieved for

small structures such as the lips or the femur. The reason why

this was not reflected in the quantitative results in Table VII

was that the IOU metric more is more sensitive to small

deviations in small boxes than in large ones.

We noted that the method was relatively robust to artefacts

and performed well in cases where it may be hard for non-

experts to localise the fetal anatomy. For instance, the lips
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TABLE VII

LOCALISATION EVALUATION: IOU AND ACCURACY FOR

ALL MODELLED STANDARD VIEWS

view in the third column of Fig. 8 and the RVOT view in

the second column were both correctly localised.

The last column for each structure in Fig. 8 shows cases

with incorrect (I OU < 0.5) localisation. It can be seen that

the method almost never failed entirely to localise the view.

Rather, the biggest source of error was inaccurate bounding

boxes. In many cases the saliency maps were dominated by the

most important feature for detecting this view, which caused

the method to focus only on that feature at the expense of

the remainder of the view. An example is the stomach in the

abdominal view shown in the fourth column of Fig. 8. Another

example is the brain (tv.) view, for which the lower parts –

where the ventricle is typically visualised – was much more

important for the detection. In other cases, regions outside of

the object also appeared in the saliency map, which caused

the bounding box to overestimate the extent of the fetal target

structures. An example is the femur view, where the other

femur also appeared in the image and caused the bounding

box to cover both.

An example video demonstrating the real-time localisa-

tion for a representative case can be viewed at https://

www.youtube.com/watch?v=yPCvAdOYncQ.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented the first real-time framework

for the detection and bounding box localisation of standard

views in freehand fetal ultrasound. Notably, the localisa-

tion task can be performed without the need for bounding

boxes during training. Our proposed SonoNet employs a very

deep convolutional neural network, based on the widely used

VGG16 architecture, but optimised for real-time performance

and accurate localisation from category-specific saliency maps.

We showed that the proposed network achieves excellent

results for real-time annotation of 2D ultrasound frames and

retrospective retrieval on a very challenging dataset.

Future work will focus on including the temporal dimension

in the training and prediction framework as was done for

sweep data in [8] and for fetal cardiac videos in [4]. We expect

that especially the detection of cardiac views may benefit from

motion information.

We also demonstrated the method’s ability for real-time,

robust localisation of the respective views in a frame.

Currently, the localisation is based purely on the confidence

maps shown in Fig. 4. Although, this already leads to very

accurate localisation, we speculate that better results may

be obtained by additionally taking into account the pixel

intensities of the original images. Potentially, the proposed

localisation method could also be combined using a multi-

instance learning framework in order to incorporate the image

data into the bounding box prediction [27].

We also note that the confidence maps could potentially be

used in other ways, for instance, as a data term for a graphical

model for semantic segmentation [3].

The pretrained weights for all of the network architectures

compared in this paper are available at https://github.com/

baumgach/SonoNet-weights.
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