
SOOT: A JAVA BYTECODE OPTIMIZATION FRAMEWORK

by
Raja Valĺee-Rai

School of Computer Science
McGill University, Montreal

October 2000

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright c 2000 by Raja Vall´ee-Rai

Abstract

Java provides many attractive features such as platform independence, execution safety,
garbage collection and object orientation. These features facilitate application development
but are expensive to support; applications written in Java are often much slower than their
counterparts written in C or C++. To use these features without having to pay a great
performance penalty, sophisticated optimizations and runtime systems are required.

We present SOOT, a framework for optimizing Java bytecode. The framework is imple-
mented in Java and supports three intermediate representations for representing Java byte-
code: BAF, a streamlined representation of bytecode which is simple to manipulate; JIM -
PLE, a typed 3-address intermediate representation suitable for optimization; and GRIMP

an aggregated version of JIMPLE suitable for decompilation. SOOT also contains a set of
transformations between these intermediate representations, and an application program-
ming interface (API) is provided to write optimizations and analyses on Java bytecode in
these forms.

In order to demonstrate the usefulness of the framework, we have implemented in-
traprocedural and whole program optimizations. To show that whole program bytecode
optimization can give performance improvements, we provide experimental results for 10
large benchmarks, including 8 SPECjvm98 benchmarks running on JDK 1.2. These results
show a speedup of up to 38%.

ii

Résum é

Java poss`ede beaucoup de propri´etés attrayantes telles que l’ind´ependance de plateforme,
la sûreté d’exécution, le ramasse-miettes et l’orientation d’objets. Ces dispositifs facilitent
le développement d’applications mais sont chers `a supporter; les applications ´ecrites en
Java sont souvent beaucoup plus lentes que leurs contre-parties ´ecrites en C ou C++. Pour
utiliser ces dispositifs sans devoir payer une grande p´enalité d’exécution, des optimisations
sophistiquées et des syst`emes d’ex´ecution sont exig´es.

Nous présentons SOOT, un cadre pour optimiser le bytecode de Java. Le cadre est
programmé en Java et supporte trois repr´esentations interm´ediaires pour le bytecode de
Java: BAF, une repr´esentation simplifi´ee du bytecode qui est simple `a manipuler; JIMPLE,
une représentation interm´ediaireà 3 addresses appropri´eeà l’optimisation; et GRIMP, une
version agr´egée de JIMPLE appropriée à la décompilation. SOOT contientégalement un
ensemble de transformations entre ces repr´esentations interm´ediaires, et une interface de
programmation d’application (api) est fournie pour ´ecrire des optimisations et des analyses
sur le bytecode de Java sous ces formes.

Afin de démontrer l’utilité du cadre, nous avons impl´ementé des optimisations intrapro-
cedurales et globales de programme. Pour prouver que l’optimisation globale de bytecode
de programme peut donner des am´eliorations d’exécution, nous fournissons des r´esultats
expérimentaux pour 10 applications, y compris 8 programmes de SPECjvm98 ex´ecutant
sur JDK 1.2. Les r´esultats produisent une am´elioration allant jusqu’`a 38%.

iii

Acknowledgments

The SOOT framework was really a monumental team effort.

I would like to thank my advisor, Laurie Hendren, who played a huge role in leading
the project and keeping the mood of the development team optimistic even when the going
got tough. I can not thank her enough for her support and constant encouragement.

The co-developers of SOOT were key in making SOOT a reality. Large scale projects
need many developers; thanks to all those people who contributed to SOOT. In particular,
I would like to thank (1) Patrick Lam for his superb help with the maintainence and devel-
opment of the later phases of the framework, (2) Etienne Gagnon for his excellent work on
developing a robust typing algorithm for JIMPLE, and (3) Patrice Pominville for his great
BAF bytecode optimizer.

What is a framework without users? I would like to thank all the SOOT users for the
feedback that they gave. In particular, I would like to give a special thanks to the two
super users, Vijay Sundaresan and Chrislain Razafimahefa, who gave me a great amount
of support in the early days of SOOT and who tolerated the constant changes that I made to
the API.

Special thanks goes to my good friends Paul Catanu and Karima Kanji-Tajdin who
encouraged me and helped me out both in Victoria and in Montreal. I would also like
to thank Derek Rayside for his encouragement and advice as I re-established myself in
Montréal in Spring of 2000.

And last, but not least, I would like to thank my family members. They have been
extremely supportive despite the troubled times that we have gone through recently. Thanks
Mom, Dad, Anne-Sita and Manuel!

This work was supported by the Fonds pour la Formation de Chercheurs et l’Aide `a la
Recherche as well as IBM’s Centre for Advanced Studies.

iv

Contents

Abstract ii

Résuḿe iii

Acknowledgments iv

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions of Thesis . 3

1.2.1 Design . 3

1.2.2 Implementation . 4

1.2.3 Experimental Validation . 4

1.3 Related Work . 5

1.4 Thesis Organization . 6

2 Intermediate Representations 7

2.1 Java Bytecode as an Intermediate Representation 8

2.1.1 Benefits of stack-based representations 8

2.1.2 Problems of optimizing stack-based code 9

2.2 BAF . 12

2.2.1 Motivation . 12

v

2.2.2 Description . 12

2.2.3 Design feature: Quantity and quality of bytecodes 14

2.2.4 Design feature: No JSR-equivalent instruction 14

2.2.5 Design feature: No constant pool 14

2.2.6 Design feature: Explicit local variables 15

2.2.7 Design feature: Typed instructions 16

2.2.8 Design feature: Stack of values 17

2.2.9 Design feature: Explicit exception ranges 17

2.2.10 Walkthrough of example. 19

2.3 JIMPLE . 19

2.3.1 Motivation . 19

2.3.2 Description . 22

2.3.3 Design feature: Stackless 3-address code 23

2.3.4 Design feature: Compact. 26

2.3.5 Design feature: Typed and named local variables 26

2.3.6 Walkthrough of example. 27

2.4 GRIMP . 29

2.4.1 Motivation . 29

2.4.2 Description . 29

2.4.3 Design feature: Expression trees 29

2.4.4 Design feature: Newinvoke expression. 32

2.4.5 Walkthrough of example. 33

2.4.6 Summary . 33

3 Transformations 35

3.1 Bytecode�! Analyzable JIMPLE . 35

3.1.1 Direct translation to BAF with stack interpretation 35

3.1.2 Direct translation to JIMPLE with stack height 39

vi

3.1.3 Split locals . 39

3.1.4 Type locals . 44

3.1.5 Clean up JIMPLE . 46

3.2 Analyzable JIMPLE �! Bytecode (via GRIMP) 46

3.2.1 Aggregate expressions . 48

3.2.2 Traverse GRIMP code and generate bytecode. 55

3.3 Analyzable JIMPLE to Bytecode (via BAF) 56

3.3.1 Direct translation to BAF . 56

3.3.2 Eliminate redundant store/loads 58

3.3.3 Pack local variables . 58

3.3.4 Direct translation and calculate maximum height 60

3.4 Summary . 62

4 Experimental Results 63

4.1 Methodology 63

4.2 Benchmarks and Baseline Times . 64

4.3 Straight through SOOT . 65

4.4 Optimization via Inlining . 65

5 The API 69

5.1 Motivation . 69

5.2 Fundamentals 70

5.2.1 Value factories . 70

5.2.2 Chain . 70

5.3 API Overview . 71

5.3.1 Scene . 72

5.3.2 SootClass . 73

5.3.3 SootField . 75

vii

5.3.4 SootMethod . 75

5.3.5 Intermediate representations . 76

5.3.6 Body . 76

5.3.7 Local . 77

5.3.8 Trap . 77

5.3.9 Unit . 79

5.3.10 Type . 80

5.3.11 Modifier . 81

5.3.12 Value . 82

5.3.13 Constants .. 83

5.3.14 Box . 83

5.3.15 Patching Chains . 84

5.3.16 Packages and Toolkits . 85

5.3.17 Analyses and Transformations . 86

5.3.18 Graph representation of Body . 86

5.4 Usage examples . 87

5.4.1 Creating a hello world program 87

5.4.2 Implementing live variables analysis 90

5.4.3 Implementing constant propagation 93

5.4.4 Instrumenting a classfile . 95

5.4.5 Evaluating a Scene . 99

5.4.6 Summary . 100

6 Experiences 101

6.1 The Curse of Non-Determinism . 101

6.2 Sentinel Test Suite . 102

7 Conclusions and Future Work 103

viii

Chapter 1

Introduction

1.1 Motivation

Java provides many attractive features such as platform independence, execution safety,
garbage collection and object orientation. These features facilitate application development
but are expensive to support; applications written in Java are often much slower than their
counterparts written in C or C++. To use these features without having to pay a great per-
formance penalty, sophisticated optimizations and runtime systems are required. Using a
Just-In-Time compiler[1], or a Way-Ahead-Of-Time Java compiler[19] [18], to convert the
bytecodes to native instructions is the most often used method for improving performance.
There are other types of optimizations, however, which can have a substantial impact on
performance:

Optimizing the bytecode directly: Some bytecode instructions are much more expensive
than others. For example, loading a local variable onto the stack is inexpensive;
but virtual methods calls, interface calls, object allocations, and catching exceptions
are all expensive. Traditional C-like optimizations, such as copy propagation, have
little effect because they do not target the expensive bytecodes. To perform effective
optimizations at this level, one must consider more advanced optimizations such as
method inlining, and static virtual method call resolution, which directly reduce the
use of these expensive bytecodes.

Annotating the bytecode: Java’s execution safety feature guarantees that all potentially
illegal memory accesses are checked for safety before execution. In some situations it

1

can be determined at compile-time that particular checks are unnecessary. For exam-
ple, many array bound checks can be determined to be completely unnecessary[12].
Unfortunately, after having determined the safety of some array accesses, we can not
eliminate the bounds checks directly from the bytecode, because they are implicit in
the array access bytecodes and can not be separated out. But if we can communicate
the safety of these instructions to the Java Virtual Machine by some annotation mech-
anism, then the Java Virtual Machine could speed up the execution by not performing
these redundant checks.

source
Java

source
SML

source
Scheme

source
Eiffel

Optimized class files

JIT Adaptive Engine
Ahead-of-Time
 CompilerInterpreter

class files

MLJ

javac
KAWA

SmallEiffel

Soot

Figure 1.1: An overview of Soot and its usage.

The goal of this work is to provide a framework which simplifies the task of optimiz-
ing Java bytecode, and to demonstrate that significant optimization can be achieved. The

2

SOOT[22] framework provides a set of intermediate representations and a set of Java APIs
for optimizing Java bytecode directly. The SOOT framework is used as follows: (figure 1.1)

1. Bytecode is produced from a variety of sources, such as thejavac compiler.

2. This bytecode is fed into SOOT, and SOOT transforms and/or optimizes the code and
produces new classfiles.

3. This new bytecode can then be executed using any standard Java Virtual Machine
(JVM) implementation, or it can be used as the input to a bytecode!C or
bytecode!native-code compiler or other optimizers.

Based on the SOOT framework we have implemented both intraprocedural optimiza-
tions and whole program optimizations. The framework has also been designed so that we
will be able to add support for the annotation of Java bytecode. We have applied our tool
to a substantial number of large benchmarks, and the best combination of optimizations
implemented so far can yield a speed up reaching 38%.

1.2 Contributions of Thesis

The contributions of this thesis are the design, implementation and experimental validation
of the SOOT framework.

1.2.1 Design

The SOOT framework was designed to simplify the process of developing new optimiza-
tions for Java bytecode. The design can be split into two parts. The first part is the actual
design of the three intermediate representations for Java bytecode:

� BAF, a streamlined representation of bytecode which is simple to manipulate;

� JIMPLE, a typed 3-address intermediate representation suitable for optimization;

� GRIMP, an aggregated version of JIMPLE suitable for decompilation.

3

GRIMP was designed with Patrick Lam, and the development of JIMPLE was built upon
a prototype designed by Clark Verbrugge. Optimizing Java bytecode in SOOT consists of
transforming bytecode to the JIMPLE representation and then back. BAF and GRIMP are
used in the transformation process.

1.2.2 Implementation

SOOT was a team effort. However, I was the main designer and implementator. In partic-
ular, I implemented large portions of the framework and then coordinated the implementa-
tion of many aspects of the framework. In particular, I implemented the following:

� implementation of the base framework, consisting of the main classes such as
Scene , SootClass , SootMethod , SootField and all the miscellaneous
classes,

� the bytecode to verbose JIMPLE transformation (used Clark Verbrugge’s code as a
prototype),

� compacting the verbose JIMPLE code by copy and constant propagation,

� implementation of the flow analysis framework and various flow analyses such as
live variable analysis, reaching defs and using defs,

� implementation of a simple register colorer, of local variable splitting and of local
variable packing,

� implementation of unreachable code elimination and dead assignment elimination.

1.2.3 Experimental Validation

A large amount of effort has been placed in validating our framework on a large set of
benchmarks on a variety of virtual machines. In particular, we tested our framework on
five different virtual machines (three under Linux and two under NT), and report results on
ten large programs, seven of which originate from the standard specSuite set.

4

1.3 Related Work

Related work falls into five different categories:

Bytecode optimizers: The only other Java tool that we are aware of which performs sig-
nificant optimizations on bytecode and produces new class files is Jax[26]. The main
goal of Jax is application compression where, for example, unused methods and fields
are removed, and the class hierarchy is compressed. They also are interested in speed
optimizations, but at this time their current published speed up results are more lim-
ited than those presented in this paper. It would be interesting, in the future, to
compare the results of the two systems on the same set of benchmarks.

Bytecode manipulation tools: there are a number of Java tools which provide frameworks
for manipulating bytecode: JTrek[14], Joie[3], Bit[15] and JavaClass[13]. These
tools are constrained to manipulating Java bytecode in their original form, however.
They do not provide convenient intermediate representations such as BAF, JIMPLE

or GRIMP for performing analyses or transformations.

Java application packagers: There are a number of tools to package Java applications,
such as Jax[26], DashO-Pro[5] and SourceGuard[23]. Application packaging con-
sists of code compression and/or code obfuscation. Although we have not yet applied
SOOT to this application area, we have plans to implement this functionality as well.

Java native compilers: The tools in this category take Java applications and compile them
to native executables. These are related because they all are forced to build 3-address
code intermediate representations, and some perform significant optimizations. The
simplest of these is Toba[19] which produces unoptimized C code and relies on GCC
to produce the native code. Slightly more sophisticated, Harissa[18] also produces
C code but performs some method devirtualization and inlining first. The most so-
phisticated systems are Vortex[6] and Marmot[8]. Vortex is a native compiler for
Cecil, C++ and Java, and contains a complete set of optimizations. Marmot is also
a complete Java optimization compiler and is SSA based. Each of these systems in-
clude their customized intermediate representations for dealing with Java bytecode,
and produce native code directly. There are also numerous commercial Java native
compilers, such as the IBM High Performance for Java Compiler[20], Tower Tech-
nology’s TowerJ[27], and SuperCede[25], but they have very little published infor-
mation. The intention of our work is to provide a publically available infrastructure

5

for bytecode optimization. The optimized bytecode could be used as input to any of
these other tools.

Java compiler infrastructures: There are at least two other compiler infrastructures for
Java bytecode. Flex is a Java compiler infrastructure for embedded parallel and dis-
tributed systems. It uses a form of SSA intermediate representation for its bytecode
called QuadSSA. Optimizations and analyses can be written on this intermediate rep-
resentation, but new bytecodes can not be produced.[9]

The other well known compiler infrastructure is the Suif compiler system [24]. It
possesses a front-end which translates Java bytecode toOSUIF code which is an
object oriented version of Suif code which can express object orientation primitives.
Analyses and transformations can be written on this intermediate representation and
numerous back-ends enable the compilation of the code to native code. It is not
possible to produce new bytecode, however.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the three intermediate
representations contained in SOOT. Chapter 3 presents the transformations which are re-
quired to transform code between these intermediate representations. Chapter 4 presents
the experimental results which validate the framework. Chapter 5 presents the application
programming interface (API) which we developed to enable the use of the framework, and
chapter 6 presents some experiences that we had while developing the framework. Finally,
chapter 7 gives our conclusions and future work.

6

Chapter 2

Intermediate Representations

SOOT provides the three intermediate representations BAF, JIMPLE, and GRIMP. Each
representation is discussed in more detail below, and figures 2.7, 2.12 and 2.16 provide
an example program in each form. Figure 2.1 gives the example program in the original
Java form. As a starting point, the following section discusses some general aspects of
stack-based representations.

int a;
int b;
public int stepPoly(int x)
{

int[] array = new int[10];

if(x > 10)
{

array[0] = a;
System.out.println("foo");

}
else if(x > 5)

x = x + 10 * b;

x = array[0];

return x;
}

Figure 2.1:stepPoly in its original Java form.

7

2.1 Java Bytecode as an Intermediate Representa-
tion

In this section we discuss the benefits of stack-based code in general (subsection 2.1.1), and
then examine some disadvantages of analyzing and optimizing stack-based code directly
(subsection 2.1.2).

2.1.1 Benefits of stack-based representations

The stack machine model for the Java Virtual Machine was perhaps a reasonable choice
for a few reasons. Stack machine interpreters are relatively easy to implement and this
was originally important because the goal was to implement the Java Virtual Machine on
as many different platforms as possible. More relevantly, stack-based code tends to be
compact and this is essential to allow class files to be rapidly downloaded over the Internet.
A third justification for this model is that it simplifies the task of code generation. Since
the operand stack can be used to store intermediate results, simple traversals of the code’s
abstract syntax tree(AST) suffice to generate Java bytecode.

There are two good reasons for manipulating Java bytecode directly:

The stack code is immediately available:No transformations are required to get the
stack code in this form, as it is the native form found in Java classfiles. This is
important if execution speed is critical (such as for JIT compilers).

The resultant stack code is final: Since the code does not need to be transformed to be
stored in the classfiles, we have complete control over what gets stored. This is
important for obfuscation since many of the obfuscation techniques make heavy use
of the stack to confuse decompilers, and a 3-address code representation hides the
stack.

In specific cases, such as those mentioned above, a stack-based representation is useful.
However, in the general case where we optimize classfiles offline, these advantages pale in
comparison to the following disadvantages.

8

2.1.2 Problems of optimizing stack-based code

Even though there are advantages for choosing a stack-based intermediate representation,
there are potential disadvantages with respect to program analysis and optimization. To
analyze and transform Java bytecode directly, one is forced to add an extra layer of com-
plexity to deal with the complexities of the stack-based model. Given that it is of critical
importance to optimize Java this drawback is very important and must be eliminated to
allow the clearest and most efficient development of optimizations on Java.

Below, we enumerate some ways in which stack-based Java bytecode is complicated to
optimize.

Expressions are not explicit: In 3-address code, expressions are explicit. Usually they
only occur in assignment statements (such asx = a + b) and branch statements
(such as aif a<b goto L1). There is a fixed set of possible expressions, simpli-
fying analyses by restricting the number of cases to consider. For the purposes of this
section, we shall distinguish two classes of Java bytecode instructions: theexpres-
sion instructions, andaction instructions. Expression instructions are those which
only produce an effect on the operand stack. Examples of this class are:iload,

iadd, imul, pop . Action instructions, on the other hand, produce a side ef-
fect, such as modifying a field (putfield), calling a method (invokestatic)
or storing into a local variable (istore). These instructions have concrete effects,
whereas the expression instructions are merely used to build arguments on the stack.

Thus in order to determine the expression being acted upon by an action instruction,
you need to parse the expression instructions and reconstruct the expression tree,
whereas in JIMPLE these are readily available. And as the next points illustrate, this
reconstruction process is not a trivial problem.

Expressions can be arbitrarily large: In order to determine the expression being com-
puted by expression instructions, the analysis must examine the instructions preced-
ing the action instruction and build an expression tree. For a simple case such as:

iconst 5
iload 0
iadd
istore 1

it is easy to determine that the expression being stored in var1 is5 + var0 . In
some cases, such as:

9

iload 3
iconst 5
iload 6
iload 3
iadd
imul
idiv
istore 0

the expression tree is more complex. In this case it is(var3 + 5) * var6 /
var0 . Variable expression length is a complication, some analyses such as common
subexpression elimination require having simple 3-address code expressions avail-
able to be implemented efficiently. To use expression trees in such analyses, they
would need to first be simplified to use temporary locals, which the JIMPLE form
provides directly.

Concrete expressions can not always be constructed:Due to the nature of the operand
stack, the associated expression instructions for a given action instruction are not
necessarily immediately next to it. The following store still storesvar0 + 5 in
var1, despite the intermingled bytecode instructions which storevar2 * var3 in
var4.

iconst 5
iload 0
iadd
iload 2
iload 3
imull
istore 4
istore 1

If a complete sequence of expression instructions reside in a basic block, then it
is always possible to recover the computed expression. However, since the Java
Virtual Machine does not require a zero stack depth across control flow junctions, an
expression used in a basic block can be partially computed in a different basic block.
Consider the following example:

iload 0
iload 2
if_icmpeq label1
goto label2

label1:
ineg

label2:
istore 1

10

When computing the possible definitions for a variable in a 3-address code interme-
diate representation, the number of possible definitions can not exceed the number
of assignments to that variable. This example illustrates that this is not the case with
stack code, for a single assignment (istore 0) can yield two different definitions
(-var0 or var0). By allowing the control flow to produce such conditional expres-
sions obviously increases the complexity of analyses such as reaching definitions
and optimizations such as copy and constant propagation. Instead of considering
just assignments, they must consider the origins of expressions and their possible
multiplicity.

Simple transformations become complicated:The main reason why stack code compli-
cates analyses and transformations is its piecemeal form. The fact that the expression
is split into several pieces and is separated from the action instruction causes almost
all the complications, for as a result, you can interleave these instructions with other
instructions, and spread them over control flow boundaries. Transforming the code
in this form is difficult because all the separate pieces need to be kept track of and
maintained. To illustrate this point, this subsection considers the problems associated
with performing dead code elimination.

In 3-address code, eliminating a statement is often accomplished by simply deleting
it from a graph or list of statements. In Java bytecode, removing an action instruction
is similar, except that you must also remove all the associated expression instructions,
in order to avoid accumulating unused arguments on the stack. This sounds relatively
simple, but there is a catch: if the set of expression instructions cross a control flow
boundary, then this may not be possible, because other paths depend on the stack
depth to be a certain height. For example:

iload 0
iload 1

/ \
iadd imul
istore 5 istore 5
... use(5)

...

Despite the fact that on the left hand side the local variable 5 is dead, theiadd and
istore 5 cannot be simply deleted, because we must ensure the two arguments on
the stack are still consumed. The best we can do is replace the two instructions with
two pops.

For developing analyses and transformations, it should be clear that working with 3-
address code is much simpler and more efficient than dealing with stack code.

11

2.2 BAF

BAF is a bytecode representation which is stack-based, but without the complications that
are present in Java bytecode. Although the primary goal of the Soot framework is to avoid
having to deal with bytecode as stack code, it is still sometimes necessary to analyze or
optimize bytecode in this form. The following subsections give BAF’s motivation, a de-
scription of BAF, its design features, and then a walkthrough of some sample code.

2.2.1 Motivation

The main motivation for BAF is to simplify the development of analyses and transforma-
tions which absolutely must be performed on stack code. In our case, there are two such
occurances. First, in order to produce JIMPLE code, it is necessary to calculate the stack
height before every instruction. Second, before producing new bytecode, it is convenient
to perform some peephole optimizations and stack manipulations to eliminate redundant
load/stores. These analyses and transformations could be performed on Java bytecode di-
rectly, but it is much more convenient to implement them on BAF because of its design
features, which are described below.

2.2.2 Description

BAF is a stack-based intermediate representation of Java bytecode which consists of a set of
orthogonal instructions. See figure 2.2 for the list of BAF instructions. The words in italics
represent attributes for the instructions. For example,t means a type, so actual instances of
add.t can beadd.i , add.l , add.f , add.d depending on whether the type of theadd

instruction is an integer, long, float or double. For instructions such asload or store ,
there are two attributes, the local variable and the type of the instruction. Fordup2 , there
are two types as well, the two types to be duplicated on the stack. Most of these instructions
follow the Java Virtual Machine specification[16], except that the instruction names have
been made more consistent by requiring that the more specific portion of the variable name
be on the left. Hence the name interfaceinvoke as opposed to invokeinterface.

12

local := @this interfaceinvokemethod n add.t
local := @parametern specialinvokemethod and.t
local := @exception staticinvokemethod cmpg.t
dup1.t virtualinvokemethod cmp.t
dup1_x1.t_t fieldgetfield cmpl.t
dup1_x2.t_tt fieldputfield div.t
dup2.tt staticgetfield mul.t
dup2_x1.tt_t staticputfield neg.t
dup2_x2.tt_tt load.t local or.t
t2t store.t local rem.t
checkcastrefType inc.i local constant shl.t
instanceoftype newrefType shr.t
lookupswitch newarraytype ushr.t
fcasevalue1: goto label1 newmultiarraytype n xor.t
... arraylength ifne label
casevaluen: goto labeln ifcmpne.t label ifeq label
default: gotodefaultLabelg ifcmpeq.t label ifge label

tableswitch ifcmpge.t label ifle label
fcaselow: goto lowLabel ifcmple.t label ifgt label
... ifcmpgt.t label iflt label
casehigh: gotohighLabel ifcmplt.t label goto label
default: gotodefaultLabelg nop return.t

entermonitor breakpoint throw.r
exitmonitor pushconstant pop.t

Figure 2.2: The list of BAF statements.

13

2.2.3 Design feature: Quantity and quality of bytecodes

One of the headaches in dealing with Java bytecodes directly is the massive number of
different instructions present. Upon inspection of the Java Virtual Machine specification,
we can see that there are over 201 different bytecodes. BAF, on the other hand, contains
only about 60 bytecode instructions. This compaction has been achieved in two ways:
(1) by introducing type attributes such as the.i and .l in add.i , add.l , and (2) by
eliminating multiple forms of the same instruction such asiload_0 , iload_1 . This
can be achieved because BAF is not concerned with the compactness of the encoding, as
were the designers of the Java Virtual Machine specification, but with the compactness of
the representation. Thus we can compact twenty different variants of theload instruction
into oneload which has two type attributes: a type and a local variable name.

2.2.4 Design feature: No JSR-equivalent instruction

The jump subroutine bytecode (JSR) instruction present in Java bytecode is often very
complicated to deal with, because it is essentially an interprocedural feature inserted into
a traditionally intraprocedural context. Analyses and transformations on BAF can be sim-
plified considerably by requiring that the BAF instruction set not have aJSR-equivalent
instruction. One might think that this means that BAF can not represent a large variety of
Java programs which containJSRs. But in fact, mostJSR bytecode instructions can be
eliminated through the use of subroutine duplication. The idea is to transform eachjsr x

into agoto y wherey is a duplicate copy of the subroutinex with the finalret having
been transformed into agoto to the instruction following thejsr x . See figure 2.3 for
an example of code duplication in action.

The code growth in worst case is exponential (with respect to the number of nested
JSRs), but in practice the technique produces very little code growth becauseJSRs are not
used that much, and the subroutines represent a small fraction of the total amount of code.

2.2.5 Design feature: No constant pool

One of the many encoding issues in Java bytecode is the constant pool. Bytecode instruc-
tions must refer to indices in this pool to access fields, methods, classes, and constants, and
this constant pool must be tediously maintained. BAF abstracts away the constant pool, and
thus it is easier to manipulate BAF code. In textual BAF (when it is written out to a text

14

...
istore_2
jsr label1

...
istore_3
jsr label1

label1:
invokestatic f
ret

...
istore_2
goto label1

label_ret_1:

...
istore_3
goto label1

label_ret_2:

label1:
invokestatic f
goto label_ret1

label2:
invokestatic f
goto label_ret2

Figure 2.3: Example of code duplication to eliminateJSRs.

file) the method signature or field is written out explicitly. For example:

bytecode:invokevirtual #10
Baf: virtualinvoke <java.io.PrintStream:

void println(java.lang.String)>;

Or, another example:

bytecode: ldc #1
Baf: push "foo";

Internally, these references are represented directly in the code. For example, the BAF

instructionPushInst has a field modifiable by get/setString().

2.2.6 Design feature: Explicit local variables

BAF also has another comestic advantage over Java bytecode as it has explicit names for
its local variables. This allows for more descriptive names when the BAF code is pro-
duced from JIMPLE code in which the local variables might already have names. There
are two local variables types in BAF, word anddword . These correspond to 32-bit and
64-bit quantities respectively. We split the local variables into these two categories to sim-
plify code generation, and local variable packing, a technique that we use to minimize the
number of variables used. Note that because the local variables have names and not slot
numbers then some sort of equivalence must be established between the local variables
which contain the initial values such asthis , or the first parameter, etc.

15

2.2.7 Design feature: Typed instructions

A large proportion of the bytecodes are typed, in the sense that their effect on the stack is
built into the name of the instruction. For example,iload loads an integer on the stack
andiadd adds two integers from the stack. There are, however, a few instructions such as
dup, dup2, swap which are not typed, and this causes some complications. Consider
the following code:

...
istore_3
dup2

What does the dup2 instruction do? It duplicates the top two 32-bit elements of the
stack. Although this operation is easy to implement for a Java virtual machine whose stack
representation is a series of 32-bit elements, if you are performing typed analyses on this
bytecode you may run into some confusion as to what exactly is occuring with the dup2
instructions. In particular, if you are attempting to convert this code to typed 3-address
code, there are two possible conversions, based on the types present on the stack. If the
types present on the stack before thedup2 is a 64-bit quantity then it should be converted
to a single copy such as:

long $s1, $s0;

...
$s1 = $s0

But if the types present before thedup2 areint s say, then you get a conversion such
as:

int $s3, $s2, $s1, $s0;

...
$s3 = $s1;
$s2 = $s0;

So which one do you pick when you perform a conversion to 3-address code? Well that
depends on the contents of the stack. Unfortunately, the contents of the stack can not be de-
termined locally by the type of the dup2 because it is untyped. So in order to determine the
exact effect of an instruction such asdup2 on the stack, one must perform an abstract stack
simulation. This means that the cumulative effect of each bytecode preceeding thedup2
must be considered to determine the exact contents of the stack preceeding theiload .
This is easy to implement but non-trivial because this is a fixed point iteration problem that
spans basic blocks.

16

We avoid having to perform abstract stack simulations on BAF by imposing the follow-
ing constraint on BAF: each BAF instruction is fully typed; its effect on the stack is fully
specified by the type attribute, as iniload.i which means load an integer anddup.f
means duplicate a float.

This constraint simplifies analyses on BAF considerably. Note that in order to create
BAF instructions from Java bytecode some abstract stack interpretation must be performed.
But at least this is performed by the SOOT framework, and not by analysis writers who work
with the BAF code directly. More on this topic in chapter 3.

2.2.8 Design feature: Stack of values

The BAF stack is a stack of values, as opposed to a stack of words. Effectively, all elements
on the stack have size 1. See figure 2.4 for an illustration.

longh
longl
int

doubleh
doublel

long
int

double

bytecode stack BAF stack

Figure 2.4: The bytecode stack has size 5, and the BAF stack has size 3.

This means that adup instruction is interpreted to duplicate the top element of the
stack, no matter what the implementation size of that element is. Similarly,dup2 du-
plicates two elements. This allows BAF to be somewhat more expressive than bytecode
becausedup2.dl means duplicate the double and long which are on the stack, a total of
128-bit elements.

The goal of this design feature is also to simplify analyses.

2.2.9 Design feature: Explicit exception ranges

Exceptions in Baf are represented as explicit exceptions ranges using labels. This mirrors
the Java bytecode representation as opposed to the Java representation which uses struc-
tured try-catch pairs. See figure 2.5 for an illustration of this.

17

try {
System.out.

println("try-block");
}
catch(Exception e)
{

System.out.
println("exception");

}

word r0;

r0 := @this;

label0:
staticget java.lang.System.out;
push "try-block";
virtualinvoke println;

label1:
goto label3;

label2:
store.r r0;
staticget java.lang.System.out;
push "exception";
virtualinvoke println;

label3:
return;

catch java.lang.Exception from
label0 to label1 with label2;

original Java code BAF code

Figure 2.5: Example demonstrating explicit exception ranges.

18

2.2.10 Walkthrough of example

This subsection highlights the differences explicitly between figures 2.6 and 2.7. Figure
2.6 consists of dissassembled Java bytecode as produced byjavap , and 2.7 consists of
BAF code. Notice:

1. there are local variables in the BAF example which are namedthis , x , andarray
and given the typeword .

2. the instructions with the:= . These are the identity instructions which identify which
local variables are pre-loaded with meaning, such asthis or the contents ofpa-
rameters .

3. the pushing of constants in the javap code come in two different forms:bipush and
iconst_0 . But in BAF, there is a single instruction which does the job:push .

4. The code layout is also interesting because in the javap code all code is referred to
by index, but in BAF labels are used which make it much easier to read, and makes
the basic blocks in the code more evident.

5. the constant pool has been eliminated in BAF, and that all references to methods and
fields are directly inlined into the instructions such as in
fieldget <Main: int a>

6. the clearer names in BAF. For example, an array read isiaload in javap code but
in BAF is arrayread.i .

2.3 J IMPLE

This section describes JIMPLE. The motivation for JIMPLE is given, its description, a list
of its design features, and then finally a walkthrough of the example piece of code.

2.3.1 Motivation

Optimizing stack code directly is awkward for multiple reasons, even if the code is in a
streamlined form such as BAF. First, the stack implicitly participates in every computation;
there are effectively two types of variables, the implicit stack variables and explicit local
variables. Second, the expressions are not explicit, and must be located on the stack. These
disadvantages were discussed in detail in section 2.1.2.

19

Method int stepPoly(int)
0 bipush 10
2 newarray int
4 astore_2
5 iload_1
6 bipush 10
8 if_icmple 29

11 aload_2
12 iconst_0
13 aload_0
14 getfield #7 <Field int a>
17 iastore
18 getstatic #9 <Field java.io.PrintStream out>
21 ldc #1 <String "foo">
23 invokevirtual #10 <Method void println(java.lang.String)>
26 goto 44
29 iload_1
30 iconst_5
31 if_icmple 44
34 iload_1
35 bipush 10
37 aload_0
38 getfield #8 <Field int b>
41 imul
42 iadd
43 istore_1
44 aload_2
45 iconst_0
46 iaload
47 istore_1
48 iload_1
49 ireturn

Figure 2.6:stepPoly in disassembled form, as produced by javap.

20

word this, x, array;

this := @this: Test;
x := @parameter0: int;
push 10;
newarray.i;
store.r array;
load.i x;
push 10;
ifcmple.i label0;

load.r array;
push 0;
load.r this;
fieldget <Test: int a>;
arraywrite.i;
staticget <java.lang.System: java.io.PrintStream out>;
push "foo";
virtualinvoke <java.io.PrintStream: void println(java.lang.String)>;
goto label1;

label0:
load.i x;
push 5;
ifcmple.i label1;

load.i x;
push 10;
load.r this;
fieldget <Test: int b>;
mul.i;
add.i;
store.i x;

label1:
load.r array;
push 0;
arrayread.i;
return.i;

Figure 2.7:stepPoly in BAF form.

21

public void example()
{

int x;

if(a)
{

String s = "hello";
s.toString();

}
else
{

int sum = 5;
x = sum;

}
}

0 aload_0
1 getfield #6
4 ifeq 18
7 ldc #1
9 astore_2

10 aload_2
11 invokevirtual #7
14 pop
15 goto 22
18 iconst_5
19 istore_2
20 iload_2
21 istore_1
22 return

(a) Original Java code (b) bytecode

Figure 2.8: Example of type overloading.

A third difficulty is the untyped nature of the stack and of the local variables in the
bytecode. For example, in the bytecode in figure 2.8.

The local variable in slot 2 is used in one case as anjava.lang.String at instruc-
tions 9 and 10, but then another situation at instructions 19 and 20 as aint . This type
overloading can confuse analyses which expect explicitly typed variables.

2.3.2 Description

JIMPLE is a typed and compact 3-address code representation of bytecode. It is our ideal
form for performing optimizations and analyses, both traditional optimizations such as
copy propagation and more advanced optimizations such as virtual method resolution that
object-oriented languages such as Java require. See figures 2.9 and 2.10 for the complete
JIMPLE grammar. There are essentially 11 different types of JIMPLE statements:

� The assignStmtstatement is the most used JIMPLE instruction. It has four forms:
assigning arvalue to a local, or animmediate(a local or a constant) to a static field,
to an instance field or to an array reference. Note that arvalue is a field access, ar-
ray reference, an immediate or an expression. We can see that with this grammar
any significant computation must be broken down into multiple statements, withlo-
cals being used as temporary storage locations. For example, a field copy such as
this.x = this.y must be represented as two JIMPLE statements, a field read
and a field write (tmp = this.y andthis.x = tmp .)

22

� identityStmts are statements which define locals to be pre-loaded (upon method entry)
with special values such as parameters or thethis value. For example,l0 :=
@this: A defines locall0 to be thethis of the method. This identification is
necessary because the local variables are not numbered (normally thethis variable
is the variable in local variable slot 0 at the bytecode level.)

� gotoStmt, and ifStmt represent unconditional and conditional jumps, respectively.
Note the use of labels instead of bytecode offsets.

� invokeStmtrepresents an invoke without an assignment to a local. (The assignment
of a return value is handled by aassignStmtwith an invokeExpron the right hand
side of the assignment operator.)

� switchStmtcan either be alookupswitch or atableswitch . The lookupswitch
takes a set of integers values, whereastableswitch takes a range of integer values
for the lookup values, as thetableswitch andlookupswitch Java bytecodes
do. The target destinations are specified by labels.

� monitorStmtrepresents the enter/exitmonitor bytecodes. They take a local or constant
as the monitor lock.

� returnStmtcan either represent a return void, or a return of a value, specified by a
local or a constant.

� throwStmtrepresents the explicit throwing of an exception.

� breakpointStmtandnopStmtrepresent thebreakpoint and nop (no operation)
bytecode instructions respectively.

2.3.3 Design feature: Stackless 3-address code

Every statement in JIMPLE is in 3-address code form. 3-address code is a standard repre-
sentation where the instructions are kept as simple as possible, and where most of them are
of the formx = y op z [17].

Every statement in JIMPLE is stackless. Essentially, the stack has been eliminated and
replaced by additional local variables. Implicit references to stack positions have been
transformed into explicit references to local variables. Figure 2.11 illustrates this transfor-
mation of references. Note how the local variables representing stack positions are prefixed
with dollar signs. Note also that each instruction in the original BAF code corresponds to
a new instruction in the JIMPLE form. Further, this code can be compacted intox = y +
z . This will be discussed further in the section on transformations.

23

stmt�! assignStmtj identityStmtj
gotoStmtj ifStmtj invokeStmtj
switchStmtjmonitorStmtj
returnStmtj throwStmtj
breakpointStmtj nopStmt;

assignStmt�! local= rvalue; j
field = imm; j
local. field = imm; j
local[imm] = imm;

identityStmt�! local := @this: type;j
local := @parametern: type;j
local := @exception;

gotoStmt�! goto label;
ifStmt�! if conditionExprgoto label;
invokeStmt�! invoke invokeExpr;
switchStmt�! lookupswitch imm

fcase value1: goto label1;
...
case valuen: goto labeln;
default: goto defaultLabel;g; j
tableswitch imm
fcase low: goto lowLabel;
...
case high: goto highLabel;
default: goto defaultLabel;g

monitorStmt�! entermonitor imm; j
exitmonitor imm;

returnStmt�! return imm; j
return ;

throwStmt�! throw imm;
breakpointStmt�! breakpoint ;
nopStmt�! nop ;

Figure 2.9: The JIMPLE grammar (statements)

24

imm�! local j constant
conditionExpr�! imm1 condop imm2
condop�! > j < j = j 6= j � j �
rvalue�! concreteRefj immj expr
concreteRef�! field j

local. field j
local[imm]

invokeExpr�! specialinvoke local.m(imm1, ..., immn) j
interfaceinvoke local.m(imm1, ..., immn) j
virtualinvoke local.m(imm1, ..., immn) j
staticinvoke m(imm1, ..., immn)

expr�! imm1 binop imm2 j
(type) imm j
imm instanceof typej
invokeExprj
new refTypej
newarray (type) [imm] j
newmultiarray (type) [imm1] ... [immn] []* j
length immj
neg imm

binop�! + j - j > j < j = j 6= j � j � j � j = j
<< j >> j <<< j % j rem j & j j j
cmp j cmpg j cmpl

Figure 2.10: The JIMPLE grammar (support productions)

word x, y, z

load.i x
load.i y
add.i
store.i z

int $s0, $s1, x, y, z

$s0 = x
$s1 = y
$s0 = $s0 + $s1
z = $s0

(a) BAF (b) JIMPLE

Figure 2.11: Example of bytecode to JIMPLE code equivalence.

25

2.3.4 Design feature: Compact

Java bytecode has about 200 different bytecode instructions, BAF has about 60 and JIMPLE

has 19.

JIMPLE’s compactness makes it an ideal form for writing analyses and optimizations.
The simpler the intermediate representation, the simpler the task of writing optimizations
and analyses for it, because fewer test cases cases need to be developed for it. For example,
accesses from a field in JIMPLE are always of the formlocal = object.f , whereas
in Java, field accesses can occur practically anywhere such as in a method call or arbitrarily
nested array references.

2.3.5 Design feature: Typed and named local variables

The local variables in JIMPLE are named and fully typed. They are given a primitive, class
or interface type. They are typed for two reasons.

To improve analyses

JIMPLE was designed to facilitate the implementation of optimizations and analyses. Hav-
ing types for local variables allows subsequent analyses on JIMPLE to be more accurate.
For example, class hierarchy analysis, which usually uses just the method signature to de-
termine the possible method dispatches can also use the type of the variable which leads to
strictly better answers. For example:

Map m = new HashMap();
m.get("key");

becomes the following JIMPLE code:

java.util.HashMap $r1, r2;

$r1 = new java.util.HashMap;
specialinvoke $r1.<java.util.HashMap: void <init>()>();
r2 = $r1;
interfaceinvoke r2.<java.util.Map:

java.lang.Object get(java.lang.Object)>("key");

since we know thatr2 is a java.util.HashMap , we can in fact statically resolve the
interfaceinvoke to be a call to<HashMap: Object get(Object)> . If we
did not know this type, the interfaceinvoke could map to any method which implements the
Map interface.

26

As another example, having typed variables allows a coarse-grained side effect analysis
to be performed. For example, take the following code:

Chair x;
House y;

x = someChair;
y = someHouse;

Suppose one is trying to re-order the assignment statements. If the types ofx andy were
unknown, then they could possibly be aliased, and a re-ordering would not be possible. But
since in JIMPLE all variables are typed, and assuming thatx , andy are distinct classes and
one is not a subclass of another, they can be re-ordered.

To generate code

The second reason that it is necessary for JIMPLE to have typed local variables is because
its operators are untyped. Consider the problem of generating BAF code for a Jimple state-
ment such asx + y . The code generator must choose one of the followingadds: (add.i ,
add.f , add.d or add.l) since BAF instructions are fully typed. Having the local vari-
ables typed allows this choice to be made without requiring that the operators be typed as
well.

2.3.6 Walkthrough of example

This subsection describes the example found in 2.12. Note that:

1. all local variables are declared at the top of the method. They are fully typed; we
have reference types such asTest , int[] , java.io.PrintStream and prim-
itive types such asint . Variables which represent stack positions have their names
prefixed with $.

2. identity statements follow the local variable declarations. This marks the local vari-
ables which have values upon method entry.

3. the code resembles simple Java code (hence the term JIMPLE).

4. assignment statements predominate the code.

27

int a;
int b;

public int stepPoly(int)
{

Test this;
int x, $i0, $i1, x;
int[] array;
java.io.PrintStream $r0;

this := @this;
x := @parameter0;
array = newarray (int)[10];
if x <= 10 goto label0;

$i0 = this.a;
array[0] = $i0;
$r0 = java.lang.System.out;
$r0.println("foo");
goto label1;

label0:
if x <= 5 goto label1;

$i0 = this.b;
$i1 = 10 * $i0;
x = x + $i1;

label1:
x = array[0];
return x;

}

int a;
int b;

public int stepPoly(int x)
{

int[] array = new int[10];

if(x > 10)
{

array[0] = a;
System.out.println("foo");

}
else if(x > 5)

x = x + 10 * b;

x = array[0];

return x;
}

(a) JIMPLE (b) Original Java code

Figure 2.12:stepPoly in JIMPLE form. Dollar signs indicate local variables representing
stack positions.

28

2.4 GRIMP

This section describes GRIMP. The motivation for GRIMP is given followed by its descrip-
tion, its design features, and finally a walkthrough of an example piece of code.

2.4.1 Motivation

One of the common problems in dealing with intermediate representations is that they are
difficult to read because they do not resemble structured languages. In general, they contain
many goto’s and expressions are extremely fragmented. Another problem is that despite
its simple form, for some analyses, 3-address code is harder to deal with than complex
structures. For example, we found that generating good stack code was simpler when large
expressions were available.

2.4.2 Description

GRIMP is an unstructured representation of Java bytecode which allows trees to be con-
structed for expressions as opposed to the flat expressions present in JIMPLE. In general, it
is much easier to read than BAF or JIMPLE, and for code generation, especially when the
target is stack code, it is a much better source representation. It also has a representation for
thenew operator in Java which combines thenew bytecode instruction with theinvoke-
special bytecode instruction. Essentially, GRIMP looks like a partially decompiled Java
code. We are also using GRIMP as the foundation for a decompiler.

See figures 2.13 and 2.14 for the complete GRIMP grammar. Here are the main differ-
ences between the JIMPLE and the GRIMP grammar:

� references toimmediateshave been replaced withobjExpror expr, representing ob-
ject expressions or general expressions.

� invokeExprcan now express a fifth possibility:newinvoke . This combines the
new JIMPLE statement and the call to the constructor (via aspecialinvoke .)

These differences are discussed further in the following two design features.

2.4.3 Design feature: Expression trees

The main design feature of GRIMP is that references toimmediateshave been replaced with
references toexpressionswhich can be nested arbitrarily deeply. Figure 2.15 explicitly

29

stmt�! assignStmtj identityStmtj
gotoStmtj ifStmtj invokeStmtj
switchStmtjmonitorStmtj
returnStmtj throwStmtj
breakpointStmtj nopStmt;

assignStmt�! local= expr; j
field = expr; j
objExpr. field = expr; j
objExpr[expr] = expr;

identityStmt�! local := @this: type;j
local := @parametern: type;j
local := @exception;

gotoStmt�! goto label;
ifStmt�! if conditionExprgoto label;
invokeStmt�! invoke invokeExpr;
switchStmt�! lookupswitch expr

fcase value1: goto label1;
...
case valuen: goto labeln;
default: goto defaultLabel;g; j
tableswitch expr
fcase low: goto lowLabel;
...
case high: goto highLabel;
default: goto defaultLabel;g

monitorStmt�! entermonitor objExpr; j
exitmonitor objExpr;

returnStmt�! return objExpr; j
return ;

throwStmt�! throw objExpr;
breakpointStmt�! breakpoint ;
nopStmt�! nop ;

Figure 2.13: The GRIMP grammar (statements)

30

conditionExpr�! expr1 condop expr2
condop�! > j < j = j 6= j � j �
concreteRef�! field j

objExpr. field j
objExpr[expr]

invokeExpr�! specialinvoke local.m(expr1, ...,exprn) j
interfaceinvoke local.m(expr1, ...,exprn) j
virtualinvoke local.m(expr1, ...,exprn) j
staticinvoke m(expr1, ...,exprn)
newinvoke type(expr1, ...,exprn)

expr�! expr1 binop expr2 j
(type)exprj
expr instanceof typej
new refTypej
length expr j
neg exprj
objExprj
constant

objExpr�! concreteRefj
(type)objExprj
invokeExprj
newarray (type) [expr] j
newmultiarray (type) [expr1] ... [exprn] []* j
local j
nullConstantj stringConstant

binop�! + j - j > j < j = j 6= j � j � j � j = j
<< j >> j <<< j% j rem j & j j j
cmp j cmpg j cmpl

Figure 2.14: The GRIMP grammar (support productions)

31

illustrates this difference. Note that the original Java statement is one line long, but the
equivalent GRIMP code is not. This is because GRIMP code, like JIMPLE, only allows for
one side effect (memory modification) per statement. Java statements can, on the other
hand, modify multiple memory locations such as withx = y++ + z++ which modifies
three locals. We impose this restriction to simplify analyses on GRIMP. This has the
unfortunate consequence of not allowing the same compactness as the original Java code
to be achieved which affects code generation and code decompilation. This is discussed
further in chapter 3.

return this.a.x++ +
m*n*(x*100+10);

$r0=this.a;
$i0=$r0.x;
$i1=$i0+1;
$r0.x=$i1;
$i2=m*n;
$i1=this.x;
$i1=$i1*100;
$i1=$i1+10;
$i2=$i2*$i1;
$i3=$i0+$i2;
return $i3;

$r0=this.a;
$i0=$r0.x;
$r0.x=$i0+1;
return $i0+m*n*this.x*100+10;

(a) Java (b) Jimple (c) Grimp

Figure 2.15: Example of nesting of expressions in Grimp.

2.4.4 Design feature: Newinvoke expression

The second key feature of GRIMP is its ability to represent the Javanew construct as
one expression. For example, the Java codeObject obj = new A(new B()); is
represented in JIMPLE by:

A $r1, r3;
B $r2;

$r1 = new A;
$r2 = new B;
specialinvoke $r2.<B: void <init>()>();
specialinvoke $r1.<A: void <init>(B)>($r2);
r3 = $r1;

Normally, aggregation of expressions is performed by matching single use-defs such
as x = ...; and ... = x; Because thespecialinvoke s modify the receiver
object without redefining it we can not aggregatenew andspecialinvoke statements
in this way. This is a problem becausenew statements occur frequently and it is thus

32

highly desirable to be able to aggregate them. To achieve this, we introduce anewinvoke
expression to the GRIMP grammar to express pairs of the formx = new Object()
... specialinvoke x.<Object: void <init>()>(); .

2.4.5 Walkthrough of example

This subsection describes the example found in 2.16. Note that:

1. the GRIMP code is extremely similar to the original Java code. The main differences
are the unstructured nature of the code (no if-then-else), and the identity statements

2. the statements

$i0 = this.<Test: int b>;
$i1 = 10 * $i0;
x = x + $i1;

from the JIMPLE version in figure 2.12 have been aggregated to x = x + 10 * this.b
in the GRIMP form.

2.4.6 Summary

This chapter has presented the three intermediate representations that SOOT provides: BAF,
JIMPLE, and GRIMP. Their main design features were discussed, and their respective gram-
mars were given. Each intermediate representation was also illustrated with an example
program.

33

int a;
int b;

public int stepPoly(int)
{

Test this;
int x, x#2;
int[] array;

this := @this;
x := @parameter0;
array = newarray (int)[10];
if x <= 10 goto label0;

array[0] = this.a;
java.lang.System.

out.println("foo");
goto label1;

label0:
if x <= 5 goto label1;

x = x + 10 * this.b;

label1:
x = array[0];
return x;

}

int a;
int b;

public int stepPoly(int x)
{

int[] array = new int[10];

if(x > 10)
{

array[0] = a;
System.out.println("foo");

}
else if(x > 5)

x = x + 10 * b;

x = array[0];

return x;
}

(a) GRIMP (b) Original Java code

Figure 2.16:stepPoly in GRIMP form.

34

Chapter 3

Transformations

This chapter describes the transformations present in SOOT which enable it as an optimiza-
tion framework. SOOT operates as follows: (see figure 3.1) Classfiles are produced from
a variety sources, such as thejavac or ML compiler. These classfiles are then fed into
SOOT. A JIMPLE representation of the classfiles is generated (section 3.1) at which point
the optimizations that the developer has written using the SOOT framework are applied.
The resulting optimized JIMPLE code must then be converted back to bytecode, via one of
two alternatives. The first alternative is covered in section 3.2 and consists of generating
GRIMP code which is tree-like code and traversing it. The second alternative, covered in
section 3.3, consists of generating naive BAF code which is stack code and then optimizing
it. The newly generated classfiles consist of optimized bytecode which can then be fed into
one of many destinations such as a Java Virtual Machine for execution.

3.1 Bytecode �! Analyzable J IMPLE

This section describes the five steps necessary to convert bytecode to analyzable Jimple
code. This is a non-trivial process because the bytecode is untyped stackcode, whereas
JIMPLE code is typed 3-address code. The five steps are illustrated in figure 3.2.

Throughout this chapter we use a running example to show how these five steps trans-
form Java code. See figure 3.3 for the original Java code.

3.1.1 Direct translation to B AF with stack interpretation

The first step is to convert the bytecodes to the equivalent BAF instructions. Most of the
bytecodes correspond directly to equivalent BAF instructions. For example, as seen in fig-
ure 3.4,iconst_0 corresponds topush 0 , istore_2 corresponds tostore.i l2

35

source
Java

source
SML

source
Scheme

source
Eiffel

class files

MLJ

javac
KAWA

SmallEiffel

3.1 Jimplify

Jimple

Optimized Jimple

Optimize

3.2 Option I
 (via Grimp)

3.3 Option II
 (via Baf)

Optimized class files

Soot

JIT Adaptive Engine
Ahead-of-Time
 CompilerInterpreter

Figure 3.1: An overview of Soot and its usage.

36

verbose untyped
 Jimple

verbose untyped
split Jimple

analyzable
Jimple

split Jimple
verbose typed

.class

with stack interpretation
3.1.1 direct translation

Baf
3.1.2 direct translation
with stack height

3.1.3 split locals

3.1.5 cleanup

3.1.4 type locals

Figure 3.2: Bytecode to JIMPLE in five steps.

37

public class Test
{

A a;
boolean condition;

public int runningExample()
{

A a;
int sum = 0;

if(condition)
{

int z = 5;
a = new B();
sum += z++;

}
else
{

String s = "four";
a = new C(s);

}

return a.value + sum;
}

}

class A
{

int value;
}

class C extends A
{

public C(String s){}
}

class B extends A
{
}

Figure 3.3: The running example in its original Java form.

38

and so forth. Each untyped local variable slot in the bytecode gets converted to an explicit
(but still untyped) local variable in BAF code.

The only difficulty lies in transforming thedupxxx class of instructions and theswap
instruction. These bytecode instructions are untyped, but since BAF instructions are fully
typed, we must determine which kind of data is being duplicated or swapped by these
instructions before they can be transformed. This can be achieved by performing an abstract
stack interpretation, in which we compute the contents of the computation stack after every
instruction (abstract stack interpretation is discussed in detail in [16].) Figure 3.4(b) gives
the contents of the stack explicitly, and it is used to determine that bothdups should be
converted todup.r , because the top of the stack before eachdup contains aref .

3.1.2 Direct translation to J IMPLE with stack height

The next phase is to convert each BAF instruction to an equivalent JIMPLE instruction
sequence. This is done in three steps:

1. Compute the stack height after each BAF instruction, by performing a depth-first
traversal of the BAF instructions. Note that a simple traversal can compute the stack
height exactly because the Java Virtual Machine specification [16] guarantees that
every program point has a fixed stack height which can be be pre-computed.

2. Create a JIMPLE local variable for every BAF variable, and create a JIMPLE local
variable for every stack position (numbered 0 tomaximum stack height - 1.)

3. Create the equivalent JIMPLE instructions for every BAF instruction, mapping the
implicit effect that the BAF instruction has on the stack positions to explicit refer-
ences to the JIMPLE local variables which represent those stack positions (created in
step 2.) For example, the first occurence ofpush 0; becomes$stack0 = 0;
and bothdup1.r; instructions become$stack1 = $stack0; . Note that an
instruction such asdup2.r gets translated to multiple JIMPLE instructions, which
is necessary to duplicate two stack positions.

This method of transforming bytecode is relatively standard and is also covered in the
works of Proebstinget al [19] and Mulleret al [18]. See figure 3.5 to see how the complete
running example is transformed.

3.1.3 Split locals

To prepare for typing, the local variables must be split so that each local variable corre-
sponds to one use-def/def-use web, because the JIMPLE code generated by the previous sec-
tion may be untypable. In particular, in our running example (figure 3.5) we see that on one

39

0 iconst_0
1 istore_2
2 aload_0
3 getfield #10

<Field boolean condition>
6 ifeq 29

9 iconst_5
10 istore_3
11 new #3

<Class B>
14 dup
15 invokespecial #7

<Method B()>
18 astore_1
19 iload_2
20 iload_3
21 iinc 3 1
24 iadd
25 istore_2
26 goto 41

29 ldc #1
<String "four">

31 astore_3
32 new #4 <Class C>
35 dup
36 aload_3
37 invokespecial #9

<Method C(java.lang.String)>
40 astore_1

41 aload_1
42 getfield #11

<Field int value>
45 iload_2
46 iadd
47 ireturn

{int}
{}
{ref}
{int}

{}

{int}
{}
{ref}

{ref,ref}
{ref}

{}
{int}
{int,int}
{int,int}
{int}
{}
{}

{ref}

{}
{ref}
{ref,ref}
{ref,ref,ref}
{ref,ref}

{}

{ref}
{int}

{int,int}
{int}
{}

push 0;
store.i l2;
load.r l0;
fieldget

<Test: boolean cond..>;
ifeq label0;

push 5;
store.i l3;
new B;

dup1.r;
specialinvoke

<B: void <init>()>;
store.r l1;
load.i l2;
load.i l3;
inc.i l3 1;
add.i;
store.i l2;
goto label1;

label0:
push "four";

store.r l3;
new C;
dup1.r;
load.r l3;
specialinvoke

<C: void <init>(Str..)>;
store.r l1;

label1:
load.r l1;
fieldget

<A: int value>;
load.i l2;
add.i;
return.i;

(a) Java bytecode (b) stack (c) Baf code

Figure 3.4: Running example: Java bytecode to Baf code.

40

word l0, l1,
l2, l3;

l0 := @this: Type;
push 0;
store.i l2;
load.r l0;
fieldget

<Test: boolean condition>;
ifeq label0;

push 5;
store.i l3;
new B;
dup1.r;
specialinvoke

<B: void <init>()>;
store.r l1;
load.i l2;
load.i l3;
inc.i l3 1;
add.i;
store.i l2;
goto label1;

label0:
push "four";
store.r l3;
new C;
dup1.r;
load.r l3;
specialinvoke

<C: void <init>(String)>;
store.r l1;

label1:
load.r l1;
fieldget

<A: int value>;
load.i l2;
add.i;
return.i;

1
0
1
1

0

1
0
1
2
1

0
1
2
2
1
0
0

1
0
1
2
3
2

0

1
1

2
1
0

unknown l0, $stack0, l2,
l3, $stack1, l1, $stack2;

l0 := @this: Type;
$stack0 = 0;
l2 = $stack0;
$stack0 = l0;
$stack0 = $stack0.condition;

if $stack0 == 0 goto label0;

$stack0 = 5;
l3 = $stack0;
$stack0 = new B;
$stack1 = $stack0;
specialinvoke

$stack1.<init>();
l1 = $stack0;
$stack0 = l2;
$stack1 = l3;
l3 = l3 + 1;
$stack0 = $stack0 + $stack1;
l2 = $stack0;
goto label1;

label0:
$stack0 = "four";
l3 = $stack0;
$stack0 = new C;
$stack1 = $stack0;
$stack2 = l3;
specialinvoke

$stack1.<init>($stack2);
l1 = $stack0;

label1:
$stack0 = l1;
$stack0 = $stack0.value;

$stack1 = l2;
$stack0 = $stack0 + $stack1;
return $stack0;

(a) BAF code (b) stack (c) verbose untyped JIMPLE code
height

Figure 3.5: Running example: BAF code to verbose untyped JIMPLE code

41

branch of the if,l3 is used as anint (in $stack0 = 5; l3 = $stack0;), and on
the other branch,l3 is used as aString (in $stack0 = "four"; l3 = $stack0; .)

To split the local variables, we simply compute the webs [17] by traversing theuse-def
anddef-usechains, and associate one local variable with each produced web. A web is
essentially a subset of all the uses and definitions of a particular local variable which are
self-contained in the sense that this subset can be renamed without affecting the behavior
of the code. Figure 3.6 illustrates this with an example.

if(condition)
x = 1;

else
x = 2;

print(x);
x = 1;
print(x);

if(condition)
x1 = 1;

else
x1 = 2;

print(x1);
x2 = 1;
print(x2);

Before After renaming according to webs

Figure 3.6: Jimple code illustrating webs.

Figure 3.7 gives the running example after the splitting of the locals. Note how the code
now has 23 different local variables, whereas the original code had only 7. In particular,
l3 was split into three different webs, and stack position 0 was split 12 times. This is to
be expected because stack position 0 is the most used position for performing temporary
computations.

With the local variables split in this way, the resulting JIMPLE code tends to be easier to
analyze because it inherits some of the disambiguation benefits of SSA[4]. Local variables
will have fewer definitions, and most will in fact have a single definition.

Here is an example to illustrate how Jimple code is easier to analyze with the local
variables being split:

x = toCopy;
use(y);
z = x + y;
print("hello");
use(x);

with the variables split, there is a good chance thattoCopy is only defined once (this can
be deteremined easily with a linear sweep of the code.) If this is the case and sinceuse(x)
has only one reaching definition ofx , x=toCopy can be propagated intouse(x) without
any further checks. Normally, one must perform anavailable copies analysisor check the
interleaving statements for redefinitions oftoCopy . In SOOT this simplification speeds
up our analyses and transformations considerably.

42

public int runningExample()
{

unknown l0, $stack0, l2, l3, $stack1, l1, $stack2, $stack0#2,
$stack0#3, $stack0#4, $stack0#5, $stack0#6, $stack1#2,
l3#2, $stack0#7, $stack0#8, l3#3, $stack0#9, $stack1#3,
$stack0#10, $stack0#11, $stack1#4, $stack0#12;

l0 := @this: Test;
$stack0 = 0;
l2 = $stack0;
$stack0#2 = l0;
$stack0#3 = $stack0#2.condition;
if $stack0#3 == 0 goto label0;

$stack0#4 = 5;
l3 = $stack0#4;
$stack0#5 = new B;
$stack1 = $stack0#5;
specialinvoke $stack1.<init>();
l1 = $stack0#5;
$stack0#6 = l2;
$stack1#2 = l3;
l3#2 = l3 + 1;
$stack0#7 = $stack0#6 + $stack1#2;
l2 = $stack0#7;
goto label1;

label0:
$stack0#8 = "four";
l3#3 = $stack0#8;
$stack0#9 = new C;
$stack1#3 = $stack0#9;
$stack2 = l3#3;
specialinvoke $stack1#3.<init>($stack2);
l1 = $stack0#9;

label1:
$stack0#10 = l1;
$stack0#11 = $stack0#10.value;
$stack1#4 = l2;
$stack0#12 = $stack0#11 + $stack1#4;
return $stack0#12;

}

Figure 3.7: JIMPLE code of running example, after splitting the local variables (section
3.1.3.)

43

3.1.4 Type locals

The next step is to give each local variable a primitive, class or interface type. To do this, we
invoke the typing algorithm developed by Etienne Gagnon et al. [10]. The general solution
to this problem is non-trivial as it is NP-Hard. However, the typing algorithm in SOOT is an
efficient multistage typing algorithm based on solving a type constraint system; each stage
is attempted in turn to provide a solution, and each is progressively more complex. The first
stage is described below, very briefly. See [10] for a complete discussion of the problem
and its solution. The first stage consists of building a constraint system represented by a
directed graph. These constraints are gathered from individual statements. The constraints
of the first five statements of the running example in figure 3.7 follow.

T (l0) Test

T ($stack0) int

T (l2) T ($stack0)

T ($stack0#2) T (l0)

T ($stack0#3) int

Test T ($stack0#2)

l0 := @this: Test;
$stack0 = 0;
l2 = $stack0;
$stack0#2 = l0;
$stack0#3 =

$stack0#2.condition;

(a) Collected constraints (b) Original statements

T (l0) Test corresponds tol0 := @this: Test; and indicates thatl0 must
be able to contain an instance of classTest , that is, be a superclass ofTest . Note
that the statement$stack0#3 = $stack0#2.condition; creates two constraints:
one on$stack0#2 , indicating that$stack0#2 must be a subclass ofTest since the
condition field is accessed and the second indicating that$stack0#3 must be able to
contain anint .

After the constraints are collected, they are represented as a graph with soft nodes
representing the types of variables and hard nodes representing actual types. Based on this
graph, cycles are collapsed, and the soft nodes are collapsed into the hard nodes. Based on
this scheme we can see that from the constraints that$stack0#2 andl0 must be of type
Test , and$stack0 $stack0#3 and l2 must be of typeint (assigning anint to a
local variable means that it must be exactly of typeint).

If this first stage fails, then the JIMPLE code is transformed by inserting assignment
statements and the typing algorithm is repeated. If this second phase fails then casts are
inserted as necessary, and the typing algorithm is repeated, with the modification that only
the set of constraints corresponding to definitions are collected. The third phase is guaran-
teed to succeed and produce a typing solution for the local variables. See figure 3.8 for the
typed JIMPLE code of the running example.

44

public int runningExample()
{

Test l0, $stack0#2;
int $stack0, l2, l3, $stack0#3, $stack0#4, $stack0#6,

$stack1#2, l3#2, $stack0#7, $stack0#11, $stack1#4,
$stack0#12;

B $stack1, $stack0#5;
A l1, $stack0#10;
java.lang.String $stack2, $stack0#8, l3#3;
C $stack0#9, $stack1#3;

l0 := @this;
$stack0 = 0;
l2 = $stack0;
$stack0#2 = l0;
$stack0#3 = $stack0#2.condition;
if $stack0#3 == 0 goto label0;

$stack0#4 = 5;
l3 = $stack0#4;
$stack0#5 = new B;
$stack1 = $stack0#5;
specialinvoke $stack1.<init>();
l1 = $stack0#5;
$stack0#6 = l2;
$stack1#2 = l3;
l3#2 = l3 + 1;
$stack0#7 = $stack0#6 + $stack1#2;
l2 = $stack0#7;
goto label1;

label0:
$stack0#8 = "four";
l3#3 = $stack0#8;
$stack0#9 = new C;
$stack1#3 = $stack0#9;
$stack2 = l3#3;
specialinvoke $stack1#3.<init>($stack2);
l1 = $stack0#9;

label1:
$stack0#10 = l1;
$stack0#11 = $stack0#10.value;
$stack1#4 = l2;
$stack0#12 = $stack0#11 + $stack1#4;
return $stack0#12;

}

Figure 3.8: JIMPLE code of the running example, after typing the local variables. (section
3.1.4).

45

3.1.5 Clean up J IMPLE

After the locals have been typed the code itself remains very verbose. The step discussed
in this subsection consists of performing some compaction to eliminate the redundant copy
statements which are present in the code due to the direct translation from bytecode.

We see from figure 3.8 that there are several statements which can be eliminated. For
example, the pair$stack0 = 0; l2 = $stack0; can be optimized tol2 = 0;
Note that, in general, copy propagation and constant propagation are not sufficient to fully
eliminate the redundant copy statements. For example, in the code:

$x = f.a;
y = $x;

we do not have a copy to propagate forward, but instead a copy to propagate backwards.
A combination of copy propagation and back copy propagation has been suggested as a
solution to this exact problem[21]. We use, instead, the aggregation algorithm developed on
GRIMP on JIMPLE code (see subsection 3.2.1). This simulates the back copy propagation
phase as well as a limited form of copy propagation by collapsing single def-use pairs.
However, we still need to perform a phase of copy propagation afterwards to catch patterns
of the form:

$x = i0;
use($x);
use($x);

which are single def-multiple usen-tuples. These patterns usually originate from the use of
dups which are used to implement statements with multiple side effects such asx.f +=
a[i++]

Compare figures 3.9 and 3.8. The compacted version has 18 statements whereas the
original version has 30. Most of the eliminated references were references to stack vari-
ables.

3.2 Analyzable J IMPLE �! Bytecode (via G RIMP)

This section describes the first method of transforming JIMPLE code back to bytecode: via
GRIMP(see figure 3.10 for an illustration of these two paths.)

A compiler such asjavac is able to produce efficient bytecode because it has the
structured tree representation for the original program, and the stack based nature of the
bytecode is particularly well suited for code generation from trees[2]. Essentially, this

46

public int runningExample()
{

Test l0;
int l2, l3, $stack0#3, l3#2,

$stack0#11, $stack0#12;
A l1;
B $stack0#5;
java.lang.String l3#3;
C $stack0#9;

l0 := @this;
l2 = 0;
$stack0#3 = l0.condition;
if $stack0#3 == 0 goto label0;

l3 = 5;
$stack0#5 = new B;
specialinvoke $stack0#5.<init>();
l1 = $stack0#5;
l3#2 = l3 + 1;
l2 = l2 + l3;
goto label1;

label0:
l3#3 = "four";
$stack0#9 = new C;
specialinvoke $stack0#9.<init>(l3#3);
l1 = $stack0#9;

label1:
$stack0#11 = l1.value;
$stack0#12 = $stack0#11 + l2;
return $stack0#12;

}

Figure 3.9: JIMPLE code of running example, after cleanup. (section 3.1.5)

47

method attempts to recover the original structured tree representation, by building GRIMP,
an aggregated form of JIMPLE, and then producing stack code by standard tree traversal
techniques.

There are two steps necessary for this transformation and they are covered in the fol-
lowing two subsections. This method was mainly developed and added to the framework
by Patrick Lam and is described further in our overview paper[28]. A summary of the
method is included here for completeness.

analyzable
Jimple

verbose Baf

packed Baf

Grimp

bytecode

3.3.2 eliminate redundant

Baf
store and loads

3.3.3 pack locals

3.2.1 aggregation

3.2.2 traversal
and local packing

3.3.1 direct translation

3.3.4 direct translation
with max height

Option I
Option II

Figure 3.10: Two paths for the JIMPLE to bytecode transformation.

3.2.1 Aggregate expressions

Producing GRIMP code from JIMPLE is relatively straightforward given that GRIMP is es-
sentially JIMPLE with arbitrarily deeply nested expressions and with a newinvoke expres-
sion construct. To build GRIMP there are two algorithms which must be applied: expression
aggregation, and constructor folding.

1. Expression aggregation: for every single def/use pair, attempt to move the right hand
side of the definition into the use. Currently, we only consider def-use pairs which

48

reside in the same extended basic block, but our results indicates that this covers al-
most all pairs. Some care must be taken to guard against violating data dependencies
or producing side effects when moving the right hand side of the definition.

2. Constructor folding: pairs consisting ofnew andspecialinvoke are collapsed
into one GRIMP expression callednewinvoke .

The expression aggregation algorithm is tricky to implement and is described in full
detail below in the subsection entitled ”In Detail”.

Note that folding the constructors usually exposes additional aggregation opportunities
(namely the aggregation of thenewinvoke s), and these are aggregated in a second aggre-
gation step. See figure 3.11 for the results of performing these three transformations. Note
that the definition$stack0#3=l0 has been aggregated into the statement

if l0.condition == 0 goto label0;

and that the three statements

$stack0#11 = l1.value;
$stack0#12 = $stack0#11 + l2;
return $stack0#12;

have been collapsed down to

return l1.value + l2;

Furthermore, two constructor foldings have taken place, one fornew B and one for
new C. Note that the definitionl3#3="four" has not been aggregated into
new C(l3#3) because this assignment is present in the original Java code, and we are
only aggregating stack variables.

The GRIMP code generated by these three steps is extremely similar to the original Java
source code; almost all introduced stack variables are usually eliminated. Statements from
Java which have multiple local variable side-effects, however, cannot be represented as
compactly, and this complicates bytecode code generation. An example is given in figure
3.12 and this is further discussed in section 3.2.2.

49

public int runningExample()
{

Test l0;
int l2, l3, $stack0#3, l3#2,

$stack0#11, $stack0#12;
A l1;
B $stack0#5;
java.lang.String l3#3;
C $stack0#9;

l0 := @this;
l2 = 0;
$stack0#3 = l0.condition;
if $stack0#3 == 0 goto label0;

l3 = 5;
$stack0#5 = new B;
specialinvoke

$stack0#5.<init>();
l1 = $stack0#5;
l3#2 = l3 + 1;
l2 = l2 + l3;
goto label1;

label0:
l3#3 = "four";
$stack0#9 = new C;
specialinvoke

$stack0#9.<init>(l3#3);
l1 = $stack0#9;

label1:
$stack0#11 = l1.value;
$stack0#12 = $stack0#11 + l2;
return $stack0#12;

}

public int runningExample()
{

Test l0;
int l2, l3, l3#2;
A l1;
java.lang.String l3#3;

l0 := @this;
l2 = 0;
if l0.condition == 0

goto label0;

l3 = 5;
l1 = new B();
l3#2 = l3 + 1;
l2 = l2 + l3;
goto label1;

label0:
l3#3 = "four";
l1 = new C(l3#3);

label1:
return l1.value + l2;

}

JIMPLE code GRIMP code

Figure 3.11: GRIMP code of running example, after aggregation and constructor folding.
(see subsection 3.2.1)

50

a[j++] = 5;

aload_2
iload_1
iinc 1 1
iconst_5
iastore

(a) Java code (b) bytecode of Java code

$stack = j;
j = j + 1;
r1[$stack] = 5;

iload_1
istore_2
iinc 1 1
aload 0
iload 2
iconst_5
iastore

(c) equivalent GRIMP code (d) bytecode of GRIMP code

Figure 3.12: Example of Java code which does not translate to compact GRIMP code.

In Detail

The ideas behind expression aggregation are relatively simple, but in practice we found it
difficult to implement it correctly. Thus, we give the complete algorithm in figures 3.13
and 3.14 and explain it here in detail.

Overview:The algorithm consists of considering single use-def pairs and attempting to
insert the def into the use, assuring that no data dependencies are violated by this move. The
algorithm is a fixed point iteration; it iterates until no more aggregations can be performed.
The following points comment on specific portions of the algorithm presented in figures
3.13 and 3.14. Refer to the figures to see the correspondence: each numbered step below
corresponds to a labelled step in the figure.

1. Considering the statements in reverse pseudo topological order is desired in order to
minimize the number of iterations. For example, in the following code:

a = f();
b = f();
use(a, b);

the first statement can not be aggregated past the second because of potential side
effect violations. Thus the second should be aggregated first.

2. Only single use-def pairs are considered for aggregation. These are pairs of the form
x = ...; ...x...; where there is only one definition ofx , and only one use
of x .

51

3. The use-def pair must be in the same exception context. For example, in the code:

try
{

x = throwSomeException();
} catch(Exception e)
{

System.out.println("caught!");
return;

}

System.out.println(x);

The x must not be aggregated out of thetry block because if an exception is thrown
then it would no longer be caught.

4. This section of code simply notes what kind of structures are on the right hand side
of s .

5. The next step is to consider the path betweens anduse and determine if it is legal
to moves past all those statements intouse . Note that we consider only pairs of
statements which are in the same extended basic block. This guarantees that the
connecting path is unique.

6. A redefinition of a local ins occurs in the path, preventing aggregation. Here is an
example:

x = a + b;
a = 1;
use(x);

7. This block of code prevents the moving of method calls past field writes, or field
reads past field writes (of the same name), or method calls or array reads past array
writes.

It also prevents propagating method calls past EnterMonitorStmt or ExitMonitorStmt.

8. This block of code prevents the re-ordering of method calls with array references,
field references or other method calls. Note that (8a) handles the following situation:

x = f();
z = 1;
use(x, m(), z);

upon inspection of the statementuse which in this case isuse(x,m(), z) the
verification of movingf() past other method calls stops at the first use ofx because
the arguments are evaluated from left to right.

9. At this point it is safe to aggregates anduse together.

52

hasChanged = true;

while hasChanged do
hasChanged = false;

(1) for each statement s in reverse-pseudo-topological or-
der for graph G do

canAggregate = false;

if s is an assignment statement and lhs(s) is a local then
x = lhs(s);

(2) if s has only one use in G and that use u has s as its sole def
(3) if s and use are in the same exception zone

canAggregate = true;

if not canAggregate then
next statement;

fieldRefList = emptyList;
localsUsed = emptyList;
propagatingInvokeExpr = false;
propagatingFieldRef = false;
propagatingArrayRef = false;

| for all values v in s do
| if v instanceof Local
| localsUsed.add(v);
| else if v instanceof InvokeExpr
| propagatingInvokeExpr = true;

(4)| else if v instanceof ArrayRef
| propagatingArrayRef = true;
| else if v instanceof FieldRef
| propagatingFieldRef = true;
| fieldRefList.add(v);

(5) path = G. extendedBasicBlockPathBetween(s, use);

Figure 3.13: The aggregation algorithm. (part I)

53

if path is null then
next statement;

for each node nodeStmt in path do
if nodeStmt == s then

next statement;

if nodeStmt != use and nodeStmt is an assignment then
def = lhs(nodeStmt);

(6) if localsUsed.contains(def) then
next statement;

| if propagatingInvokeExpr or propagatingFieldRef or
| propagatingArrayRef then
| if def instanceof FieldRef then
| if propagatingInvokeExpr then
| next statement;

(7)| if propagatingFieldRef then
| for f in fieldRefList do
| if f = def.getField()
| next statement;
| else if def instanceof ArrayRef then
| if propagatingInvokeExpr or propagatingArrayRef then
| next statement;
|
| if propagatingInvokeExpr and nodeStmt instanceof
| MonitorStmt then
| next statement;

| if propagatingInvokeExpr or propagatingFieldRef or
| propagatingArrayRef then
| for all values y in nodeStmt do
| (8a) if use = nodeStmt and def == y
| goto aggregate;

(8)|
| if y instanceof InvokeExpr or
| (propagatingInvokeExpr and (def instanceof Field-

Ref or
| def instanceof ArrayRef))
| next statement;

(9)aggregate:
aggregate(s, use)
hasChanged = true;

Figure 3.14: The aggregation algorithm (part II)

54

3.2.2 Traverse G RIMP code and generate bytecode

Generating BAF code from GRIMP is straightforward because GRIMP consists of tree-like
statements and BAF is a stack-based representation. Standard code generation techniques
for stack machines are used here[2], that is, pre-order tree traversal. In the running example,
for example, we have the following conversion:

return l1.value + l2;

43 aload_2
44 getfield #20 <Field int value>
47 iload_1
48 iadd
49 ireturn

GRIMP code bytecode

The code generated in some cases by this tree traversal may be inefficient compared to
the original Java bytecode. This occurs when the original Java source contained compact
C-like constructs such asa[j++] = 5 in the example 3.12. Note how the bytecode
generated from the GRIMP code has two extra bytecodes. This inefficiency may have a
significant impact on the program execution time if such a statement occurs in loops (and
they often do.)

To eliminate this source of inefficiency we perform peephole optimizations on the code
generated from GRIMP. To optimize the increment case, we search for Grimp patterns of
the form:

s1: local = <lvalue>;
s2: <lvalue> = local/<lvalue> + 1;
s3: use(local)

and we ensure that the local defined ins1 has exactly two uses, and that the uses ins2; s3
have exactly one definition. Given this situation, we emit code for onlys3. However, during
the generation of code fors3, whenlocal is to be emitted, we also emit code to duplicate
local on the stack, and increment<lvalue> .

This approach produces reasonably efficient bytecode. In some situations the peephole
patterns fail and the complete original structure is not recovered. In these cases, the second
option of producing bytecode via BAF performs better. See the chapter 4 for more details.

Before performing the tree traversal, we also perform a phase of register allocation
which maps the GRIMP local variables to bytecode local variable slots. This mapping is
performed twice; once for 32-bit quantities and another time for 64-bit quantities. The
register allocation scheme is a simple scheme based on heuristic coloring which uses in-
tereference graphs to prevent conflicts.

55

$stack0#11 = l1.value;
load.r l1;
fieldget <A: int value>;
store.i $stack0#11;

$stack0#12 = $stack0#11 + l2;

load.i $stack0#11;
load.i l2;
add.i;
store.i $stack0#12;

return $stack0#12; load.i $stack0#12;
return.i;

(a) original JIMPLE code (b) inefficient BAF code

Figure 3.15: Excerpt of the running example explicitly demonstrating the JIMPLE to BAF

conversion statement by statement.

3.3 Analyzable J IMPLE to Bytecode (via B AF)

This section describes the second method of transforming JIMPLE code back to bytecode:
via BAF. (see figure 3.10 for an illustration of these two paths.)

This method attempts to achieve efficient bytecode by producing BAF code naively and
then optimizing it, as opposed to the GRIMP method which attempts to produce efficient
BAF code directly.

There are four steps necessary for this transformation, and they are described in the
following subsections. This method was mainly developed and added to the framework by
Patrice Pominville and is described further in our overview paper [28]. It is included here
for completeness.

3.3.1 Direct translation to B AF

The first step to produce bytecode from JIMPLE is to treat JIMPLE as a tree representation
and convert it to BAF code directly, using standard tree traversal techniques as was done in
section 3.2.2.

Generating code in this manner produces inefficient BAF code because local variables
are used for the storage of intermediate results, instead of using the stack. For example, an
excerpt of the running example is given in figure 3.15 explicitly showing the conversion.

We can see in figure 3.15 that thestore.i , load.i pairs for variables$stack0#11
and$stack0#12 can be eliminated, because their values are just temporarily left on the
stack. The next step of eliminating redundant load/store seeks to optimize this situation as
well as others. The complete translation can be found in figure 3.16.

56

public int runningExample()
{

Test l0;
int l2, l3, $stack0#3, l3#2,

$stack0#11, $stack0#12;
A l1;
B $stack0#5;
java.lang.String l3#3;
C $stack0#9;

l0 := @this;
l2 = 0;
$stack0#3 = l0.condition;
if $stack0#3 == 0 goto label0;

l3 = 5;
$stack0#5 = new B;
specialinvoke

$stack0#5.<init>();
l1 = $stack0#5;
l3#2 = l3 + 1;
l2 = l2 + l3;
goto label1;

label0:
l3#3 = "four";
$stack0#9 = new C;
specialinvoke

$stack0#9.<init>(l3#3);
l1 = $stack0#9;

label1:
$stack0#11 = l1.value;
$stack0#12 = $stack0#11 + l2;
return $stack0#12;

}

public int runningExample()
{

word l0, l2, l3, l1, $stack0#3,
$stack0#5, l3#2, l3#3, $stack0#9,
$stack0#11, $stack0#12;

l0 := @this: Test;
push 0;
store.i l2;
load.r l0;
fieldget <Test: boolean condition>;
store.i $stack0#3;
load.i $stack0#3;
ifeq label0;

push 5;
store.i l3;
new B;
store.r $stack0#5;
load.r $stack0#5;
specialinvoke <B: void <init>()>;
load.r $stack0#5;
store.r l1;
load.i l3;
push 1;
add.i;
store.i l3#2;
load.i l2;
load.i l3;
add.i;
store.i l2;
goto label1;

label0:
push "four";
store.r l3#3;
new C;
store.r $stack0#9;
load.r $stack0#9;
load.r l3#3;
specialinvoke

<C: void <init>(java.lang.String)>;
load.r $stack0#9;
store.r l1;

label1:
load.r l1;
fieldget <A: int value>;
store.i $stack0#11;
load.i $stack0#11;
load.i l2;
add.i;
store.i $stack0#12;
load.i $stack0#12;
return.i;

}

JIMPLE code After direct translation

Figure 3.16: BAF code of running example, before and after direct translation from JIMPLE.
(section 3.3.1))

57

3.3.2 Eliminate redundant store/loads

After the naive BAF code is generated, it remains to be optimized. In particular, we must re-
move all the redundant store/load instructions which were introduced by the previous step.
Although in theory there are many different patterns of redundant store/load instructions
possible, in practice there are just a few which account for the majority:

store/load : a store instruction followed by a load instruction referring to the same local
variable with no other uses. Both the store and load instructions can be eliminated,
and the value will simply remain on the stack.

store/load/load : a store instruction followed by 2 load instructions, all referring to the
same local variable with no other uses. The 3 instructions can be eliminated and a
dup instruction introduced. The dup instruction replaces the second load by dupli-
cating the value left on the stack after eliminating the store and the first load.

Eliminating redundant patterns is trivial when all the relevant instructions follow each
other. If there are interleaving instructions (as is the case withload.r l3#3 ,
store.r l3#3 in the running example in figure 3.17) then some care must be taken
to eliminate the pair safely. In particular, we compute theminimum stack height varia-
tion andnet stack height variationfor these interleaving instructions and only if these both
are equal to zero can we eliminate the pair (or triple). If they are not zero, then some re-
ordering of the BAF instructions is attempted. These eliminations are performed on basic
blocks, and iterations are performed until there are no more changes. This optimization is
discussed in complete detail in our overview paper[28].

In the running example in figure 3.17, the examples of load/store elimination are clear:
three store/load triplets on the local variables$stack0#3 , $stack0#11 and
$stack0#12 and two store/load/load triplets on the local variables$stack0#5 and
$stack0#9 .

3.3.3 Pack local variables

In bytecode, the local variables are untyped, whereas in BAF there are two types (word
anddword). This step consists of performing a form of register allocation which attempts
to minimize the number of local variables used at the BAF level.

The allocation scheme that we use is based on a greedy graph coloring using interfer-
ence graphs to assure that locals with overlapping lifespans are given distinct colors. Colors
are then used as the basis for new variable names. Two packings are actually performed,
one for variables of typeword and another for variables of typedword . This prevents
the interchange of 64-bit wide local variable slots with two 32-bit wide local variable slots.

58

public int runningExample()
{

word l0, l2, l3, l1, $stack0#3,
$stack0#5, l3#2, l3#3,
$stack0#9, $stack0#11,
$stack0#12;

l0 := @this: Test;
push 0;
store.i l2;
load.r l0;
fieldget

<Test: boolean condition>;
store.i $stack0#3;
load.i $stack0#3;
ifeq label0;

push 5;
store.i l3;
new B;
store.r $stack0#5;
load.r $stack0#5;
specialinvoke

<B: void <init>()>;
load.r $stack0#5;
store.r l1;
load.i l3;
push 1;
add.i;
store.i l3#2;
load.i l2;
load.i l3;
add.i;
store.i l2;
goto label1;

label0:
push "four";
store.r l3#3;
new C;
store.r $stack0#9;
load.r $stack0#9;
load.r l3#3;
specialinvoke <C: void

<init>(java.lang.String)>;
load.r $stack0#9;
store.r l1;

label1:
load.r l1;
fieldget

<A: int value>;
store.i $stack0#11;
load.i $stack0#11;
load.i l2;
add.i;
store.i $stack0#12;
load.i $stack0#12;
return.i;

}

public int runningExample()
{

word l0, l2, l1, l3#2;

l0 := @this: Test;
push 0;
store.i l2;
load.r l0;
fieldget

<Test: boolean condition>;
ifeq label0;

load.i l2;
push 5;
dup1.i;
new B;
dup1.r;
specialinvoke

<B: void <init>()>;
store.r l1;
push 1;
add.i;
store.i l3#2;
add.i;
store.i l2;
goto label1;

label0:
new C;
dup1.r;
push "four";
specialinvoke <C: void

<init>(java.lang.String)>;
store.r l1;

label1:
load.r l1;
fieldget

<A: int value>;
load.i l2;
add.i;
return.i;

}

before load/store elimination after load/store elimination

Figure 3.17: BAF code of running example, before and after load store elimination.

59

For example, in figure 3.18 we see that whenl0 is usedi0 andi1 are no longer needed.
But in practice, separating the cases into two types produces reasonably small sets of local
variables which are acceptable.

word r0, i0, i1;
dword l0;

r0 := @this: Test2;
push 0;
store.i i0;
push 1;
store.i i1;
load.i i0;
staticinvoke <Test2: void useInt(int)>;
load.i i1;
staticinvoke <Test2: void useInt(int)>;
push 1L;
store.l l0;
load.l l0;
staticinvoke <Test2: void useLong(long)>;
return;

Figure 3.18: Example of BAF code which could profit from untyped local variable coloring;
whenl0 is used,i0 andi1 are no longer needed.

In our running example (figure 3.19), we see that variablesl3#2 and l1 are mapped
to l2 andl0 respectively, thus saving two local variables.

3.3.4 Direct translation and calculate maximum height

The Java Virtual Machine requires that the maximum stack height be given for each method.
This can be computed by performing a simple depth first traversal of the BAF code and
recording the accumulated effect that each Baf instruction has on the stack height.

Every BAF instruction is then converted to the corresponding bytecode instruction. This
is a straightforward mapping which consists of two steps:

1. Map the local variables.Since the local variables are already packed we simply
associate each BAF local variable with a Java bytecode variable. Note that specific
local variables in the Java bytecode have special meaning, and these are allocated
by parsing the BAF code for identity instructions which associate specific local vari-
ables with special roles, such asl0 := @this: Test which indicates thatl0
corresponds to@this and thus should be assigned to local variable slot 0.

2. Map the bytecode instructions.Each BAF instruction corresponds to one or more
bytecode instructions. This is a straightforward association. For example,push 0

60

public int runningExample()
{

word l0, l2, l1, l3#2;

l0 := @this: Test;
push 0;
store.i l2;
load.r l0;
fieldget

<Test: boolean condition>;
ifeq label0;

load.i l2;
push 5;
dup1.i;
new B;
dup1.r;
specialinvoke

<B: void <init>()>;
store.r l1;
push 1;
add.i;
store.i l3#2;
add.i;
store.i l2;
goto label1;

label0:
new C;
dup1.r;
push "four";
specialinvoke <C: void

<init>(java.lang.String)>;
store.r l1;

label1:
load.r l1;
fieldget <A: int value>;
load.i l2;
add.i;
return.i;

}

public int runningExample()
{

word l0, l2;

l0 := @this: Test;
push 0;
store.i l2;
load.r l0;
fieldget

<Test: boolean condition>;
ifeq label0;

load.i l2;
push 5;
dup1.i;
new B;
dup1.r;
specialinvoke

<B: void <init>()>;
store.r l0;
push 1;
add.i;
store.i l2;
add.i;
store.i l2;
goto label1;

label0:
new C;
dup1.r;
push "four";
specialinvoke <C: void

<init>(java.lang.String)>;
store.r l0;

label1:
load.r l0;
fieldget <A: int value>;
load.i l2;
add.i;
return.i;

}

Before packing After packing

Figure 3.19: BAF code of running example before and after local packing. (subsection
3.3.3)

61

corresponds toiconst_0 andload.i l0 may correspond toiload 0 depend-
ing on the mapping of the local variables.

3.4 Summary

This chapter described the transformations present in SOOT which allow code in one inter-
mediate representation to be transformed to intermediate representation. We presented the
steps required to transform bytecode to JIMPLE, and then JIMPLE back to bytecode via two
different paths.

62

Chapter 4

Experimental Results

Here we present the results of two experiments. The first experiment, discussed in section
4.3, validates that we can pass class files through the framework, without optimizing the
JIMPLE code, and produce class files that have the same performance as the original ones.
In particular, this shows that our methods of converting from JIMPLE to stack-based byte-
code are acceptable. The second experiment, discussed in Section 4.4, shows the effect of
applying method inlining on JIMPLE code and demonstrates that optimizing Java bytecode
is feasible and desirable.

4.1 Methodology

All experiments were performed on dual 400Mhz Pentium IITM machines. Two operat-
ing systems were used, Debian GNU/Linux (kernel 2.2.8) and Windows NT 4.0 (service
pack 5). Under GNU/Linux we ran experiments using three different configurations of the
Blackdown Linux JDK1.2, pre-release version 2.1 The configurations were: interpreter,
Sun JIT, and a public beta version of Borland’s JIT2. Under Windows NT, two different
configurations of Sun’s JDK1.2.2 were used: the JIT, and HotSpot (version 1.0.1)

Execution times were measured by running the benchmarks ten times, discarding the
best and worst runs, and averaging the remaining eight. All executions were verified for
correctness by comparing the output to the expected output.

1http://www.blackdown.org
2http://www.borland.com

63

JIMPLE Linux Linux NT
Stmts Sun Int. Sun Bor. Sun Sun

(secs) JIT JIT JIT Hot.

compress 7322 440.30 .15 .14 .06 .07
db 7293 259.09 .56 .58 .26 .14
jack 16792 151.39 .43 .32 .15 .16
javac 31054 137.78 .52 .42 .24 .33
jess 17488 109.75 .45 .32 .21 .12
jpat-p 1622 47.94 1.01 .96 .90 .80
mpegaudio 19585 368.10 .15 - .07 .10
raytrace 10037 121.99 .45 .23 .16 .12
schroeder-s 9713 48.51 .64 .62 .19 .12
soot-c 42107 85.69 .58 .45 .29 .53

average . . .49 .45 .25 .25
std. dev. . . .23 .23 .23 .23

Figure 4.1: Benchmarks and their characteristics.

4.2 Benchmarks and Baseline Times

The benchmarks used consist of seven of the eight standard benchmarks from the
SPECjvm983 suite, plus three additional applications from our collection. See figure 4.1.
We discarded themtrt benchmark from our set because it is essentially the same benchmark
asraytrace. The programsoot-cis a benchmark based on an older version of SOOT, and
is interesting because it is heavily object oriented. The programschroeder-sis an audio
editing program which manipulates sound files, andjpat-p is a protein analysis tool.

Figure 4.1 also gives basic characteristics such as size, and running times on the five
platforms. All of these benchmarks are real world applications that are reasonably sized,
and they all have non-trivial execution times. We used the Linux interpreter as the base
time, and all the fractional execution times are with respect to this base.

Benchmarks for which a dash is given for the running time indicates that the benchmark
failed validity checks. In all these cases, the virtual machine is to blame as the programs
run correctly with the interpreter with the verifier explicitly turned on. Arithmetic averages
and standard deviations are also given, and these automatically exclude those running times
which are not valid.

For this set of benchmarks, we can draw the following observations. The Linux JIT
3http://www.spec.org/

64

is about twice as fast as the interpreter but it varies widely depending on the benchmark.
For example, withcompressit is more than six times faster, but for a benchmark like
schroeder-sit is only 56% faster. The NT virtual machines also tend to be twice as fast
as the Linux JIT. Furthermore, the performance of the HotSpot performance engine seems
to be, on average, not that different from the standard Sun JIT. Perhaps this is because the
benchmarks are not long running server side applications.

4.3 Straight through S OOT

Figure 4.2 compares the effect of processing applications with SOOT with BAF and GRIMP,
without performing any optimizations. Fractional execution times are given, and these are
with respect to the original execution time of the benchmark for a given platform. The ideal
result is 1.00. This means that the same performance is obtained as the original application.
For javac the ratio is .98 which indicates thatjavac’s execution time has been reduced by
2%. The benchmarkraytracehas a ratio of 1.02 which indicates that it was made slightly
slower; its execution time has been increased by 2%. The ideal arithmetic averages for
these tables is 1.00 because we are trying to simply reproduce the program as is. The ideal
standard deviation is 0 which would indicate that the transformation has a consistent effect,
and the results do not deviate from 1.00.

On average, using BAF tends to reproduce the original execution time. Its average is
lower than GRIMP’s, and the standard deviation is lower as well. For the faster virtual
machines (the ones on NT), this difference disappears. The main disadvantage of GRIMP

is that it can produce a noticeable slowdown for benchmarks likecompresswhich have
tight loops on Java statements containing side effects, which it does not always catch.

Both techniques have similar running times, but implementing GRIMP and its aggre-
gation is conceptually simpler. In terms of code generation for Java virtual machines, we
believe that if one is interested in generating code for slow VMs, then the BAF-like ap-
proach is best. For fast VMs, or if one desires a simpler compiler implementation, then
GRIMP is more suitable.

4.4 Optimization via Inlining

We have selected to investigate the feasibility of optimizing Java bytecode by implementing
method inlining. Our approach is simple. We build an invoke graph using class hierarchy
analysis[7] and inline method calls whenever they resolve to one method. Our inliner is a
bottom-up inliner, and attempts to inline all call sites subject to the following restrictions:
1) the method to be inlined must contain less than 20 JIMPLE statements, 2) no method may

65

BAF GRIMP

Linux NT Linux NT
Sun Sun Bor. Sun Sun Sun Sun Bor. Sun Sun

Int. JIT JIT JIT Hot. Int. JIT JIT JIT Hot.

compress 1.01 1.00 .99 .99 1.00 1.07 1.02 1.04 1.00 1.01
db .99 1.01 1.00 1.00 1.00 1.01 1.05 1.01 1.01 1.02
jack 1.00 1.00 1.00 - 1.00 1.01 .99 1.00 - 1.00
javac 1.00 .98 1.00 1.00 .97 .99 1.03 1.00 1.00 .95
jess 1.02 1.01 1.04 .99 1.01 1.01 1.02 1.04 .97 1.00
jpat-p 1.00 .99 1.00 1.00 1.00 .99 1.01 1.01 1.00 1.00
mpegaudio 1.05 1.00 - - 1.00 1.03 1.00 - - 1.01
raytrace 1.00 1.02 1.00 .99 1.00 1.01 1.00 .99 .99 1.00
schroeder-s .97 1.01 - 1.03 1.01 .98 .99 - 1.03 1.00
soot-c .99 1.00 1.02 .99 1.03 1.00 1.01 1.00 1.01 1.01

average 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.01 1.00 1.00
std. dev. .02 .01 .01 .01 .01 .02 .02 .02 .02 .02

Figure 4.2: The effect of processing classfiles with SOOT using BAF or GRIMP, without
optimization.

66

contain more than 5000 JIMPLE statements, and 3) no method may have its size increase
more than by a factor of 3.

After inlining, the following traditional intraprocedural optimizations are performed to
maximize the benefit from inlining,

� copy propagation

� constant propagation and folding

� conditional and unconditional branch folding

� dead assignment elimination

� unreachable code elimination

These are described in [2] and were implemented in SOOT using the SOOT API.

Figure 4.3 gives the result of performing this optimization. The numbers presented are
fractional execution times with respect to the original execution time of the benchmark for
a given platform. For the Linux virtual machines, we obtain a significant improvement in
speed. In particular, for the Linux Sun JIT, the average ratio is .92 which indicates that the
average running time is reduced by 8%. For raytrace, the results are quite significant, as
we obtain a ratio of .62, a reduction of 38%.

For the virtual machines under NT, the average is 1.00 or 1.01, but a number of bench-
marks experience a significant improvement. For example, under the Sun JIT,raytrace
yields a ratio of .89, and under HotSpot,javac, jack and mpegaudioyield significant
improvements. Given that HotSpot itself performs dynamic inlining, this indicates that
our static inlining heuristics sometimes capture opportunities that HotSpot does not. Our
heuristics for inlining were also tuned the Linux VMs, and future experimentation could
produce values which are better suited for the NT virtual machines.

These results are highly encouraging as they strongly suggest that a significant amount
of improvement can be achieved by performing aggressive optimizations which are not
performed by the virtual machines.

67

Linux NT
Sun Sun Bor. Sun Sun

Int. JIT JIT JIT Hot.

compress 1.01 .78 1.00 1.01 .99
db .99 1.01 1.00 1.00 1.00
jack 1.00 .98 .99 - .97
javac .97 .96 .97 1.11 .93
jess .93 .93 1.01 .99 1.00
jpat-p .99 .99 1.00 1.00 1.00
mpegaudio 1.04 .96 - - .97
raytrace .76 .62 .74 .89 1.01
schroeder-s .97 1.00 .97 1.02 1.06
soot-c .94 .94 .96 1.03 1.05

average .96 .92 .96 1.01 1.00
std. dev. .07 .12 .08 .06 .04

Figure 4.3: The effect of inlining with class hierarchy analysis.

68

Chapter 5

The API

5.1 Motivation

Much of the effort in designing SOOT was spent defining (and revising) the application
programming interface (API). In particular, we wanted to design an API with the following
attributes:

Useable The API should be structured in a way which is natural and easy to use. The
complexity of the base system should be kept at a minimum, since in compiler work
there is already a great deal of complexity.

Extendable The API should be structured such that it is easily extended, in the sense
that additional concepts can be added without interfering with the concepts already
present.

General The API should allow as much code re-use as possible. In particular, we wanted
an API which allows analyses and transformations to be performed on code without
knowing the specifics of the intermediate representation or as little as possible.

We believe that we have achieved our goals with the API presented in this chapter. We
have created an API which we use at McGill University and which is being used by other
institutions as well. We hope it will be adopted by more research groups which will enable
the widespread sharing of code and experimental results to further the state of research on
optimizing Java bytecode.

This chapter is organized as follows. First, we explain a few fundamental concepts
relating to the overall API, and then we describe each concept of the API in detail. Finally,
we give five example programs written with SOOT and provides simple walkthroughs of
the code.

69

5.2 Fundamentals

This section describes two concepts in SOOT which are not specific to SOOT per se, but are
important to understand to use SOOT.

5.2.1 Value factories

SOOT makes heavy use of thevalue factorydesign pattern which is defined here. This
pattern is similar to the factory pattern [11] except we add the additional restriction that the
instances returned are unmodifiable. This makes the values more important then the actual
instances.

The standard name ofv() is used for the factory method which generates the instances.
Thev stands for value. Value factories are used in at least two different ways: to implement
types and to implement constants. For example,RefType.v("java.lang.String")
refers to the reference type for strings, andIntConstant.v(5) refers to the integer
constant 5.

Note that the singleton pattern is a special case of the value factory pattern that takes
no arguments, and which has the property that the same object is guaranteed to be returned
each time.

5.2.2 Chain

The Chain is probably the most useful basic data structure in SOOT. It combines the
functionality of theList and theSet to provide a natural representation of an ordered
collection of unique elements. To argue the necessity of theChain , let us consider rep-
resenting a list of statements in a Java method with aList . The two standard imple-
mentations ofList areArrayList andLinkedList . Both of these implementations
are inadequate because they provide worst-case linear timecontains(Object) and
remove(Object) , the latter being used very frequently in order to delete arbitrary ele-
ments, for example, when performing dead code elimination.

To achieve our goals of constant timeadd(Object) , remove(Object) , andcon-
tains(Object) methods, we define theChain to be essentially an ordered collection
of elements which are guaranteed to be unique. TheHashChain is our default imple-
mentation of theChain . It is essentially aLinkedList augmented with aHashMap.
By guaranteeing that the elements are unique, theHashMap can contain a mapping from
element to the link node in theLinkedList which allows for a constant time implemen-
tation ofcontains andremove . See figure 5.1 for an illustration.

70

B DC A

C

...

A

B

D

Figure 5.1: An example of aChain and its implementation using a doubly linked list and
a hash table.

In addition to being a nice representation for the contents of method bodies in SOOT,
Chain s are also convenient for implementing many algorithms in compilers. A prime ex-
ample of this is the worklist algorithm for performing data flow analysis. In this algorithm,
one must store a list of nodes to visit in some sort of list. When visiting a particular node,
however, one must add all the successors of that node to the list of nodes to visit. It is
preferable to not add the same node twice, thus one must first check for containment which
is a linear time operation on a regular list, or alternatively, one must manually maintain an
additionalHashSet with provides an alternative representation of the nodes to visit with
constant timecontains() .

We have also noticed that one often wants to modify aChain as it is being traversed
with an iterator. In general, modifying a collection while iterating through it is bad prac-
tice because of the confusing consequences it can have on the current iterators. For this
reason, if this occurs, aConcurrentModificationException is thrown. We do
provide, however, a method calledsnapshotIterator() which copies the contents of
theChain to a buffer, and returns an iterator of the buffer. This allows one to modify the
Chain while iterating through a static copy of it.

5.3 API Overview

This section gives an overview of the application programming interface (API). Only the
subset required to understand the five examples at the end of the chapter is given. The

71

complete API, which is quite extensive, can be found online on our web site[22].

5.3.1 Scene

In SOOT the application which is being analyzed is represented by aScene object. In
fact, we have made the simplifying assumption that only one application will be analyzed
at a time and so theScene object is represented by a singleton accessed through the static
methodScene.v() . TheScene provides the following functionality.

SootClass loadClassAndSupport(String className)
Loads the given class and resolves all the classes necessary to support that class, that
is, the transitive closure of all the references of classes within the class. If the class
cannot be found, it returns a phantom class reference (phantom classes are defined in
the next subsection.)

Chain getApplicationClasses(), Chain getLibraryClasses(),
Chain getContextClasses(), Chain getPhantomClasses()
Returns a backedChain of application, library, context or phantom classes in this
scene. These four types of classes are described in the next subsection.

SootClass getSootClass(String className)
Attempts to find and return the given class within theScene . Throws an instance of
RuntimeException if the class can not be found.

void addClass(SootClass class)
Adds the given class to theScene . Throws an instance ofRuntimeException
if the class is already present.

SootMethod getMethod(String methodSignature)
Returns theSootMethod corresponding to the given method signature. Throws a
runtime exception if the method can not be found. Method signatures are defined as
follows:

< className : returnType methodName(paramType1; : : : ; paramTypen) >

For example:

<java.lang.String: java.lang.String valueOf(char[], int, int)>

is the signature for the methodvalueOf() in the classjava.lang.String
which takes an array of characters, an integer, and an integer and returns aString .

72

SootField getField(String fieldSignature)
Returns theSootField corresponding to the given field signature. Throws a run-
time exception if the field can not be found. Field signatures are defined as follows:

< className : type fieldName >

For example:

< java:lang:String : long serialV ersionUID >

is a field namedserialVersionUID in String .

SootClass getMainClass()
Returns theSootClass which contains the entry point for the application being
analyzed. Throws a null pointer exception if there is no main class set.

Pack getPack(String packName)
Returns thePack of transformations by this name. APack is list of Transform s
which encapsulate transformations.

5.3.2 SootClass

Individual classes in theScene are represented by instances of theSootClass class.
Note that this includes interfaces as well. ASootClass contains all the relevant infor-
mation about a Java class, such as:

new SootClass(String name, int modifiers)
Creates aSootClass with the given name and the set of modifiers. Modifiers are
described in section 5.3.11.

int getModifiers()/void setModifiers(int mods)
Sets the modifiers for this class.

int getName()/void setName(String name)
Sets the name for this class.

Chain getInterfaces()
Returns a backed1 Chain of interfaces which are implemented by thisSoot-
Class .

1A backedChain is a Chain which, if modified will modify the collection of objects that it represents.
Modifying thisChain will modify the set of interfaces for thisSootClass .

73

SootClass getSuperclass()/void setSuperclass(SootClass s)
Returns or sets the superclass of this class.

Chain getFields()
Returns a backedChain of SootField s which are present in this class.

Chain getMethods()
Returns a backedChain of SootMethod s which are members of this class.

void addMethod(SootMethod m)
Adds the given method to this class. Throws a runtime exception if this method
already belongs toSootClass .

SootField getFieldByName(String s)
Returns the field given by name. Throws a runtime exception if there is no field by
the given name, or if there are two fields with the same name2

void write()
Writes this class out to a classfile named’className.class’

Types of Classes

There are four different types of classes: application, library, context and phantom. Each
type of class has a different role to play with respect to optimizations and transformations.
These role of each class is set upon SOOT’s start-up.

� Application classes can be fully inspected and modified.

� Library classes can be fully inspected, but not modified. These classes are not re-
generated when optimizing the application, but are assumed to be present exactly as
is when the application is run.

� Context classes represent classes for which the implementation is unknown. The
signatures of all the fields, methods and of the class itself are known, but nothing
can assumed about the actual implementation of each method. This restriction is
enforced in SOOT; accessing the implementation of a method of a context class will
throw an exception.

� Phantom classes are those which are known to exist (because they are referenced
in the constant pool of classfiles), but SOOT was unable to load . This occurs with
obfuscated code, for example. Phantom classes and regular classes can also contain
phantom fields and phantom methods. These are created whenever a class which

2Two fields with the name can occur in aSootClass , as long as they have different types.

74

SOOT has loaded refers to fields or methods which do not exist in existing classes or
in a phantom class.

5.3.3 SootField

Instances of theSootField class represent Java fields. They possess at least the follow-
ing methods:

SootField(java.lang.String name, Type type, int modifiers)
Constructs aSootField with the given name, type and modifiers. Types are de-
scribed in subsection 5.3.10.

String getName()/void setName(String)
Gets or sets the name for thisSootField .

Type getType()/void setType(Type t)
Gets or sets the type for thisSootField .

int getModifiers()/void setModifiers(int m)
Gets or sets the modifiers for thisSootField .

5.3.4 SootMethod

Instances of theSootMethod class represent Java methods. There is only one code rep-
resentation at given time for methods and this is represented by the activeBody for the
SootMethod . Bodys are described in subsection 5.3.6.SootMethod s possess the fol-
lowing methods:

SootMethod(java.lang.String name, java.util.List paramTypes,
Type returnType, int modifiers)
Constructs aSootMethod with the given name, type and modifiers.

String getName()/void setName(String)
Gets/sets the name for thisSootMethod .

Type getReturnType()/void setReturnType(Type t)
Gets/sets the return type for thisSootMethod .

List getParameterTypes()
Returns a backed list of parameters types for thisSootMethod .

75

int getModifiers()/void setModifiers(int m)
Gets/sets the modifiers for thisSootMethod .

boolean isConcrete()
Returns true if this method can have a body.

Body getActiveBody()/void setActiveBody(Body b)
Returns the current active body for this method, throws an exception if there is
none/sets the active body to the given body.

Body retrieveActiveBody()
Returns the current active body for this method, or the defaultJimpleBody if there
is none.

5.3.5 Intermediate representations

The three intermediate representations BAF, JIMPLE, GRIMP are referred by the following
three singletons:Baf.v() , Jimple.v() andGrimp.v() . These intermediate repre-
sentation singletons are used to create objects belonging to the intermediate representation,
such asLocal s,Trap s, or expressions. For example,Jimple.v().newLocal("a",
IntType.v()) creates aJimple local variable of type integer.

5.3.6 Body

The implementation of the method is represented by an implementation of theBody inter-
face. There are multiple implementations forBody , one for each intermediate representa-
tion: JimpleBody , BafBody andGrimpBody . There is also aStmtBody interface
which is implemented byJimpleBody andGrimpBody which allows methods to target
both JIMPLE code and GRIMP code simultaneously.

Chain getLocals()
Returns a backed chain of theLocal s in this method.

Chain getTraps()
Returns a backed chain of theTrap s in this method.

PatchingChain getUnits()
Returns a backed patching chain of theUnit s in this method.PatchingChain s
are described in subsection 5.3.15.

76

5.3.7 Local

Instances of theLocal class represent local variables.

String getName()/ void setName(String s)
Gets or sets the name of the local variable.

Type getType()/ void setType(Type t)
Gets or sets the type of the local variable. The types available depend on the particular
intermediate representation used.

Locals are created with the methodnewLocal(String name, Type t) called
on the intermediate representation singleton. For example,Baf.v().newLocal("a",
WordType.v()) creates a BAF local variable named ”a” with typeword.

5.3.8 Trap

Instances of theTrap class represent exception handler traps. At the Java level, exceptions
are represented by try-catch blocks. At the bytecode level, exceptions are represented by
explicit begin/end catch ranges.Trap s represent these explicit ranges. See figure 5.2 for
an illustration.

Unit getBeginUnit(), void setBeginUnit(Unit u)
Gets or sets the beginning unit of the exception trap.

Unit getEndUnit(), void setEndUnit(Unit u)
Gets or sets the ending unit of the exception trap.

Unit getHandlerUnit(), void setHandlerUnit(Unit u)
Gets or sets the handling unit of the exception trap.

SootClass getException(), void setException(SootClass c)
Gets or sets the exception class to trap.

Traps are created with the methodnewTrap(a, b, c, d) called on the intermedi-
ate representation singleton. For example,Baf.v().newTrap(a, b, c, d) creates
a BAF trap which catches exceptions of typed thrown betweena andb with handlerc .

77

public void f()
{

try {
System.out.

println("trying...");
} catch(Exception e)
{

System.out.
println("Exception!");

}
}

public void f()
{

Test r0;
java.io.PrintStream $r1, $r3;
java.lang.Exception $r2;

r0 := @this;

label0:
$r1 = java.lang.System.out;
$r1.println("trying...");

label1:
goto label3;

label2:
$r2 := @caughtexception;
$r3 = java.lang.System.out;
$r3.println("Exception!");

label3:
return;

catch java.lang.Exception from
label0 to label1 with label2;

}

bytecode JIMPLE code

Figure 5.2: An example of an exception trap.

78

5.3.9 Unit

The Unit interface is the most fundamental interface in SOOT as it is used to represent
instructions or statements. In BAF these are stack based instructions such asPushInst
and AddInst , and in JIMPLE the legalUnit s are 3-address code statements such as
AssignStmt andInvokeStmt .

These are created through methods such asnewXXXon the intermediate representation
singleton. For example, on theBaf.v() singleton the following methods can be called:

AddInst newAddInst(Type opType)
Creates a BAF add instruction which deals with operands of typeopType .

DivInst newDivInst(Type opType)
Creates a BAF divide instruction which deals with operands of typeopType .

And on theJimple.v() singleton we can call methods such as:

IdentityStmt newIdentityStmt(Value local, Value identityRef)

Creates an identity statement of the formlocal := identityRef .

AssignStmt newAssignStmt(Value lvalue, Value rvalue)
Creates an assignment statement of the formlvalue = rvalue .

InvokeStmt newInvokeStmt(InvokeExpr e)
Creates an invoke statement for the given invoke expression.

ReturnVoidStmt newReturnVoidStmt()
Creates a return void statement.

TheUnit interface contains the following methods:

boolean branches()
Returns true if thisUnit has the possibility of branching to anotherUnit , such as
is the case withgoto s.

Object clone()
Returns a clone of thisUnit.

boolean fallsThrough()
Returns true if thisUnit has the possibility of falling through to the nextUnit in
theChain , such as is the case with an if-statement or anop statement, as opposed
to agoto statement which does not fall through.

79

List getBoxesPointingToThis()
Returns a list ofUnit Box es containing pointers to thisUnit . Boxes are defined
in subsection 5.3.14.

List getDefBoxes()
Returns a list ofValue Box es which contain definitions of values in thisUnit .

List getUnitBoxes()
Returns the list ofUnit Box es which containsUnit s referenced in thisUnit .

List getUseAndDefBoxes()
Returns a list ofValue Box es which contains both definitions and uses of values in
thisUnit .

List getUseBoxes()
Returns a list ofValue Box es which contains value uses in thisUnit .

List redirectJumpsToThisTo(Unit newLocation)
Redirects all jumps to thisUnit to the givenUnit . This functionality is possible
because backpointers to thisUnit are kept.

Being able to invoke these methods onUnit s without knowing the particular type
of Unit is one of the features of SOOT which allows us to write compact analysis and
optimization code which is also general.

5.3.10 Type

Types in SOOT are represented with the value factory pattern. Different contexts allow
different types to be used. In JIMPLE, we have the following types:

� Base types:

BooleanType.v() , ByteType.v() , CharType.v() , DoubleType.v() ,
FloatType.v() , IntType.v() , LongType.v() , ShortType.v() ,
VoidType.v()

� ArrayType.v(a,b) wherea is the base type of the array andb is the number of
dimensions.3

3Unfortunately, when the types were designedArrayType was not made a sub class ofRefType which
it turns out to have been a mistake. However, since there are many users of SOOT, we have chosen not to
change the API at this time.

80

� RefType.v(a) wherea is the name of the class for which this is a reference to.
Note this is distinct from a reference to aSootClass object.

Parameters of methods and fields can have any of the above types. A local variable in
JIMPLE may only be given basic Java Virtual Machine types; booleans, shorts, bytes, and
chars are not allowed. But there is an additional type called null (NullType.v()) . In
BAF, local variables can only have one of two types:WordType.v() or DoubleWord-
Type.v() .

5.3.11 Modifier

Modifiers are represented by final static integer constants:

� Modifier.ABSTRACT

� Modifier.FINAL

� Modifier.INTERFACE

� Modifier.NATIVE

� Modifier.PRIVATE

� Modifier.PROTECTED

� Modifier.PUBLIC

� Modifier.STATIC

� Modifier.SYNCHRONIZED

� Modifier.TRANSIENT

� Modifier.VOLATILE

Modifiers can be merged together by ”or”ing their values.

81

5.3.12 Value

TheValue is an interface which is implemented by objects which represent productions
or leaves in the grammar of the intermediate representation, and which are notUnit s.
In JIMPLE, some examples ofValue s areConstant s and subclasses ofExpr such as
AddExpr which represent the addition of two differentValue s. Instances of theValue
can be created through the singletonJimple.v() :

newParameterRef(Type type, int n)
Constructs a parameter reference value of the given type with the given argument
number, where the arguments are numbered starting at 0.

newStaticFieldRef(SootField f)
Constructs a static field reference value to the given field.

newVirtualInvokeExpr(Local base, SootMethod method, List args)

Constructs a virtual invoke expression on the given receiver to the given method
with the given arguments.

newVirtualInvokeExpr(Local base, SootMethod m, Value arg)
Constructs a virtual invoke expression on the given receiver to the given method with
a single parameter.

newAddExpr(Value leftOp, Value rightOp)
Constructs an add expression value for the given values.

The following methods are provided for allValue s:

Object clone()
Returns a clone of thisValue .

Type getType()
Returns the SOOT type for thisValue .

List getUseBoxes()
Returns a list ofValueBox es containing the values used in thisValue .

Note that there is no method namedgetDefBoxes() for Value . This is because
Value s never have any definition side effects, unlikeUnit s.

82

5.3.13 Constants

Constants are represented with the value factory pattern. These implement theValue
interface.

IntConstant.v(a)

FloatConstant.v(a)

DoubleConstant.v(a)

LongConstant.v(a)

NullConstant.v()

StringConstant.v(a) .

5.3.14 Box

One of the fundamental concepts in SOOT is the notion of theBox. There are two types
of Boxes: UnitBox andValueBox . These containUnit s andValue s respectively.
Whenever aUnit , Value , or any other object contains a reference to aValue or aUnit
it is done so indirectly through aBox of the appropriate type. Figure 5.3 demonstrates this
explicitly.

AssignStmt

lhs: ValueBox rhs: ValueBox

x y

InvokeStmt

base: ValueBox

x1 x2r
Local Local Local Local Local

arg1: ValueBox arg2: Value Box

Figure 5.3: A layer of boxes is used between the containers and theValue s. Boxes provide
a de-referencing mechanism.

83

Boxes serve two fundamental roles.

The first role is to provide a de-referencing mechanism for references toValue s and
Unit s. A Box is essentially a pointer. We have noticed during the development of SOOT

that it is convenient to be able to inspect and change references to otherValue s andUnit s
without knowing where they occur in aBody , or in aUnit . Perhaps the simplest exam-
ple occurs when performing constant propagation in JIMPLE. In constant propagation, if
there is a use of a local variable for which only one definition exists and that definition is a
constant, then we can replace the use of the local with a reference to the constant. Clearly,
we do not care where the use occurs: it can occur in aInvokeExpr or aAssignStmt
and in both cases the constant propagation should take place. To facilitate these construct
independent transformations or inspections we added methods to theBody , Value , and
Unit classes such asgetUseBoxes() which returns a list ofValueBox es which con-
tain Value s which are considered to be used as opposed to defined. Similarly,Body
andUnit have a method namedgetUnitBoxes() which returns a list ofBoxes which
contains references to otherUnit s. These are extremely useful when performing code
migration from one method to another, for example, in order to preserve the consistency of
the branches amongst theUnit s.

The second role is to enforce the grammar on the actual object representations. For ex-
ample, in JIMPLE the arguments of anInvokeExpr can only beLocal s orConstant s.
Changing the arguments is done through a method on theInvokeExpr which in turn at-
tempts to change the contents of theValueBox es which represent the arguments. Since
theValueBox es in this case areImmediateBox es, they will only acceptConstant s
or Local s (and throw an exception if an object of a different type is inserted.) Note that
by changing theValueBox to something more flexible which acceptsExpr s as well is
how we implement theInvokeExpr for Grimp .

5.3.15 Patching Chains

TheUnit s in aBody are contained in aPatchingChain , a subclass ofChain . The
PatchingChain has some special properties which are desired when implementing
compiler transformations. In particular, a common operation that one performs on a col-
lection ofUnit s is to delete a particularUnit . But what happens to all theUnit s which
are referring to thisUnit ? They must somehow be patched in order to refer to the element
which comes after theUnit removed. Similarly, one often wishes to insert aUnit a be-
fore anotherUnit b, and that the newly insertedUnit is in the same basic block. This
is achieved by changing all references ofb to a. ThePatchingChain takes care of all
these details automatically.

84

5.3.16 Packages and Toolkits

To structure SOOT, the API has been split into several packages. There is at least one pack-
age per intermediate representation, and code containing transformations or optimizations
is usually stored in a toolkit package. Here is a list of the current packages available:

soot
Base SOOT classes, shared by different intermediate representations.

soot.baf
Public classes for the BAF intermediate representation.

soot.baf.internal
Internal implementation-specific classes for the BAF intermediate representation.

soot.baf.toolkits.base
A toolkit to optimize the BAF IR.

soot.coffi
Contains classes from the Coffi tool, by Clark Verbrugge.

soot.grimp
Public classes for the GRIMP intermediate representation.

soot.grimp.internal
Internal implementation-specific classes for the GRIMP intermediate representation.

soot.grimp.toolkits.base
A toolkit to optimize the GRIMP IR.

soot.jimple
Public classes for the JIMPLE intermediate representation.

soot.jimple.internal
Internal implementation-specific classes for the JIMPLE intermediate representation.

soot.jimple.parser
An interface to the JIMPLE parser.

soot.jimple.toolkits.base
A toolkit to optimize the JIMPLE IR.

soot.jimple.toolkits.invoke
A toolkit to deal with JIMPLE and invoke statements.

85

soot.jimple.toolkits.scalar
A toolkit for scalar optimization of JIMPLE .

soot.jimple.toolkits.typing
Implements a typing algorithm for JIMPLE .

soot.toolkits.graph
Toolkit to produce and manipulate various types of control flow graphs.

soot.toolkits.scalar
A number of scalar optimizations which are not intermediate representation specific
and the flow analysis framework.

soot.util
Generally useful utility classes for SOOT.

The complete API for these can be found online on the SOOT website[22].

5.3.17 Analyses and Transformations

As much as possible analyses and transformations are represented by singleton classes.
This occurs more frequently for transformations than for analyses. In particular, transfor-
mations for theBody must extend theBodyTransformer class. And transformations of
the entireScene (all the classes, fields and methods) extend theSceneTransformer
class. Representing transformations in this way allows them to be referred to in a way
which is useful for enabling and disabling specific optimizations.

5.3.18 Graph representation of Body

SOOT provides a basic infrastructure for inspecting and modifyingChain s of Unit s in
the form of control flow graphs. There are two types of graphs, theUnitGraph and the
BlockGraph . The latter represents control flow graphs as they are usually represented
in traditional compiler textbooks[2]. TheBlockGraph contains nodes calledBlocks
which are basic blocks. TheUnitGraph , however, is a control flow graph in which in-
dividual nodes areUnits . This has advantages and disadvantages. One advantage is that
it simplifies the control flow graphs; there is no notion of a basic block. This simplifies
implementing traditional and nontraditional fixed point data flow analyses. The main dis-
advantage, however, is that without basic blocks these data flow analyses take longer to
run because basic blocks normally provide short cuts by summing the effect of multiple
instructions.

86

Both theUnitGraph and theBlockGraph implement theDirectedGraph inter-
face. This allows the development of methods which can operate on arbitraryDirect-
edGraphs , be theyUnit or Block based. For example, there are methods which return
pseudo-topological orderings onDirectedGraph s which are extremely useful for iter-
ating on theBlock s orUnit s in an efficient manner.

UnitGraph andBlockGraph are in fact abstract classes. The concrete subclasses
that may be instantiated areCompleteUnitGraph , BriefUnitGraph , Complete-
BlockGraph andBriefBlockGraph . The words complete and brief relate to how the
exception edges are handled. In the brief forms of the graphs, exceptions are practically
ignored, as there are no edges between anyUnit s and exception handlers. The excep-
tion handlerUnit s are made to be heads of the graphs in this form.Complete graphs
on the other hand include these edges. For most analyses the complete form is required.
For example, computing ud/du chain information with a brief graph will yield incorrect
information, as the uses of local variables within exception handlers will be ignored.

Note that most of the implementations of these graphs provide only static, snapshot
views of theUnit s. It is not possible to modify the graph directly, or make a modification
in the Chain of Unit s and have that change be reflected in the graph. This means that
modifications in theChain requires a regeneration of the active graphs for them to be
correct. The only exception to this is theBlockGraph . If theBlock objects are modified
directly, the modifications will trickle down to theChain of Unit s. So it is possible in
this case to modify the basic blocks of the graph and maintain a correct view.

5.4 Usage examples

5.4.1 Creating a hello world program

This first example on how to use SOOT consists of creating a hello world program from
scratch. Executing the program will create a class called ”HelloWorld”, which in turn,
when executed, will print ”Hello world!”.

The code is first given, and then each numbered step is explained. The basic idea is to
create an empty class, create an empty body, and then create the JIMPLE code for that body.

public class Main
{

public static void main(String[] args)
{

SootClass sClass;
SootMethod method;

// Create the class
(1)| Scene.v().loadClassAndSupport("java.lang.Object");

// Declare ’public class HelloWorld’
(2)| sClass = new SootClass("HelloWorld", Modifier.PUBLIC);

87

// ’extends Object’
(3)| sClass.setSuperclass(Scene.v().getSootClass("java.lang.Object"));

| Scene.v().addClass(sClass);

// Create the method, public static void main(String[])
| method = new SootMethod("main",

(4)| Arrays.asList(new Type[] {ArrayType.v(RefType.v("java.lang.String"), 1)}),
| VoidType.v(), Modifier.PUBLIC | Modifier.STATIC);
|
| sClass.addMethod(method);

// Create the method body
{

// create empty body
(5)| JimpleBody body = Jimple.v().newBody(method);

(6)| method.setActiveBody(body);
Chain units = body.getUnits();
Local arg, tmpRef;

// Add some locals, java.lang.String[] l0
(7)| arg = Jimple.v().newLocal("l0", ArrayType.v(RefType.v("java.lang.String"), 1));

body.getLocals().add(arg);

(8)| // Add locals, java.io.printStream tmpRef
tmpRef = Jimple.v().newLocal("tmpRef", RefType.v("java.io.PrintStream"));
body.getLocals().add(tmpRef);

(9)| // add "l0 = @parameter0"
units.add(Jimple.v().newIdentityStmt(arg,

Jimple.v().newParameterRef(ArrayType.v(RefType.v("java.lang.String"), 1),
0)));

(10) // add "tmpRef = java.lang.System.out"
units.add(Jimple.v().newAssignStmt(tmpRef, Jimple.v().newStaticFieldRef(

Scene.v().getField("<java.lang.System: java.io.PrintStream out>"))));

// insert "tmpRef.println("Hello world!")"
{

(11)| SootMethod toCall = Scene.v().getMethod(
| "<java.io.PrintStream: void println(java.lang.String)>");

(12)| units.add(Jimple.v().newInvokeStmt(Jimple.v().newVirtualInvokeExpr(tmpRef,
| toCall, StringConstant.v("Hello world!"))));

}

// insert "return"
(13)| units.add(Jimple.v().newReturnVoidStmt());

}

(14)| sClass.write();
}

}

Walkthrough of the code

1. The first step is load the classjava.lang.Object into theScene . This step
loads all the fields and methods of the class, as well as all the objects needed to load
this class, transitively. This is done in order to reference thejava.lang.Object
class later on.

2. Creates a new public class with the name ”HelloWorld”.

88

3. Makes the classHelloWorld extendjava.lang.Object , and adds the class to
theScene . All classes should be added to theScene once created. Note how we re-
trieve the classjava.lang.Object with a call toScene.v().getSootClass
("java.lang.Object") .

4. Create a methodvoid main(String[] args) for this class. Note how the
ArrayType is composed of aRefType and a dimension count, and that the mod-
ifiers are combined together by ORing them together.

5. Creates a new emptyJimpleBody . There are no locals, no units and no traps at the
moment.

6. Sets the body that was created to be the active body of this method. There can only
be one active body.

7. Adds a local of typejava.lang.String[] namedl0 . Note how the local cre-
ated must be explicitly added to theChain of locals returned by
body.getLocals() .

8. Adds a temporary localjava.io.PrintStream tmpRef .

9. Creates and adds an identity statement of the form

l0 := @parameter0: java.lang.String[]

This indicates thatl0 is the local variable which corresponds to the first argument
passed to this method.

10. Creates an assignment statement ofjava.lang.System.out to the local vari-
abletmpRef . Note how the field is accessed through its absolute signature in the
Scene. The signature format is straightforward: the class name containing the
field, followed by the type of the field and then the name of the field. This assign-
ment statement is then added to the chain of units.

11. Gets the method class corresponding to the given method signature. Note how it is
accessed through its absolute signature in theScene.

12. Creates a call to the above method, with as argument the string constant ”Hello
World!”.

13. Creates and adds a return void statement to theChain of Unit s.

14. Writes the classfile to a file called ”HelloWorld.class”.

89

5.4.2 Implementing live variables analysis

This second usage example consists of implementing the standardlive variables analysis
using the SOOT framework.

To implement this analysis, we extend theBackwardFlowAnalysis class which
is provided with SOOT. Then it suffices to provide a constructor for the analysis and
to override four methods:newInitialFlow(), flowThrough(), merge() and
copy() . There is also a fifth method which can generally be overriden:customizeIni-
tialFlowGraph() . Although we do not use this method here, this method can be used
to customize the initial flow graph so that, for example, some nodes start with different
initial flow nodes.

We first provide the code, then we provide a walkthrough describing each step in detail.

class SimpleLiveLocalsAnalysis extends BackwardFlowAnalysis
{

FlowSet emptySet;
Map unitToGenerateSet;
Map unitToPreserveSet;

SimpleLiveLocalsAnalysis(UnitGraph g)
{

super(g);

// Generate list of locals and empty set
{

Chain locals = g.getBody().getLocals();
(1)| FlowUniverse localUniverse = new FlowUniverse(locals.toArray());

(2)| emptySet = new ArrayPackedSet(localUniverse);
}

| // Create preserve sets.
| {
| unitToPreserveSet = new HashMap(g.size() * 2 + 1, 0.7f);
|
| Iterator unitIt = g.iterator();
|
| while(unitIt.hasNext())
| {
| Unit s = (Unit) unitIt.next();
|

(3)| (a)| BoundedFlowSet killSet = (BoundedFlowSet) emptySet.clone();
|
| | Iterator boxIt = s.getDefBoxes().iterator();
| |
| | while(boxIt.hasNext())
| | {
| (b)| ValueBox box = (ValueBox) boxIt.next();
| |
| | if(box.getValue() instanceof Local)
| | killSet.add(box.getValue(), killSet);
| | }
|
| | // Store complement
| (c)| killSet.complement(killSet);
| | unitToPreserveSet.put(s, killSet);
| }
| }

90

| // Create generate sets
| {
| unitToGenerateSet = new HashMap(g.size() * 2 + 1, 0.7f);
|
| Iterator unitIt = g.iterator();
|
| while(unitIt.hasNext())
| {
| Unit s = (Unit) unitIt.next();
|
| (a)| FlowSet genSet = (FlowSet) emptySet.clone();
|

(4)| | Iterator boxIt = s.getUseBoxes().iterator();
| |
| | while(boxIt.hasNext())
| | {
| (b)| ValueBox box = (ValueBox) boxIt.next();
| |
| | if(box.getValue() instanceof Local)
| | genSet.add(box.getValue(), genSet);
| | }
|
| (c)| unitToGenerateSet.put(s, genSet);
| }

}

(5)| doAnalysis();
}

|protected Object newInitialFlow()
|{

(6)| return emptySet.clone();
|}

|protected void flowThrough(Object inValue, Directed unit, Object outValue)
|{
| FlowSet in = (FlowSet) inValue, out = (FlowSet) outValue;
|
| // Perform kill

(7)| in.intersection((FlowSet) unitToPreserveSet.get(unit), out);
|
| // Perform generation
| out.union((FlowSet) unitToGenerateSet.get(unit), out);
|}

|protected void merge(Object in1, Object in2, Object out)
|{
| FlowSet inSet1 = (FlowSet) in1,
| inSet2 = (FlowSet) in2;

(8)|
| FlowSet outSet = (FlowSet) out;
|
| inSet1.union(inSet2, outSet);
|}

|protected void copy(Object source, Object dest)
|{
| FlowSet sourceSet = (FlowSet) source,

(9)| destSet = (FlowSet) dest;
|
| sourceSet.copy(destSet);
|}

}

91

New classes

This subsection describes the classes which are specific to this example and are not de-
scribed elsewhere in this chapter.

FlowSet
The data which flows around the flow analysis framework should (although is not
required to) implement theFlowSet interface. TheFlowSet interface imple-
ments methods such asunion() , intersection() , isEmpty() and so forth.
There are two standard implementations ofFlowSet : ArrayPackedSet and
ArraySparseSet. The latter implements the set using a list, whereas the for-
mer implements the set using a bit-data vector.

BoundedFlowSet
A BoundedFlowSet is a specialFlowSet which is bounded, in the sense that
the flow set’s domain is restricted to aFlowUniverse set which is given upon the
creation of the set.BoundedFlowSet s are useful because the complement method
can be used.

FlowUniverse
Objects of this class are arrays of elements which are given toBoundedFlowSet s
upon their creation. They are used to specify the domain of theBoundedFlowSet s.

Walkthrough of the code

1. The first step is to define theFlowUniverse to be the set of local variables in this
Body .

2. Create an empty set for the givenFlowUniverse using theArrayPackedSet
representation which is essentially a regular bit-vector representation. Note thatAr-
rayPackedSet is aBoundedFlowSet . ArraySparseSet is the other repre-
sentation for the bit-vector data, but it is unsuitable because it is unbounded.

3. Note that normally for the live variable flow analysis, we compute in’s and out’s as
follows:

out(s) = (in(s)nkill(s)) [gen(s)

We use the following equation instead:

out(s) = (in(s) \ preserve(s)) [gen(s)

which simply uses apreserve setinstead of akill set. This block of code computes
the preserve set for each statement in advance.

92

(a) Generate a new empty set.

(b) Iterate over the list of definitions for this unit. For each definition, add that local
to the kill set. This is done by retrieving thedefBoxes and then inspecting
eachdefBox for a local.

(c) Store the complement of the kill set as the preserve set for this unit.

4. The next step is to create the generate set for each statement.

(a) Create an empty set.

(b) Iterate over the use boxes in this statement. If the use box contains a local, then
add the local to the generate set.

(c) Store the resulting set as the generate set for this statement.

5. Do the flow analysis which iterates until a fixed point is achieved. This calls the four
following methods.

6. This method returns a brand new empty set. This is used to decorate each program
point with an initial flow set. The methodcustomizeInitialFlowGraph can
be used if different initial flow sets must be put on each program point.

7. Perform the effect of flowing aninValue throughUnit . Store the result inout-
Value . In our case this means performing an intersection of thein set with the
preserve set and then a union with the generate set.

8. Merge the flowsetsin1 with in2 and store the result inout . In our case, for live
variable analysis, we use union.

9. Implement a simple copy fromsource to dest .

5.4.3 Implementing constant propagation

This example implements a simple constant propagator for SOOT using the the results of the
SimpleLocalDefs flow analysis provided with SOOT. Note that this example is self-
contained and can be invoked to perform the transformation through itsmain method.

public class Main
{

public static void main(String[] args)
{

if(args.length == 0)
{

System.out.println("Syntax: java Main <classfile> [soot options]");
System.exit(0);

}

93

(1) | Scene.v().getPack("jtp").add(new Transform("jtp.propagator", Propagator.v()));
soot.Main.main(args);

}
}

class Propagator extends BodyTransformer
{

|private static Propagator instance = new Propagator();
|private Propagator() {}

(2)|
|public static Propagator v() { return instance; }

static String oldPath;
(3)|protected void internalTransform(Body b, String phaseName, Map options)

{
if (soot.Main.isVerbose)

System.out.println("[" + b.getMethod().getName() + "] Propagating constants...");

JimpleBody body = (JimpleBody) b;

| Chain units = body.getUnits();
(4)| CompleteUnitGraph stmtGraph = new CompleteUnitGraph(body);

|
| LocalDefs localDefs = new SimpleLocalDefs(stmtGraph);

Iterator stmtIt = units.iterator();

| while(stmtIt.hasNext())
| {
| Stmt stmt = (Stmt) stmtIt.next();

(5)| Iterator useBoxIt = stmt.getUseBoxes().iterator();
|
| while(useBoxIt.hasNext())
| {
| ValueBox useBox = (ValueBox) useBoxIt.next();
|
| if(useBox.getValue() instanceof Local)

{
| Local l = (Local) useBox.getValue();
| List defsOfUse = localDefs.getDefsOfAt(l, stmt);

(6)|
| if(defsOfUse.size() == 1)
| {

DefinitionStmt def = (DefinitionStmt)
defsOfUse.get(0);

(7) if(def.getRightOp() instanceof Constant)
{

(8) if(useBox.canContainValue(def.getRightOp()))
(9) useBox.setValue(def.getRightOp());

}
}

}
}

}
}

}

Walkthrough of the code

1. This hooks a call to the propagator into SOOT’s list of transformations. The call
Scene.v().getPack("jtp") returns thePack which corresponds to the JIM -
PLE transformation pack (which is a list of all the transformations performed on JIM -
PLE). Other packs arejop and wjtp which stand for JIMPLE optimization pack and
the whole JIMPLE transformation pack. Then we add aTransform instance to this

94

pack which is essentially a name for the transformation and the transformer class
implementing theBodyTransformer interface.

2. This code implements the singleton functionality for the class.

3. This is the entry point method which contains the body of the transformation.

4. Retrieve the list of units for this body, build theCompleteUnitGraph and the
SimpleLocalDefs object which contains use-def and def-use information.

5. Iterate over all the uses in the program, looking for uses of local variables.

6. Get the definition for that local variable. If only one definition exists, then do step 7.

7. If the right hand side of the definition is a constant.

8. If the use box can contain a constant.

9. Set the contents of the use box to the right hand side of the definition, that is, the
constant.

5.4.4 Instrumenting a classfile

This example instruments the given application so that when it is executed, it outputs the
number of gotos that were dynamically executed. The general idea is to:

1. Insert a counter in the main class calledgotoCount .

2. Insert counter incrementors before each goto statement present in the JIMPLE code.

3. Insert a print of the counter at the end of themainClass , or before any call to
System.exit() .

public class Main
{

public static void main(String[] args)
{

if(args.length == 0)
{

System.out.println("Syntax: java Main --app <main_classfile> [soot "
+ "options]");

System.exit(0);
}

(1)| Scene.v().getPack("jtp").add(new Transform("jtp.instrumenter",
| GotoInstrumenter.v()));

soot.Main.main(args);
}

}

class GotoInstrumenter extends BodyTransformer

95

{
|private static GotoInstrumenter instance = new GotoInstrumenter();

(2)|private GotoInstrumenter() {}
|public static GotoInstrumenter v() { return instance; }

public String getDeclaredOptions() { return super.getDeclaredOptions(); }

private boolean addedFieldToMainClassAndLoadedPrintStream = false;
private SootClass javaIoPrintStream;

|private Local addTmpRef(Body body)
|{

(3)| Local tmpRef = Jimple.v().newLocal("tmpRef", RefType.v("java.io.PrintStream"));
| body.getLocals().add(tmpRef);
| return tmpRef;
|}

|private Local addTmpLong(Body body)
|{

(4)| Local tmpLong = Jimple.v().newLocal("tmpLong", LongType.v());
| body.getLocals().add(tmpLong);
| return tmpLong;
|}

private void addStmtsToBefore(Chain units, Stmt s, SootField gotoCounter, Local tmpRef,
Local tmpLong)

{
// insert "tmpRef = java.lang.System.out;"

| units.insertBefore(Jimple.v().newAssignStmt(
| tmpRef, Jimple.v().newStaticFieldRef(
| Scene.v().getField("<java.lang.System: java.io.PrintStream out>"))), s);
|
| // insert "tmpLong = gotoCounter;"

(5)| units.insertBefore(Jimple.v().newAssignStmt(tmpLong,
| Jimple.v().newStaticFieldRef(gotoCounter)), s);
|
| // insert "tmpRef.println(tmpLong);"
| SootMethod toCall = javaIoPrintStream.getMethod("void println(long)");
| units.insertBefore(Jimple.v().newInvokeStmt(
| Jimple.v().newVirtualInvokeExpr(tmpRef, toCall, tmpLong)), s);

}

(6) protected void internalTransform(Body body, String phaseName, Map options)
{

SootClass sClass = body.getMethod().getDeclaringClass();
SootField gotoCounter = null;
boolean addedLocals = false;
Local tmpRef = null, tmpLong = null;
Chain units = body.getUnits();

if (!Scene.v().getMainClass().
declaresMethod("void main(java.lang.String[])"))

throw new RuntimeException("couldn’t find main() in mainClass");

(7)| if (addedFieldToMainClassAndLoadedPrintStream)
| gotoCounter = Scene.v().getMainClass().getFieldByName("gotoCount");

else
{

// Add gotoCounter field
| gotoCounter = new SootField("gotoCount", LongType.v(),
| Modifier.STATIC);
| Scene.v().getMainClass().addField(gotoCounter);

(8)|
| javaIoPrintStream = Scene.v().getSootClass("java.io.PrintStream");
| addedFieldToMainClassAndLoadedPrintStream = true;

}

// Add code to increase goto counter each time a goto is encountered
{

boolean isMainMethod = body.getMethod().getSubSignature().equals("void " +

96

"main(java.lang.String[])");

Local tmpLocal = Jimple.v().newLocal("tmp", LongType.v());
body.getLocals().add(tmpLocal);

| Iterator stmtIt = units.snapshotIterator();
|
| while(stmtIt.hasNext())

(9)| {
| Stmt s = (Stmt) stmtIt.next();
|

if(s instanceof GotoStmt)
{

| AssignStmt toAdd1 = Jimple.v().newAssignStmt(tmpLocal,
| Jimple.v().newStaticFieldRef(gotoCounter));
| AssignStmt toAdd2 = Jimple.v().newAssignStmt(tmpLocal,
| Jimple.v().newAddExpr(tmpLocal, LongConstant.v(1L)));
| AssignStmt toAdd3 = Jimple.v().newAssignStmt(Jimple.v().
| newStaticFieldRef(gotoCounter), tmpLocal);

(9a)|
| // insert "tmpLocal = gotoCounter;"
| units.insertBefore(toAdd1, s);
|
| // insert "tmpLocal = tmpLocal + 1L;"
| units.insertBefore(toAdd2, s);
|
| // insert "gotoCounter = tmpLocal;"
| units.insertBefore(toAdd3, s);

}
else if (s instanceof InvokeStmt)

| {
| InvokeExpr iexpr = (InvokeExpr) ((InvokeStmt)s).getInvokeExpr();
| if (iexpr instanceof StaticInvokeExpr)
| {
| SootMethod target = ((StaticInvokeExpr)iexpr).getMethod();
|
| if (target.getSignature().equals("<java.lang.System: void " +
| "exit(int)>"))

(9b)| {
| if (!addedLocals)
| {
| tmpRef = addTmpRef(body); tmpLong = addTmpLong(body);
| addedLocals = true;
| }
| addStmtsToBefore(units, s, gotoCounter, tmpRef, tmpLong);
| }
| }

}
| else if (isMainMethod && (s instanceof ReturnStmt || s instanceof
| ReturnVoidStmt))
| {
| if (!addedLocals)
| {

(9c)| tmpRef = addTmpRef(body); tmpLong = addTmpLong(body);
| addedLocals = true;
| }
| addStmtsToBefore(units, s, gotoCounter, tmpRef, tmpLong);
| }

}
}

}
}

97

Walkthrough of the code

1. This hooks a call to the propagator into SOOT’s list of transformations. The call
Scene.v().getPack("jtp") returns thePack which corresponds to the JIM -
PLE transformation pack (which is a list of all the transformations performed on JIM -
PLE). Then we add aTransform instance to this pack which is essentially a name
for the transformation and the transformer class implementing theBodyTrans-
former interface.

2. These fields and methods implement the singleton functionality.

3. Adds a temporary reference local variable of typejava.io.PrintStream to the
given body.

4. Adds a temporary long local variable of typeLongType to the given body.

5. Inserts the following section of code befores :

tmpRef = java.lang.System.out;
tmpLong = gotoCount;
tmpRef.println(tmpLong);

This is used to just print out the contents of the goto counter.

6. This is the entry method for the transformation.

7. If the goto counter has been already added to the PrintStream class, then retrieve it.

8. Else, create a field calledgotoCount of type long, and add it to the main class.

9. Iterate over all the statements in the class. Note that a snapshot iterator is used to
allow modifications to theChain of units while iterating.

(a) If the statement is a goto statement, then insert the following code before the
goto, to increment the counter:

tmpLocal = gotoCounter;
tmpLocal = tmpLocal + 1L;
gotoCounter = tmpLocal;

(b) If the statement is a static invoke to the methodSystem.exit(int) then
call addStmtsToBefore which inserts a print of the goto counter.

(c) If the statement is the return void of the main method then calladdStmtsTo-
Before which inserts a print of the goto counter.

98

5.4.5 Evaluating a Scene

This is a simple example which counts the number of classfiles, methods and fields in
the activeScene . The idea is to iterate over all of these objects and increment counts
whenever appropriate.

public class Main
{

public static void main(String[] args)
{

if(args.length == 0)
{

System.out.println("Syntax: java Main --app <main_classfile> [soot options]");
System.exit(0);

}

(1)| Scene.v().getPack("wjtp").add(new Transform("wjtp.profiler", Evaluator.v()));
soot.Main.main(args);

}
}

class Evaluator extends SceneTransformer
{

|private static Evaluator instance = new Evaluator();
(2)|private Evaluator() {}

|static String oldPath;

public static Evaluator v() { return instance; }

(3)|protected void internalTransform(String phaseName, Map options)
{

long classCount = 0;
long stmtCount = 0;
long methodCount = 0;

// Pre-process each class, constructing the invokeToNumberMap
{

| Iterator classIt = Scene.v().getApplicationClasses().iterator();
|
| while(classIt.hasNext())

(4)| {
| SootClass sClass = (SootClass) classIt.next();
| classCount++;

| Iterator methodIt = sClass.getMethods().iterator();
|

(5)| while(methodIt.hasNext())
| {
| SootMethod m = (SootMethod) methodIt.next();
| methodCount++;

(6)| if(!m.isConcrete())
| continue;

(7)| JimpleBody body = (JimpleBody) m.retrieveActiveBody();
| stmtCount += body.getUnits().size();

}
}

}

DecimalFormat format = new DecimalFormat("0.0");

System.out.println("Classes: \t" + classCount);
System.out.println("Methods: \t" + methodCount + " (" +

format.format((double) methodCount / classCount) + " methods/class)");
System.out.println("Stmts: \t" + stmtCount + " (" +

format.format((double) stmtCount / methodCount) + " units/methods)");
System.exit(0);

99

}
}

Walkthrough of the code

1. This hooks a call to the propagator into SOOT’s list of transformations. The call
Scene.v().getPack("wjtp") returns thePack which corresponds to the
JIMPLE transformation pack (which is a list of all the whole program transformations
performed on JIMPLE). Then we add aTransform instance to this pack which is
essentially a name for the transformation and the transformer class implementing the
BodyTransformer interface.

2. Implements the singleton functionality for this interface.

3. This is the entry point method which contains the body of the analysis.

4. Iterate over the application classes in theScene .

5. Iterate over the methods in each class.

6. If the method has no body, skip this method.

7. Retrieve the active body for this method, and increase the statement count by the size
of theUnit Chain in theBody .

5.4.6 Summary

This chapter presented a complete overview of the basic SOOT Application Programming
Interface (API). Five example programs built using the SOOT framework were presented
and walkthroughs were given to describe them.

The current and complete API can be found online on our web site[22].

100

Chapter 6

Experiences

6.1 The Curse of Non-Determinism

While developing SOOT, we encountered the interesting phenomenon of nondeterministic
optimization. In the first version of SOOT, the same program would be fed into SOOT

twice, and two different optimized versions would be produced. This is undesirable for
several reasons. First, it makes it very difficult to debug SOOT because each time you run it
on a test program different results are produced. Second, because the optimized programs
produced by SOOT are not always the same, it makes it difficult to reproduce results and to
understand the effect of the optimizations. For example, one technique which is commonly
used to isolate the effect of an optimization is to turn it off and note the slowdown. Having
any of the optimizations behave nondeterministicly invalidates this common technique.
Thus it is quite clear that nondeterminism must be avoided.

So where is the nondeterminism being introduced? Although we are not using random
numbers explicitly, they are being used implicitly when using ajava.util.Hashtable
without overriding thehashCode() method. The default implementation for this method
is to provide a hash code based on the actual memory location of theObject . Although
this provides a great hash code, it is clear that on every execution of SOOT the hash tables
will be different. This difference has a noticeable effect when one iterates through the hash
table, because the elements are returned following the natural order of the table.

To avoid nondeterminism one must simply avoid iterating on a hash table, or provide
a deterministichashCode() method for the objects being inserted into the hash table.
Sometimes the latter is impossible without producing a hash method with several collisions.
In this case, if you absolutely need some sort of set which has constant time insertion,
removal, and queries, and produces deterministic enumerations then your best bet is the
Chain described in subsection 5.2.2. These techniques were used in the more recent
versions of SOOT and the framework is deterministic.

101

6.2 Sentinel Test Suite

We have coined the termsentinel test suiteto denote a suite of programs which are used
to validate the correctness of our compiler framework. Due to the complexity of compiler
work, it is essential to perform regular tests on this test suite to ensure that the compiler op-
erates properly, and that we have not introduced bugs with the latest modification to SOOT.
Currently the sentinel test suite contains 266 different programs of varying complexity.
Each time a substantial bug is found in our framework, the program which produces the
bug is isolated and shrunk to its smallest size and added to the sentinel test suite.

102

Chapter 7

Conclusions and Future Work

We presented SOOT, a framework which simplifies the task of optimizing Java bytecode.
The contributions of this thesis are the design, implementation and experimental validation
of this framework. The implementation of the framework consists of roughly 80,000 lines
of code.

Java bytecode is a poor choice of intermediate representation for the implementation of
optimizations because it is stack based. The stack implicitly participates in every compu-
tation, expressions are not explicit and they can be arbitrarily large. Even simple optimiza-
tions and transformations become difficult to design and implement in this form. SOOT

rectifies this situation by providing three intermediate representations:

1. BAF, a streamlined representation of bytecode which is simple to manipulate. This is
used to simplify the development of analyses and transformations which absolutely
must be performed on stack code. Unlike bytecode, BAF does not require a JSR-
equivalent instruction or a constant pool. Further, BAF has explicit local variables,
exception ranges and typed instructions.

2. JIMPLE, a typed 3-address code intermediate representation suitable for optimiza-
tion. It is our ideal form for optimization because it is compact, stackless, consists of
3-address code, and the local variables are typed and named.

3. GRIMP, an aggregated version of JIMPLE suitable for decompilation and for reading.
It allows trees to be constructed as opposed to the flat expressions present in JIMPLE.

SOOT also provides a set of transformations between these intermediate representa-
tions: from bytecode to JIMPLE via one path and JIMPLE to bytecode via two different
paths (one via BAF, and the other via GRIMP).

Extensive results of two experiments were given. The first experiment validated that
Java bytecode can be converted to JIMPLE code and back to bytecode without a loss of

103

performance. Two methods of producing bytecode from JIMPLE code were examined,
with the BAF method being the most effective. The second experiment showed that the
effect of applying optimizations on JIMPLE code can in fact yield a speed-up, and that the
framework is a valid approach to optimizing bytecode. We are encouraged by our results
so far, and we have found that the SOOT API has been effective for a variety of tasks
including the devirtualization of methods using variable type analysis, decompilation, and
the optimizations presented in this thesis, as up to 38% speed-up is achieved.

SOOT provides an API which we believe is useable, extendable and general for imple-
menting analyses and optimizations. It is widely being used at McGill University for most
of our ongoing compiler projects. It was released as publicly available code in March 2000
and it has also been adopted by several research groups at other institutions. We hope that
it will be adopted by more research groups which will enable the widespread sharing of
code and experimental results to further the state of research on optimizing Java bytecode.

We are actively engaged in further work on SOOT on many fronts. We have been explor-
ing additional optimizations, such as loop invariant removal and common sub-expression
elimination with side effect information. We have also begun researching the use of at-
tributes with stack allocation and array bounds check elimination, as well as investigating
the optimization of SOOT itself.

104

Bibliography

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and
James M. Stichnoth. Fast and effective code generation in a just-in-time Java com-
piler. ACM SIGPLAN Notices, 33(5):280–290, May 1998.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers Principles, Techniques
and Tools. Addison-Wesley, 1986.

[3] Geoff A. Cohen, Jeffrey S. Chase, and David L. Kaminsky. Automatic program trans-
formation with JOIE. InProceedings of the USENIX 1998 Annual Technical Confer-
ence, pages 167–178, Berkeley, USA, June 15–19 1998. USENIX Association.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K. Wegman, and F. Kenneth
Zadeck. An efficient method of computing static single assignment form. In16th
Annual ACM Symposium on Principles of Programming Languages, pages 25–35,
1989.

[5] DashOPro.
. http://www.preemptive.com/products.html.

[6] Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers.
VORTEX: An optimizing compiler for object-oriented languages. InProceedings
OOPSLA ’96 Conference on Object-Oriented Programming Systems, Languages, and
Applications, volume 31 ofACM SIGPLAN Notices, pages 83–100. ACM, October
1996.

[7] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Walter G. Olthoff, editor,
ECOOP’95—Object-Oriented Programming, 9th European Conference, volume 952
of Lecture Notes in Computer Science, pages 77–101,̊Aarhus, Denmark, 7–11 August
1995. Springer.

[8] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David
Tarditi. Marmot: an Optimizing Compiler for Java. Microsoft technical report, Mi-
crosoft Research, October 1998.

105

[9] Flex
. http://www.flex-compiler.lcs.mit.edu/.

[10] Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference
of static types for java bytecode. InStatic Analysis Symposium 2000, Lecture Notes
in Computer Science, Santa Barbara, June 2000.

[11] Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated
with UML, volume Volume 2. Wiley, 1998.

[12] Rajiv Gupta. Optimizing array bound checks using flow analysis.ACM Letters on
Programming Languages and Systems, 2(4):135–150, March 1993.

[13] JavaClass.
. http://www.inf.fu-berlin.de/ dahm/JavaClass/.

[14] Compaq JTrek.
. http://www.digital.com/java/download/jtrek.

[15] Han Bok Lee and Benjamin G. Zorn. A Tool for Instrumenting Java Bytecodes. In
The USENIX Symposium on Internet Technologies and Systems, pages 73–82, 1997.

[16] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. Addison-
Wesley, 1996.

[17] Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[18] Gilles Muller, Bárbara Moura, Fabrice Bellard, and Charles Consel. Harissa: A flex-
ible and efficient Java environment mixing bytecode and compiled code. InProceed-
ings of the 3rd Conference on Object-Oriented Technologies and Systems, pages 1–20,
Berkeley, June 16–20 1997. Usenix Association.

[19] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim New-
sham, and Scott A. Watterson. Toba: Java for applications: A way ahead of time
(WAT) compiler. InProceedings of the 3rd Conference on Object-Oriented Technolo-
gies and Systems, pages 41–54, Berkeley, June 16–20 1997. Usenix Association.

[20] Ven Seshadri. IBM High Performance Compiler for Java. InAIXPert Magazine, sep
1997.

[21] Tatiana Shpeisman and Mustafa Tikir. Generating Efficient Stack Code for Java. Tech-
nical report, University of Maryland, 1999.

[22] Soot - a Java Optimization Framework.
. http://www.sable.mcgill.ca/soot/.

106

[23] 4thpass SourceGuard.
. http://www.4thpass.com/sourceguard/.

[24] Suif. http://www.suif.stanford.edu/.

[25] SuperCede, Inc. SuperCede for Java.
. http://www.supercede.com/.

[26] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical Experience
with an Application Extractor for Java . IBM Research Report RC 21451, IBM Re-
search, 1999.

[27] Tower Technology. Tower J.
. http://www.twr.com/.

[28] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing Java bytecode using the Soot framework: Is it
feasible? In David A. Watt, editor,Compiler Construction, 9th International Con-
ference, volume 1781 ofLecture Notes in Computer Science, pages 18–34, Berlin,
Germany, March 2000. Springer.

107

