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Abstract

This paper addresses the problem of path prediction for

multiple interacting agents in a scene, which is a crucial

step for many autonomous platforms such as self-driving

cars and social robots. We present SoPhie; an interpretable

framework based on Generative Adversarial Network (GAN),

which leverages two sources of information, the path history

of all the agents in a scene, and the scene context informa-

tion, using images of the scene. To predict a future path for

an agent, both physical and social information must be lever-

aged. Previous work has not been successful to jointly model

physical and social interactions. Our approach blends a so-

cial attention mechanism with physical attention that helps

the model to learn where to look in a large scene and ex-

tract the most salient parts of the image relevant to the path.

Whereas, the social attention component aggregates informa-

tion across the different agent interactions and extracts the

most important trajectory information from the surrounding

neighbors. SoPhie also takes advantage of GAN to gener-

ates more realistic samples and to capture the uncertain

nature of the future paths by modeling its distribution. All

these mechanisms enable our approach to predict socially

and physically plausible paths for the agents and to achieve

state-of-the-art performance on several different trajectory

forecasting benchmarks.

1. Introduction

When people navigate through a park or crowded mall,

they follow common sense rules in view of social decorum

to adjust their paths. At the same time, they are able to adapt

to the physical space and obstacles in their way. Interacting

with the physical terrain as well as humans around them is

by no means an easy task; because it requires:

∗indicates equal contribution

Social Attention

Physical Attention

Figure 1. SoPhie predicts trajectories that are socially and phys-

ically plausible. To perform this, our approach incorporates the

influence of all agents in the scene as well as the scene context.

• Obeying physical constraints of the environment. In

order to be able to walk on a feasible terrain and avoid ob-

stacles or similar physical constraints, we have to process

the local and global spatial information of our surround-

ings and pay attention to important elements around us.

For example, when reaching a curved path, we focus more

on the curve rather than other constraints in the environ-

ment, we call this physical attention[26].

• Anticipating movements and social behavior of other

people. To avoid collisions with other people, disturbing

their personal space, or interrupting some social interac-

tions (e.g. a handshake), we must have a good under-

standing of others’ movements and the social norms of an

environment and adjust our path accordingly. We should

take into account that some agents have more influence

in our decision. For example, when walking in a corridor,

we pay more attention to people in front of us rather than

the ones behind us, we call this social attention. Modeling

these social interactions is a non-trivial task.

• Finding more than a single feasible path. To get to our

destination, there often exists more than a single choice

for our path, which is the fuzzy nature of human motion.
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Indeed, there is a range for our traversable paths toward

our destinations [26, 23, 13, 8, 1].

In this paper, we aim to tackle the problem of future path

prediction for a set of agents. The existing approaches fol-

low different strategies to solve this problem. Some methods

solely rely on the scene context to predict a feasible path

for each agent. For example, the approach in [3] learns a

dynamic pattern for all agents from patch-specific descrip-

tors using previously created navigation maps that encode

scene-specific observed motion patterns. In [14], the ap-

proach learns the scene context from top-view images in

order to predict future paths for each agent. [26] applies an

attention mechanism to input images in order to highlight

the important regions for each agent’s future path. However,

all above approaches ignore the influence of the other agents’

state on predicting the future path for a targeted agent.

Parallel to path prediction using scene context informa-

tion, several approaches have recently proposed to model

interactions between all agents in the scene in order to predict

the future trajectory for each targeted agent [5, 6]. Although

these methods have shown promising progress in addressing

this challenging problem, they still ignore the scene contexts

as crucial information. In addition, these methods fall short

as instead of treating pedestrian’s future movements as a dis-

tribution of locations, they only predict a single path, which

generally ends up optimizing “average behavior” rather than

learning difficult constraints.. To address the second prob-

lem, [1, 14, 30] have introduced models that are able to

generate multiple feasible paths. However, most of these

models only incorporate the influence of few adjacent agents

in a very limited search space. Recently, [8] proposed a

GAN model that takes into account the influence of all agents

in the scene.

In this work, we propose SoPhie an attentive GAN-based

approach that can take into account the information from

both scene context and social interactions of the agents in or-

der to predict future paths for each agent. Influenced by the

recent success of attention networks [29] and also GANs [7]

in different real-world problems, our proposed framework

simultaneously uses both mechanisms to tackle the chal-

lenging problem of trajectory prediction. We use a visual

attention model to process the static scene context alongside

a novel attentive model that observes the dynamic trajectory

of other agents. Then, an LSTM based GAN module is

applied to learn a reliable generative model representing a

distribution over a sequence of plausible and realistic paths

for each agent in future.

To the best of our knowledge, no other work has previ-

ously tackled all the above problems together. SoPhie gen-

erates multiple socially-sensitive and physically-plausible

trajectories and achieves state-of-the-art results on multiple

trajectory forecasting benchmarks. To summarize the main

contribution of the paper are as follows:

• Our model uses scene context information jointly with

social interactions between the agents in order to predict

future paths for each agent.

• We propose a more reliable feature extraction strategy to

encode the interactions among the agents.

• We introduce two attention mechanisms in conjunction

with an LSTM based GAN to generate more accurate and

interpretable socially and physically feasible paths.

• State-of-the-art results on multiple trajectory forecasting

benchmarks.

2. Related Work

In recent years, there have been many advances in the

task of trajectory prediction. Many of the previous studies

on trajectory prediction either focus on the effect of physical

environment on the agents paths (agent-space interactions)

and learn scene-specific features to predict future paths [26],

or, focus on the effect of social interactions (dynamic agent-

agent phenomena) and model the behavior of agents influ-

enced by other agents’ actions [1, 8]. Few works have been

trying to combine both trajectory and scene cues [14].

Agent-Space Models. This models mainly take advan-

tage of the scene information, e.g., cars tend to drive between

lanes or humans tend to avoid obstacles like benches. Morris

et al. [20] cluster the spatial-temporal patterns and use hid-

den Markov models to model each group. Kitani et al. [13]

use hidden variable Markov decision processes to model

human-space interactions and infer walkable paths for a

pedestrian. Recently, Kim et al. [12], train a separate recur-

rent network, one for each future time step, to predict the

location of nearby cars. Ballan et al. [3] introduce a dynamic

Bayesian network to model motion dependencies from pre-

viously seen patterns and apply them to unseen scenes by

transferring the knowledge between similar settings. In an

interesting work, a variational auto-encoders is used by Lee

et al. [14] to learn static scene context (and agents in a small

neighborhood) and rank the generated trajectories accord-

ingly. Sadeghian et al. [26], also use top-view images and

learn to predict trajectories based on the static scene con-

text. Our work is similar to [26] in the sense that we both

use attentive recurrent neural networks to predict trajecto-

ries considering the physical surrounding; nonetheless, our

model is able to take into account other surrounding agents

and is able to generate multiple plausible paths using a GAN

module.

Agent-Agent Models. Traditional models for model-

ing and predicting human-human interactions used “social

forces” to capture human motion patterns [9, 18, 31, 22, 2,

23, 21, 17]. The main disadvantage of these models is the

need to hand-craft rules and features, limiting their ability to

efficiently learn beyond abstract level and the domain experts.
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Modern socially-aware trajectory prediction work usually

use recurrent neural networks [25, 1, 14, 6, 5, 4, 11, 32].

Hug et al. [10] present an experiment-based study the effec-

tiveness of some RNN models in the context socially aware

trajectory prediction. These methods are relatively success-

ful, however, most of these methods only take advantage

of the local interactions and don’t take into account further

agents. In a more recent work, Gupta et al. [8] address this

issue as well as the fact that agent’s trajectories may have

multiple plausible futures, by using GANs. Nevertheless,

their method treats the influence of all agents on each other

uniformly. In contrast, our method uses a novel attention

framework to highlight the most important agents for each

targeted agent.

Few recent approaches [14, 30, 4, 28], to some extent, in-

corporate both the scene and social factors into their models.

However, these models only consider the interaction among

the limited adjacent agents and are only able to generate a

single plausible path for each agent. We address all these lim-

itations by applying wiser strategies such as 1- using visual

attention component to process the scene context and high-

light the most salient features of the scene for each agent, 2-

using a social attention component that estimates the amount

of contribution from each agent on the future path predic-

tion of a targeted agent, and 3- using GAN to estimate a

distribution over feasible paths for each agent. We support

our claims by demonstrating state-of-the-art performance on

several standard trajectory prediction datasets.

3. SoPhie

Our goal is to develop a model that can successfully pre-

dict future trajectories of a set of agents. To this end, the

route taken by each agent in future needs to be influenced

not only by its own state history, but also the state of other

agents and physical terrain around its path. SoPhie takes all

these cues into account when predicting each agent’s future

trajectory.

3.1. Problem Definition

Trajectory prediction can be formally stated as the prob-

lem of estimating the state of all agents in future, given the

scene information and their past states. In our case, the

scene information is fed as an image It, e.g. a top-view or

angle-view image of the scene at time t, into the model.

Moreover, the state of each agent i at time t is assumed to

be its location, e.g. its 2D coordinate (xt
i, y

t
i) ∈ R

2 with

respect to a reference, e.g. the image corner or the top view’s

world coordinates. Therefore, the past and current states of

the N agents are represented by the ordered set of their 2D

locations as:

X1:t
i = {(xτ

i , y
τ
i )|τ = 1, · · · , t} ∀i ∈ [N ],

where [N ] = {1, · · · , N}. Throughout the paper, we use

the notations X ·
1:N and X ·

1:N\i to represent the collection

of all N agents’ states and all agents’ states excluding the

target agent i, respectively. We also use the notation Y τ ,

to represent the future state in t+ τ . Therefore, the future

ground truth and the predicted states of the agent i, between

frames t+ 1 and t+ T for T > 1, are denoted by Y 1:T
i and

Ŷ 1:T
i respectively, where

Y 1:T
i = {(xτ

i , y
τ
i )|τ = t+ 1, · · · , t+ T} ∀i ∈ [N ].

Our aim is to learn the parameters of a model W ∗ in order

to predict the future states of each agent between t+ 1 and

t+ T , given the input image at time t and all agents’ states

up to the current frame t, i.e.

Ŷ 1:T
i = f(It, X1:t

i , X1:t
1:N\i;W

∗),

where the model parameters W ∗ is the collection of the

weights for all deep neural structures used in our model.

We train all the weights end-to-end using back-propagation

and stochastic gradient descent by minimizing a loss LGAN

between the predicted and ground truth future states for all

agents. We elaborate the details in the following section.

3.2. Overall Model

Our model consists of three key components including:

1- A feature extractor module, 2- An attention module, and

3- An LSTM based GAN module (Fig. 2). First, the feature

extractor module extracts proper features from the scene,

i.e. the image at the current frame It, using a convolutional

neural network. It also uses an LSTM encoder to encode an

index invariant, but temporally dependent, feature between

the state of each agent, X1:t
i , and the states of all other agents

up to the current frame, X1:t
1:N\i (Fig. 2(a)). Then, the atten-

tion module highlights the most important information of

the inputted features for the next module (Fig. 2 (b)). The at-

tention module consists of two attention mechanisms named

as social and physical attention components. The physical

attention learns the spatial (physical) constraints in the scene

from the training data and concentrates on physically feasi-

ble future paths for each agent. Similarly, the social attention

module learns the interactions between agents and their in-

fluence on each agent’s future path. Finally, the LSTM based

GAN module (Fig. 2 (c)) takes the highlighted features from

the attention module to generate a sequence of plausible

and realistic future paths for each agent. In more details, an

LSTM decoder is used to predict the temporally dependent

state of each agent in future, i.e. Ŷ 1:T
i . Similar to GAN, a

discriminator is also applied to improve the performance

of the generator model by forcing it to produce more real-

istic samples (trajectories). In the following sections, we

elaborate each module in detail.
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Figure 2. An overview of SoPhie architecture. Sophie consists of three key modules including: (a) A feature extractor module, (b) An

attention module, and (c) An LSTM based GAN module.

3.3. Feature extractors

The feature extractor module has two major components,

explained below. To extract the visual features V t
Ph from the

image It, we use a Convolutional Neural Network (CNN).

V t
Ph = CNN(It;Wcnn) (1)

In this paper, we use VGGnet-19 [27] as CNN(·), where

its weights Wcnn is initialized by pre-training on ImageNet

[24] and fine-tuning on the task of scene segmentation as

described in [16].

To extract joint features from the past trajectory of all

agents, we perform the following procedure. Similar to [8],

first an LSTM is used to capture the temporal dependency

between all states of an agent i and encode them into a high

dimensional feature representation for time t, i.e.

V t
en(i) = LSTMen(X

t
i , h

t
en(i);Wen), (2)

where ht
en(i) represents the hidden state of the encoder

LSTM at time t for the agent i. Moreover, to capture the

influence of the other agents’ state on the prediction of the

future trajectory of an agent, we need to extract a joint fea-

ture from all agents’ encoded features V t
en(·). However, this

joint feature cannot be simply created by concatenating them

as the order of the agents does matter. To make the joint

feature permutation invariant with respect to the index of the

agents, the existing approaches use a permutation invariant

(symmetric) function such as max [8]. Then, this joint global

feature is concatenated by each agent’s feature V t
en(i) to be

fed to the state generator module. However this way, all

agents will have an identical joint feature representation. In

addition, the permutation invariant functions such as max

may discard important information of their inputs as they

might loose their uniqueness. To address these two limi-

tations, we instead define a consistent ordering structure,

where the joint feature for a target agent i is constructed by

sorting the other agents’ distances from agent i, i.e.

V t
So(i) =

(

V t
en(πj)− V t

en(i)
∣

∣∀πj ∈ [N ]\i)
)

, (3)

where πj is the index of the other agents sorted according to

their distances to the target agent i. In this framework, each

agent i has its own unique joint (social) feature vector. We

also use sort as the permutation invariant function, where

the reference for ordering is the euclidean distance between

the target agent i and other agents. Note that sort function

is advantageous in comparison with max as it can keep the

uniqueness of the input. To deal with variable number of

agents, we set a maximum number of agents (N = Nmax)

and use a dummy value as features if the corresponding agent

does not exist in the current frame.

3.4. Attention Modules

Similar to humans who pays more attention to close ob-

stacles, upcoming turns and people walking towards them,

than to the buildings or people behind them, we want the

model to focus more on the salient regions of the scene and

the more relevant agents in order to predict the future state

of each agent. To achieve this, we use two separate soft

attention modules similar to [29] for both physical V t
Ph and

social V t
So(i) features.

Physical Attention The inputs to this attention module

ATTPh(·) are the hidden states of the decoder LSTM in

the GAN module, and the visual features extracted from the

image V t
Ph. Note that, the hidden state of the decoder LSTM

has the information for predicting the agent’s future path.

And this module learns the spatial (physical) constraints in

the scene from the training data. Therefore, the output would

be a context vector Ct
Ph, which concentrates on feasible

paths for each agent.

Ct
Ph(i) = ATTPh(V

t
Ph, h

t
dec(i);WPh) (4)

Here, WPh are the parameters of the physical attention mod-

ule and ht
dec(i) represents the hidden state of the decoder

LSTM at time t for the agent i.

Social Attention Similar to the physical attention mod-

ule, the joint feature vector V t
So(i) together with the hidden

state of the decoder LSTM for the i-th agent, are fed to the

social attention module ATTSo(·) with the parameters WSo

to obtain a social context vector Ct
So(i) for the i-th agent.
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This vector highlights which other agents are most important

to focus on when predicting the trajectory of the agent i.

Ct
So(i) = ATTSo(V

t
So(i), h

t
dec(i);WSo) (5)

We use soft attention similar to [29] for both ATTPh(·)
and ATTSo(·), which is differentiable and the whole archi-

tecture can be trained end-to-end with back-propagation.

Social attention and physical attention aggregate informa-

tion across all the involved agents and the physical terrain

to deal with the complexity of modeling the interactions of

all agents in crowded areas while adding interpretability to

our predictions. This also suppresses the redundancies of

the input data in a helpful fashion, allowing the predictive

model to focus on the important features. Our experiments

show the contribution of our attention modules in Table 1.

3.5. LSTM based Generative Adversarial Network

In this section, we present our LSTM based Generative

Adversarial Network (GAN) module that takes the social

and physical context vectors for each agent i, Ct
So(i) and

Ct
Ph(i), as input and outputs candidate future states which

are compliant to social and physical constraints. Most exist-

ing trajectory prediction approaches use the L2 norm loss

between the ground truth and the predictions to estimate

the future states [26]. By using L2 loss, the network only

learns to predict one future path for each agent, which is intu-

itively the average of all feasible future paths for each agent.

Instead, in our model, we use GAN to learn and predict a

distribution over all the feasible future paths.

GANs consist of two networks, a generator and a dis-

criminator that compete with each other. The generator is

trained to learn the distribution of the paths and to generate a

sample of the possible future path for an agent while the dis-

criminator learns to distinguish the feasibility or infeasibility

of the generated path. These networks are simultaneously

trained in a two player min-max game framework. In this

paper similar to [8], we use two LSTMs, a decoder LSTM

as the generator and a classifier LSTM as the discriminator,

to estimate the temporally dependent future states.

Generator (G) Our generator is a decoder LSTM,

LSTMdec(·). Similar to the conditional GAN [19], the

input to our generator is a white noise vector z sampled from

a multivariate normal distribution while the physical and

social context vectors are its conditions. We simply concate-

nate the noise vector z and these context vectors as the input,

i.e. Ct
G(i) = [Ct

So(i), C
t
Ph(i), z]. Thus, the generated τ th

future state’s sample for each agent is attained by:

Ŷ τ
i = LSTMdec

(

Ct
G(i), h

τ
dec(i);Wdec

)

, (6)

Discriminator (D) The discriminator in our case is an-

other LSTM, LSTMdis(·), which its input is a randomly

chosen trajectory sample from the either ground truth or

predicted future paths for each agent up to τ th future time

frame, i.e. T 1:τ
i ∼ p(Ŷ 1:τ

i , Y 1:τ
i )

L̂τ
i = LSTMdis(T

τ
i , h

τ
dis(i);Wdis), (7)

where L̂τ
i is the predicted label from the discriminator for

the chosen trajectory sample to be a ground truth (real) Y 1:τ
i

or predicted (fake) Ŷ 1:τ
i with the truth label Lτ

i = 1 and

Lτ
i = 0, respectively. The discriminator forces the generator

to generate more realistic (plausible) states.

Losses To train SoPhie, we use the following losses:

W ∗ = argmin
W

Ei,τ [LGAN

(

L̂τ
i , L

τ
i

)

+

λLL2(Ŷ
1:τ
i , Y 1:τ

i )], (8)

where W is the collection of the weights of all networks

used in our model and λ is a regularizer between two losses.

The adversarial loss LGAN (·, ·) and L2 loss LL2(·, ·) are

shown as follows:

LGAN

(

L̂τ
i , L

τ
i

)

=

min
G

max
D

ET 1:τ

i
∼p(Y 1:τ

i
)[L

τ
i logL̂τ

i ] +

ET 1:τ

i
∼p(Ŷ 1:τ

i
)[(1− Lτ

i )log(1− L̂τ
i )], (9)

LL2(Ŷ
τ
i , Y τ

i ) = ||Ŷ τ
i − Y τ

i ||22. (10)

4. Experiments

In this section, we first evaluate our method on the com-

monly used datasets such as ETH [22] and UCY [15], and

on a recent and larger dataset, i.e. Stanford drone dataset

[23]. We also compare its performance against the various

baselines on these datasets. Next, we present a qualitative

analysis of our model on the effectiveness of the attention

mechanisms. Finally, we finish the section by demonstrating

some qualitative results on how our GAN based approach

provides a good indication of path traversability for agents.

Datasets We perform baseline comparisons and ablation

experiments on three core datasets. First, we explore the

publicly available ETH [22] and UCY [15] datasets, which

both contain annotated trajectories of real world pedestrians

interacting in a variety of social situations. These datasets in-

clude nontrivial movements including pedestrian collisions,

collision avoidance behavior, and group movement. Both of

the datasets consists of a total of five unique scenes, Zara1,

Zara2, and Univ (from UCY), and ETH and Hotel (from

ETH). Each scene includes top-view images and 2D loca-

tions of each person with respect to the world coordinates.

One image is used per scene as the cameras remain static.

Each scene occurs in a relatively unconstrained outdoor en-

vironment, reducing the impact of physical constraints. We

also explore the Stanford Drone Dataset (SDD) [23], a bench-

mark dataset for trajectory prediction problems. The dataset
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Baselines SoPhie (Ours)

Dataset Lin LSTM S-LSTM S-GAN S-GAN-P TA TO + IO TO + IA TA + IO TA + IA

ETH 1.33 / 2.94 1.09 / 2.41 1.09 / 2.35 0.81 / 1.52 0.87 / 1.62 0.90 / 1.60 0.86 / 1.65 0.71 / 1.47 0.76 / 1.54 0.70 / 1.43

HOTEL 0.39 / 0.72 0.86 / 1.91 0.79 / 1.76 0.72 / 1.61 0.67 / 1.37 0.87 / 1.82 0.84 / 1.80 0.80 / 1.78 0.83 / 1.79 0.76 / 1.67

UNIV 0.82 / 1.59 0.61 / 1.31 0.67 / 1.40 0.60 / 1.26 0.76 / 1.52 0.49 / 1.19 0.58 / 1.27 0.55 / 1.23 0.55 / 1.25 0.54 / 1.24

ZARA1 0.62 / 1.21 0.41 / 0.88 0.47 / 1.00 0.34 / 0.69 0.35 / 0.68 0.38 / 0.72 0.34 / 0.68 0.35 / 0.67 0.32 / 0.64 0.30 / 0.63

ZARA2 0.77 / 1.48 0.52 / 1.11 0.56 / 1.17 0.42 / 0.84 0.42 / 0.84 0.38 / 0.79 0.40 / 0.82 0.43 / 0.87 0.41 / 0.80 0.38 / 0.78

AVG 0.79 / 1.59 0.70 / 1.52 0.72 / 1.54 0.58 / 1.18 0.61 / 1.21 0.61 / 1.22 0.61 / 1.24 0.57 / 1.20 0.58 / 1.20 0.54 / 1.15

Table 1. Quantitative results of baseline models vs. SoPhie architectures across datasets on the task of predicting 12 future timesteps, given

the 8 previous ones. Error metrics reported are ADE / FDE in meters. SoPhie models consistently outperform the baselines, due to the

combination of social and physical attention applied in a generative model setting.

Baselines SoPhie (Ours)

Dataset Lin SF S-LSTM S-GAN CAR-Net DESIRE TA TO + IO TO + IA TA + I TA + IA

SDD 37.11 / 63.51 36.48 / 58.14 31.19 / 56.97 27.246 / 41.440 25.72 / 51.8 19.25 / 34.05 17.76 / 32.14 18.40 / 33.78 16.52 / 29.64 17.57 / 33.31 16.27 / 29.38

Table 2. ADE and FDE in pixels of various models on Stanford Drone Dataset. SoPhie’s main performance gain comes from the joint

introduction of social and physical attention applied in a generative modeling setting.

consists of a bird’s-eye view of 20 unique scenes in which

pedestrians, bikes, and cars navigate on a university campus.

Similar to the previous datasets, images are provided from a

top-view angle, but coordinates are provided in pixels. These

scenes are outdoors and contain physical landmarks such as

buildings and roundabouts that pedestrians avoid.

Implementation details We iteratively trained the gen-

erator and discriminator models with the Adam optimizer,

using a mini-batch size of 64 and a learning rate of 0.001

for both the generator and the discriminator. Models were

trained for 200 epochs. The encoder encodes trajectories us-

ing a single layer MLP with an embedding dimension of 16.

In the generator this is fed into a LSTM with a hidden dimen-

sion of 32; in the discriminator, the same occurs but with a

dimension of 64. The decoder of the generator uses a single

layer MLP with an embedding dimension of 16 to encoder

agent positions and uses a LSTM with a hidden dimension

of 32. In the social attention module, attention weights are

retrieved by passing the encoder output and decoder context

through multiple MLP layers of sizes 64, 128, 64, and 1,

with interspersed ReLu activations. The final layer is passed

through a Softmax layer. The interactions of the surrounding

Nmax = 32 agents are considered; this value was chosen

as no scenes in either dataset exceeded this number of total

active agents in any given timestep. If there are less than

Nmax agents, the dummy value of 0 is used. The physical

attention module takes raw VGG features (512 channels),

projects those using a convolutional layer, and embeds those

using a single MLP to an embedding dimension of 16. The

discriminator does not use the attention modules or the de-

coder network. When training we assume we have observed

eight timesteps of an agent and are attempting to predict

the next T = 12 timesteps. We weight our loss function by

setting λ = 1. Moreover, the generator/discriminator are

trained jointly in a traditional GAN setting.

In addition, to make our model more robust to scene ori-

entation, we augmented the training data by flipping and

rotating the scene and also normalization of agents’ coordi-

nates. We observed that these augmentations are conducive

to make the trained model general enough in order to perform

well on the unseen cases in the test examples and different

scene geometries such as roundabouts.

Baselines & Evaluation For the first two datasets, a few

simple, but strong, baselines are used. These include Lin,

a linear regressor that estimates linear parameters by mini-

mizing the least square error; S-LSTM, a prediction model

that combines LSTMs with a social pooling layer, as pro-

posed by Alahi et. al. [1]; S-GAN and S-GAN-P, predictive

models that applies generative modeling to social LSTMs

[8]. For the drone dataset, we compare to the same linear

and Social LSTM baselines, but also explore several other

state-of-the-art methods. These include Social Forces, an

implementation of the same Social Forces model from [31];

DESIRE, an inverse optimal control (IOC) model proposed

by Lee et. al. that utilizes generative modeling; and CAR-

Net, a physically attentive model from [26]. For all datasets,

we also present results of various versions of our SoPhie

model in an ablative setting by 1- TA: Sophie model with

social features only and the social attention mechanism, 2-

TO + IO Sophie model with both visual and social features

without any attention mechanism, 3- TO + IA Sophie model

with both visual and social features with only visual attention

mechanism, 4- TA + IO Sophie model with both visual and

social features with only social attention mechanism, and 5-

TA + IA complete Sophie model with all modules.

All models are evaluated using the average displacement

error (ADE) metric defined as the average L2 distance be-

tween the ground truth and pedestrian trajectories, over all

pedestrians and all time steps, as well as the final displace-

ment error metric (FDE). The evaluation task is defined to

be performed over 8 seconds, using the past 8 positions con-

sisting of the first 3.2 seconds as input, and predicting the
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remaining 12 future positions of the last 4.8 seconds. For

the first two datasets, we follow a similar evaluation method-

ology to [8] by performing a leave-one-out cross-validation

policy where we train on four scenes, and test on the remain-

ing one. These two datasets are evaluated in meter space.

For the SDD, we utilize the standard split, and for the sake

of comparison to baselines we report results in pixel space,

after converting from meters.

4.1. Quantitative Results

ETH and UCY We compare our model to various

baselines in Table 1, reporting the average displacement er-

ror (ADE) in meter space, as well as the final displacement

error (FDE). As expected, we see that in general the lin-

ear model performs the worst, as it is unable to model the

complex social interactions between different humans and

the interactions between humans and their physical space.

We also notice that S-LSTM provides an improvement over

the linear baseline, due to its use of social pooling, and that

S-GAN provides an improvement to this LSTM baseline, by

approaching the problem from a generative standpoint.

Our first model, TA, which solely applies social context

to pedestrian trajectories, performs slightly better than

the S-GAN on average due to better feature extraction

strategy and attention module. As expected, although

social context helps the model form better predictions, it

alone is not enough to truly understand the interactions

in a scene. Similarly, while our second model TO + IO
applies both pedestrian trajectories and features from the

physical scene (no attention), the lack of any context about

these additional features make the model unable to learn

which components are most important, giving it a similar

accuracy to TA. Our first major gains in model performance

come when exploring the TO + IA and TA + IO models.

Because the former applies physical context to image

features and the latter applies social context to trajectory

features, each model is able to learn the important aspects

of interactions, allowing them to slightly outperform

the previous models. Interestingly, TO + IA performs

slightly better than TA + IO potentially suggesting that

understanding physical context is slightly more helpful

in a prediction task. The final SoPhie model, consisting

of social attention on trajectories and physical attention

on image features (TA + IA) outperformed the previous

models, suggesting that combining both forms of attention

allows for robust model predictions.

Stanford Drone Dataset We next compare our method

to various baselines in Table 2, reporting the ADE and

FDE in pixel space. Much like the previous datasets, with

SDD we see that the linear baseline performs the worst,

with S-LSTM and S-GAN providing an improvement in

accuracy. The next major improvement in accuracy is

made with CAR-Net, due to the use of physical attention.

This is likely due to the nature of SDD, where pedestrian

movements based on the curvature of the road can be

extrapolated from the birds eye view of the scene. The next

major improvement in accuracy is made with the DESIRE

framework, which explores trajectory prediction from a

generative standpoint, making it the best baseline. Note

that the DESIRE results are linearly interpolated from the

4.0s result reported in [14] to 4.8s, as their code is not

publicly available. Finally, incorporating social context in

TA, as well as both social and physical context in TA + IA
allow for significant model improvements, suggesting that

both attentive models are crucial to tackling the trajectory

prediction problem.

Impact of social and physical constraints. Since the

goal is to produce socially acceptable paths we also used

a different evaluation metrics that reflect the percentage of

near-collisions (if two pedestrians get closer than the thresh-

old of 0.10m). We have calculated the average percentage

of pedestrian near collisions across all frames in each of

the BIWI/ETH scenes. These results are presented in Table

3. To better understand our model’s ability to also produce

physically plausible paths, we also split the test set of the

Stanford Drone Dataset into two subsets: simple and com-

plex, as previously done in CAR-Net [26] and report results

in Table 4. We note that the S-GAN baseline achieves decent

performance on simple scenes, but is unable to generalize

well to physically complex ones. On the other hand, CAR-

Net and SoPhie both achieves a slight performance increase

on simple scenes over S-GAN and trajectory only LSTM,

as well as nearly halving the error on complex scenes, due

to this physical context. This experiment demonstrates that

Sophie’s use of physical and social attention successfully

allows it to predict better physical and socially acceptable

paths compared to baseline methods. We also want to note

that, unfortunately, the existing benchmarks in trajectory pre-

diction are still naive and were not developed for evaluating

the social and physical aspects of trajectories. In this paper

we tried to evaluate our method and baselines methods using

simple metrics. However, proper benchmarks with specific

metrics would be a good future direction.

GT LIN S-GAN SoPhie

ETH 0.000 3.137 2.509 1.757

HOTEL 0.092 1.568 1.752 1.936

UNIV 0.124 1.242 0.559 0.621

ZARA1 0.000 3.776 1.749 1.027

ZARA2 0.732 3.631 2.020 1.464

Avg 0.189 2.670 1.717 1.361

Table 3. Average % of colliding pedestrians per frame for each of

the scenes in BIWI/ETH. A collision is detected if the euclidean

distance between two pedestrians is less than 0.10m.
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Nexus 6 Little 1 Huang 1

Figure 3. Using the generator to sample trajectories and the discriminator to validate those paths, we present highly accurate traversability

maps for SDD scenes. Maps are presented in red, and generated only with 30 starting samples, illustrated as blue crosses.

Ground Truth Social LSTM Social GAN Sophie (Ours)

Figure 4. Comparison of Sophie’s predictions against the ground

truth trajectories and two baselines. Each pedestrian is displayed

with a different color, where dashed lines are observed trajecto-

ries and solid lines are predicted. Generative models also have a

distribution of predicted samples.

Model Complex Simple

LSTM 31.31 30.48

CAR-Net 24.32 30.92

S-GAN 29.29 22.24

SoPhie 15.61 21.08
Table 4. Performance of multiple baselines on the Stanford Drone

Dataset, split into physically simple and complex scenes. Error is

ADE and is reported in pixels.

4.2. Qualitative Results

We further investigate the ability of our architecture to

model how social and physical interactions impact future

trajectories. Fig. 4 demonstrates the affects that attention can

have in correcting erroneous predictions. Here we visualize

four unique scenarios, comparing Sophie to two baselines

and the ground truth pedestrian movements. In the first two

scenarios, the variability of predictions is reduced, allowing

pedestrian collisions to be avoided. In the last two scenarios,

the physical attention ensures that the pedestrians follow

physical constraints, such as staying on sidewalks. As such,

the introduction of social and physical attention not only

allows for greater model interpretability but also better aligns

predictions to scene constraints.

An additional benefit of the generative SoPhie architec-

ture is that it can be used to understand which areas in a scene

are traversable. To show the effectiveness of our method, we

sampled 30 random agents from the test set (i.e., first 8 sec-

onds of each trajectory) Specifically, given a scene, random

trajectories from the test set are sampled at various points

in the scene and the generator generated sample trajectories

using this starting points. These generated trajectories were

then validated using the discriminator. The distribution of

these trajectories results in an interpretable traversability

map, as in Fig. 3. Each image represents a unique scene

from SDD, with the overlayed heatmap showing traversable

areas and the blue crosses showing the starting samples.

With Nexus 6, the model is able to successfully identify the

traversable areas as the central road and the path to the side.

With Little 1, the model identifies the main sidewalk that

pedestrians walk on while correctly ignoring the road that

pedestrians avoid. In Huang 1, the model is able to correctly

identify the cross section as well as side paths on the image.

We thus observe that the generative network can successfully

be used to explore regions of traversability in scenes even

with a small number of samples.

5. Conclusion

We propose a trajectory prediction framework that out-

performs state-of-the-art methods on multiple benchmark

datasets. Our method leverages complete scene context and

interactions of all agents, while enabling interpretable pre-

dictions, using social and physical attention mechanisms.

To capture the uncertain nature of the future paths we gen-

erate a distribution over the predicted trajectories using an

attentive GAN which can successfully generate multiple

physically acceptable paths that respect social constraints of

the environment. We showed that by modeling jointly the

information about the physical environment and interactions

between all agents, our model learns to perform better than

when this information is used independently. Our experi-

ments demonstrate that Sophie’s use of physical and social

attention successfully allows it to predict better physical and

socially acceptable paths compared to baseline methods.
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