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Most learning models assume players are adaptive (i.e., they respond only
to their own previous experience and ignore others' payo® information) and
behavior is not sensitive to the way in which players are matched. Empirical
evidence suggests otherwise. In this paper, we extend our adaptive experience-
weighted attraction (EWA) learning model to capture sophisticated learning
and strategic teaching in repeated games.

The generalized model assumes there is a mixture of adaptive learners and
sophisticated players. An adaptive learner adjusts his behavior the EWA way.
A sophisticated player rationally best-responds to her forecasts of all other
behaviors. A sophisticated player can be either myopic or farsighted. A far-
sighted player develops multiple-period rather than single-period forecasts of
others' behaviors and chooses to `teach' the other players by choosing a strat-
egy scenario that gives her the highest discounted net present value.

We estimate the model using data from p-beauty contests and repeated trust
games with incomplete information. The generalized model is better than the
adaptive EWA model in describing and predicting behavior. Including teach-
ing also allows an empirical learning-based approach to reputation formation
which predicts better than a quantal-response extension of the standard type-
based approach.

JEL classi¯cation: C72, C91



1. INTRODUCTION

The process by which an equilibrium arises in a market or game has
been a substantial mystery until recent years. Several mechanisms are pos-
sible. Models of general equilibrium assume that equilibration comes from
price-change rules implemented by a ¯ctional Walrasian auctioneer (who is
presumably a stand-in for some dynamic process which is typically unspec-
i¯ed). An implicit model of equilibration in game theory is that players
¯gure out an equilibrium in a game, or adhere to a recommendation by an
outside arbiter (perhaps a consortium of advisors or a government agency)
if it is self-enforcing (e.g., Kohlberg and Mertens [43]). Biological mod-
els ascribe equilibration to genetic reproduction as well as to mutation and
natural selection. Early on, Nash spoke of a \mass action" interpretation of
equilibration akin to natural selection (which is similar to modern accounts
of cultural evolution).

None of these perspectives is likely to completely explain the actual time
scale of equilibration in complex games played by humans. Humans learn
faster than biological models predict so other learning dynamics have been
studied. Most studies ask about theoretical convergence properties of dy-
namics, primarily to see which equilibria they converge to (if any). This
paper is about the empirical ¯t of learning models to experimental data.
Our goal is to explain as accurately as possible, for every choice in an
experiment, how that choice arose from a player's previous behavior and
experience. We also strive to explain these choices using a general model
which can be applied to any normal-form game with minimal customiza-
tion.

Our model extends the \experience-weighted attraction" (EWA) model
of (Camerer and Ho [10], [11], [12]).1 The key property of EWA is that
it hybridizes features of popular learning rules, particularly reinforcement
and belief learning (of the weighted ¯ctitious play type), which have been
widely studied in game theory. Hybridizing these familiar rules is useful for
two purposes, one empirical and one theoretical. The empirical purpose is
to ¯t and predict data better. Studies have found that the hybrid EWA
typically improves substantially (and signi¯cantly) on reinforcement and
belief models, in 31 data sets spanning a dozen di®erent types of games
(see details below). We are not aware of any learning model that has
performed as well in that many statistical comparisons.

* This research was supported by NSF grants SBR 9730364 and SBR 9730187. Many
thanks to Vince Crawford, Drew Fudenberg, David Hsia, John Kagel, and Xin Wang for
discussions and help. Helpful comments were also received from seminar participants at
Berkeley, Caltech, Harvard, Hong Kong UST, and Wharton.

1The model has also been applied to signaling games (Anderson and Camerer [2]),
extensive-form centipede games (Camerer, Ho and Wang [13]) and bilateral call markets
(Camerer, Hsia and Ho [14]).
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The theoretical point of EWA is that belief learning and reinforcement
learning are not di®erent species; they are actually close cousins. When be-
liefs are formed according to weighted ¯ctitious play, and used to calculate
expected payo®s, those expected payo®s are exactly equal to a weighted
average of previous payo®s, including \foregone payo®s" of strategies which
were not chosen. Reinforcement models are averages (or cumulations) of
previously received payo®s, excluding foregone payo®s. The only impor-
tant di®erence between belief and reinforcement models is therefore the
extent to which they assume players include foregone payo®s in evaluating
strategies. In the EWA model, this di®erence is parameterized by a weight
±.2

This paper overcomes two limits of all adaptive models. One limit is
that adaptive players do not anticipate how others are learning and do
not use knowledge of other players' payo®s (if they have it) to outguess
their opponents. We add \sophistication" to the EWA model using two
parameters. We assume a fraction ® of players are sophisticated. Sophisti-
cated players think that a fraction (1¡®0) of players are adaptive and the
remaining fraction ®0 of players are sophisticated like themselves. They
use the adaptive EWA model to forecast what the adaptive players will
do, and choose strategies with high expected payo®s given their forecast.
This `self-consciousness' assumption creates a small whirlpool of recursive
thinking which means standard equilibrium concepts (Nash), and sensi-
ble generalizations like quantal response equilibrium (QRE; McKelvey and
Palfrey [47], [48]), are special cases of sophisticated EWA.

The idea of sophistication has been used before, in models of \level-k"
learning (Ho, Camerer, and Weigelt [36], Stahl [71]; cf. Stahl and Wil-
son, [74]) and anticipatory learning (Selten [68]; Tang [75]), although our
parameterization is di®erent. It shows that equilibrium concepts combine
\social calibration" (accurate guesses about the fraction of players who are
sophisticated, ® = ®0) with full sophistication (® = 1). But these two fea-
tures can be separated in principle, and it proves to be empirically useful
to do so. The model is applied to data from p-beauty contest games (Ho,
Camerer and Weigelt [36], Nagel [53]) and improves ¯t substantially over
purely adaptive models.

The second limit of adaptive models is that they do not explain why
the way in which players are matched matters (e.g., Andreoni and Miller
[3], Clark and Sefton [19]). Sophisticated players matched with the same
players repeatedly usually have an incentive to \teach" adaptive players,
by choosing strategies with poor short-run payo®s which will change what
adaptive players do, in a way that bene¯ts the sophisticated player in the

2When foregone payo®s are not known for sure, then elements of a set of possible
payo®s or previously observed payo®s, can be used for `payo® learning' (Anderson and
Camerer [2], Camerer, Ho and Wang [13]).
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long-run. This \strategic teaching" gives rise to repeated-game equilibria
and reputation formation behavior through the interaction between \long-
run" and \short-run" or myopic players (e.g., Fudenberg and Levine [29],
Watson [79]). We allow for teaching by adding a parameter ² to the sophis-
ticated EWA model which represents the weight on future payo®s (like a
discount factor). If ² = 0, a player is sophisticated but does not incorporate
the e®ects of current actions on future payo®s, i.e. she does not teach. If
² = 1, the player fully accounts for the likely e®ects of current actions on
future payo®s (as in standard repeated-game models).

We estimate the teaching model on data from experiments on repeated
trust games. The model ¯ts and predicts reasonably well (better than a
quantal response approach) although the data are noisy, and there is no-
ticeable cross-session variation. It also exhibits the main patterns predicted
by sequential equilibrium based on updating of entrants' beliefs about an
incumbent's \type". Sophisticated EWA with strategic teaching therefore
provides a boundedly rational model of reputation formation without the
complicated apparatus of Harsanyi \types".

The next section describes the adaptive EWA model, motivates its struc-
ture, and brie°y reviews earlier evidence. Section 3 introduces sophistica-
tion and shows empirical estimates from p-beauty contest games. Section
4 develops the teaching model and shows the empirical estimates from re-
peated trust games. Section 5 concludes.

2. ADAPTIVE EWA LEARNING

2.1. The Model

We start with notation. In n-person normal-form games, players are
indexed by i (i = 1; : : : ; n). The strategy space of player i, Si consists
of mi discrete choices, that is, Si = fs1

i ; s
2
i ; : : : ; s

mi¡1
i ; smii g. S = S1 £

: : : £ Sn is the Cartesian product of the individual strategy spaces and
is the strategy space of the game. si 2 Si denotes a strategy of player
i, and is therefore an element of Si. s = (s1; : : : ; sn) 2 S is a strategy
combination, and it consists of n strategies, one for each player. s¡i =
(s1; : : : ; si¡1; si+1; : : : ; sn) is a strategy combination of all players except
i. S¡i has a cardinality of m¡i = ¦n

j=1;j6=imj . The scalar-valued payo®
function of player i is ¼i(si; s¡i). Denote the actual strategy chosen by
player i in period t by si(t), and the strategy (vector) chosen by all other
players by s¡i(t). Denote player i's payo® in a period t by ¼i(si(t); s¡i(t)).

EWA assumes each strategy has a numerical attraction. A learning
model speci¯es initial attractions, how attractions are updated by expe-
rience, and how choice probabilities depend on attractions. The core of
the EWA model is two variables which are updated after each round. The
¯rst variable is N(t), which we interpret as the number of `observation-
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equivalents' of past experience relative to one period of current experience.
(A player with a low N(t) puts little weight on past attractions; a player
with a huge N(t) is barely a®ected by immediate experience.) The sec-
ond variable is Aji (a; t), an adaptive player i's attraction of strategy j after
period t has taken place.3

The variablesN(t) and Aji (a; t) begin with prior values, N(0) and Aji (a; 0).
N(0) can be interpreted as the number of periods of actual experience which
is equivalent in attraction impact to the amount of pregame thinking.

Attractions are updated after each period, using the payo® that a strat-
egy either yielded, or would have yielded, in a period. The model weights
hypothetical payo®s that unchosen strategies would have earned by a pa-
rameter ±, and weights payo®s that are actually received, from chosen
strategy si(t), by an additional 1 ¡ ± (so they receive a total weight of 1).
Using an indicator function I(x; y) which equals 1 if x = y and 0 if x6= y,
the weighted payo® can be written as [±+(1¡±) ¢I(sji ; si(t))] ¢¼i(sji ; s¡i(t)).

The parameter ± measures the relative weight given to foregone payo®s,
compared to actual payo®s, in updating attractions. It can be interpreted
as a kind of `imagination' of foregone payo®s, `simulation' of outcomes
under alternative competitive scenarios (\counterfactual thinking" to psy-
chologists), or responsiveness to foregone payo®s. A higher ± means players
move more strongly, in a statistical sense, toward \ex post best responses".

The rule for updating attraction sets Aji (a; t) to be the sum of a de-

preciated, experience-weighted previous attraction Aji (a; t ¡ 1) plus the
(weighted) payo® from period t, normalized by the updated experience
weight:

Aji (a; t) =
Á ¢N(t¡ 1) ¢ Aji (a; t¡ 1)

N(t)
+

[± + (1¡ ±) ¢ I(sji ; si(t))] ¢ ¼i(sji ; s¡i(t))
N(t)

: (1)

Note well that while we assume for simplicity that players are reinforced by
monetary payo®s, the reinforcement function could be altered to account
for loss-aversion (the aversion to losses compared to equal-sized gains; cf.
Tversky and Kahneman [76]), or social preferences like fairness, reciprocity,
and inequality-aversion (as in Cooper and Stockman [20]). An aspiration
level or reference point (which may change over time) could also be sub-
tracted from payo®s, which is useful for keeping reinforcement models from
getting \stuck" at nonequilibrium \satis¯cing" responses. However, EWA

3To prepare our notation for subsequent inclusion of sophistication, we use a inAji (a; t)
to identify the attraction of an adaptive player; s is associated with a sophisticated player.
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does something like dynamic aspiration-based updating automatically, with
no extra parameters.4

The decay rate Á re°ects a combination of forgetting and \motion detec-
tion" { the degree to which players realize other players are adapting, so
that old observations are obsolete and should be ignored When Á is lower,
players decay old observations more quickly and are responsive to the most
recent observations.

The second rule updates the amount of experience:

N(t) = (1¡ ·) ¢ Á ¢N(t¡ 1) + 1; t ¸ 1: (2)

The parameter · determines the growth rate of attractions, which re-
°ects how quickly players lock in to a strategy.5 When · = 0, attractions
are weighted averages of lagged attractions and past payo®s (with weights
Á¢N(t¡1)
Á¢N(t¡1)+1

and 1
Á¢N(t¡1)+1

); so that attractions cannot grow outside the

bounds of the payo®s in the game. When · = 1 attractions cumulate, so
they can be much larger than stage-game payo®s.

We have not explicitly subscripted the key parameters ±; ·, and Á, but
they can obviously vary across players and games (see Camerer, Ho and
Wang [13]).

Attractions must determine probabilities of choosing strategies in some
way. That is, P ji (a; t) should be monotonically increasing in Aji (a; t) and
decreasing in Aki (a; t) (where k 6= j). Three forms have been used in
previous research: Exponential (logit), power, and normal (probit). We
use the logit because it has compared favorably to the others in direct tests
(Camerer and Ho [10]) and gracefully accommodates negative payo®s. The
logit form is:

P ji (a; t+ 1) =
e¸¢A

j
i (a;t)

Pmi
k=1 e

¸¢Ak
i (a;t)

: (3)

The parameter ¸ measures sensitivity of players to attractions. Sensi-
tivity could vary due to the psychophysics of perception, whether subjects
are highly motivated or not, or could re°ect an unobserved component of
payo®s (including variety-seeking, errors in computation, and so forth).

4A strategy only increases in probability (holding previous attractions constant) if
its payo® is above an average of the ±¡weighted foregone payo®s. Thus, EWA mimics
a process in which reinforcements are payo®s minus an aspiration level which adjusts
endogenously (re°ecting foregone payo®).

5In earlier papers (Camerer and Ho [10], [11], [12]), we de¯ne ½ = (1¡·) ¢Á and call it
the rate of decay for experience. The · notation makes it clearer that the key di®erence
is the extent to which attractions either average or cumulate.
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2.2. The EWA Learning Cube

Figure 1 shows a cube with axes representing the imagination parameter
±, the change parameter Á, and the lock-in parameter ·. Many existing
theories are special kinds of EWA learning represented by corners or edges
of the cube. Cumulative reinforcement, average reinforcement, weighted
¯ctitious play are edges and Cournot and ¯ctitious play are vertices of this
cube, as shown in the ¯gure.

When ± = 0; · = 1 (and N(0) = 1), then N(t) = 1 and the attrac-
tion updating equation becomes Aji (a; t) = Á ¢ Aji (a; t ¡ 1) + I(sji ; si(t)) ¢
¼i(s

j
i ; s¡i(t)). This is the simplest form of cumulative choice reinforcement

(Roth and Erev [63] and Erev and Roth [28]). When ± = 0; · = 0 (and
N(0) = 1=(1 ¡ Á)), the attraction updating equation becomes Aji (a; t) =

Á ¢Aji (a; t¡1)+(1¡Á) ¢I(sji ; si(t)) ¢¼i(sji ; s¡i(t)). This is a form of averaged
choice reinforcement (attractions are averages of previous attractions and
incremental reinforcement) (e.g., Mookerjee and Sopher [51]; cf. Sarin and
Vahid [65]). The key property of reinforcement models is that they assume
people ignore foregone payo®s. This simplifying assumption is defensible
in low-information environments where players know little about foregone
payo®s.6 However, in most experimental games that have been studied em-
pirically, players do know foregone payo®s and seem to respond to them.
There is even evidence that pigeons are sensitive to foregone payo®s!7

A more surprising restricted case is weighted ¯ctitious play (Brown [6],
Fudenberg and Levine [30]).8 When ± = 1 and · = 0 the attractions are

updated according to Aji (a; t) =
Á¢N(t¡1)¢Aj

i (a;t¡1)+¼i(s
j
i ;s¡i(t))

Á¢N(t¡1)+1 . That is, at-

tractions are weighted averages of lagged attractions and either realized or
foregone payo®s. This sort of belief learning is a special kind of general-
ized reinforcement because beliefs can be written in the form of a di®erence
equation. When beliefs are used to calculate expected payo®s for strategies,

6Even in those environments, however, some reinforcement rules learn too slowly (see
Van Huyck, Battalio and Rankin [78]). Rapid learning probably occurs because players
learn about foregone payo®s over time; (e.g., Camerer, Ho, and Wang [13], Anderson
and Camerer [2]).

7Gallistel [32] (chapter 11) explains that the tendency of pigeons to \probability
match" in binary choice experiments is a®ected by information about foregone payo®s.
Speci¯cally, pigeons tended to maximize, choosing one of two levers with the highest
chance of delivering a reward all the time, when the pigeons knew after an unsuccessful
trial that the other lever would have delivered a reward. (How did the pigeons \know"?
Because a light displayed above a lever came on afterwards only if the lever had been
armed for reward. If the light came on above the lever they did not choose, they `knew'
the foregone payo®.) When the pigeons did not know about the foregone payo®s (no
light told them which lever had been armed to deliver food), they tended to \probability
match" (to choose each lever about as often as that lever delivered a reward). So even
pigeons notice foregone payo®s.

8Weighted ¯ctitious play is a discrete dependent variable form of the adaptive expec-
tations equation introduced by Cagan and Friedman in macroeconomics.
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then the expected payo®s can also be written in the form of a di®erence
equation: Expected payo®s are equal to previous expected payo®s and the
increment in expected payo® which results from the updated belief. In
the expected payo® equation, the belief disappears. The trick is that since
beliefs are only used to compute possible future payo®s, and beliefs are
backward-looking, possible future payo®s can be computed directly by in-
crementing expected payo®s to account for the \recently possible" foregone
payo®. Seen this way, the di®erence between simple reinforcement and be-
lief learning is a matter of degree, rather than kind (particularly the value
of ±).

The relation between belief and reinforcement models is subtle and went
unnoticed for decades.9 Why? For one thing, behaviorist psychologists
liked the idea of reinforcement precisely because it avoided \mentalist"
constructs like beliefs; so the last thing they were interested in was linking
reinforcement and belief formation. And when weighted ¯ctitious play was
introduced in game theory, it was thought of as a heuristic way for players
to reason their way to an equilibrium, not as a literal theory of how players
learn from observation. It therefore emerged from a way of thinking that
was (apparently) quite di®erent from reinforcement learning.

Indeed, there is no compelling empirical reason to think parameter con-
¯gurations which characterize human behavior will necessarily lie on the
cube edges corresponding to belief and reinforcement learning, rather than
on other edges or some interior regions. The kind of `empirical privilege'
that would justify focusing attention in those regions might have come from
a variety of studies which continually show that measured parameters clus-
ter in one portion of the cube. But that never happened. Instead, most
studies compare models from one corner or vertex with a static benchmark
(usually Nash equilibrium). These studies provide little information about
which rules{ i.e., points in the cube{ best characterize how people learn.

2.3. Empirical Evidence

In previous empirical research, EWA has been used to ¯t and predict
data from order-statistic coordination games (Camerer and Ho [11], [12]),
p-beauty contests (Camerer and Ho [12]), mixed strategy games (Camerer
and Ho [12]), n-person (Hsia [40]) and bilateral (Camerer, Hsia and Ho
[14]) call-markets, cost allocation processes (Chen and Khoroshilov [18]),
extensive-form centipede games (Camerer, Ho and Wang [13]),\unpro¯table"
games (Morgan and Sefton [52]), signaling games (Anderson and Camerer

9For example, Selten [69] wrote \: : : in rote (reinforcement) learning success and failure
directly in°uence the choice probabilities. : : : Belief Learning is very di®erent. Here
experiences strengthen or weaken beliefs. Belief learning has only an indirect in°uence
on behavior." EWA makes clear, however, that the indirect in°uence of learning of
beliefs (for weighted ¯ctitious play) can be exactly mimicked by direct in°uence.
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[2]), patent race games with iteratively dominated strategies (Rapoport and
Amaldoss [60]), patent race games (Amaldoss [1]), and 5x5 matrix games
(Stahl [73]).10

Table 1a-b summarize EWA parameter estimates and goodness-of-¯t
statistics from these 31 data sets. The goodness-of-¯t statistic is ¡1 times
log likelihood except in Chen and Khoroshilov [18]. The column \EWA"
reports the ¡LL of the EWA model. The reinforcement and belief models
report the di®erence between the ¡LL's of those models and the EWA
statistic. (A positive di®erence means EWA ¯ts better.)

Values of ± tend to be between .5 and 1 in most studies except those in
which games have only mixed-strategy equilibria, where ± is close to zero.
The value of Á is reliably around .9 or so, with some exceptions.

What about model comparisons? The fairest comparisons estimate pa-
rameters on part of a sample of data and forecast choices out-of-sample, so
that models with more parameters will not necessarily ¯t better. (Indeed, if
overly complex models succeed in-sample only by over¯tting, they will pre-
dict worse out-of-sample.) In the 11 out-of-sample comparisons (denoted
\OUT" in the third column from the right), EWA always outperforms re-
inforcement, although usually modestly. EWA outperforms belief learning
in 9 of 11 cases, quite dramatically in some data sets.

Of course, EWA necessarily ¯ts better in the other 20 in-sample compar-
isons than reinforcement and belief models which are special cases. One can
use standard statistical techniques for penalizing more complex models {
the Â2 test, and Akaike and Bayesian criteria. These techniques are created
so that if the special case restriction is true, the penalized ¯t of the more
complex model will be worse than the ¯t of the restricted model. EWA
generally does better even after penalizing it. For example, if the di®erence
in LL is 4 points or more then the special-case restriction will be rejected
by the Â2 test. By this criterion, EWA is more accurate than belief learning
in all in-sample comparisons, and more accurate than reinforcement in 16
out of 20 comparisons.

Figure 1 shows the locations of estimated parameter combinations from
20 games in Table 111 in the EWA cube. Each point represents a triple
of estimates of Á; ± and · in a single game. The ¯rst observation is that
points do not particularly cluster on the edges or corners corresponding
to extreme-case theories, except for a few points in the lower corner cor-
responding to averaged reinforcement (± = · = 0, and Á close to one).

10Ho and Chong [37] applied a variant of the EWA model to ¯t and predict 130,000
consumer product purchases in supermarkets and found that the EWA model performed
substantially better, in ¯t and prediction, than existing reinforcement models.

11In some studies, the same game was played at di®erent stakes levels. In these cases,
estimates were averaged across stakes levels,, which explains why the 31 estimates in
Table 1 shrink to 20 points in Figure 1.
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The second observation is that points are dispersed throughout the cube.
Either learning rules are fundamentally di®erent in di®erent games{ which
creates the need for some theory of which parameter combinations are used
in which games (see Ho, Camerer and Chong [35]){ or there may be some
way to add something to the model to create more stability in parameter
estimates.

Interestingly, three of four vertices on the · = 0 and · = 1 faces of
the cube have been studied previously, but one has not. The fourth ver-
tex, in which players are fully responsive to foregone payo®s (± = 1) but
attractions cumulate rather than average past payo®s (· = 1), does not
correspond to any familiar learning theory. However, the estimates from
the three order-statistic coordination games are close to this segment. This
vertex is also prominent in our estimates of the p-beauty contest game re-
ported below. These results show an advantage of thinking about points in
the learning cube: Parameter con¯gurations never imagined before ¯t the
learning path in some data sets better than models like simple belief and
reinforcement learning which have been studied for ¯fty years.

We end this introductory section with four comments. First, others
have explored the econometric properties of reinforcement, belief and EWA
learning, and the news is not all good. For example, Salmon [67] ¯nds with
simulations that in 2x2 games, reinforcement, belief, and EWA models are
often poorly recoverable in the sense that rule Y cannot be rejected as a
good ¯t of data actually generated by a di®erent learning rule X. EWA does
least poorly in this sense because it does properly identify the value of ±.
That is, when the data are generated by reinforcement (belief) models with
±=0 (=1), EWA model estimates are close to the correct value of ±. Blume
et al. [4] ¯nd fairly good econometric performance of EWA and some other
rules when there are repeated samples and a substantial span of data, and
poor performance in small samples. Cabrales and Garcia-Fontes [7] ¯nd
excellent performance. These studies are harsh reminders that we should
be more careful about investigating econometric properties of estimators
before rushing to apply them. Econometric pretests can also guide the
choice of design features that are most likely to produce good econometric
recovery.

Second, it is often useful to economize on EWA parameters that must be
estimated. One approach is to make free parameters function of observed
data. For example, since Á captures something about subjects' awareness
of how rapidly their opponents' moves are changing, its parameter value
can be tied to a function that detects rate of change. Indeed, we have
recently developed a function-based \EWA Lite" and found that it performs
almost as well as adaptive EWA with free parameters (Ho, Camerer, and
Chong [35]). Excluding the initial conditions, the EWA Lite theory has
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only one parameter (¸) to be estimated. This one-parameter EWA Lite
model should appeal to modelers who want a highly parsimonious model.

Third, it would be useful to prove something about the long-run be-
havior of EWA players (cf. Hopkins [39]). Heller and Sarin [34] make a
much-needed start in this direction. We conjecture that if · = 0 (so that
attractions are weighted averages of previous attractions and payo®s), then
EWA players will converge to something akin to ²-equilibrium (at least in
those classes of games where ¯ctitious play converges) and ² will depend on
± and the payo®s in the game. The idea is that players could converge to
a non-best response, but only if their stable payo® ¼stable is greater than ±
times the highest (best response) foregone payo® ¼br. The gap ¼br¡¼stable
is a measure of ². Since mixed-strategy equilibria are knife-edge equilib-
ria (the equilibrium mixtures are only weak best responses, by de¯nition),
the set of ²-equilibrium will often be much larger than the mixed equilib-
rium. This helps explain why convergence in games with mixed-strategy
equilibria is often so noisy, and such games are often a very poor way to
distinguish models (e.g. Salmon [67]). Perhaps what we see in these games
is players wandering among a large set of ²-equilibria which are produced
by EWA equilibration.

Finally, while the EWA cube spans a large family of plausible learning
rules, other theories are not special cases of EWA and also deserve further
exploration. Crawford [22] created a very general form of belief learning
in which decay parameters Á can vary over time and people, and beliefs
may be subject to period-speci¯c shocks. Broseta [5] economized on some
parameters in the Crawford model by specifying ARCH (autoregressive
conditionally heteroskedastic) errors. They both applied their models to
experimental data on order-statistic coordination games (and see Crawford
and Broseta [23]). Studying belief learning models which are more general
than weighted ¯ctitious play (like Crawford's and Broseta's) is important
because one study of direct measurement of beliefs found that beliefs did
not correspond closely to ¯ctitious play calculations (Nyarko and Schotter
[56]). Another important approach is \rule learning", in which players shift
weight among various rules (e.g., Salmon [66], Stahl [72], [73]).

3. EWA LEARNING WITH SOPHISTICATION

For game theorists steeped in a tradition of assuming players reason
thoughtfully about the behavior of others, introducing sophistication into
learning is a natural step; indeed, not assuming sophistication might seem
strange. However, our standards are entirely empirical. We would like
to know whether adding sophistication to an adaptive model parsimo-
niously (and the reverse, \dumbing down" sophisticated models by adding
unsophistication) helps explain how people behave.
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There are several empirical reasons to allow sophistication:

1. Players do use information about others' payo®s. Experiments that
compare behavior with and without other-payo® information found a sig-
ni¯cant di®erence (Partow and Schotter [59], Mookerjee and Sopher [50],
Cachon and Camerer [8]). The use of other-payo® information can also
be tested directly, by measuring whether players open boxes on a com-
puter screen that contain payo®s of other players. They do (Costa-Gomes,
Crawford, and Broseta [21]; cf. Camerer, Johnson, Sen and Rymon [15]).

2. If players are sophisticated, the way in which they are matched when
a game is played repeatedly can a®ect behavior. For example, compared
to the random-opponent matching protocol, the ¯xed-opponent matching
protocol should encourage players to adopt repeated game strategies.

3. Ho et al. [36] show that experienced subjects who played a second
p-beauty contest converge signi¯cantly faster to Nash equilibrium than in-
experienced subjects. This can be interpreted as evidence that players
learned from the ¯rst p-beauty contest about how others were learning,
which means they became increasingly sophisticated.

4. In some experiments, players change strategies in ways that are incon-
sistent with adaptation but are consistent with sophistication. For example,
Rapoport, Lo and Zwick [61] studied market entry games in which players
had to enter one of three markets (see Ochs [57] for an overview). If a par-
ticular market was \under-entered", relative to the Nash equilibrium entry
rate, then any sensible adaptive model (such as EWA and the restricted
cases) predict more entry into that market in the next trial. In fact, players
tended to enter even less frequently on subsequent trials, which is consis-
tent with sophistication (i.e., expecting too much entry by other adaptive
players, and hence avoiding that market).

3.1. The Model

Assume a population of both adaptive learners and sophisticated players.
Denote the proportion of sophisticated players by ® and the proportion of
adaptive players by (1 ¡ ®). Adaptive learners follow the EWA learning
rules and sophisticated players develop forecasts of others by assuming
(1¡ ®0) proportion of the players are adaptive EWA learners and the rest
are like themselves and best-respond to those forecasts.

Adaptive EWA learners follow the updating and probability equations
(1)-(3). The sophisticated players have attractions and choice probabilities
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speci¯ed as follows12

Aji (s; t) =

m¡iX

k=1

[®0P k¡i(s; t+ 1) + (1¡ ®0) ¢ P k¡i(a; t+ 1)] ¢ ¼i(sji ; sk¡i) (4)

P ji (s; t+ 1) =
e¸¢A

j
i
(s;t)

Pmi
k=1 e

¸¢Aki (s;t)
: (5)

For a given player i, the likelihood function of observing a choice history
of fsi(1); si(2); : : : ; si(T ¡ 1); si(T )g is given by:

® ¢ [¦T
t=1P

si(t)
i (s; t)] + (1¡ ®) ¢ [¦T

t=1P
si(t)
i (a; t)] (6)

The proposed model passes a form of the \publishability test" articu-
lated by McKelvey and Riddihough [49]. They argue that a good social
science theory should still apply even after it is \published" or widely-
understood; or if behavior changes after publication, the theory should
contain an explanation for why change occurs. Our model passes this test
if only sophisticated players can \read", since sophisticated players will not
change their behavior as long as adaptive learners remain unsophisticated.
The only theory which passes full-readability test is when ® = 1 (® < 1
corresponds to `limited circulation' or `illiteracy'.)

Because the model assumes that sophisticated players think others are
sophisticated (and those others think others are sophisticated...), it creates
a whirlpool of recursive thinking which nests equilibrium concepts. Quan-
tal response equilibrium (McKelvey and Palfrey [47], [48], Chen, Friedman
and Thisse [17]; c.f. Rosenthal [62]) is equivalent to everyone being sophisti-
cated (® = 1) and the sophisticated players having rational expectations or
\social calibration" about the proportion of sophisticates (® = ®0). (Nash
equilibrium, which we prefer to call `hyper-responsive QRE', is just ® = ®0

along with in¯nite responsive sensitivity ¸.) Weizsacker [81] allows play-
ers to mistakenly believe other players' sensitivities are di®erent that this
di®erence explains data from some one-shot games.

Our parameterization emphasizes that QRE consists of the conjunction
of two separate modeling assumptions: Players are sophisticated (®=1)
and sophisticated players are socially calibrated (® = ®0). The two as-
sumptions can be evaluated separately (and our model does). Including

12This speci¯cation assumes that sophisticated players' and the modeler's forecasts
of the adaptive players are identical. A more general speci¯cation can allow them to be
di®erent.
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both ® and ®0 allows for two (opposite) kinds of judgment biases in assess-
ing relative sophistication: Sophisticated subjects could underestimate the
number of subjects who are sophisticated like themselves (®0 < ®, \false
uniqueness" or overcon¯dence about relative sophistication), or could over-
estimate the number of sophisticates (®0 > ®, \false consensus" or \curse
of knowledge").

Many studies document various types of optimism, overcon¯dence, or
\false uniqueness" . For example, most people say they are above average
on good traits and below average on bad traits. Most of these studies
simply use self-reports and do not pay people according to their actual
ranking, but a few studies have used experimental economics methods,
which include ¯nancial incentive for accuracy and a clear de¯nition of trait
and rank, and replicate the basic ¯nding. Applied to the sophisticated
EWA model, overcon¯dence about relative sophistication would imply that
sophisticates think there are fewer people as \smart" as themselves than
there actually are, so ®0 < ®. This kind of overcon¯dence is built into
\level-k types" models like those of Stahl and Wilson [74]) (see also Costa-
Gomes, Crawford, and Broseta [21], Ho et al. [36]). In those models, level
0 players choose randomly and level k+ 1 players best-respond to behavior
of level k players. In a sense, this structure means players at every level
think that nobody is as smart as them, and that everybody else is one level
below. In our model, setting ®0 = 0 corresponds to a level 1 learning type.

The opposite mistake is called \false consensus": People overestimate
how much like themselves other people are.13 A related e®ect is the inability
of people who have learned new information to imagine what not knowing
the information is like, the \curse of knowledge".14 In sophisticated EWA
a false consensus bias would imply that sophisticated people overestimate
how many others are sophisticated, so that ®0 > ®.

3.2. Dominance-solvable p-beauty contest games

We estimate the sophisticated EWA model using data of the p-beauty
contests collected by Ho et al. [36]). In a p-beauty contest game, n players
simultaneously choose numbers xi in some interval, say [0,100]. The aver-

age of their numbers ¹x =

Pn

i
xi

n is computed, which establishes a target

13The term \false consensus" is a misnomer because a `rational bias' of this sort will
result if people use their own behavior or tastes as a sample of tastes and update their
beliefs about population tastes. The e®ect is correctly de¯ned as overweighting your
own tastes relative to information about the tastes of others. Engelmann and Strobel
[27] show that there is no such bias when it is de¯ned this way and information about
other people is presented, along with ¯nancial incentives for accuracy.

14An example of false consensus is due to George Wu. He asked his students whether
they had cell phones, and also asked them to estimate what fraction of students in the
class had cell phones. Students with cell phones thought 55% had them, and those
without cell phones thought only 35% had them.
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number, ¿ , equal to p ¢ ¹x. The player whose number is closest to the target
wins a ¯xed prize n ¢ ¼ (ties are broken randomly.15)
P -beauty contest games were ¯rst studied experimentally by Nagel [53]

and extended by Du®y and Nagel [25] and Ho et al. [36]). These games
are useful for estimating the number of steps of iterated dominance players
use in reasoning through games. To illustrate, suppose p = :7. Since the
target can never be above 70, any number choice above 70 is stochastically
dominated by simply picking 70. Similarly, players who obey dominance,
and believe others do too, will pick numbers below 49 so choices in the
interval (49; 100] violate the conjunction of dominance and one step of
iterated dominance. The unique Nash equilibrium is 0.

In experiments, initial choices are widely dispersed and centered some-
where between the interval midpoint and the equilibrium (see Nagel [54]).
This basic result has been replicated with students on three continents and
with several samples of sophisticated adults, including economics Ph.D.'s
and corporate CEOs (see Camerer [9]). When the game is repeated, num-
bers gradually converge toward the equilibrium.

Explaining beauty contest convergence is surprisingly di±cult for adap-
tive learning models. Choice reinforcement converges too slowly, because
only one player wins each period and the losers get no reinforcement. Belief
models with low values of Á (close to Cournot) ¯t better, but also learn too
slowly (Ho et al. [36]).

The sophisticated EWA model was estimated on a subsample of data
collected by Ho et al. [36]. Subjects were 196 undergraduate students in
computer science and engineering in Singapore. Each seven-person group
of players played 10 times together twice, with di®erent values of p in the
two 10-period sequences. (One sequence used p > 1 and is not included
below.) The prize was .5 Singapore dollars per player each period, about
$2.33USD per group for seven-person groups. They were publicly told the
target number ¿ and privately told their own payo® (i.e., whether they
were closest or not).

We analyze a subsample of their data with p = :7 and :9, from groups
of size 7. This subsample combines groups in a `low experience' condition
(the game is the ¯rst of two they play) and a `high experience' condition
(the game is the second of two, following a game with p > 1).

Some design choices are needed to implement the model. The subjects
chose integers in the interval [0,100], a total of 101 strategies. If we allow
101 possible values of Aj(0) we use too many degrees of freedom estimating
initial attractions. Rather than imposing too many structural requirements

15Formally, ¼(xi; x¡i) =
n¢¼¢I(xi;argminxj jxj¡¿ j)P

i
I(xi;argminxj jxj¡¿ j)

.



16 CAMERER, HO AND CHONG

on the distribution of Aj(0) to economize on parameters, we use the ¯rst-
period data to initialize attractions.

Denote the empirically observed frequency of strategy j in the ¯rst period
by f j . Initial attractions are recovered from the equations16

e¸¢A
j(0)

P
k e

¸¢Ak(0)
= f j ; j = 1; : : : ;m: (7)

Some algebra shows that the initial attractions can be solved for, as a
function of ¸, by

Aj(0)¡ 1

m

X

j

Aj(0) =
1

¸
ln( ~f j); j = 1; : : : ;m (8)

where ~f j = fj

(¦kfk)
1
m

is a measure of relative frequency of strategy j. We

¯x the strategy j with the lowest frequency to have Aj(0) = 0 (which is
necessary for identi¯cation) and solve for the other attractions as a function
of ¸ and the frequencies ~f j .

Since subjects who lost did not know the winning number, they could
not precisely compute foregone payo®s. Therefore, we assume they have
a simple uniform belief over a range of possible winning numbers.17 We
assume the losers reinforce numbers in the interval [¿ ¡ ±¢n¢¼

d ; ¿ + ±¢n¢¼
d ].

The amount of reinforcement is of a triangular form with the maximum of
± times the prize at the target number and decreases linearly at a slope
of d (which is a parameter to be estimated). Denote the winning number
to be w and the distance between the target and the winning number by
e = j¿ ¡ wj. Winners reinforce numbers in the intervals (¿ ¡ e; ¿ + e) by
± times the prize. Winners reinforce the boundary number they choose,
either ¿ ¡ e or ¿ + e, by the prize divided by the number of winners, and
reinforce the other boundary number by ± times the prize divided by the
number of winners. If there is only one winner, she also reinforce numbers
in the intervals (¿¡e; ¿¡e¡ ±¢n¢¼

d ) and (¿+e; ¿+e+ ±¢n¢¼
d ) by a reinforcement

of a triangular form with the maximum of ± times the prize at ¿ ¡ e and
¿ + e and decreases linearly at a slope of d with smaller and larger number
respectively.

16This procedure is equivalent to choosing initial attractions to maximize the like-
lihood of the ¯rst-period data, separately from the rest of the data, for a value of ¸
derived from the overall likelihood-maximization.

17In Camerer and Ho [10], we assume that subjects know the winning number. Assum-
ing subjects having a belief over the possible winning numbers provides a signi¯cantly
better ¯t for the observed data.
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Table 2 reports results and parameter estimates.18 For inexperienced
subjects, adaptive EWA generates Cournot-like estimates (Á̂ = ½̂ = 0 and

±̂ = :90). Adding sophistication increases Á̂ and improves LL by 60 and
24 points in- and out-of-sample. The estimated fraction of sophisticated
players is .24 and their estimated perception ®̂0 is zero. The imagination
parameter ± is estimated to be .78 in the sophisticated model.

Experienced subjects show a large increase in sophistication. The esti-
mated proportion of sophisticates, and their perceptions, rise to .77 and
.41 in the experienced sample. As a result, adaptive EWA ¯ts much worse
than sophisticated EWA, di®erences in LL of more than 200 points both
in- and out-of-sample. The increase in sophistication due to experience
re°ects a kind of \cross-period" learning which is similar to rule learn-
ing (Stahl [72]) or \rule switching" (Salmon [66]). The di®erence is that
in Salmon and Stahl's approaches, players either keep track of actual or
prospective performance of di®erent rules, and switch in the direction of
better-performing rules (Stahl [72]) or switch away from poorly-performing
rules (Gale, Binmore and Samuelson [31], Salmon [66]). In our current spec-
i¯cation, this change in rules can only occur between games, but it could
be easily adapted to allow within-session rule changes (see Camerer and
Ho [10]).

Figures 2a and 3a show actual choice frequencies for inexperienced and
experienced subjects, respectively. Experienced subjects actually start by
choosing somewhat higher numbers (probably due to \negative transfer"
from their earlier experience with a p > 1 game with an equilibrium at
200), but converge more rapidly. By round four nearly half the experienced
subjects choose numbers 1-10 (the large spikes on the back and left of
Figure 3a). By contrast, after nine rounds only a third of the inexperienced
subjects choose 11-20. The fact that experienced subjects start farther
from equilibrium, and end up much closer, is an indication that they are
learning more rapidly or behaving more sophisticatedly (i.e., anticipating
learning by others).

Figures 2b-c show the frequencies predicted by the adaptive EWA (2b)
and sophisticated EWA (2c) models, for inexperienced subjects. Both mod-
els ¯t the general patterns in the data fairly well. Keep in mind that if

18Standard errors are derived from a bootstrap procedure. Two hundred sets of
bootstrapped estimates are produced using the method of maximum likelihood. Each
bootstrapped estimate is derived by maximizing a weighted log-likelihood. The weight
for each observation in this log-likelihood is randomly generated such that the sum of all
weights add to one. For each parameter, we sort the 200 bootstrapped estimates and note
the 2.5 and 97.5 percentile estimates (i.e. the 6th and the 295th estimates). We take the
di®erence between these two estimates to be 3.92 times the pseudo-standard errors and
infer pseudo-standard errors from the di®erence in estimates. If the bootstrap procedure
generates many outliers the standard errors will be large so we think our procedure is
conservative (i.e., does not understate standard errors).
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the model over¯ts in periods 2-7, it would predict particularly badly in the
out-of-sample periods 8-10. It does not. The di®erence between Figures
2b and 2c shows that adding sophistication adds only a small visual im-
provement for inexperienced subjects (consistent with the modest increase
in LL).

Figures 3b-c show the frequencies predicted by the adaptive EWA (3b)
and sophisticated EWA (3c) models, for experienced subjects. Here there is
a substantial improvement from including sophistication (compare 3c with
3b and 3a), which appears to ¯t nicely.

Restrictions of the sophisticated model generally degrade ¯t and pre-
dictive accuracy a lot. Imposing ®0 = ® = 1 creates quantal-response
equilibrium, which is 376 and 232 points worse in LL for inexperienced
and experienced subjects. One way for QRE to capture learning in a very
reduced form is to allow the response sensitivity ¸ to vary over time. Allow-
ing this does produce increasing values of ¸ (reported in Table 2), but the
di®erence in in-sample LL is still very large, 365 and 165.19 One problem
with QRE in these games is that the data are multi-modal, with \spikes"
re°ecting discrete levels of reasoning. (For example, in very large samples
from newspaper games with p = 2=3, there are sharp spikes at 33 and 22,
re°ecting one or two steps of iterated reasoning from a perceived mean of
50.) QRE does not produce spikes of this type so it captures central ten-
dencies but not multimodality. A QRE model in which di®erent players
have di®erent values of ¸ (but commonly know the distribution so the `E'
assumption is satis¯ed) will accommodate spikes and might ¯t better (cf.
Goeree and Holt [33]).

We did not estimate simple choice reinforcement models on these data
because they do an awful job. Only one of seven players receives any
reinforcement each period, so learning is far too slow.20 Cournot-like belief
models will ¯t better; indeed, for both groups of subjects the EWA estimate
of ±̂ is quite close to one and Á is low.

We also estimated the e®ects of rational expectations (RE, ® = ®0)
and egocentric bias or level-type (®0 = 0) restrictions. For inexperienced
subjects, the losses in log likelihood relative to sophisticated EWA are 3.63
and 2.85 for RE, in- and out- of-sample, and 21.24 and .16 for egocentric

19Our procedure of estimating the model in-sample and ¯xing parameter values to
forecast out-of- sample makes life di±cult for the varying-¸ QRE model, since we ¯x
¸ at the last (period 7) estimate to forecast periods 8-10. A better procedure would
impose some increasing functional structure on the ¸(t) function so that ¸ would con-
tinue to increase in the out-of-sample periods. Note, however, that the in-sample LL
is substantially worse than sophisticated EWA for inexperienced subjects, and slightly
worse with experienced subjects.

20This is a general problem for choice reinforcement models in games where n ¡ 1
players earn nothing, such as auctions, winner-take-all tournaments, market games with
one seller and many buyers (or vice versa), and so forth.
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bias. For experienced subjects the analogous ¯gures are 10.78 and 62.43
for RE, and 14.29 and 13.50 for egocentric bias.21 While these di®erences
in LL are small, both restrictions can be rejected (particularly RE), which
shows the predictive appeal of a model that separates sophistication and
perceived sophistication without imposing the strict level structure. Also,
the gap between ® and ®0 grows with experience, from 24% to 34% (and
consequently, the RE restriction is rejected more strongly for experienced
subjects). While players get more sophisticated between sessions, it seems
that they also overestimate how many others become sophisticated.

A ¯nal observation creates a segue to the next section of this paper.
In the actual frequency plots Figures 2a and 3a, the attentive eye can't
help but notice the small number of very large choices (typically 100),
particularly in later rounds. Ho et al. [36] called these large numbers
\spoilers" and tested several explanations for why people might choose
them. The most likely possibility is that subjects believe others are learning
according to some adaptive rule that responds to the previous mean. By
choosing a large number in round t, they throw adaptive learners o® the
trail, causing the adaptive learners to choose arti¯cially high numbers in
round t + 1, which improves the spoiler's chance of winning by choosing
a low number. This kind of behavior combines two ingredients: A belief
that others are learning adaptively; and a willingness to sacri¯ce period t
pro¯ts (since picking 100 guarantees a loss) for the sake of increased future
pro¯ts. This is our ¯rst glimpse of strategic teaching.

4. STRATEGIC TEACHING

For a sophisticated player who anticipates that others learn, it is natu-
ral to take into account the e®ect of her period t action on the adaptive
players' period t+ 1 actions, because those actions will change the sophis-
ticated player's period t+1 payo®s. We call the behavior which maximizes
discounted expected payo®s in this way \strategic teaching".

The basic idea is described by Fudenberg and Levine [30] (pp. 261-263;
cf. Ellison [26]). They write:

...imagine that one player is myopic and follows the type of learning proce-
dure we have discussed in this book, while another player is sophisticated
and has a reasonably good understanding that his opponent is using a
learning procedure of this type. What happens in this case?... [much as]
the results on equilibrium learning carry over to the case of nonequilibrium

21Imposing these restrictions does not change other parameter estimates much, except
to increase ±̂ to one for the egocentric restriction in both inexperienced and experienced
subject samples.
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learning, so we expect that the lessons of the literature on reputation will
carry over also to the case of nonequilibrium learning.

Fudenberg and Levine [29] showed that by playing an optimal precommit-
ment strategy forever (and waiting for the adaptive player to come around
to best-responding), a su±ciently patient strategic teacher can get almost
as much utility as from the Stackelberg equilibrium. In their book they
add (p. 262) that \the basic argument carries over in a straightforward
way to the case of nonequilibrium learning" (cf. Watson [79], Watson and
Battigali [80]).

Strategic teaching extends the reach of the EWA model to incorporate
two phenomena which are beyond the grasp of adaptive models: (1) The
in°uence of ¯xed-matching versus re-pairing protocols, and (2) emergence
of repeated-game behavior including, importantly, reputation formation
without cumbersome updating of \types" (a la Harsanyi).

If some players are capable of strategic teaching, then how players are
matched, and feedback that they are given, should a®ect learning. In fact,
there is evidence that ¯xed-pair matching and random rematching produce
di®erent behaviors, which shows indirectly the likely in°uence of strategic
teaching. For example, Andreoni and Miller [3] show that there is more
mutual cooperation in ¯nitely-repeated prisoners' dilemma games when
subjects play repeatedly with a ¯xed \partner" than when they are re-
paired with \strangers" in each period. Van Huyck, Battalio and Beil [77]
found a similar phenomenon in two-player \weak-link games" (which are
stag hunt or assurance games with seven strategies rather than two). They
compared partner pairings with stranger re-pairing. The distributions of
choices in the ¯rst period of the two pairing conditions were similar, but
partner pairs were able to converge to the e±cient equilibrium reliably (12
of 14 did so) while the stranger re-pairing behavior did not. Clark and
Sefton [19] reported a similar result. It appears that subjects who make
e±cient choices in the partner pairings, and see their partner choose an
ine±cient number in the ¯rst period, are inclined to \patiently" make an
e±cient choice once or twice more, as if holding their behavior steady and
anticipating that the other player will learn to play e±ciently.22

22The same di®erence in partner and stranger matching does not seem to be present
in three-player groups (see Knez and Camerer [42]). We conjecture that the di®erence
in two¡ and three¡player dynamics can be traced to strategic teaching. In both cases,
the success of a strategic teacher who makes the e±cient choice repeatedly depends on
behavior of the \least teachable" player. Since there are two other players being taught
in the three-player game, and only one in the two-player game, strategic teachers are
more likely to give up and converge toward ine±ciency in three-player games. The same
dynamics might help explain the fact that collusion is sustainable in repeated pricing
and quantity games when the number of players is small, and di±cult to sustain when
the number is large (e.g., Holt [38]).
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These stylized facts are consistent with strategic teaching. Strategic
teachers who are matched with a di®erent partner each time cannot use
their current choices to in°uence what will happen in the future (to their
bene¯t) if their future partners do not know the teachers' history of choices
and anticipate similar choices in the future.

Introducing teaching allows the possibility that repeated-game behavior
is di®erent than simply repeating stage-game behavior. Of course, in the-
ory strategies which are not equilibrium strategies in a stage game can be
used in repeated-game equilibria (by the threat of reversion to a Pareto-
ine±cient equilibrium if a defection occurs), as the \folk theorem" of re-
peated games would suggest. A familiar example is the repeated-PD, in
which playing tit-for-tat is a repeated-game equilibrium (if the discount fac-
tor is large enough, relative to payo®s), supported by the threat of reversion
to mutual defection. This kind of dynamic is precisely what teaching can
explain: A strategic teacher may play a strategy which is not myopically
optimal (such as cooperating in a PD) in the hope that it induces adaptive
players to expect that strategy in the future, which triggers a best-response
that bene¯ts the teacher. Furthermore, reversion to the Pareto-ine±cient
equilibrium is credible because the teacher knows that if she defects, her
adaptive opponent will learn to quit playing the repeated-game strategy.

Strategic teaching is a di®erent way to comprehend repeated-game equi-
libria than standard analyses, and could prove better as a way of explain-
ing actual behavior. Consider the in°uence of the length of the horizon
of future play. In standard (pre-1980) theory, folk theorem results unravel
when the horizon of the repeated game is ¯nite. Standard theory therefore
cannot explain why players cooperate until the last couple of periods of
a ¯nitely-repeated PD, as is typically observed in experiments (e.g., Sel-
ten and Stoecker [70]). Since strategic teaching assumes that the learners
are adaptive, and do not use backward induction, strategic teaching will
generally predict folk theorem-type results until a point near the end of
the ¯nite horizon, when it no longer pays to teach because the end is too
near. Therefore, strategic teaching does not predict unraveling in long
¯nitely-repeated games, which is consistent with most experimental data
and everyday intuition but contrary to standard theory.

Of course, it is now well-known that repeated-game behavior can arise in
¯nite-horizon games when there are a small number of \irrational" types
(who act like the horizon is unlimited), which creates an incentive for ratio-
nal players to behave as if the horizon is unlimited until near the end (e.g.,
Kreps and Wilson [44]). But specifying why some types are irrational, and
how many they are, makes this interpretation di±cult to test.23 In the

23Some models allow the number and nature of irrational types to be a free parame-
ter, as in the \homemade prior" account of Camerer and Weigelt [16] and Palfrey and



22 CAMERER, HO AND CHONG

teaching approach, which \crazy" type the teacher wants to pretend to be
arises endogenously from the payo® structure{ they are generally Stackel-
berg types, who play the strategy they would choose if they could commit
to it. For example, in trust games, they would like to commit to behaving
nicely; in entry-deterrence, they would like to commit to ¯ghting entry.

4.1. The Model

To illustrate the details of how teaching works, consider the repeated
trust game. (Below, we estimate the teaching model on a sample of ex-
perimental data for this game.) A borrower B who want to borrow money
from each of a series of lenders denoted Li (i = 1; : : : ; N). A lender makes
only a single lending decision (either Loan or No Loan) and the borrower
makes a string of N decisions each of which, either (repay or default), is
made after observing the lender's decision.

In a typical experimental session, 11 subjects are divided into 3 borrow-
ers and 8 lenders and their roles are ¯xed. In a single sequence, a bor-
rower B is randomly chosen to play an 8-round supergame. Each lender
Li(i = 1; : : : ; 8) plays in one of the 8 stage games in a random order (which
is unknown to the borrower). To study cross-sequence learning, the en-
tire supergame is repeated many times with fresh random assignments of
borrowers, and orders of lenders, in each sequence.24

Denote each sequence of game rounds by k and each game round by t.
Note that within the sequence of game rounds, there is a common borrower.
In a typical experimental session, there are about 81 sequences. The goal
is to specify the probabilities for the borrower and the lender for each of
their actions, in each round of each sequence.

Recall that each lender plays only once, and each borrower plays in only
a third of the sequences. Yet they watch all the other plays, and clearly
respond to observed behavior of others. Therefore, we assume \observa-
tional" learning{ all lenders learn from what they observe as strongly as
from what they do. This assumption is plausible and well-supported by
other evidence (e.g., Du®y and Feltovich [24]). It is also necessary to ex-
plain what we see (lenders in later rounds who have not played yet clearly
react to what happened in earlier rounds of a sequence). We assume that
the lenders are purely adaptive (because the matching scheme gives them
no incentive to teach) and that the dishonest borrower may be sophisti-
cated, and may also be a strategic teacher. In sessions where there is a
possibility of an honest borrower (e.g. sessions 3 to 8 of the trust data),

Rosenthal [58], executed formally by McKelvey and Palfrey [46]. The agent-based QRE
model we use below incorporates this idea.

24To limit reputation-building across sequences, if a borrower plays in sequence t she
cannot be chosen to play in sequence t+ 1.
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we use a simple logit probability to model the honest behavior.25 Note
that the best response of an honest type is always to repay and a simple
logit form is used to allow for trembling. Henceforth, all borrowers in our
discussion are meant to be the dishonest type.

An important twist in our model is that players are assumed to learn
about the attraction of a strategy in a current round in two separate ways:
They learn from previous rounds in a sequence; and from how the strategies
performed in the current round in previous sequences. For concreteness,
consider round 7 in sequence 14. A lender presumably sees what happened
in the previous 6 rounds, and learns about whether to loan from what
happened in those rounds. It is also plausible that the lender looks at
what happened in the 7th round of previous sequences 1-13, and learns
about whether she should loan in round 7 from those sequences.

We include both types of learning in the model. Learning about a spe-
ci¯c round across sequences is like repeated-stage-game learning across
similar games; where the \similar" games are identical rounds in previ-
ous sequences. This sort of transfer has been explored by Stahl [72] and
resembles the similarity-based \spillover" of reinforcement from a chosen
strategy to neighboring strategies explored by Sarin and Vahid [64]. And
we thought that including cross-sequence learning was necessary to explain
the data better. After all, the reason why experimenters conduct a (long!)
series of repeated game sequences, rather than simply one, is presumably a
prior belief that learning required many repetitions of the entire sequence.

The strength of cross-sequence learning is parameterized by ¿ . If that
parameter is zero there is no cross-sequence learning. So the data can tell
us whether allowing cross-sequence learning is helpful through the value of
¿ .

It is not clear how to integrate the two sorts of learning. Returning to
our example, the strategy Loan for a lender before period 7 of sequence
14 can be said to have two di®erent attractions - the attraction of Loan
after period 6, and the attraction of Loan after period 7 of sequence 13.
Simply averaging these attractions is an obvious, but ham¯sted, way to
include them both in a general learning process. Re°ecting a prior belief
that within-sequence learning is more important than cross-sequence learn-
ing, we elected to make updating attractions within a sequence the basic
operation, then include an extra step of partial updating using the average
payo® from previous sequences.

Call the attraction of an adaptive lender at the end of sequence k and
round t for strategy j, AjL(a; k; t). Updating occurs in 2 steps. The idea

25For example, using the payo® function from the trust data, the honest type will

choose to repay with probability PH = e¸H ¢60

e¸H ¢60+e¸H ¢0
where ¸H is a scale parameter to

be estimated.
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is to create an \interim" attraction for round t, BjL(a; k; t), based on the

attraction AjL(a; k; t ¡ 1) and payo® from the round t, then incorporate

experience in round t+1 from previous sequences, transforming BjL(a; k; t)

into a ¯nal attraction AjL(a; k; t).

² Step 1 (adaptive learning across rounds within a sequence):

BjL(a; k; t) =
Á ¢N(k; t¡ 1) ¢AjL(a; k; t¡ 1)

M(k; t)
+

(± + (1¡ ±) ¢ I(j; sL(k; t))) ¢ ¼L(j; sB(k; t))

M(k; t)

M(k; t) = Á(1¡ ·) ¢N(k; t¡ 1) + 1

² Step 2 (simulated learning in a coming round from previous sequences):

AjL(a; k; t) =
Á¿ ¢ BjL(a; k; t) ¢M(k; t) + ¿ ¢ ± ¢ ¼̂jL(k; t+ 1)

N(k; t)

N(k; t) = [Á(1¡ ·)]¿ ¢M(k; t) + ¿

We assume that the learning about an upcoming round from previous se-
quences is driven by the average payo® in that round in previous sequences.
Formally, ¼̂jL(k; t+ 1) =

Pk¡1
m=1 ¼L(j; sB(m; t+ 1))=(k ¡ 1).26 As usual, we

derive P jL(a; k; t+ 1) from AjL(a; k; t).
Next we specify learning by an adaptive borrower. The updating occurs

in 2 steps.

² Step 1 (adaptive learning across rounds within a sequence):

BjB(a; k; t) =
Á ¢N(k; t¡ 1) ¢AjB(a; k; t¡ 1)

M(k; t)
+

(± + (1¡ ±) ¢ I(j; sB(k; t))) ¢ ¼B(j; sL(k; t))

M(k; t)

M(k; t) = Á(1¡ ·) ¢N(k; t¡ 1) + 1

² Step 2 (simulated learning in a coming round from previous sequences):

AjB(a; k; t) =
Á¿ ¢ BjB(a; k; j) ¢M(k; t) + ¿ ¢ ± ¢ ¼̂jB(k; t+ 1)

N(k; t)

N(k; t) = [Á(1¡ ·)]¿ ¢M(k; t) + ¿

26We have also explored a speci¯cation in which only the payo® received in the previ-
ous sequence from a particular strategy is used. That is, ¼̂jL(k; t+1) = ¼L(j; sB(k¡1; t+

1)). That speci¯cation is too \¯ckle" and ¯ts worse than the average-payo® speci¯cation.
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As above, we assume that the learning from an upcoming round, from
previous sequences, is driven by the average payo® in that round in previous
sequences (¼̂jB(k; t + 1) =

Pk¡1
m=1 ¼B(j; sL(m; t + 1))=(k ¡ 1)). We derive

P jB(a; k; t+ 1) from AjB(a; k; t).
Now we are ready to specify how a sophisticated borrower will behave.

A sophisticated borrower guesses how the lender learns, and adapts those
guesses to experience, and also plans actions for the remaining periods
within a game sequence. Speci¯cally, we assume a sophisticated borrower's
attractions are speci¯ed as follows:

AjB(s; k; t) =

NoLoanX

j0=Loan

P j
0

L (a; k; t+ 1) ¢ ¼B(j; j0)+

max
Jt+1

f
TX

v=t+2

²v¡t¡1
NoLoanX

j0=Loan

P̂ j
0

L (a; k; vjjv¡1 2 Jt+1) ¢ ¼B(jv 2 Jt+1; j
0)g

where P̂ j
0

L (a; k; vjjv¡1) = P̂LoanL (a; k; v¡1jjv¡1)¢P j
0

L (a; k; vj(Loan; jv¡1))+

P̂NoLoanL (a; k; v¡1jjv¡1) ¢P j
0

L (a; k; vj(NoLoan; jv¡1)). Jt+1 speci¯es a pos-
sible path of future actions by the sophisticated borrower from round t+ 1
until end of the game sequence. That is Jt+1 = fjt+1; jt+2; : : : ; jT¡1; jT g
and jt+1 = j. To economize in computing, we search only paths of future
actions that always have default following repay because the reverse be-
havior (repay following default) generates a lower return. It is therefore
in the sophisticated borrower's interest to allocate repay to earlier rounds.
Finally, P jB(s; k; t+ 1) is derived from AjB(s; k; t) using a logit rule.

Note that if ² = 0, the player is sophisticated but myopic (she does not
take into account the future learning e®ects of current actions). If ² > 0,
the sophisticated player is a teacher who takes into account the e®ects of
current actions on learned behavior of others.

Assume that a proportion ® of the borrowers are sophisticated. Then
the likelihood of observing the dishonest borrowers is given by ¦k[(1¡®) ¢
¦tP

SB(t)
B (a; k; t) + ® ¢ ¦tP

SB(t)
B (s; k; t)].27

We estimate the model using repeated game trust data from Camerer
and Weigelt [16]. As in our earlier work, we use maximum likelihood es-
timation (MLE) to calibrate the model on about 70% of the sequences in
each experimental session, then forecast behavior in the remaining 30% of

27We assume rational expectations (i.e., ® = ®0) to conserve on parameters.
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the sequences.28 If the model ¯ts better in-sample only by over¯tting, it
will perform poorly out-of-sample.29

4.2. Repeated Trust Game

Table 3 shows payo®s in the repeated trust game. The lenders earn 10
if they do not lend; they earn 40 if a loan is repaid and lose -100 if the
borrower defaults.30 A normal borrower earns 10 if the lender does not
lend, 150 if the lender lends and she defaults, and earns only 60 if she pays
back. Honest-type borrower have default and repayment payo®s of 0 and
60 respectively (note that they earn more from repaying).

The probability that a borrower had honest-type payo®s in a particular
sequence, P(honest), was .33 (sessions 3-5), .10 (sessions 6-8) and 0 (sessions
9-10). Subjects were MBA students at NYU or University of Pennsylvania.
They were paid according to performance and earned an average of $18 for
a 2-1/2 hour session. Each session had 70-101 eight-period sequences.

We now discuss the sequential equilibrium predictions, then return to the
data. With the payo®s used in Table 3, the analysis proceeds as follows:
Start from period 8. In this period, lenders know that the borrower will
play Default if she loans (and the honest type will, of course, repay) so the
only question is the probability that the borrower is a honest type. Simple
algebra shows that if lenders are risk-neutral, they should loan if P(Honest)
is above 55/70, about .79. De¯ne this important threshold to be °. In the
second-to-last period, period 7, normal borrowers are torn between two
forces: Conditional on loan, they would like to choose Default to earn the
higher payo®; but if they do so, they would have revealed their type and
would earn the No-Loan payo® in period 8. However, if their reputation
(i.e., the perception P(Honest) lenders have) in period 7 is below °, then
lenders will not lend and Bayesian updating would lead lenders to have the
same perception in period 8 which, by assumption, is too low to induce
the lenders to lend in period 8. The trick is for borrowers to play a mixed
strategy, repaying frequently enough that if they do default, the updated
P(Honest) will equal °, so that lenders will mix and sometimes lend in the
last period.

28The likelihood of a session consists of the likelihood for the lenders, the likelihood for
the dishonest borrowers and, in some sessions, the likelihood for the honest borrowers.

29We used GAUSS. To avoid settling into local maxima, we posited two or three
starting values for each parameter, and used 64 combinations of possible parameter
values as di®erent initial conditions. After 50 iterations from each initial condition, we
chose the best-¯tting estimates and continued iterating to convergence.

30Payo®s were varied for lenders for the loan-default outcome, -50 in sessions 6-8
and -75 in sessions 9-10. These parameter variations provide a small `stress test' for
whether the same structural model can account for behavior across sessions with minimal
parameter variation.
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Given a particular P(Honest) in period 7, the normal borrower should
choose a repayment probability p which keeps the lender indi®erent in
period 7, and allows Bayesian updating of his reputation to the threshold
P(Honest)=° in period 8. Combining these two conditions gives a threshold
of perceived P(Honest) which happens to be °2, and a mixed strategy
probability of lending in period 7 of .560.

The same argument works by induction back to period 1. In each period
the lender has a threshold of perceived P(Honest) which makes her indi®er-
ent between lending and not lending. The path of these P(Honest) values
is simply °n. Figure 4 shows this path, and the mixed-strategy probabili-
ties of repayment by normal borrowers which keep the lender's perceptions
along this path (for an initial prior P(Honest) of .33). The Figure can be
used to illustrate all the key properties of this equilibrium.31 In the ¯rst
three periods, the threshold P(Honest) is below the prior of .33, so bor-
rowers can \a®ord" to always default and lenders should lend. Beginning
in period 4, normal borrowers must mix in order to boost their reputa-
tion, conditional on getting a loan, to stay along the equilibrium path of
P(Honest) which increases. If the borrower ever defaults, the lender should
not lend in all subsequent periods.

Two patterns in the data are of primary interest. First, what is the
rate of lending across periods (and how does it change across sequences)?
Second, how do borrowers respond to loans in di®erent periods (and how
do these responses vary across sequences)?

Typical patterns in the data can be seen in Figures 5a-b. The ¯gures
show relative frequencies of No Loan and Default (conditional on a loan).32

Sequences are combined into ten-sequence blocks (denoted \sequence") and
average frequencies are reported from those blocks. Periods 1,...,8 denote
periods in each sequence.

Figure 5a-b are data from all eight sessions pooled. Lenders start by
making loans in early periods (i.e., there is a low frequency of no-loan),
but they rarely lend in periods 7-8. Borrowers default infrequently in early
periods, but usually default in periods 7-8. The within-sequence pattern is
particularly dramatic in later sequences.

As a benchmark alternative to the teaching model, we estimated an
agent-based version of quantal response equilibrium suitable for extensive-
form games (see McKelvey and Palfrey [48]). An Appendix explains pre-

31Characteristically, there are other sequential equilibria. For example, the normal
borrower might never repay, if she thinks that the lender will perceive Repay as an
indication of a normal type. The intuitive criterion selects the equilibrium we discuss
however, so we will casually refer to it as \the" equilibrium.

32To distinguish cases in which there are no data from true zeros (e.g., no repay after
several loans), we plot cases with no data as -.1.



28 CAMERER, HO AND CHONG

cisely how the the agent-QRE model is implemented and estimated.33

(Note that while the model has fewer free parameters than the teaching
model, there are many nuances in implementation which make it more
di±cult to work with in some respects.) We use this model, rather than se-
quential equilibrium, because the (intuitive) sequential equilibrium predicts
many events to have zero probability, so some notion of error or trembling
is needed to ¯t the data (otherwise the logarithm of likelihood explodes).
Agent-QRE is a plausible form and ¯ts many data sets well (see McKelvey
and Palfrey [48], Goeree and Holt [33]).

We implement the model with four parameters { the prior belief of
lenders about P(Honest) (which can di®er from the prior induced by the
experimental design to re°ect \homemade priors", giving the model more
°exibility), and di®erent response sensitivities ¸ for lenders, honest bor-
rowers, and normal borrowers. Agent-QRE is a good benchmark because
it incorporates the key features of repeated-game equilibrium{ (stochastic)
optimization, accurate expectations about actions of other players, and
Bayesian updating. Also, while it makes the same conditional predictions
in every sequence, even under AQRE players will be predicted to behave
di®erently in later sequences if the early-period play in those sequences is
di®erent, so in a crude way it can ¯t cross-sequence change. AQRE there-
fore presents a sti® challenge to any adaptive learning model which tries to
explain learning both within and across sequences.

The models are estimated separately on each of the eight sessions to
gauge cross-session stability (pooling sessions yields similar results about
relative ¯t of teaching and AQRE). Table 4 shows measures of ¯t. To mea-
sure ¯t we report both log likelihood and the average predicted probability
of events that occurred. Table 4 shows that for in-sample calibration, the
average predicted probabilities range from 71% to 88% for the teaching
model, compared to 69% to 81% for agent-QRE. The teaching model ¯ts
better in every session. Of course, an important test for over¯tting is how
a model fares in out-of-sample forecasting. The average predicted proba-
bilities for the teaching model range from 71% to 89% with no noticeable
decline in performance. The agent-QRE model probabilities range from
68% to 82% with a slight decline in 2 out of the 8 sessions and always ¯ts
worse than the teaching model by this measure. The log likelihood measure
yields a similar result: The teaching model ¯ts substantially better than
agent-QRE in all sessions.

Table 5 shows parameter values (and standard errors) for the teaching
model (excluding the ¸ values).34 The interesting lender parameters are ±
and ¿ . The weights on foregone payo®, ± range from .19 to .80, and average

33We use an agent-based form in which players choose a distribution of strategies at
each node, rather than using a distribution over all history-dependent strategies.

34The remaining parameter estimates are available from the authors upon request.
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.44, with low standard errors (.01). Estimates of ¿ range from .95 to 1.00,
except for one outlier at .51, which indicates a high degree of cross-sequence
learning.

The interesting parameters for sophisticated borrowers are ® and ². The
degree of sophistication ® ranges from .02 to .70. The \horizon" parameter
² is close to one in ¯ve sessions and around .20 in three sessions.35

Figures 5c-d show average predicted probabilities from the teaching model
for the no-loan and default rate (conditional on no previous default0. It
captures most of the key regularities in the data, although it does not al-
ways ¯t aggressive patterns in the data. No-loan frequencies are predicted
to start low and rise across periods, as they do. There are some slight
downward trends over time (e.g., periods 1-4) in the data, which the model
captures in periods 2-4. Since the model is forecasting out-of-sample in
sequence blocks 7-9, its ability to forecast those trends in those sequences
is particularly noteworthy. Notice that the no-loan rate pops up quite a
bit in periods 3-5 in those later sequences, and the model predicts an in-
crease as well. There is less change in the default rate across sequences
for the model to capture. It does not pick up the drop in default rate in
early periods across sequences well, but it does predict the rate of increase
in default rate across periods reasonably well, except for under-predicting
default in the last period.

The key parameter in AQRE is the prior P(Honest){ including any
\homemade prior" belief that borrowers with normal payo®s will behave
honestly by always repaying. The estimates are .93,.92,1.0,1.0,.82,.67,.51,.53.
These correlate .78 with the prior induced by the experimenter. However,
these ¯gures just seem too high. Earlier studies of this type estimate num-
bers on the order of 10-20% with zero induced prior (see Camerer and
Weigelt [16], McKelvey and Palfrey [46], Neral and Ochs [55]).

4.3. Distinguishing strategic teaching from type-based

reputation formation

Strategic teaching generates behavior which is similar to reputation-
building in repeated games where there is Bayesian updating of players'
unobserved \types". In the type-based models the presence of honest types
who prefer to repay creates an incentive (depending on payo®s and the prior
P(Honest)) for types with normal payo®s to repay loans.

Many of the predictions of the teaching and type-based models across
periods and changes in payo®s are similar. The crucial di®erence is that in
the type-based models a particular player has a reputation (i.e., a poste-
rior P(Honest) and associated probabilities of repayment in each period).
In the teaching model a strategy has a \reputation" or attraction. More

35Two of the three sessions with low ²̂ are sessions with a zero-prior on the honest
type, where reputation-building is less common.
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precisely, there are four important di®erences between the teaching and
types approaches: Sensitivity to priors, independence of own payo®s and
own mixture probabilities, the e®ect of missed opportunity, and \no sec-
ond chances". We sketch these di®erences here and plan to explore them
further in future work.

Type-based models have the following properties: If the prior P(Honest)
is below some threshold (depending on payo®s and the horizon of the
¯nitely-repeated game) there is no reputation-building; mixture probabil-
ities depend only on the other players' payo®s; if a borrower does not
receive a loan in an early period that missed opportunity does not a®ect
future behavior, but if a borrower does not receive a loan in a later period
(and hence has no chance to repay and build reputation) then she never
receives any more loans; and the sensible sequential equilibrium requires
the assumption that if a borrower defaults in one period, then repays in
a subsequent period, her reputation is not restored (there are \no second
chances"). The teaching model does not make these same predictions.
When the type-based models are extended to include quantal-response and
a \homemade prior", as in the AQRE model we used as a static bench-
mark, the sensitivity to priors and independence properties no longer hold,
but the missed-opportunity and no-second-chances properties still hold (in
a probabilistic sense).

There is a simple experimental way to discriminate between the teach-
ing and type-based approaches. The type-based approach requires that
a player's type remain ¯xed throughout a sequence. If types are drawn
randomly in each period, the link between past behavior, inferences about
types, and future incentives is broken and there is no equilibrium reputation-
building by normal types. In the teaching approach the presence of nice
types does matter36 but it makes little di®erence whether a player's type is
¯xed within a sequence or drawn independently in each period. Comparing
behavior in experiments with ¯xed types and independent types therefore
provides a way to distinguish the type-based and teaching approaches. The
type-based approach predicts a big di®erence in behavior across those two
protocols, while the teaching approach predicts little di®erence.

We do not suggest that the teaching approach should completely replace
type-based equilibrium models of reputation-formation. However, it has
always seemed dubious that players are capable of the delicate balance of
reasoning required to implement the type-based models, unless they learn
the equilibrium through some adaptive process. The teaching model is the
only available parametric model of that process in which matching pro-
tocols matter, and is therefore worth exploring further. Note also that

36Presence of honest types matters because they alter the attractions of loan and
no-loan strategies for lenders, and hence alter the marginal incentives to teach.
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the type-based models assume optimization and foresight by reputation-
builders, and Bayesian updating of types by \learners". The teaching
model only changes the last feature, replacing Bayesian updating by learn-
ers with learning about their strategies. Our adaptive EWA work showed
that some Bayesian learning models which are used to compute expected
payo®s (weighted ¯ctitious play) can be perfectly operationalized by gen-
eralized reinforcement which keeps track of historical payo®s. In a similar
way, assuming that entrants update strategy attractions may be a sensi-
ble empirical alternative to Bayesian updating of types, and softens the
sharp predictions which result from the Bayesian approach (particularly
the missed opportunity and no-second-chance features).

5. CONCLUSION

This paper extends earlier work on adaptive EWA learning to include
sophistication and strategic teaching. Before proceeding to summarize our
conclusions, it is helpful to think of the properties one would like an em-
pirical model to have. (i) The model should use all the information that
subjects have and use. (Reinforcement and belief models don't have this
property; see Salmon [66].) (ii) The parameters of the model should have
psychological interpretations, preferably consistent with accepted ideas in
neighboring social sciences. (iii) The model should be as simple as possible,
in the sense that every parameter should play a distinct role that is predic-
tively useful. (iv) The model should ¯t well, both in- and out-of-sample,
judging by statistical criteria which permit model comparison.

EWA does well on all four criteria. A ¯fth property is that a model
be tractable enough to explore its theoretical implications. Heller and
Sarin [34] have made initial progress, using a variant of EWA, which is
promising. In current work, we have endogenized EWA parameters, making
them functions of experience (Ho et al. [35]). Our method opens the door
to easier theorizing.37

Adaptive EWA is incomplete by the information-use (i) and psycholog-
ical ¯delity criteria (ii), because it does explain how players' information
about the payo®s of others is used, and it does not allow the sort of an-
ticipatory learning which is plausible for intelligent experienced players.
Therefore, we extended the model by assuming some fraction ® of players
are sophisticated in a speci¯c sense: They believe others adapt according to
EWA, but also believe that a fraction ®0 are sophisticated like themselves.

37In the one-parameter \EWA Lite" of Ho et al. [35], when an opponent's behavior
stabilize the parameters Á and ± both converge toward one, which means the learning rule
converges toward ¯ctitious play (if · = 0). When another player's behavior stabilizes
we can therefore apply convergence theorems which are used to show convergence of
¯ctitious play in some settings (see Fudenberg and Levine [29]).
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We estimate the sophisticated EWA model on a sample of data from
dominance- solvable `p-beauty contest' games. In these games, each of the
n players choose a number from the interval [0,100] and the player whose
number is closest to p times the average number wins a ¯xed prize. We
chose these games because there is substantial learning evident in the data,
but the adaptive EWA model (and the special cases of reinforcement and
weighted ¯ctitious play) do not ¯t particularly well (see Camerer and Ho
[12]).

Introducing sophistication improves ¯t substantially. More interestingly,
we ¯nd that the estimated fraction of sophisticated players, ®, rises sub-
stantially between sessions with inexperienced subjects and those with ex-
perienced subjects (who play a second p-beauty contest with a di®erent
value of p). This shows that what experience creates is not just learn-
ing about the success of strategies, but also learning about learning{ or
increasing sophistication. Players seem to learn that others are adaptive,
and learn to \jump ahead" by anticipating changes by others.38

Once sophistication is introduced, whether players will be matched to-
gether repeatedly or not could matter. Sophisticated players who under-
stand that others are learning will have an incentive to take actions in
period t, which \teach" adaptive players how strategies perform, so the
sophisticated can earn a higher payo® in period t+ 1 and beyond. (If play-
ers are rematched in each period, then this kind of teaching motivation
disappears.)

Strategic teaching captures the incentive players have, in repeated games
with ¯xed partners, to implement repeated-game strategies which can lead
to results that are not stage-game equilibria. We explore this possibility
in borrower-lender trust games. In the trust game, borrowers have an
incentive to repay loans in early periods, in order to obtain further loans,
but toward the end of the eight-period horizon they should quit repaying.
We show that a model with adaptive lenders, and sophisticated borrowers
who \strategically teach", can explain the basic patterns in these data
reasonably well (and consistently better than agent-based quantal response
equilibrium).

The teaching approach shows promise for capturing much of the intuition
and empirical regularity of reputation- building in repeated games, with-
out using the complicated type-based equilibrium approach. The device
of assuming updated types is useful for explaining why lenders are afraid
to loan early, and willing to loan late. Sophisticated EWA with strategic
teaching produces the same e®ect more directly{ borrowers have an incen-
tive to repay early because they know that lenders will be convinced, not

38A similar point is made, with quite a di®erent model, by Stahl [71]).
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because they believe the borrower's reputations per se, but simply because
they learn that loaning in early periods is good.

The teaching model helps resolve a mystery in the experimental literature
on repeated games. Basic patterns in the data do go in the direction
predicted by sequential equilibrium{ viz., borrowers repay more often in
early periods of a sequence, and lenders seem to anticipate or learn this,
loan more frequently in earlier periods. But changes in treatment variables
do not always create predicted changes in behavior (see Neral and Ochs
[55] and Jung, Kagel and Levin [41]), subtle predictions of the equilibrium
theory are not con¯rmed, and equilibrium calculations are so complex that
it is hard to believe subjects are calculating rather than learning. As a
result, Camerer and Weigelt [16] concluded their paper as follows:

...the long period of disequilibrium behavior early in these experiments
raises the important question of how people learn to play complicated
games. The data could be ¯t to statistical learning models, though new
experiments or new models might be needed to explain learning adequately.
(pp 27-28).

Strategic teaching is one possible answer to the question they raised almost
15 years ago.
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APPENDIX: COMPUTING AGENT QUANTAL

RESPONSE EQUILIBRIUM IN REPEATED TRUSTED

GAMES

The goal is to compute the AQRE given ¸H (honest borrower), ¸D (dis-
honest borrower), ¸L (lender), and q (P (Honest)). We specify P (Honest)
to be a function of the experimenter-induced prior (of the honest type), p
and the home-made prior µ. In particular, we let q = p+ µ ¢ (1¡ p) where
µ will be estimated.

Let's get the easy thing out of the way ¯rst. The honest type will choose

\repay" with a probability of PH = e¸H ¢60

e¸H ¢60+e¸H ¢0 Note that this probability
applies to every period and is independent of lender's belief on borrower's
type.

A.1. THREE MATRICES

The computation involves constructing 3 matrices which have a dimen-
sion 101 x 8 (101 belief grids about borrower type and 8 time periods, with
beliefs rounded to the nearest .01):

1. Dishonest Borrower Matrix: Each row of the matrix corresponds
to a belief grid and each column a time period. For example, row 1 corre-
sponds to a belief of 0.0 and row 65 a belief of 0.64. Similarly, column 3
corresponds to period 3, and etc. Element (r, t) of the Dishonest Borrower
matrix gives the probability that the dishonest borrower will repay given
that lender's belief is r at time t. Formally, we have

PD(tjr) =
e¸D¢(60+V (t+1jr0))

e¸D¢(60+V (t+1jr0)) + e¸D¢(150+V (t+1jr00)) (A.1)

where V (t + 1jr0) refers to the ex ante value of the borrower for future
rounds of the game given lender's posterior belief r0 at time t + 1. r0

and r00 are the posterior beliefs of choosing repay and default respectively.
Formally, we have:

r0 =
PH ¢ r

PH ¢ r + PD(tjr) ¢ (1¡ r) (A.2)

r00 =
(1¡ PH) ¢ r

(1¡ PH) ¢ r + (1¡ PD(tjr)) ¢ (1¡ r) (A.3)

2. Lender Matrix: Element (r,t) of this matrix gives, PL(tjr), the prob-
ability of lending given that the lender's belief of borrower being honest is
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r at period t. In general,

PL(tjr) =
e¸L¢[r¢(PH ¢40+(1¡PH)¢(¡100))+(1¡r)¢(PD(tjr)¢40+(1¡PD(tjr)¢(¡100))]

e¸L¢[r¢(PH ¢40+(1¡PH)¢(¡100))+(1¡r)¢(PD(tjr)¢40+(1¡PD(tjr)¢(¡100))] + e¸L¢10

(A.4)

3. Value Matrix: Element (r,t) of the Value matrix provides the ex
ante value for the borrower (as in a dynamic program) for future rounds of
the game when the lender's belief is r at time t. Formally, it is given by:

V (tjr) = (1¡ PL(tjr)) ¢ (10 + V (t+ 1jr))
+PL(tjr) ¢ [PD(tjr) ¢ (60 + V (t+ 1jr0))
+(1¡ PD(tjr)) ¢ (150 + V (t+ 1jr00))] (A.5)

4. Observations:

(i) Equations (A.1)-(A.3) de¯ne a ¯xed point PD(tjr). Note that we
need to know what V (t + 1jr0) and V (t + 1jr00) are in order to solve the
¯xed point. This suggests we need to work backward.

(ii) Equation (A.4) can easily be solved once the ¯xed point is found.

(iii) Equation (A.5) will only be used when we create elements in col-
umn t¡ 1 of the value matrix. Computing it is easy after ¯nding the ¯xed
point.

(iv) Note that in the case where No Loan is made in a period, the
belief in that period will not be updated.

5. Ending Values: We have to create these matrices by working back-
ward (i.e., starting from column 8). The ending dishonest borrower prob-
abilities are computed as follows:

PD(8jr) =
e¸D¢60

e¸D¢60 + e¸D¢150
(A.6)

Similarly, the ending values V (8jr) as follows:

V (8jr) = (1¡ PL(8jr)) ¢ 10

+PL(8jr) ¢ [60 ¢ PD(8jr) + 150 ¢ (1¡ PD(8jr))]: (A.7)
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A.2. SOLVING THE FIXED POINT

Let us see how we can compute PD(7jr). We have the following set of
equations:

PD(7jr) =
e¸D¢(60+V (8jr0))

e¸D¢(60+V (8jr0)) + e¸D¢(150+V (8jr00)) (A.8)

r0 =
PH ¢ r

PH ¢ r + PD(7jr) ¢ (1¡ r) (A.9)

r00 =
(1¡ PH) ¢ r

(1¡ PH) ¢ r + (1¡ PD(7jr)) ¢ (1¡ r) (A.10)

We use PD(8jr) as the initial value and plug it into (A.9) and (A.10) to
¯nd r0 and r00. Round r0 and r00 to the nearest 0.01 values. Use them to
look for V (8jr0) and V (8jr00) in the value matrix and substitute these values
into (A.8) to get a new PD(7jr). Altogether we have 101x7 ¯xed points to
solve.

A.3. LIKELIHOOD CALCULATION

Assume sequence k, we have f(Lend, Repay), (Lend, Repay), (No Loan),
(No Loan), (Lend, Default), (Lend, Default), (No Loan), (No Loan)g So
the likelihood of lender is:

LikelihoodL(k) = PL(1jx(1)) ¢ PL(2jx(2)) ¢ (1¡ PL(3jx(3)) ¢ (1¡ PL(4jx(4))

¢PL(5jx(5)) ¢ PL(6jx(6)) ¢ (1¡ PL(7jx(7)) ¢ (1¡ PL(8jx(8))

where

x(1) = p+ µ ¢ (1¡ p)

x(2) =
PH ¢ x(1)

PH ¢ x(1) + PD(1jx(1)) ¢ (1¡ x(1))

x(3) =
PH ¢ x(2)

PH ¢ x(2) + PD(2jx(2)) ¢ (1¡ x(2))

x(4) = x(3)

x(5) = x(4)

x(6) =
(1¡ PH) ¢ x(5)

(1¡ PH) ¢ x(5) + (1¡ PD(5jx(5)) ¢ (1¡ x(5))

x(7) =
(1¡ PH) ¢ x(6)

(1¡ PH) ¢ x(6) + (1¡ PD(6jx(6)) ¢ (1¡ x(6))

x(8) = x(7)
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The conditional likelihood of the dishonest borrower is:

CLikelihoodD(k) = PD(1jx(1)) ¢ PD(2jx(2))

¢(1¡ PD(5jx(5))) ¢ (1¡ PD(6jx(6)))

The conditional likelihood of the honest borrower is:

CLikelihoodH(k) = PH ¢ PH ¢ (1¡ PH) ¢ (1¡ PH)

A minor complication arises because while we observe the borrower's pay-
o® type, we cannot tell directly whether a borrower with dishonest-type
payo®s is playing like an honest type (which is allowed by the homemade
prior component µ > 0). But the conditional probability we would like to
use when observing dishonest-payo® types is a (weighted) mixture of the
probabilities with which dishonest types and those who behave honestly
repay. There are really 2 types of borrowers endowed with dishonest payo®
matrix: one who plays dishonest (DD) and one who actually plays honest
(DH). However, we are not able to directly distinguish these types. The
trick is we assume that DH plays like an honest borrower with PDH = PH
where PDH is the choice probability of DH type. Note that the prior prob-

ability P (DH j plays like an honest borrower ) = µ¢(1¡p)
p+µ¢(1¡p) . (That is the

prior chance that the borrower has dishonest payo®s conditional on play-
ing like a honest borrower. Note that if µ = 0 that prior is zero{ i.e., any
borrower who plays like an honest one has honest payo®s. And if µ = 1{
everyone plays honestly{ then the conditional probability is 1-p.) The key
insight is that since honest-payo® types and those with dishonest payo®s
who play honestly play in exactly the same way (by de¯nition), then the
posterior probabilities of DH type and true honest type will always be the
same as the priors for any observed data (since the likelihood ratio is al-

ways one). In other words, we have P (DH;t)
P (H;t) = µ¢(1¡p)

p where P (y; t) is

the perceived probability at period t that the player is type y (subscript
everywhere for sequence k). We can use this property to create the correct
weighted average of predicted behavior when we observe a borrower's pay-
o®s but do not directly observe whether they are of the type that always
plays honestly. Note that P (DH; t) + P (H; t) = x(t).

If the borrower in sequence k is given a dishonest payo® matrix, the
likelihood of observing a repay in period 1 is given by

PB(1jx(1)) =
PD(1jx(1)) ¢ P (DD; 1) + PDH ¢ P (DH; 1)

P (DD; 1) + P (DH; 1)
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=
PD(1jx(1)) ¢ (1¡ x(1)) + PH ¢ [ µ¢(1¡p)

p+µ¢(1¡p)
] ¢ x(1)

1¡ x(1) + [ µ¢(1¡p)
p+µ¢(1¡p) ] ¢ x(1)

Hence, the likelihood of observing a borrower given a dishonest payo®
function in sequence k above is:

LikelihoodB(k) = PB(1jx(1)) ¢ PB(2jx(2))

¢(1¡ PB(5jx(5))) ¢ (1¡ PB(6jx(6)))
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Figure 2a: Actual Choice Frequencies for Inexperienced Subjects

0

1~
10

11
~2

0

21
~3

0

31
~4

0

41
~5

0

51
~6

0

61
~7

0

71
~8

0

81
~9

0

91
~1

00

1

3

5

7

9

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Freq

Choices

Round

Figure 2b: Adaptive EWA Model Frequencies for Inexperienced Subjects

0

1~
10

11
~2

0

21
~3

0

31
~4

0

41
~5

0

51
~6

0

61
~7

0

71
~8

0

81
~9

0

91
~1

00

1

3

5

7

9

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Freq

Choices

Round

Figure 2c: Sophisticated EWA Model Frequencies for Inexperienced 
Subjects



0

1~
10

11
~2

0

21
~3

0

31
~4

0

41
~5

0

51
~6

0

61
~7

0

71
~8

0

81
~9

0

91
~1

00

1

3

5

7

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Freq

Choices

Round

Figure 3a: Actual Choice Frequencies for Experienced Subjects

0

1~
10

11
~2

0

21
~3

0

31
~4

0

41
~5

0

51
~6

0

61
~7

0

71
~8

0

81
~9

0

91
~1

00

1

3

5

7

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Freq

Choices

Round

Figure 3b: Adaptive EWA Model Frequencies for Experienced Subjects

0

1~
10

11
~2

0

21
~3

0

31
~4

0

41
~5

0

51
~6

0

61
~7

0

71
~8

0

81
~9

0

91
~1

00

1

3

5

7

9

0

0.1

0.2

0.3

0.4

0.5

0.6

Freq

Choices

Round

Figure 3c: Sophisticated EWA Model Frequencies for Experienced 
Subjects



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

Borrower’s optimal mixed-strategy 
probabilities of: 

Pay back 

Default 

.19 

1.00 

1 

.39 
.42 

.56 

.81 

.61 

.58 

.44 

.00 

1 1 

Lender’s entering 
threshold = (.789)9-t 

Period  t 

P(Honest)

Pr
ob

ab
ili

ty
 

Figure 4: Borrower’s optimal mixed-strategy of pay back as predicted by 
sequential equilibrium 
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Figure 5c: Predicted Frequency for No Loan
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Figure 5a: Empirical Frequency for No Loan
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Figure 5b: Empirical Frequency for Default conditional on 
Loan (Dishonest Borrower)
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Figure 5d: Predicted Frequency for Default conditional on 
Loan (Dishonest Borrower)



 
 
Table 1a: A summary of EWA parameter estimates and forecast accuracy (games estimated by us) 
 
  EWA estimates (standard error) Model accuracy Comments 
CITATION GAME δ φ ρ=(1-κ)φ EWA Choice 

reinfor
ce – 
EWA 

Belief 
– 
EWA 

In / 
Out of 
sample

 

Fit 
tech-
nique 

 

 
Camerer, Ho and Hsia (2000) Sealed bid mechanism+ n.a.  1.00 0.91 1102.0 30.8 65.5 IN -LL ψ, ω  & κ replace δ 

& ρ 
  

Camerer, Ho and Wang (1999) “Continental divide” coordination 0.75 0.61 0.00 346.9 86.1 235.8 OUT -LL  
 

Camerer and Ho (1998) Weak-link coordination 0.65 0.58 0.20 358.1 29.1 438.6 IN -LL  
 

Signaling games (game 3) 
95% Confidence Interval 

0.69  
(0.47,1.00) 

 

1.020 
(0.99,1.04) 

1.00 
(0.98,1.00) 

72.2 6.5 10.1 OUT -LL  
 

Anderson and Camerer  (in press) 

Signaling games (game 5) 
95% Confidence Internal 

0.54 
(0.45,0.63) 

 

0.65 
(0.59,0.71) 

0.46 
(0.39, 0.54) 

139.5 14.1 23.7 OUT -LL  
 

Median-action coordination 0.85  
(0.01) 

 

0.80  
(0.02) 

0.00 (0.00) 41.1 39.2 72.8 OUT -LL  
 

4x4 Mixed-strategy games 0.00  
(0.04) 

 

1.04 
 (0.01) 

0.96 (0.01) 326.4 9.1 -40.8 OUT -LL Payoff = 5 rupees 
 

 0.73 
 (0.10) 

 

1.01 
(0.01) 

0.95 
(0.01) 

341.7 18.0 8.4 OUT -LL Payoff =10 rupees 
 

6x6 Mixed-strategy games 0.41 
 (0.08) 

 

0.99 
(0.01) 

0.94 
(0.01 

301.7 6.8 -5.4 OUT -LL Payoff =5 rupees 
 

 0.55 
(0.05) 

0.99 
 (0.01) 

0.93 
(0.02) 

362.3 13.7 8.9 OUT -LL 
 
 

Payoff =10 rupees 

Camerer and Ho (1999b) 

p-beauty contests* 
 

0.95 
 (0.01) 

0.11  
(0.00) 

0.00  
(0.00) 

1917.0 647.0 35.0 OUT -LL 
 
 

Experienced and 
Inexperienced 
Combined 

Normal form centipede 
(odd player) 

0.32 
(0.32) 

0.91 
(0.14) 

0.00 
(0.00) 

 

1016.8 57.6 536.3 OUT -LL 
 
 

Clairvoyance full 
update, κ 

Camerer, Ho and Wang (1999) 

Normal form centipede 
(even player) 

0.24 
(0.32) 

0.90 
(0.14) 

0.95 
(0.03) 

951.3 46.4 604.7 OUT -LL 
 
 

Clairvoyance full 
update, κ 

+ In Figure 1, we did not include this study.  
* Unlike the previous estimates, these new estimates assume that subjects do not know the winning numbers. 
 
 
 
 



 
 
 
Table 1b: A summary of EWA parameter estimates and forecast accuracy (games estimated by others) 
 
  EWA estimates (standard error) Model accuracy Comments 
CITATION GAME δ φ ρ=(1-κ)φ EWA Choice 

reinforce 
– EWA 

Belief – 
EWA 

In / 
Out of 
sample

 

Fit 
tech-
nique 

 

 
Chen and Khoroshilov (1999) Cost allocation+ .80~1.0 1 (fixed) .1~.3 .73~.88 -.01~.07 n.a.  IN MSD  

“Unprofitable” games 
(baseline games) 

0.08 
(0.07) 

0.93 
(0.01) 

0.92 
(0.03) 

1729.5 0.6 n.a.  IN -LL 
 
 

 Morgan and Sefton (1999) 

“Unprofitable” games 
(upside games) 

0.14 
(0.06) 

0.89 
(0.01) 

0.00 
(0.00) 

1906.5 16.2 n.a.  IN -LL 
 
 

 

Stahl (1999) 5x5 matrix games .66 
 (0.02) 

.34  
(0.04) 

.086  
(0.08) 

4803.7 64.7 n.a.  OUT -LL 
 
 

 

Hsia (1999) Call markets 0.47 
(0.32) 

0.97 
(0.01) 

0.74 
(0.06) 

1915.0 0.0 403.0 IN -LL 
 
 

 

0.00 0.95 0.89 886.3 1.6 529.6 IN -LL 
 

High reward 

0.00 0.99 0.99 767.5 30.1 390.4 IN -LL 
 

Med. Reward 

Same function alliance – equal 
profit sharing 

0.07 0.89 0.87 1399.7 9.4 541.5 IN -LL 
 

Low reward 

0.00 0.99 1.00 910.8 36.4 813.0 IN -LL 
 

High reward 

0.00 0.92 0.96 1055.0 18.3 615.9 IN -LL 
 

Med. Reward 

Same function alliance – 
proportional sharing 

0.00 0.97 0.96 1013.7 13.3 1095.6 IN -LL 
 

Low reward 

0.00 0.91 0.59 1194.2 0.1 566.3 IN -LL 
 

High reward 

0.17 0.90 0.93 1321.5 9.5 497.2 IN -LL 
 

Med. Reward 

Amaldoss (1998) 

Parallel development of product – 
equal sharing 

0.21 0.88 0.66 1297.7 4.5 484.1 IN -LL 
 

Low reward 

0.00 0.94 0.93 3551.7 12.1 1097.7 IN -LL 
 

Low reward Patent race game – symmetric 
players 

0.00 0.97 0.98 2908.1 20.2 725.9 IN -LL 
 

High reward 

0.48 0.90 0.86 3031.5 89.1 706.8 IN -LL 
 

Strong player 

Rapoport and Amaldoss (2000) 

Patent race game – asymmetric 
players 

0.14 0.96 0.97 2835.5 15.7 611.0 IN -LL 
 

Weak player 

+  In Figure 1, we did not include this study. 
 



Table 2. Model Parameter Estimates for p-beauty Contest Game

INEXPERIENCED SUBJECTS EXPERIENCED SUBJECTS

Sophisticated Adaptive QRE1 Sophisticated Adaptive QRE

EWA EWA EWA EWA

Á 0.44 0.00 - 0.29 0.22 -

(0:05)2 (0.00) - (0.03) (0.03) -

± 0.78 0.90 - 0.67 0.99 -

(0.08) (0.05) - (0.05) (0.02) -

½ 0.00 0.00 - 0.01 0.00 -

(0.00) (0.00) - (0.00) (0.00) -

® 0.24 0.00 1.00 0.77 0.00 1.00

(0.04) (0.00) (0.00) (0.02) (0.00) (0.00)

®0 0.00 0.00 - 0.41 0.00 -

(0.00) (0.00) - (0.03) (0.00) -

d 0.16 0.13 0.04 0.15 0.11 0.04

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

LL

(in sample) -2095.32 -2155.09 -2471.50 -1908.48 -2128.88 - 2141.45

(out of sample) -968.24 -992.47 -1129.25 -710.28 -925.09 - 851.31

Avg. Prob.

(in sample) 6% 5% 3% 7% 5% 5%

(out of sample) 7% 7% 4% 13% 9% 9%

1We also estimated the QRE model with di®erent ¸s in each period. For inexperienced players, the ¸s in period 2 to 6 are:

0.590; 0.663; 0.941; 1.220; 1.221; 1.381. In sample LL=-2460.51; out of sample LL=-1100.09. For experienced players, the

¸'s are 1.382; 2.627; 3.970; 5.249; 5.363; 8.399. In sample LL=-2074.25; out of sample LL=-769.19.

2Standard errors in parenthesis.



Table 3: Payo®s in the borrower-lender game, Camerer & Weigelt (1988)

Lender Borrower payo®s to payo®s to borrower

strategy strategy lender normal (X) honest (Y)

loan default ¡100¤ 150 0

repay 40 60 60

no loan no choice 10 10 10

Note: ¤ Loan-default lender payo®s were -50 in sessions 6-8 and -75 in sessions 9-10.



Table 4: A Comparison of In-Sample and Out-of-Sample Performance Between the Teaching and AQRE Models

 Experiment No.: 3 4 5 6 7 8 9 10
 No of Sequence (Total):   90 90 81 70 77 69 90 101

In-Sample Calibration

Sample size Total 744 784 742 661 673 626 703 824
Borrower (Dishonest) 177 233 238 267 238 240 223 288
Borrower (Honest) 87 71 72 26 27 18 0 0
Lender 480 480 432 368 408 368 480 536

The Teaching Model
Average Probability Total 80% 82% 83% 88% 81% 83% 71% 84%

Borrower (Dishonest) 60% 72% 80% 86% 73% 73% 53% 81%
Borrower (Honest) 86% 86% 81% 86% 83% 86% -          -          
Lender 87% 86% 84% 90% 86% 90% 79% 85%

Log-likelihood Total -282.15 -321.84 -294.50 -182.38 -285.73 -204.52 -433.73 -330.13
Borrower (Dishonest) -62.75 -88.41 -67.74 -57.50 -97.25 -86.53 -145.53 -88.03
Borrower (Honest) -13.31 -10.86 -20.01 -3.98 -5.95 -2.75 -          -          
Lender -206.09 -222.56 -206.75 -120.90 -182.53 -115.24 -288.19 -242.11

Agent-based Quantal Response Equilibrium (AQRE)
Average Probability Total 79% 78% 78% 81% 76% 77% 69% 77%

Borrower (Dishonest) 73% 69% 75% 76% 67% 66% 52% 72%
Borrower (Honest) 86% 86% 81% 86% 83% 86% -          -          
Lender 80% 81% 80% 84% 80% 85% 76% 80%

Log-likelihood Total -370.37 -433.48 -374.90 -293.89 -371.63 -300.69 -475.81 -455.30
Borrower (Dishonest) -79.28 -122.32 -99.21 -103.85 -130.09 -125.40 -153.36 -112.64
Borrower (Honest) -13.32 -10.88 -20.01 -3.98 -5.93 -2.75 -          -          
Lender -277.77 -300.29 -255.68 -186.07 -235.61 -172.54 -322.45 -342.66

Out-Of-Sample Validation

Sample size Total 401 386 368 356 315 288 419 361
Borrower (Dishonest) 108 99 121 157 99 99 179 89
Borrower (Honest) 53 47 31 7 8 5 0 0
Lender 240 240 216 192 208 184 240 272

The Teaching Model
Average Probability Total 80% 82% 84% 89% 81% 85% 71% 86%

Borrower (Dishonest) 65% 75% 81% 86% 76% 77% 57% 78%
Borrower (Honest) 86% 86% 86% 86% 77% 86% -          -          
Lender 86% 85% 85% 92% 84% 89% 81% 88%

Log-likelihood Total -147.47 -148.45 -145.66 -70.62 -140.99 -99.44 -215.17 -139.13
Borrower (Dishonest) -24.90 -26.89 -42.00 -26.40 -32.73 -30.16 -91.14 -52.59
Borrower (Honest) -8.11 -7.19 -4.74 -1.07 -3.02 -0.77 0.00 0.00
Lender -114.46 -114.37 -98.92 -43.15 -105.23 -68.52 -124.03 -86.54

Agent-based Quantal Response Equilibrium (AQRE)
Average Probability Total 78% 80% 80% 82% 76% 77% 68% 79%

Borrower (Dishonest) 77% 78% 79% 78% 73% 71% 60% 71%
Borrower (Honest) 86% 86% 86% 86% 77% 86% -          -          
Lender 77% 80% 80% 85% 77% 81% 75% 81%

Log-likelihood Total -199.77 -187.43 -176.23 -137.60 -189.84 -163.08 -270.71 -195.80
Borrower (Dishonest) -36.87 -30.99 -40.13 -54.62 -41.03 -40.72 -101.02 -45.86
Borrower (Honest) -8.12 -7.20 -4.74 -1.07 -3.02 -0.77 -          -          
Lender -154.78 -149.24 -131.35 -81.91 -145.79 -121.59 -169.70 -149.95

Note 1: Data source from Camerer and Weigelt (1988)

Note 2: Number of hits counts the occasions when prob(chosen strategy) = maximum (predicted probabilities). Each count is adjusted by number of strategies sharing the maximum. 

Number of hits for the incumbent is computed using a weighted predicted probability which is the weighted average of the myopic sophisticates and the teacher where the weights 

are (1-alpha) and alpha respectively.

Note 3: Average probability is computed by taking arithmetic mean of the predicted probability of chosen strategies.



Table 5: Parameter Estimates of the Teaching Model

 Experiment No.: 3 4 5 6 7 8 9 10
 Proportion of Induced Honest Type, p: 0.33 0.33 0.33 0.10 0.10 0.10 0.00 0.00

 Parameters for Adaptive Lender
φ 0.29 0.65 0.67 0.73 0.57 0.69 0.74 0.09

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.00)
δ 0.34 0.21 0.44 0.80 0.19 0.65 0.42 0.47

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
κ 0.99 0.95 0.35 0.40 1.00 0.12 0.00 0.88

(0.00) (0.00) (0.01) (0.02) (0.00) (0.01) (0.00) (0.00)
τ 0.51 0.99 1.00 0.95 0.99 0.97 1.00 0.98

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

 Parameters for Adaptive Borrower (Dishonest)
φ 1.00 0.60 0.81 0.48 1.00 0.69 0.09 0.87

(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00)
δ 0.17 0.48 1.00 0.49 0.53 0.55 0.05 0.47

(0.00) (0.01) (0.00) (0.01) (0.02) (0.01) (0.00) (0.01)
κ 0.90 1.00 1.00 0.76 0.73 0.83 0.92 0.59

(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01)
τ 0.10 0.24 1.00 0.01 0.76 0.35 0.21 0.67

(0.00) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

 Parameters for Teaching Borrower (Dishonest)
ε 1.00 1.00 0.95 0.93 0.12 0.93 0.15 0.24

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
α 0.70 0.34 0.18 0.02 0.13 0.28 0.68 0.02

(0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00)

Note: Each parameter is presented with its standard error (in parenthesis) directly below. 


