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ABSTRACT 

A key parameter controlling the performance and 
lifetime of a Hot Fractured Rock (HFR) reservoir is 
the effective heat transfer area between the fracture 
network and the matrix rock.  In a vapor-dominated 
system, this area can be estimated by conducting a 
tracer test of non-adsorptive chemical, based on the 
unique signature of a long tail in a typical tracer 
breakthrough curve (BTC) due to diffusion of tracers 
between fractures and matrix rocks. The tailing 
strength increases systematically with the fracture-
matrix interface area.  In a water-dominated system, 
however, aqueous phase diffusivities are too small to 
generate a meaningful tail in the BTC of an inert 
solute tracer.  Recent numerical studies have shown 
that reversible tracer sorption on matrix rocks will 
enhance tailing in BTCs for aqueous solutes in 
fracture-matrix systems.  In this paper we develop an 
analytical solution to theoretically explore such a 
useful phenomenon.  In deriving the solution, we 
used a boundary condition of a finite-length tracer 
slug, and neglected the diffusion along fractures.  The 
solution shows that in a water saturated fractured 
rock system, increase of the retardation factor (that is 
practically manageable) should have the same effect 
on BTCs as increase of the diffusion coefficient (that 
is practically restricted).  The strong enhancement in 
the BTC tails of sorbing tracers provides adequate 
sensitivity for determining the heat transfer area.  The 
solution is useful for understanding transport 
mechanisms, verifying numerical codes, and for 
identifying chemicals with appropriate sorption 
properties as tracers for the characterization of a 
fractured reservoir. 
 
INTRODUCTION 
 
Fluid flow and chemical transport in fractured porous 
media has been a research topic for decades.  The 
topic is important because many geologic formations 
are fractured to some extent.  The topic is also 
difficult because fracture networks can have quite 
different geometry (such as the direction, aperture, 
and density of fracture sets, and the number of  

 
fracture sets), which has significant impact on flow 
and transport processes.  Thus, it is crucial to obtain a 
clear geometric picture of a fractured reservoir before 
developing it for energy extraction.  For example, in 
the design and operation of hot fractured rock (HFR) 
reservoirs, it is very important to estimate the heat 
transfer area between the fracture network and the 
matrix rock.  An effective way to obtain this 
geometric information is to conduct an appropriate 
tracer test.  Extensive studies on tracer transport in 
fractured porous media have been conducted in the 
context of nuclear and chemical waste disposal (e.g., 
Moreno, et al., 1996; Polak, et al., 2003).  Based on 
these studies, mathematical models have been 
developed for analyzing tracer test data.  Since a 
naturally fractured reservoir is usually very complex, 
an appropriate numerical code is usually needed. 
 
However, numerical codes must be verified against 
analytical solutions before application to practical 
problems.  Analytical solutions for contaminant 
transport in fractured porous media were available as 
early as the early 1980s (Tang et al., 1981; Sudicky 
and Frind, 1982).  The former paper is for a single 
fracture where the matrix is assumed to extend to 
infinity away from the fracture.  The later paper is for 
the case of a set of parallel fractures with uniform 
fracture spacing and identical concentration at the 
entrance of the fractures.  In both solutions the 
authors assumed a constant concentration at the 
fracture entrance.  In a tracer test, however, this 
assumption is usually invalid.  Instead, we may 
assume a slug-like flux boundary condition at the 
fracture entrance.  More recently, Moridis (2002) 
developed semianalytical solutions for radioactive or 
reactive solute transport in variably fractured layered 
media.  Here we develop a solution for a slug tracer 
test in a fractured rock under single-phase flow 
conditions, using some simplifying assumptions. 
 
THEORY 
 
To simplify the problem, we assume that the system 
has a single set of plane, parallel fractures with a 
uniform fracture spacing, 2B [L], and a uniform 



fracture aperture, 2b [L].  We also assume that the 
tracer injection is uniformly distributed at each 
fracture entrance.  Tracer concentration applied at the 
fracture entrance is denoted by C0 [M/L3].  Taking 
advantage of the symmetry, we can restrict the 
solution to an elementary part of the system (one-half 
of a fracture and one-half of its adjacent matrix 
block) as shown in Figure 1.  The z-axis is in the 
direction of the fracture, while the x-axis is 
perpendicular to the interface, pointing away from 
the fracture (Figure 1).  The fracture is thus in the 
domain – b ≤ x ≤ 0 and 0 ≤ z < ∞; and the matrix is in 
the domain 0 ≤ x ≤ B and 0 ≤ z < ∞.  The solid lines 
in Figure 1 represent zero-mass-flux boundaries. 
 

 
Figure 1. Schematic section of an elementary part of 

the parallel-fracture matrix system. 
 
The aperture is assumed much smaller than the length 
of the fracture, and transport in the fracture is 
assumed one-dimensional along the fracture.  The 
diffusive mass flux across the fracture-matrix 
interface is treated as a sink term in the mass 
conservation equation for the fracture.  We neglect 
any advective flow across the interface.  By this 
assumption, there is no advection in the matrix; and 
mass transport in the matrix is only through diffusion 
perpendicular to the fracture-matrix interface.  We 
ignore diffusion and adsorption inside the fracture, as 
well as any tracer decay.  Reversible sorption in the 
matrix is accounted for by a retardation factor.  Based 
on these assumptions, we use the following 
governing equations simplified from Sudicky and 
Frind (1982): 
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where CR and CR’ (both dimensionless) are the 
relative solute concentrations in the fracture and the 
matrix, respectively, which are defined by: 
 

00 /'';/ CCCCCC RR ==       (1c) 
 
Here C [M/L3] and C’ [M/L3] represent the chemical 
concentrations in the fracture and matrix, 
respectively. 
 
In (1a) and (1b), t [T] is time, v [L/T] the 
groundwater velocity in fracture, q [M/L2/T] the 
diffusive mass flux across the fracture-matrix 
interface, φ the intrinsic porosity of the fracture, D’ 
[L2/T] and R’ the diffusion coefficient and retardation 
factor of the matrix, respectively.  Both CR and q are 
functions of z and t, i.e. CR (z, t) and q (z, t).  The 
relative concentration in the matrix, CR’, depends on 
the migration distance in the fracture, z, as a 
parameter through the interface boundary conditions; 
in (1b) it is an explicit function of x and t only. 
 
The following formulae are provided for estimating 
some parameters: 
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where τ  is the tortuosity of the matrix; D* [L2/T] is 
the chemical molecular diffusion coefficient in water, 
typically of order 10-9 m2/s; and Km [L3/M] is the 
matrix distribution coefficient (Freeze and Cherry, 
1979).  In (2b) ρb [M/L3] and φ’ are the bulk mass 
density and the porosity of the matrix, respectively. 
 
We assume an initially solute-free condition, i.e., the 
chemical concentrations in the fracture and matrix are 
both zero at the beginning: 
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Setting t = 0 at the start time of tracer injection, and 
assuming an injection period ti [T], the boundary 
conditions for the fracture are: 
 

)(0),0();0(1),0( iRiR tttCtttC >=<<= (4a) 

0),( =∞ tCR    (4b) 
 
One boundary condition for the matrix is: 
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At the fracture-matrix interface, we must have: 
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Sudicky and Frind (1982) gave a general solution for 
the above problem under a constant boundary 
concentration that is different from (4a). We obtained 
an analytical solution for tracer concentration in the 
fracture for the case of a finite slug injection as (Shan 
and Pruess, to be published): 
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where ε [T-1/2] is the integration variable, εR and εA 
are given by: 
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The four time parameters, tT, tF, tM, and ts are defined 
by: 

vztT /=    (9a) 

'''2

22

RD

b
tF φ

φ
=    (9b) 

'/'2 DRBtM =    (9c) 

⎩
⎨
⎧

+≥
+<−

=
)(

)(

Tii

TiT
s tttt

ttttt
t  (9d) 

 
The two functions, g1 and g2, are defined by: 
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RESULTS 
 
There are four characteristic times that determine the 
relative concentration, CR.  Among them, the 
injection period, ti is a known parameter; tT, tF, and tM 
are three parameters representing the properties of the 
fractured formation.  According to (9a), tT is the 
tracer transit (or travel) time to the observation point.  
Therefore, (7) indicates that the tracer concentration 

at a specified calculation point will remain at its 
initial value (zero) before the transit time has elapsed.  
This is because, by assumption, tracer transport in the 
fracture is through advection only.  At a given point, 
the shape of the BTC is thus affected by two other 
characteristic times, tF and tM.  According to (9b) and 
(9c), tF and tM can be thought of as two characteristic 
times for crossing the interface and the matrix block, 
respectively. 
 
The Role of tM 
 
By definition (9c), tM is the product of B squared and 
the ratio R’/D’, both factors originating from (1b), the 
governing equation for the matrix.  Thus tM affects 
the tracer concentration distribution in the matrix, but 
does not affect the tracer concentrations in the 
fracture in most practical applications.  Physically, tM 
represents a time to reach the interior no-flow 
boundary of the matrix through diffusion; the longer 
the time, the later the boundary effect will come into 
play.  Mathematically, tM affects the concentration in 
the fracture only through the two functions, g1(u) and 
g2(u) that are essentially a constant of unity for u > 6 
(see Figure 2). 

Figure 2. The functions, g1(u) and g2(u). 
 
In other words, tM affects the solution only in the 
interval 0 < ε < ε0 where  
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For a matrix block size of meters or larger, since R’ ≥ 
1 and D’ is usually less than 10-9 m2/s, the resulting 
value of ε0 is usually on the order of or less than 10-4 
s-1/2.  The integral in (7) usually has negligible 
contribution in the interval 0 to 10-4.  We used the 
input parameters in Table 1 to calculate the BTCs at 
two different locations (two different values of tT). 
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Table1. Base parameters used in Figures 3a, 3b and 4. 
 

b (m) ti (s) v (m/s) D’ (m2/s) φ φ’ R’ 

0.005 28800 0.001 10-10 1.0 0.05 1.0 

 

At each location, we calculate the BTCs for three 
different values of fracture spacing (2B), keeping all 
other parameters fixed.  Figures 3a and 3b show the 
comparisons of the calculated BTCs at a near 
location (tT = 0.5 ti) and a far location (tT = 10 ti), 
respectively.  Both figures indicate that the effect of 
B (or tM) is insignificant.  At the near location (tT = 
0.5 ti, Figure 3a), a smaller B does cause a slight 
increase in concentration due to the boundary effect.  
However, the transit time for a practical observation 
point is usually much larger than the injection period, 
ti, which will not show such a difference. 

Figure 3a. Breakthrough curves for three different B 
values at tT = 0.5 ti. 

 

Figure 3b. Breakthrough curves for three different B 
values at tT = 10 ti. 

 

In Figures 3a and 3b, the smallest B value is 5 cm.  
Although further decrease of B can cause larger 
differences in the BTC, very small B values are not of 
interest in practical applications.  We should also 
remember the assumption of B >> b in deriving the 
solution. 
 
The Role of tF 
 

In practice, the only parameter, apart from the tracer 
transit time tT, which affects a fracture BTC is tF.  
According to (9b), tF depends on the matrix diffusion 
coefficient (D’) and the retardation factor (R’) only 
through the product D’R’.  Therefore the impact of 
matrix retardation on tracer concentrations in the 
fracture is the same as that of an increased matrix 
diffusion coefficient.  This equivalence of matrix 
retardation factor to diffusion coefficient is 
demonstrated in Figure 4, where the BTCs at tT = 50 
ti are calculated using three different pairs of D’ and 
R’ with a constant product (10-10 m2/s). 

Figure 4. Breakthrough curves for three different 
combinations of D’ (m2/s) and R’. 

 
The three calculated BTC curves in Figure 4 are 
identical because we maintained tF a constant (108 s).  
Any reduction of tF value implies a faster passage for 
tracer to enter the matrix, and thus causes a decrease 
of tracer concentration in the fracture during tracer 
injection but an increase of tracer concentration in the 
fracture after tracer injection. 
 
In Figure 5, we used constant values for ti (104 s), tT 
(106 s), and tM (109 s) but varied tF (109 s, 108 s, and 
107 s).  The decrease of peak and the increase of tail 
of the BTC curve are both significant.  For relatively 
large tF (e.g., 109 s, or even 108 s), the BTC peak 
appears approximately at the time t = tT + ti.  
However, as tF is further decreased to 107 s, the BTC 
peak appears at a time that is significantly larger than 
tT + ti (Figure 5). 
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Figure 5.The effect of tF on breakthrough curves. 
 
Verification 
 
TOUGH2 (Pruess, et al., 1999) is a numerical code 
for multiphase, multi-component flow, transport, and 
heat transfer problems.  This code has been verified 
against many analytical solutions.  Here we 
demonstrate the verification of TOUGH2 against the 
analytical solution (7).  By using the same set of 
input parameters, we calculated the BTC curve at the 
same point in the fracture using TOUGH2 and (7).  
We compare the results in Figure 6. 

Figure 6.Comparison of the analytical solution with 
the numerical (TOUGH2) solution. 

 
For three different retardation factors, the 
corresponding numerical and analytical solutions 
agree very well.  Note that TOUGH2 uses “mass 
fraction” instead of relative concentration.  The 
results of the analytical solution were converted to 
mass fraction for the comparison. 
 
 

Application 
 
Although analytical solutions are usually too 
idealized for actual field cases, here we offer some 
guidelines for the potential application to a simplified 
field condition, such as a one-dimensional tracer test 
in a horizontal fractured formation.  The main 
purpose of application is to inversely estimate the 
average fracture spacing, 2B, and from that the 
fracture-matrix interfacial (heat transfer) area per unit 
volume. 
 
The injection period, ti, is known; and the 
breakthrough time (the tracer transit time), tT, is 
observed in the tracer test.  A BTC can be calculated 
by applying the known ti and tT, and an assumed tF 
and tM (e.g., 109 s) to (7).  Varying tF, we obtain a set 
of BTCs.  We then estimate tF by fitting the 
observation data to the calculated BTCs.  After tF is 
estimated, we can calculate B by rewriting the 
definition formula, (9b) into: 
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where φf is the continuum (average) fracture porosity 
defined by: 
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For a given fracture porosity, variation of fracture 
spacing results in different BTC tails.  Figure 7 
shows the effect of fracture spacing by using φ’/φf = 
10, D’R’ = 10-9 m2/s, and fixed values for ti, tT, and 
tM.  We see that smaller fracture spacing causes larger 
tracer concentration in the BTC tail. 

Figure 7. The effect of fracture spacing on BTC. 
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The fracture porosity φf can be estimated by means of 
the injection flux rate (qi) and the pore velocity, v, by: 
 

ztqvq Tiif // ⋅==φ   (13) 
 

The matrix porosity, φ’, can be estimated by 
laboratory tests on rock samples.  The matrix 
tortuosity τ can be determined by laboratory tests or 
estimated using the Millington (1959) model: 
 

( ) 3/1'φτ =    (14) 
 
Substituting this tortuosity and the known tracer 
molecular diffusion coefficient D* into (2a) we obtain 
D’, the diffusion coefficient in the matrix.  The bulk 
mass density, ρb, can be estimated by: 
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where ρs is the rock grain density (approximately 
2650 kg/m3).  The distribution coefficient of tracer in 
the matrix (Km) can be determined by laboratory 
tests.  Therefore, we can calculate the retardation 
factor, R’, using (2b).  Finally we use (11) and obtain: 
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The fracture-matrix interface area available for heat 
transfer per unit volume of the flow system is then 
A/V = 1/(B + b) ≅ 1/B. 
 
CONCLUSION 
 
A simplified analytical solution for solute tracer 
migration in fractured porous media reveals some 
important facts.  In most practical cases, the tracer 
concentration in the fracture is dependent on three 
characteristic times: the injection period ti, the tracer 
transit time tT, and the crossing-interface time tF.  The 
independence of the solution on another 
characteristic time tM and the definition of tF 
theoretically validate a new finding, namely, the 
retardation factor and the diffusion coefficient of the 
matrix have the same effect on tracer concentrations 
in the fracture.  This equivalence provides the basis 
for using reversibly sorbing chemicals as tracers to 
test a fractured formation.  The verification of a 
numerical code, TOUGH2, against the analytical 
solution demonstrates excellent agreement.  The 
analytical solution can also be useful in selecting 
solutes with appropriate sorption properties, and 
analyzing field data under simplified conditions.  
Such analysis can inversely estimate the two 
important parameters: the average fracture porosity 
and fracture spacing, from which effective heat 
transfer area per unit reservoir volume may be 
obtained. 
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