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In this paper, we discuss the Soret and Dufour effects on an MHD micropolar fluid flow over a linearly 

stretching sheet, through a non-Darcy porous medium, where stretching velocity of the sheet varies linearly with 

distance from the origin, and, temperature and concentration vary non-linearly in the boundary layer region. By 

suitable similarity transformations, the governing boundary layer equations are transformed to ordinary 

differential equations. These equations are solved by numerical computations with bvp4c along with the shooting 

technique method. The effects of the magnetic parameter, Soret number and Dufour number on velocity profiles, 

microrotation profile, heat transfer, and concentration, skin- friction, Nusselt number and Sherwood number are 

computed, discussed and analysed numerically and presented through tables and graphs. 
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1. Introduction  

 
 The fluid model introduced by Eringen [1] exhibits some microscopic effects arising from the local 

structure and micro-motion of the fluid elements. The model of a micropolar fluid represents fluids 

consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium where the 

deformation of the particles is ignored. Micropolar fluids have been shown to accurately simulate the flow 

characteristics of polymeric additives, geo-morphological sediments, colloidal suspensions, hematological 

suspensions, liquid crystals, lubricants, etc. Sakiadis [2] was the first to study the flow field due to a surface 

which is moving with a constant velocity in a quiescent fluid. The dynamics of the boundary layer flow over 

a stretching surface originated from the pioneering work of Crane [3]. The discussion and applications of 

convective transport in porous media can be found in the book by Nield and Bejan [4]. The mathematical 

theory of equations of micropolar fluids and applications of these fluids in the theory of lubrication and in 

the theory of porous media are presented by Lukaszewicz [5]. Srinivasacharya et al. [6] analyzed the flow 

and heat and mass transfer characteristics of free convection on a vertical plate with variable wall 

temperature and concentration in a doubly stratified micropolar fluid. Ramachandran et al. [7] discussed the 

effect of the Prandtl number on the linear stability of a compressible Couette flow. Asma Khalid et al. [8] 

analyzed the conjugate transfer of heat and mass in unsteady flow of a micropolar fluid with wall couple 

stress. Nadeem et al. [9] considered the optimal and numerical solutions on an MHD micropolar nanofluid 

between rotating horizontal parallel plates. Das [10] discussed slip effects on heat and mass transfer in an 

MHD micropolar fluid flow over an inclined plate with thermal radiation and chemical reaction. Adhikari et 

al. [11] discussed an MHD micropolar fluid flow towards a vertical surface in the presence of heat flux. 

Habibi et al. [12] analysed the mixed convection MHD flow of a nanofluid over a non-linear stretching sheet 

with effects of viscous dissipation and variable magnetic field. Chaudhary et al. [13] discussed the effect of 

chemical reaction on an MHD micropolar fluid flow past a vertical plate in slip-flow regime. Ali Kashif et 

al. [14] analysed the numerical simulation of an unsteady water-based nanofluid flow and heat transfer 
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between two orthogonally moving porous coaxial disks. Mohyuddin et al. [15] studied the optimal and 

numerical solutions of an MHD flow of a radiative micropolar nanofluid in a porous channel. El-Dabe et al. 

[16] analysed the numerical solution of an MHD flow of a micropolar fluid with heat and mass transfer 

towards a stagnation point on a vertical plate. Srinivas Maripala et al. [17] discussed the MHD effects on a 

micropolar nanofluid flow over a radiative stretching surface with thermal conductivity. Ali Chamkha et al. 

[18] analysed the unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid 

with Joule heating, chemical reaction and radiation effects. Sandeep [19] studied the unsteady boundary 

layer flow of a thermophoretic MHD nanofluid past a stretching sheet with space and time dependent 

internal heat source/sink. Khedr [20] analysed the MHD flow of a micropolar fluid past a stretched 

permeable surface with heat generation or absorption. Sandeep et al. [21] discussed the dual solutions for an 

unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-

uniform heat source/sink. Satya Narayana et al. [22] studied the effects of Hall current and radiation 

absorption on an MHD micropolar fluid in a rotating system. Kelson [23] analysed the effects of surface 

conditions on flow of a micropolar fluid driven by a porous stretching sheet. Reddy et al. [24] studied the 

MHD mixed convection oscillatory flow over a vertical surface in a porous medium with chemical reaction 

and thermal radiation. Pal et al. [25] analyzed the effects of viscous-Ohmic dissipation and variable thermal 

conductivity on a steady two-dimensional hydromagnetic flow, heat and mass transfer of a micropolar fluid 

over a stretching sheet embedded in a non-Darcian porous medium with non-uniform heat source/sink and 

thermal radiation. In the above work the Soret and Dufour effects on an MHD micropolar fluid flow over a 

non-Darcy porous medium was not studied. Lakshmi et al. [26] studied the thermal radiation and variable 

viscosity on steady MHD free convective flow over a stretching sheet in the presence of heat source, 

dissipation and chemical reaction. Jhansi Rani et al. [27] analysed the heat and mass transfer effects on an 

MHD free convection flow over an inclined plate embedded in a porous medium. Gorla et al. [28] studied 

the radiation and chemical reaction effects on an MHD flow along a moving vertical porous plate. 

 In this paper, we discuss the Soret and Dufour effects on an MHD micropolar fluid flow over a 

linearly stretching sheet, through a non-Darcy porous medium, where stretching velocity of the sheet varies 

linearly with distance from the origin, and, temperature and concentration vary non-linearly in the boundary 

layer region. By suitable similarity transformations, the governing boundary layer equations are transformed 

to ordinary differential equations and these equations are solved by numerical computations with bvp4c with 

the shooting technique method.  The effects of the magnetic parameter, Soret number and Dufour number on 

velocity profiles, microrotation profile, heat transfer, and concentration, skin- friction, Nusselt number and 

Sherwood number are computed, discussed and analysed numerically and presented through tables and 

graphs. 

 

2. Mathematical formulation of the problem 

 
 We consider a steady two-dimensional mixed convection flow of an incompressible, electrically 

conducting micropolar fluid towards a surface coinciding with the plane y 0  and the flow region y 0 . 

The x-axis is taken in the direction along the motion of the sheet and the y-axis is taken perpendicular to it. 

The flow is generated by the action of two equal and opposite forces along the x-axis and the sheet is 

stretched in such a way that the velocity at any instant is proportional to the distance from the origin (x = 0). 

Further, the flow field is exposed to the influence of an external transverse magnetic field of strength

 , ,0B 0 B 0 . It is assumed that the whole size of porous plate is taken constant. The non-Darcian inertia 

effect is considered in the model. The thermal conductivity of the fluid is assumed to be functions of 

temperature. There is a first order chemical reaction between the diffusing species and the fluid. The effect of 

thermal radiation, thermo-diffusion and diffusion-thermo are considered. The Reynolds number is assumed 

to be small. The pressure gradient, body forces, Hall currents, frictional heating due to viscous dissipation 

and Ohmic heating due to the application of the magnetic field are negligible and hence not considered in the 

present model.  
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 The temperature and concentration of the plate surface is always greater than their free stream 

values. The flow configuration and the coordinate system are shown in Fig.1. 

 

 
 

Fig.1. Physical flow model over a stretching surface. 

 

 Under the foregoing assumptions and invoking the usual Boussinesq approximation, the governing 

equations that describe the physical situation can be written as follows: 

The continuity equation 
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angular momentum equation 
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energy equation 
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mass diffusion equation 
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where u and v are velocity components along the x and y axes, respectively; v  is the micro-rotation 

viscosity or the vortex viscosity; j is the micro-inertia density;   is the dynamic viscosity;   is the 

kinematic viscosity. N is the microrotation component normal to the x y  plane;   is the spin gradient 

viscosity;   is the electrical conductivity of the fluid and is assumed to be constant; pk  is permeability of 

the porous medium; EC  is the form of drag coefficient which is independent of viscosity and other 

properties of the fluid but depends on the geometry of the medium, T  is the coefficient of thermal 

expansion, C  is the coefficient of concentration expansion, T  is the temperature of the fluid, WT  is the 

temperature of the fluid at the surface, T  is the temperature of the fluid outside the boundary layer, k is the 

thermal conductivity of the fluid, PC  is the specific heat at constant pressure P; MD  is the chemical 

molecular diffusivity; ck  is the chemical reaction constant. Here,   is the density of the fluid; g is the 

acceleration due to gravity. The applied magnetic field 0B  is a constant. ,j   and   are non-negative. 

Boundary conditions 
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 The thermal conductivity k is assumed to vary linearly with temperature and it is of the form 

 ( )k k 1     where    ( ) WT T T T       and  wk k k     which depends on the nature of 

the fluid and is a small parameter. wk  is the thermal conductivity at the surface, k  is the thermal 

conductivity of the fluid far away from the surface. In general,   is constant; 0   for air and liquids such 

as water, while 0   for fluids such as lubrication oils. 

 Following the Rosseland approximation the radiative heat flux rq  is modelled as 
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rq 4 3k T y      where *  is the Stefan- Boltzmann constant and 

*k  is the mean absorption 

coefficient. 
4T can be expressed by using Taylor’s series as 
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 Using this in Eq.(2.4) we get 
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 To investigate the effect of different surface conditions, we choose a linear relationship between the 

microrotation variable N and the surface stress 
y

u
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 in the boundary conditions (2.6); m is the proportionality 

constant. Here, the microrotation parameter m ranges between 0 and 1  0 m 1   when m 0 , we have 

N 0 , which is a generalisation of the no-slip condition, that is, the particle density is sufficiently large so 

that microelements close to the surface are not able to translate or rotate. The case .m 0 5  represents the 

vanishing of the anti-symmetric part of the stress tensor and represents weak concentration of the 

microelements. For this case, in a fine particle suspension, the particle spin is equal to the fluid velocity at 

the surface. The value of m 1  is used for the modelling of a turbulent flow inside the boundary layers of 

microrotation. 

 Dimensional Analysis: We consider the following dimensionless variable 
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 Introducing these variables in Eqs (2.2), (2.3), (2.4) and (2.5), we get the following dimensionless 

forms of the equations 
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the spin gradient viscosity, reference length,
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and the corresponding boundary conditions are as follows 
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 The quantities of main physical interest are the skin friction coefficient (rate of shear stress), the 

couple stress coefficient at the surface, the Nusselt number (rate of heat transfer) and the Sherwood number 

(rate of mass transfer).  

 The local skin friction coefficient is defined as 
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 The couple stress coefficient at the surface is defined as follows 
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 The rate of heat transfer in terms of the dimensionless Nusselt number is defined as follows 
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 The rate of mass transfer in terms of the dimensionless Sherwood number is defined as follows 
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 The equation defining the surface shear stress is defined as follows 

 



Soret and Dufour effects on MHD micropolar fluid ... 491 

     W v v y 0
y 0

u
k k N

y 


 
      

.             (2.20) 

 

 The heat flux is defined as follows 
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 The mass flux is defined as follows 
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3. Method of numerical solution 

 
 The numerical solutions are obtained using the above equations for some values of the governing 

parameters, namely, the magnetic parameter (M), the Dufour number (Du), the Soret number (Sr), thermal 

coefficient parameter (e) and slip parameter (m). Effects of M, Sr, and Du on the steady boundary layers in 

fluid flow region are discussed in detail. The numerical computation is done using the MATLAB in-built 

Numerical Solver bvp4c. In the computation we have taken .8 0   and the axis according to the clear 

figure-visibility. 

 

4. Result and discussion 

 
 The non-dimensional linear velocity ( )f   , angular velocity ( )h  , temperature ( )  , and 

concentration ( )   for various values of different parameters are shown in Figs 2 to 18.  

 Figure 2 shows that the velocity field decreases asymptotically with the increase in the magnetic 

parameter M. The fluid velocity decreases sharply when .0 2 5   and when .2 5   , it decreases slowly 

and almost becomes constant. This shows that the velocity boundary layer thickness decreases with the 

increase in the magnetic parameter. Figure 3 shows that at the solid –fluid inter surface of the fluid, the fluid 

micro-rotation (angular velocity of fluid in fluid flow region) field increases  asymptotically with the 

increase in the magnetic parameter M. The fluid angular velocity decreases sharply between .0 2 5   and 

when .2 5  , it decreases slowly and almost becomes constant. For M=0 and 0.1, micro rotation profiles 

have points of inflexion in the interval {2, 3]. This shows that the micro-rotation boundary layer thickness 

increases with the increase in the magnetic parameter. Figure 4 shows that the temperature field increases 

asymptotically with the increase in magnetic parameter M. The temperature decreases sharply when 

0 4  and when 4   , it decreases slowly and almost becomes constant. It shows that the thermal 

boundary layer thickness increases with the increase in the magnetic parameter M. 

 Figure 5 shows the concentration field increases asymptotically with the increase in magnetic 

parameter M. The concentration decreases sharply when .0 2 5   and when .2 5  , it decreases slowly 

and almost becomes constant. This shows concentration boundary layer thickness increases with the increase 

in the magnetic parameter M. 
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 Figure 6 shows that the velocity field increases asymptotically with the increase in Dufour parameter 

Du. The velocity decreases sharply when .0 2 5   and when .2 5  , it decreases slowly and almost 

becomes constant. This shows that the velocity boundary layer thickness increases with the increase in the 

Dufour parameter Du. Figure 7 shows that at the solid –fluid inter surface of the fluid, the fluid micro-

rotation (angular velocity of fluid in fluid flow region) field decreases asymptotically with the increase of the 

Dufour parameter Du. The fluid angular velocity decreases sharply between in .0 2 5   and when .2 5  , 

it decreases slowly and almost becomes constant. For .0 2 5   micro rotation profiles decrease with the 

increase in the Dufour parameter Du and for .2 5   micro rotation profiles increase very slowly with the 

increase in the Dufour parameter Du. This shows that the micro-rotation boundary layer thickness decreases 

with the increase in the Dufour parameter Du. Figure 8 shows that the fluid temperature field increases 

asymptotically with the increase in the Dufour parameter Du. The temperature decreases sharply when 

0 4  and when 4   , it decreases slowly and almost becomes constant. This shows that the thermal 

boundary layer thickness increases with the increase in the Dufour parameter Du.  

 Figure 9 shows that the fluid concentration field decreases asymptotically with the increase in the 

Dufour parameter. The concentration decreases sharply when .0 2 5   and when .2 5  , it decreases 

slowly and almost becomes constant. This shows concentration boundary layer thickness decreases with the 

increase in the Dufour parameter. Figure 10 shows that the fluid velocity field decreases asymptotically with 

the increase in the Soret parameter. The velocity decreases sharply when .0 2 5   and when .2 5   , it 

decreases slowly and almost becomes constant. This shows that the velocity boundary layer thickness 

decreases with the increase in the Soret parameter. Figure 11 shows that at the solid –fluid inter surface of 

the fluid, the fluid micro-rotation (angular velocity of fluid in fluid flow region) field increases 

asymptotically with the increase in the Soret parameter. The fluid angular velocity decreases sharply between 

in .0 2 5   and when .2 5  , it decreases slowly and almost becomes constant. For .0 2 5   micro 

rotation profiles increase with the increase in the Soret parameter and for .2 5   micro rotation profiles 

decrease very slowly with the increase in the Soret parameter. This shows that the micro-rotation boundary 

layer thickness increases with the increase in the Soret parameter. Figure 12 shows that the fluid temperature 

field decreases asymptotically with the increase in the Soret parameter. The temperature decreases sharply 

when 0 4  and when 4   , it decreases slowly and almost becomes constant. This shows that thermal 

boundary layer thickness decreases with the increase in the Soret parameter.  Figure 13 shows that the fluid 

concentration field decreases asymptotically with the increase in the Soret parameter. The concentration 

decreases sharply when .0 2 5   and when .2 5  , it decreases slowly and almost becomes constant. 

This shows that the concentration boundary layer thickness decreases with the increase in the Soret 

parameter. Figure 14 shows that the fluid velocity field increases asymptotically with the increase in the 

thermal coefficient (e). The velocity decreases sharply when .0 2 5   and when .2 5  , it decreases 

slowly and almost becomes constant. This shows that velocity boundary layer thickness increases with the 

increase in the thermal coefficient. 

 Figure 15 shows that the solid –fluid surface of the fluid, the fluid micro-rotation (angular velocity of 

fluid in fluid flow region) field decreases asymptotically with the increase the thermal coefficient. The fluid 

angular velocity decreases sharply between in .0 2 5   and when .2 5  , it decreases slowly and almost 

becomes constant. For .0 2 5   micro rotation profiles decrease with the increase in the thermal 

coefficient and for .2 5   micro rotation profiles increase very slowly with the increase in the thermal 

coefficient. This shows the micro-rotation boundary layer thickness decreases with the increase in the 

thermal coefficient. 

 Figure 16 shows that the fluid temperature field increases asymptotically with the increase in the 

thermal coefficient (e). The temperature decreases sharply when 0 4  and when 4   , it decreases 

slowly and almost becomes constant. This shows that thermal boundary layer thickness increases with the 

increase in the thermal coefficient. Figure 17 shows that the fluid concentration field increases 
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asymptotically with the increase in the thermal coefficient. The concentration decreases sharply when 

.0 2 5   and when .2 5  , it decreases slowly and almost becomes constant. This shows that the 

concentration boundary layer thickness increases with the increase in the thermal coefficient. Figure 18 

shows that at the solid –fluid surface of the fluid, the fluid micro-rotation (angular velocity of fluid in fluid 

flow region) field increases asymptotically with the increase in the velocity slip ‘m’. The fluid angular 

velocity decreases sharply in between .0 2 5   and when .2 5  , it decreases slowly and almost 

becomes constant. For M=0 and 0.1, micro rotation profiles have points of inflexion in the interval (2, 3]. 

This shows that the micro-rotation boundary layer thickness increases with the increase in the velocity slip 

(m). 

 To ensure the numerical accuracy, the values  of '( )0  by present method are compared with the 

results of Ishak et al. (2008), Chen (1998), Grubka and Bobba (1985 ) and Pal and Chatterjee (2015) in 

Tab.1 for various values of Pr and Da=∞, Fs=0.0, GrT=0.0, Grc=0.0, Kmp=0.0, Sc=0.0, m=0.0, M=0.0, 

Pr=1.0, R=0.0, e=0.00, Du=0.00, Sr=0.00, Kc=0.0 and  f 0 0   and those are found in excellent 

agreement with the present values. Thus, we are very much confident that the present results are accurate. 

 

Table1.  Comparison of the local Nusselt number '( )0 with Ishak et al. (2008), Chen (1998), Grubka 

and Bobba (1985) and Pal and Chatterjee (2015), and present results for various values of Pr and 

Da=∞, Fs=0.0, GrT=0.0, Grc=0.0, Kmp=0.0, Sc=0.0, m=0.0, M=0.0, Pr=1.0, R=0.0, e=0.0, Du=0.0, 

Sr=0.0, Kc=0.0, f’’(0)=0.0. 

 

Pr 

( )0  
( )0  

Present 

Results 
Ishak et al. 

(2008) 

Chen 

(1998) 

Grubka and 

Bobba 

(1985 ) 

Pal and Chatterjee 

(2015) 

1 1.3333 1.33334 1.3333 1.333333 1.333346 

3 2.5097 
 

2.50997 
 

2.5097 2.509725 2.509682 

10 4.7969 
 

4.79686 
 

4.7969 4.796873 4.796226 

 

        
 

Fig.2. Variation in the value of fluid velocity with 

M, the magnetic parameter. 

Fig.3. Variation in the value of angular velocity with 

M, the magnetic parameter. 
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Fig.4. Variation in the value of temperature with M, 

the magnetic parameter. 

Fig.5. Variation in the value of concentration with 

M, the magnetic parameter. 

 

     
 

Fig.6. Variation in the value of fluid velocity with 

Du, the Dufour parameter. 

 

Fig.7. Variation in the value of angular velocity with 

Du, the Dufour parameter. 

 

   
 

Fig.8. Variation in the value of temperature with Du, 

the Dufour parameter. 

Fig.9. Variation in the value of concentration with 

Du, the Dufour parameter. 
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Fig.10. Variation in the value of fluid velocity with 

the Soret parameter. 

Fig.11. Variation in the value of angular velocity 

with the Soret parameter. 

 

    
 

Fig.12. Variation in the value of temperature with 

the Soret parameter. 

Fig.13. Variation in concentration with the Soret 

parameter Sr. 

 

   
 

Fig.14. Variation in the value of fluid velocity with 

e, the thermal coefficient. 

Fig.15. Variation in the value of angular velocity 

with e, the thermal coefficient. 
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Fig.16. Variation in the temperature with e, the 

thermal coefficient. 

Fig.17. Variation of concentration with e, the 

thermal coefficient. 

 

 
 

Fig.18. Variation in the angular velocity with the slip parameter. 

 

Table 2.  The values of the skin friction Cf ( ( )f 0 ), dimensionless surface couple stress Cr ( ( )h 0 ), Nusselt 

number Nu ( ( )0 ) and Sherwood number Sh( ( )0 ) for different values of Da and Fs=0.8, 

GrT=0.6, Grc=0.5, Kmp=0.5, Sc=0.22, M=1, Pr=0.71, R=0.5, e=0.1, Du=4, Kc=0.5, Sr=0.1, 

f''(0)=0.5, m=0.5. 

 

Da  f 0   h 0   0   0  

100 -0.5232968998 -0.2130987767 0.4148029270 0.6842387169 

300 -0.5203648452 -0.2114961126 0.4155003921 0.6844328942 

500 -0.5197776341 -0.2111750671 0.4156400406 0.6844717840 

 

 Table 2 shows that the effects of the Darcy parameter (Da) on the skin friction (Cf), dimensionless 

wall couple stress (Cr) , Nusselt number and Sherwood number. It shows that the skin friction, dimensionless 

wall couple stress, Nusselt number and Sherwood number increase with the increase in the value of the 

Darcy parameter (Da). 
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Table 3.  The values of the skin friction Cf ( ( )f 0 ), dimensionless surface couple stress Cr ( ( )h 0 ), Nusselt 

number Nu ( ( )0 ) and Sherwood number Sh( ( )0 ) for different values of Fs and Da=500, 

Fs=0.8, GrT=0.5, Grc=0.5, Kmp=0.5, Sc=0.22, M=1, Pr=0.71, R=0.5, e=0.1, Du=4, Kc=0.5, 

Sr=0.1, f''(0)=0.5, m=0.5. 

 

Fs  f 0   h 0   0   0  

0.4 -0.6923363518 -0.3067500491 0.3800429068 0.6741087526 

0.6 -0.6343386592 -0.2738148989 0.3890995886 0.6771447600 

0.8 -0.5728824078 -0.2387131577 0.3987757166 0.6803955008 

 

 Table 3 shows the effects of the Forchheimer parameter (Fs) on the skin friction, dimensionless wall 

couple stress, Nusselt number and Sherwood number. It shows that the skin friction, dimensionless wall 

couple stress, Nusselt number and Sherwood number increases with the increase in the value of Forchheimer 

parameter (Fs). 

 

Table 4.  The values of the skin friction Cf, (  f 0 ), dimensionless wall couple stress Cr, (  h 0 ), Nusselt 

number Nu, (  0 )and Sherwood number Sh, (  0 )for different values of GrT and a=500; 

Fs=0.8; GrT=0.5; GrC=0.5; Kmp=0.5; Sc=0.22; M=1; Pr=0.71; R=0.5; e=0.1; Du=4; Kc=0.5; 

Sr=0.1;   .f 0 0 5  ; m=0.5. 

 

GrT  f 0   h 0   0   0  

0.4 -0.7419638023 -0.3220532467 0.3319502829 0.666202065 

0.6 -0.6273918455 -0.2663504570 0.3797860892 0.6760412478 

0.8 -0.5197776341 -0.2111750671 0.4156400406 0.6844717840 

 

 Table 4 shows that the effects of the thermal Grashof parameter (GrT) on the skin friction, 

dimensionless wall couple stress, Nusselt number and Sherwood number. It shows that the skin friction, 

dimensionless wall couple stres, Nusselt number and Sherwood number increase with the increase in the 

value of the Grashof temperature parameter. 

 

Table 5.  Shows that the various values of the skin friction  Cf, (  f 0 ), dimensionless wall couple stress, (

 h 0 ), Nusselt number, (  0 ) and Sherwood number Sh, (  0 ) for different values of GrC 

and Da=500; Fs=0.8; GrT=0.5; Grc=0.5; Kmp=0.5; Sc=0.22; M=1; Pr=0.71; R=0.5; e=0.1; Du=4; 

Kc=0.5; Sr=0.1;   .f 0 0 5  ; m=0.5. 

 

Grc  f 0   h 0   0   0  

0.4 -0.6891462664 -0.3027219793 0.3752254971 0.6732310281 

0.6 -0.6114477561 -0.2601329838 0.3911533661 0.6780545407 

0.8 -0.5344995269 -0.2172142340 0.4061880046 0.6826918568 

 

 Table 5 shows that the effects of the concentration Grashof parameter (GrC) on the skin friction (Cf), 

dimensionless wall couple stress Cr, Nusselt number Nu and Sherwood number Sh. It shows that the skin 

friction, dimensionless wall couple stress, Nusselt number and Sherwood number increase with the increase 

in the value of the Grashof concentration parameter. 
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Table 6.  The values of the skin friction Cf, (  f 0 ), dimensionless wall couple stress Cr, (  h 0 ), Nusselt 

number Nu, (  0 ) and Sherwood number Sh, (  0 ) for different values of Kmp and 

Da=500; Fs=0.8; GrT=0.6; Grc=0.5; Kmp=0.5; Sc=0.22; M=1; Pr=0.71; R=0.5; e=0.1; Du=4; 

Kc=0.5; Sr=0.1;   .f 0 0 5  ; m=0.5. 

 

Kmp  f 0   h 0   0   0  

0.4 -0.5238358848 -0.2227831673 0.4137682343 0.6840377088 

0.6 -0.5156431164 -0.2009795469 0.4174565801 0.6848951515 

0.8 -0.5073869212 -0.1837565643 0.4209411691 0.6857081329 

 

 Table 6 shows that the effects of the micropolar parameter, Knp on the skin friction, dimensionless 

wall couple stress Cr, Nusselt number and Sherwood number. It shows that the skin friction Cf, 

dimensionless wall couple stress Cr, Nusselt number Nu and Sherwood number increase with the increase in 

the value of micropolar parameter. 

 

Table 7.  The values of the skin friction Cf, (  f 0 ), dimensionless wall couple stress Cr, (  h 0 ), Nusselt 

number Nu, (  0 ) and Sherwood number Sh, (  0 ) for different values of Pr and Da=500; 

Fs=0.8; GrT=0.5; Gec=0.5; Kmp=0.5; Sc=0.22; M=1; m=0.5; R=0.5; e=0.1; Du=4; Kc=0.5; 

Sr=0.1; f''(0)=0.5. 

 

Pr  f 0   h 0   0   0  

1 -0.5877606189 -0.2441906200 0.4890258990 0.6995598113 

2 -0.6407913311 -0.2648382955 0.8040876448 0.8002199228 

3 -0.7216655338 -0.2978096753 1.1908847741 1.0429179103 

 

 Table 7 shows that the effects of the Prandtl parameter on the skin friction (Cf), dimensionless wall 

couple stress Cr, Nusselt number and Sherwood number. It shows that the skin friction Cf, dimensionless 

wall couple stress Cr decrease, Nusselt number and Sherwood number increase with the increase in the value 

of the Prandtl number. 

 

Table 8.  The values of the skin friction Cf, (  f 0 ), dimensionless wall couple stress Cr, (  h 0 ), Nusselt 

number Nu, (  0 ) nand Sherwood number Sh, (  0 ) for different values of R and Da=500; 

Fs=0.8; GrT=0.5; GrC=0.5; Kmp=0.5; Sc=0.22; M=1; Pr=0.71; R=0.5; e=0.1; Du=4; Kc=0.5; 

Sr=0.1;   .f 0 0 5  ; m=0.5. 

 

R  f 0   h 0   0   0  

0.2 -0.5815547952 -0.2418564517 0.4495261450 0.6910481957 

0.4 -0.5754249947 -0.2396276727 0.4135433236 0.6833552017 

0.6 -0.5706029556 -0.2378983543 0.3856487998 0.6778604185 

 

 Table 8 shows that the effects of the radiation parameter on the skin friction, dimensionless wall 

couple stress, Nusselt number and Sherwood number. It shows that the skin friction, dimensionless wall 

couple stress Cr increase , Nusselt number and Sherwood number decrease with the increase in the value of 

the radiation parameter. 
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Table 9.  The values of the skin friction Cf, (  f 0 ),dimensionless wall couple stress Cr , (  h 0 ), Nusselt 

number Nu, (  0 ) and Sherwood number Sh, (  0 ) for different values of Sc and Da=500; 

Fs=0.8; GrT=0.5; Grc=0.5; Kmp=0.5; Sc=0.22; M=1; Pr=0.71; R=0.5; e=0.1; Du=4; Kc=0.5; 

Sr=0.1;   .f 0 0 5  ; m=0.5. 

 

Sc  f 0   h 0   0   0  

0.2 -0.5721485289 -0.2385879159 0.4294688888 0.6536501214 

0.4 -0.5751218924 -0.2384920298 0.1543024516 0.8757812593 

0.6 -0.5730513358 -0.2367478821 -0.0840118311 1.0403330825 

 

 Table 9 shows that the effects of the Schmidt parameter on the skin friction, dimensionless wall 

couple stress, the Nusselt number and Sherwood number. It shows the skin friction Cf, first decreases and 

then increases, the dimensionless wall couple stress Cr increases, the Nusselt number decrease and 

Sherwood number increases with the increase in the value of the Schmidt parameter. 

 

Table 10.  The values of the skin friction Cf, (  f 0 ), the dimensionless wall couple stress Cr, (  h 0 ), the 

Nusselt number Nu, (  0 ) and Sherwood number Sh, (  0 ) for different values of Kc and 

Da=500; Fs=0.8; GrT=0.5; Grc=0.5; Kmp=0.5; Sc=0.22; M=1; Pr=0.71; R=0.5; e=0.1; Du=4; 

Kc=0.5; Sr=0.1;   .f 0 0 5  ; m=0.5. 

  

Kc  f 0   h 0   0   0  

0.2 -0.5717526148 -0.2384718973 0.4621701275 0.6279053339 

0.4 -0.5725224770 -0.2386371389 0.4195698983 0.6632316926 

0.6 -0.5732270304 -0.2387851687 0.3782987599 0.6972477499 

 

 Table 10 shows that the effects of the chemical reaction parameter on the skin friction Cf, 

dimensionless wall couple stress Cr, Nusselt number Nu, and Sherwood number Sh. It shows that the skin 

friction Cf, dimensionless wall couple stress Cr, Nusselt number Nu decrease and the Sherwood number 

increase with the increase in the value of the chemical reaction parameter. 

 

Conclusions 

 

 With the increase in the value of M, the velocity boundary layer thickness decreases, whereas the 

microrotation boundary layer thickness, the thermal boundary layer thickness and the concentration 

boundary layer thickness increase. 

 With the increase in the value of Du, the velocity boundary layer thickness increases, the 

microrotation boundary layer thickness decreases, the thermal boundary layer thickness increases, 

the concentration boundary layer thickness decreases. 

 With the increase in the value of Sr, the velocity boundary layer thickness decreases, the 

microrotation boundary layer thickness increases, the thermal boundary layer thickness decreases, 

concentration boundary layer thickness decreases 

 The skin friction Cf, the dimensionless wall couple stress Cr, Nusselt number and Sherwood number 

increase with the increase in the value of Darcy, the Forchheimer number, Grashof  number, 

modified Grashof number concentration and micropolar parameters . 

 As the value of the Prandtl parameter increases the skin friction Cf dimensionless wall couple stress 

Cr, decrease and Nusselt number Nu, and Sherwood number Sh, increase. 
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 As the value of radiation parameter increases the skin friction  Cf, dimensionless wall couple stress 

Cr increase and Nusselt number and Sherwood number decrease. 

 As the value of the Schmidt parameter increases the skin friction first decreases and then increases, 

dimensionless wall couple stress Cr and the Sherwood number increase, the Nusselt number decreases. 

 As the value of the chemical reaction parameter increases, the skin friction, dimensionless wall 

couple stress Cr and the Nusselt number decrease and the Sherwood number increases. 
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Nomenclature 
 

 0B    applied magnetic field 

  EC    drag coefficient which - independent of viscosity 

 PC   specific heat at constant pressure 

 MD   chemical molecular diffusivity 

 g  acceleration due to gravity 

 j  micro-inertia density 

 k  thermal conductivity of the fluid 

  ck   chemical reaction constant 

 pk   permeability of the porous medium 

  N  microrotation components normal to the xy - plane 

 T  temperature of the fluid 

 WT   temperature of the fluid at the surface 

  T   temperature of the fluid outside the boundary layer 

 u and v  are velocity components along the x and y axes 

 T   coefficient of thermal expansion 

 C   coefficient of concentration expansion 

     spin gradient viscosity  

 v   micro-rotation viscosity or the vortex viscosity 

    dynamic viscosity 

    density of the fluid 

    electrical conductivity of the fluid 

    kinematic viscosity 
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