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Significance 

The grain crop sorghum exudes an herbicidal compound called sorgoleone from its root tips, 

which inhibits the growth of other plants. We isolated bacteria that grow on sorogleone and 

identified a cluster of bacterial genes required for sorogleone degradation that can be used as a 

biomarker for this trait. An approach to improve the production of crops in stressful conditions 

such as drought, is to encourage their association with plant growth promoting bacteria. Our 

discovery of sorgoleone degradation genes opens the door to engineering bacteria that receive 

benefit from sorghum in the form of a plant-specific growth substrate, and in return promote the 

growth of this crop. 

 

Abstract 

Metabolite exchange between plant roots and their associated rhizosphere microbiomes 

underpins plant growth promotion by microbes. Sorghum bicolor is a cereal crop that feeds 

animals and humans and is used for bioethanol production. Its root tips exude large amounts of 

a lipophilic benzoquinone called sorgoleone. Sorgoleone is an allelochemical that suppresses 

the growth of competing plant seedlings and is mineralized by microbes in soil. As an avenue to 

understand how sorghum and its root microbiome may be connected through root exudates, we 

identified the molecular determinants of microbial sorgoleone degradation and the distribution of 

this trait among microbes. We isolated and studied from sorghum-associated soils, three 

bacterial strains classified as Acinetobacter, Burkholderia, and Pseudomonas species that grow 

with sorgoleone as a sole carbon and energy source. The genomes of these strains were 

sequenced and subjected to transcriptomic and gene fitness analyses to identify candidate 

sorgoleone degradation genes. Follow up mutational analysis showed that sorgoleone 

catabolism is dependent on four contiguous genes that are conserved among the species we 

sequenced. Phylogenetic analysis of the sorgoleone degradation gene cluster showed that 

sorgoleone catabolism is enriched in sorghum-associated Streptomyces strains. The discovery 
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of bacteria that grow on a compound like sorgoleone that is plant specific and not widely 

distributed in the environment, provides an opportunity to study how a plant exudate can 

enforce the development of a rhizosphere specific microbiome for the mutual benefit of plant 

and microbe. 

 

Introduction  

Root rhizosphere bacteria can benefit their host plants (1, 2) by providing nitrogen and 

phosphorus (3-5), reducing infection from plant pathogens (6), and mitigating various stress 

conditions, such as drought (7, 8). Most plants exude small organic compounds including 

organic acids, sugars and amino acids that support the growth of the bacteria in their 

rhizospheres (9). In addition, plants exude plant-specific secondary metabolites that play a role 

in plant protection from pathogens and are important for shaping the rhizosphere microbiome 

(10-12). Given the large number of secondary metabolites produced by plants, there are still 

relatively few known mechanisms by which they exert their effects on microbes. Use of 

secondary metabolites as carbon sources for growth is an obvious mechanism to shape 

microbiome composition but has received relatively little attention. 

The secondary metabolite sorgoleone, 2-hydroxy-5-methoxy-3-[(8’Z,11’Z)-8’,11’,14’-

pentadecatriene]-p-benzoquinone (Fig. 1), is a major component of exudates from root 

seedlings of Sorghum bicolor, the fifth largest cereal crop worldwide (13, 14). Sorgoleone has 

drawn substantial attention from the research community and the agriculture industry because 

of its allelochemical properties (15, 16). It has a variety of impacts on soil ecology and has been 

used in integrated weed management (17). It can also reduce loss of nitrogen fertilizers in soil 

by inhibiting biological nitrification (18). Previous work has shown that sorgoleone is slowly 

mineralized to carbon dioxide in soils and that microbial activities are responsible for this 

process (19). Sorgoleone also influences the composition and network structure of soil and 

rhizosphere microbial communities (20). 
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Here, we enriched and isolated sorgoleone-degrading bacteria from soil that had been 

planted with sorghum by using sorgoleone as a sole carbon source. Whole genome sequencing 

of three sorgoleone-utilizing isolates followed by transcriptome and RB-TnSeq analyses 

identified genes likely to be involved in sorgoleone degradation. Mutational analysis confirmed 

that a four gene cluster conserved among our isolates was required for growth on sorgoleone. A 

phylogenetic survey further revealed that these genes were enriched in Streptomyces species 

associated with sorghum. These results are a first step to determine if sorgoleone might be 

harnessed to control persistence of plant beneficial bacteria in root rhizospheres.  

 

Results  

Isolation and sequencing of sorgoleone degrading bacteria. Sorgoleone was purified from 

sorghum seedlings (14) as summarized in Fig. 1, and used as a sole carbon source to enrich 

and isolate three sorgoleone-degrading strains from soli collected from a sorghum-growing field 

site in Kearney, CA, USA. Two strains, SO1 and SO82 grew with 2 mM sorgoleone to a final 

yield of about 109 CFU/mL. The third strain, SO81, grew to lower yields on the same 

concentration of sorgoleone (Fig. 2). A combination of whole genome sequencing and Genome 

Taxonomy Database (GTDB) analysis (https://gtdb.ecogenomic.org/), designated strains, SO1 

and SO82, as Acinetobacter pitii and Burkholderia anthina, respectively (SI Appendix, Table 

S1). Strain SO81 was a novel Pseudomonas species. Based upon its ability to use sorgoleone 

as a carbon source, we named this strain Pseudomonas sorgoleonovorans SO81. 

 

Transcriptome analysis to identify genes expressed at high levels during growth with 

sorgoleone. Sorgoleone is structurally complex compound comprised of a methoxylated and 

hydroxylated 1,4 benzoquinone with a polyunsaturated aliphatic side chain (Fig. 1). Its 

degradation is thus likely to require multiple enzymatic steps. To identify sorgoleone 

degradation genes, we determined the transcriptomes of each strain grown with either 
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sorgoleone or acetate as sole carbon sources (SI Appendix, Fig. S1 and Table S2). We found 

that 228 genes from A. pitti SO1 and 156 genes from B. anthina SO82 were expressed at ≥8-

fold higher levels in cells grown with sorgoleone as compared to acetate. By contrast just 33 

genes were expressed at ≥8-fold higher levels in P. sorgoleonovorans SO81 grown with 

sorgoleone as compared to acetate. 

The three strains shared seven genes in common that were expressed at high levels during 

growth with sorgoleone (Table 1). These included four genes predicted to encode a 

monooxygenase, two α/β hydrolases, and a cytosine deaminase. Each of these genes was 

expressed at greater than 40-fold higher levels during growth on sorgoleone compared to 

acetate. Except for P. sorgoleonovorans SO81, which has a permease gene (SO81_17470) 

between its monooxygenase and cytosine deaminase genes, the four genes are adjacent to 

each other on the genomes. We therefore refer to these four genes as the srg (sorgoleone 

degradation) cluster (Fig. 3). Other genes highly expressed in the three strains during growth on 

sorgoleone included an alkane 1-monooxygenase, a 2,4-dienoyl-CoA reductase, and an acyl-

CoA dehydrogenase that may be associated with fatty acid β-oxidation.  

Nearly 80% of the genes that were highly expressed in sorgoleone-grown cells for each 

strain, were either strain-specific or upregulated in just one strain, even if the gene was shared 

with the other strains. There were species-specific genes adjacent to the srg cluster that were 

highly expressed. For P. sorgoleonovorans SO81, several membrane-associated proteins 

(SO81_17470, SO81_17500 and SO81_17510) and genes associated with β-oxidation 

processes (SO81_17530 and SO81_17540) were highly expressed, and for B. anthina SO82, a 

quinone oxidoreductase gene (SO82_69480) and a succinate-semialdehyde dehydrogenase 

gene (SO82_69450) were highly expressed. Genes elsewhere on genomes that were highly 

expressed in sorgoleone-grown cells in a strain-specific way included genes for   

benzoate (SO1_16420 to 16480) and 4-hydroxybenzoate (SO1_24810 to 24930) degradation 

as well as genes for malonic acid degradation (SO1_20050 to 20130) in A. pitti SO1. For P. 
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sorgoleonovorans SO81, genes likely to be involved in fatty acid degradation (SO81_09470, 

SO81_12220, SO81_17530, and SO81_17540) and an additional copy of a 2,4-dienoyl-CoA 

reductase gene (SO81_35370) were expressed at higher levels during growth on sorgoleone. 

For B. anthina SO82, in addition to fatty acid and dicarboxylic acid degradation genes 

(SO82_36570, SO82_38510, and SO82_42710), three additional copies of genes 

(SO82_32580, SO82_32670, and SO82_69790) for α/β hydrolase fold enzymes and an 

additional copy of a 2,4-dienoyl-CoA reductase gene (SO82_43600) were highly expressed. 

These results suggest that the three strain strains may catabolize sorgoleone to generate 

different intermediates and downstream products. This may also explain why P. 

sorgoleonovorans SO81 did not grow to as high a yield on sorgoleone as the other two strains 

we studied. 

We found that genes associated with oxidative and other stress responses were more highly 

expressed in A. pitti SO1 cells grown with sorgoleone. These included a universal stress protein 

gene (SO1_25550), genes involved in trehalose biosynthesis (SO1_12530 and SO1_12540), 

and a gene cluster containing catalase (SO1_19670 to SO1_19740). In P. sorgoleonovorans 

SO81, genes for a multidrug efflux system (SO81_01900 to 01920 and SO81_30880 to 30900) 

were upregulated.  

 

RB-TnSeq analysis to identify candidate genes for sorgoleone degradation. We used the 

functional genomics-based approach of RB-TnSeq to screen directly for genes involved in 

sorgoleone catabolism (21). Because of the ease of genetic manipulation of Pseudomonas 

species, we generated an RB-TnSeq library in P. sorgoleonovorans SO81. The library had 

367,775 unique barcoded transposon insertion mutants with insertions in 3,924 of the 4,649 

predicted genes (84%), with an average coverage of 60.3 transposon insertion mutants per 

gene. Using this library, we performed fitness assays that evaluated the relative growth of 

mutants in the library on sorgoleone and a series of other carbon sources (acetate, citrate, 
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glucose, or octanoate). Genes were considered important for robust growth under a given 

condition if their fitness score was ≤-1.8 (strong negative fitness) (SI Appendix, Table S3).  

We identified 14 genes that had strong negative fitness scores only when the library was 

grown with sorgoleone. Of these, eight genes were induced by sorgoleone in our transcriptome 

analysis (Fig. 4). Included in this set were the srg cluster (SO81_17440 to 17480) and two 

genes adjacent to the srg cluster. Our RB-TnSeq experiments identified several genes involved 

in β-oxidation (SO81_19340, SO81_19860, SO81_39590, SO81_42070, and SO81_42080) that 

conferred substantially reduced fitness during growth on either sorgoleone or ocanoate when 

disrupted (Fig. 4). We also identified several genes potentially involved in the transport of 

sorgoleone and/or intermediates of its degradation. Among these were SO81_12750 to 12770 

(putative ABC transporter), SO81_18010 (murein hydrolase transporter LrgA), and 

SO81_30590 (channel protein TolC). SO81_17430, which encodes a predicted transcription 

factor (SI Appendix, Table S3), had a positive fitness score, suggesting that it negatively 

regulates transcription of the srg cluster.   

 

The srg cluster is essential for sorgoleone degradation. To confirm that the srg cluster is 

essential for sorgoleone degradation, we constructed a P. sorgoleonovorans SO81 srg deletion 

mutant (SO81∆17440-17460). Both the wild type and the deletion mutant grew well on glucose, 

but the mutant strain failed to grow on sorgoleone. Integration of a single copy of the srg cluster 

(SO81_17440-17460) into the attTn7 site of SO81∆17440-17460 complemented this phenotype 

(SI Appendix, Fig. S2). 

 

The srg cluster as a biomarker for sorgoleone catabolism. Our observation that the srg 

cluster is conserved among several species of our soil isolates prompted an investigation of the 

distribution of this gene cluster across sequenced organisms and its suitability as a genetic 

marker for sorgoleone catabolism. Our approach involved cluster construction of Snekmer 
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protein family models (22) for the srg genes using sequences from our three isolates and data 

from the UniProt Reference Proteome. We used the srg protein models to search the GFOBAP 

collection of 3,837 genomes derived from soil- and plant-associated environments (23), and 

identified hits for the complete cluster in one Acinetobacter and 21 Actinobacteria, most of which 

are Streptomyces sp. (SI Appendix, Fig. S3). 

 To investigate the prevalence of the srg cluster among Streptomyces isolates associated 

with different plants we analyzed publicly available whole genome sequences of 44 

Streptomyces strains isolated from sorghum-cultivated fields and 30 Streptomyces strains 

isolated from soils near poplar trees. We found a significant enrichment of the srg cluster among 

the strains associated with sorghum (17/44) over poplar (4/30) (two-proportion z-test, p=0.012) 

(Fig. 5). To assess whether the presence of the srg cluster is required for Streptomyces to grow 

on sorgoleone, we selected a taxonomically diverse collection of sorghum-associated 

Streptomyces strains, including strains with and without the srg cluster, and tested for growth in 

minimal medium containing sorgoleone as the sole carbon source. We found that only the 

strains encoding the srg cluster were able to grow on sorgoleone (Fig. 5). An ortholog profiling 

analysis of Streptomyces strains revealed general conservation of the gene neighborhood of the 

srg cluster with several strains encoding a TetR family transcriptional regulator adjacent to the 

srg cluster (SI Appendix, Fig. S4). These results suggest that the srg cluster provides the critical 

steps to break down sorgoleone in Streptomyces and can be used as a biomarker for 

sorgoleone catabolism. 

 

Discussion 

Microbial rhizosphere communities are complex. Plants can have both positive and negative 

effects on their associated root microbes and there is also a complex web of antagonistic and 

cooperative interactions among the microbial members of the rhizosphere (12, 24). This is 

against a backdrop of fluctuating soil conditions, particularly soil moisture conditions. Evidence 
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suggests that while many kinds of plants share a core microbiome, plant-specific exudates play 

a role shaping plant specific microbiomes that include additional strains and species (9). 

Here we purified sorgoleone from sorghum seedlings using contemporary techniques and 

used it to isolate bacteria that grow with sorgoleone as a sole carbon and energy source. This 

led to the discovery of four contiguous sgr genes required for growth with sorgoleone as a 

carbon source. A next step will be to elucidate the enzymatic activities of the Sgr proteins. The 

Integrated Microbial Genome (IMG) database (https://img.jgi.doe.gov/) sometimes has more 

specific gene annotations than the pipeline that we used to annotate the genomes reported 

here. Using IMG annotations for the srg genes in P. sorgoleonovorans SO81, we can 

hypothesize a possible route of sorgoleone degradation. The predicted proteins of SO81_17440 

and SO81_17450 are most closely related to pimeloyl-ACP methylester carboxylesterase, which 

is involved in biotin synthesis (25). We hypothesize that these genes could catalyze 

demethoxylation of sorgoleone in P. sorgoleonovorans SO81. SO81_17460 is related to 2-

polyprenyl-6-methoxy phenol hydroxylase-like FAD dependent oxidoreductase, which is 

required for ubiquinone synthesis (26). This flavoprotein monooxygenase enzyme could 

catalyze oxidative rearrangement of the benzoquinone ring resulting in a lactone (a Baeyer-

Villiger-type reaction) or another intermediate which then easily undergoes hydrolytic or even 

spontaneous ring cleavage. The cytosine deaminase predicted to be encoded by the fourth 

gene (SO81_17480) has a general role as a metal-dependent hydrolase and could play a role in 

the cleavage of a lactone. Other genes shared among the three strains (Table 1) encode 

enzymes that are known to catalyze fatty acid degradation, and these could be important for 

degradation of the unsaturated fatty acid tail on sorgoleone. The genes in the srg cluster are 

related to co-factor biosynthesis and it may be that this is their evolutionary origin.  

Our observation that the srg cluster is enriched in sorghum-associated Streptomyces 

isolates suggests that this group may have a competitive growth advantage over other microbes 

in the sorghum rhizosphere. A recent study observed that Streptomyces can reach 
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comparatively high abundances in the sorghum rhizosphere (27). And Streptomyces have been 

shown to be active in promoting the growth of many crop plants (28) including sorghum (29, 30). 

We suggest that it may be possible to take advantage of sorgoleone exudation by sorghum to 

enforce persistence of sorghum-utilizing bacteria that can promote the growth of this important 

food and bioenergy crop. To do this it will be important to understand a complete picture of 

sorgoleone production at each point in the life cycle of sorghum and to fully elucidate how 

sorgoleone is degraded.  

 

Materials and Methods 

Purification of sorgoleone from sorghum. To generate sorgoleone extracts, Sorghum bicolor 

SX-19 (hereafter referred to as SX-19) seedlings were grown in bulk using a devised aeroponic 

system. SX-19 seeds (Helena Agri-Enterprises) were first soaked in sterile deionized water for 

at least 3 h. After soaking, the SX-19 seeds were spread across a plastic mesh canvas (85 g of 

dry seeds per mesh canvas) which was placed on risers in a shallow plastic tray. The seeds 

were then covered with damp paper towels, the trays were covered with aluminum foil, and 

placed either in a growth chamber at 20 ºC or on a benchtop at room temperature. All plastic 

was sterilized by autoclave prior to planting, and the seeds were handled in a laminar flow hood 

to minimize microbial contamination. The trays were watered every 24 to 48 h by re-wetting the 

paper towels with sterile water. Post germination, the SX-19 roots grew through the plastic 

mesh into the headspace between the mesh and the bottom of the tray. After 5 to 10 days of 

growth, SX-19 roots were harvested by lifting the plastic screen and excising the roots that had 

grown through the mesh. Excised roots were placed in a glass beaker and covered with HPLC 

grade chloroform for 2 min to extract any hydrophobic root exudates. The extract was decanted 

into a liter glass bottle, capped, and stored for up to one week until purification. The chloroform 

treated roots were dried and weighed. This method yielded about 0.015 g crude extract per g of 

dry root mass on average (n=18 ± 0.01). 
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Sorgoleone was purified from the crude extract using a Biotage Isolera flash 

chromatography system. Crude extract was dissolved in chloroform or dichloromethane and 

loaded onto pre-packed silica gel columns equilibrated with 1% MeOH/dichloromethane. Pure 

sorgoleone was eluted by ramping from 1 to 5% MeOH/dichloromethane. Fractions of product 

were combined and dried under reduced pressure to afford pure sorgoleone as a bright orange 

solid. The average purified sorgoleone yield was 0.0067 g per g of dry root mass (n=18 ± 

0.0024). 

Purified sorgoleone was characterized using nuclear magnetic resonance (NMR) 

spectroscopy and low-resolution mass spectrometry (LRMS), and compared to the published 

data (31). 1H and 13C NMR spectra were acquired in CDCl3 (Cambridge Isotopes, Tewksbury, 

MA) at 25 °C on a Bruker 400 MHz Avance III spectrometer equipped with a 5 mm BBFO 

SmartProbe. All chemical shifts are reported in the standard notation of parts per million using 

tetramethylsilane as an internal reference or the peak of the residual proton or carbon signal of 

CDCl3 (1H NMR δ 7.26 and 13C NMR δ 77.36 ppm) as an internal reference. LRMS-ESI was 

performed using a Finnigan LTQ mass spectrometer (Thermo Electron Corporation). Purified 

sorgoleone was dissolved in 100% DMSO to a final concentration of 200 mM for use in 

microbial cultivation. 

 

Bacterial growth conditions.  Bacteria were generally grown in MME, MMV (MME with 1x 

vitamin solution), or M9 medium with variable carbon sources. MME medium contains 9.1 mM 

K2HPO4, 20 mM MOPS, 4.3 mM NaCl, 9.3 mM NH4Cl, 0.41 mM MgSO4, 68 µM CaCl2, 1x MME 

trace minerals, and final pH was adjusted to 7.0 with KOH. The 1000x MME trace mineral stock 

solution contains 1 mL concentrated HCl, 0.5 g Na4EDTA, 2 g FeCl3, 0.05 g each H3BO3, ZnCl2, 

CuCl2×2H2O, MnCl2×4H2O, (NH4)2MoO4, CoCl2×6H2O, NiCl2×6H2O per liter. The 200x vitamin 

solution contains 10 mg each of niacin, pantothenate, lipoic acid, p-aminobenzoic acid, thiamine 

(B1), riboflavin (B2), pyridoxine (B6), and cobalamin (B12) and 4 mg each of biotin and folic acid 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2023. ; https://doi.org/10.1101/2023.05.26.542311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542311


 12 

per liter. Solid medium was prepared by addition of 15 g of Bacto Agar (BD) per liter. Routine 

cultivation of the sorgoleone-utilizing isolates was performed using Difco R2A (BD), Difco SOB 

medium (BD), or Difco LB, Miller (BD). 

 

Isolation of sorgoleone-utilizing bacteria by enrichment technique. Rhizosphere soil was 

collected from the Kearney Agricultural Research and Extension (KARE) Center in Parlier, 

California, where Sorghum bicolor has been cultivated. MME medium supplemented with 2 mM 

sorgoleone (5 mL in glass test tubes) was used to enrich bacteria that could use sorgoleone as 

a sole carbon source from 100 mg of this rhizosphere soil. After 96h incubation at 25 °C, the 

initial enrichment culture was diluted 1:100 into fresh MME supplemented with vitamins and 

containing 2 mM sorgoleone. After 72 h incubation at 25 °C, 100 µL of this culture was spread 

onto MME agar plate containing 2 mM sorgoleone and incubated for 96 h at 25°C. Well 

separated single colonies were picked and streaked onto R2A agar plates for single colony 

isolation. Selected isolates were inoculated into MME containing 1 mM sorgoleone. Isolates 

grown in this medium were serially passaged (1:100 dilution) six times into fresh MME 

containing 1 mM sorgoleone. These cultures were spread onto R2A, and single colonies were 

inoculated into R2A for growth prior to storage as glycerol stocks at -80 °C. The 16S rRNA 

sequences of the isolates were determined by the Sanger sequencing (GENEWIZ). 

 

Whole genome sequencing and analysis. Whole genomes of isolates were sequenced by CD 

Genomics (Shirley, NY, USA) and their taxonomies were assigned using Genome Taxonomy 

Database-Tk v1.6.0 with the classify_wf settings and reference data version r202 (32). 

Functional annotation was assigned using the DFAST pipeline (v 1.2.14) (33) supplemented 

with RAST (34), KOfam (35) (2021-06-01 release), and searches against TIGRfam (v15.0) (36) 

and Pfam (v32.0) (37) using hmmer 3.3 (38). Orthology between genomes was determined 
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using bespoke perl code which integrates reciprocal best hit information, TIGRfam equivalog 

family membership and conserved synteny. 

 

Transcriptome analysis of sorgoleone degrading isolates. Sorgoleone-utilizing strains were 

revived from -80 ºC glycerol stocks by cultivation in 5 mL R2A liquid medium at 30 ºC. Cultures 

were centrifuged at 3000 x g and pellets were washed twice with 5 mL MME lacking carbon 

source to remove residual R2A medium. Starter cultures were inoculated at a 1:100 dilution of 

the washed cells into 5 mL of MME supplemented with either 2 mM sorgoleone or 30 mM 

acetate and grown to stationary phase. Final cultures were inoculated at a 1:100 dilution into 50 

mL of MME supplemented with either 2 mM sorgoleone or 30 mM acetate and incubated at 30 

ºC until they reached mid-log-phase (OD600 of 0.4 to 0.5 for A. pitti SO1 and B. anthina SO82, 

and 0.15 to 0.25 for P. sorgoleonovorans SO81). Cultures were centrifuged at 12,000 x g for 2 

min at 4 ºC, and cell pellets were flash frozen in liquid nitrogen and stored at -80 ºC. RNA 

isolation, rRNA depletion, and high-throughput RNA sequencing with the Illumina sequencing 

platform was performed by CD Genomics (39, 40).  

The transcriptomics data were indexed and quantified by kallisto (41) as per instructions in 

the manual. The resulting read counts were processed using a bespoke Python code that ran 

DEseq2 (42) to normalize read counts and to calculate the fold change value between 

sorgoleone-grown and acetate-grown cells with an adjusted p-value calculated for statistical 

analysis for each gene. Fold differences between expression values of a given gene from cells 

grown under the two conditions were considered significant if the genes had values with a base 

mean of ≥100 and an adjusted p-value of <0.05.   

 

RB-TnSeq analysis.  A transposon mutant library of P. sorgoleonovorans SO81 was 

constructed by conjugation with E. coli WM3064 harboring pHLL250 mariner transposon vector 

library (strain AMD290) (43). Approximately equal numbers of mid-log-phase grown cells of P. 
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sorgoleonovorans SO81 and AMD290 were mixed in SOB containing 300 µM of 2,6-

diaminopimelic acid (DAP), incubated at 30 °C on 0.22 µm nitrocellulose filters (Millipore) 

overlaid on SOB agar plates containing DAP. After 6.5 h, cells were removed from the filters, 

resuspended in SOB containing 25% glycerol, and stored at -80 ºC as a master conjugation 

mixture. Aliquots of conjugation mixture were plated on SOB agar plates with 50 µg/mL 

kanamycin (Km) to select for mutants. After 2 days of growth at 30 °C, colonies were scraped 

from plates and resuspended in SOB. The mutant library was diluted to a starting OD600 of 0.25 

in 50 mL of SOB with 50 µg/mL Km, cultivated at 30 °C to a final OD600 of 1.25, made multiple -

80 °C freezer stocks following addition of glycerol to a final volume of 25%. Equal volumes of 15 

independently prepared mutant libraries were pooled to form the final P. sorgoleonovorans 

SO81 mutant library. 

We mapped transposon insertion sites and linked these insertions to their associated DNA 

barcodes using a two-step PCR based approach that selectively amplifies the transposon 

insertion junctions and adds Illumina adapter sequences (44). For the 

Pseudomonas_S08_1_ML2 library, we prepared three independent Illumina 

sequencing libraries and sequenced these using paired end sequencing (2 x 150) on an Illumina 

HiSeq machine (Novogene). The total number of paired reads sequenced across the 3 

libraries were 25.4 million, 65.7 million, and 79.3 million. From these data, we were able to 

confidently map 367,775 unique insertions (with at least 10 reads of support for each) using 

previously described criteria (21). We performed barcode sequencing (BarSeq) (45) with both 

P1 and P2 oligos indexed to minimize the impact of misassigned indexes in Illumina HiSeq4000 

runs (https://www.biorxiv.org/content/10.1101/125724v1). We followed established methods 

for calculating strain and gene fitness scores, along with a t-like statistic that describes the 

confidence in the gene fitness score (21). All the RB-TnSeq software used in this study is 

available at https://bitbucket.org/berkeleylab/feba/src/master/. 
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RB-TnSeq fitness assays. RB-TnSeq assays were performed as previously described (21). 

Briefly, the P. sorgoleonovorans SO81 transposon libraries were thawed at room temperature 

and grown in 25 mL LB at 37 °C with shaking at 200 rpm until the OD600 reached 0.5. Cultures 

were centrifuged, washed twice with MME, and resuspended to an OD600 of 2.0. Aliquots of 

washed cells were centrifuged, and the resulting cell pellets were stored at -80 ºC for later 

amplicon sequencing and barcode quantification. These aliquots served as the T=0 samples for 

RB-TnSeq. The remaining washed cells were diluted to a starting OD600 of 0.02 in 3 mL MME 

supplemented with 2 mM sorgoleone in glass test tubes or 1.2 mL MME supplemented with all 

other carbon sources (30 mM acetate, 10 mM citrate, 10 mM glucose, or 7.5 mM octanoate) in 

96-well deep well plates. Glass test tubes and 96-well deep well plates were incubated at 30 °C 

with shaking at 200 rpm and 1200 rpm, respectively, until stationary phase was reached for 

each carbon source (typically 24-36 hours). Following completion of growth, cells were 

harvested for amplicon sequencing and barcode quantification.  

 
 
Deletion of the gene cluster SO81_17440 to SO81_17460 in P. sorgoleonovorans SO81. A 

deletion fragment was synthesized by Integrated DNA Technologies (Coralville, Iowa), cloned 

into mobilizable suicide vector pSL15A (46) and transformed into E. coli NEB 10-beta (New 

England Bio Labs). The sequence-verified deletion construct was transformed into E. coli S17-1, 

and further mobilized into P. sorgoleonovorans SO81 by conjugation on SOB agar plates. 

Single recombinant conjugants were first selected on M9 plus 10 mM succinate plates 

containing 20 μg/mL tetracycline. Tetracycline resistant colonies were further plated onto Difco 

LB agar, Lennox (BD) containing 10% sucrose. Sucrose resistant and tetracycline sensitive 

colonies were screened by colony PCR and sequencing to validate the expected chromosomal 

deletion of the gene cluster. To complement the SO81Δ17440-17460 mutant, a DNA fragment 

spanning from SO81_17440 to SO81_17460 plus the 250 bp upstream that contains a putative 

transcription start was PCR amplified and cloned into pUC18-mini-Tn7T-Gm (47). The construct 
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was then transformed into E. coli NEB 10-beta (New England Bio Labs) for sequence 

verification. The sequence-verified complementing construct was transformed into E. coli S17-1 

and this strain was used in a three-strain mating on SOB plates that also included the 

SO81Δ17440-17460 mutant and E. coli S17-1 carrying the integration plasmid pTNS3. 

Exconjugants were selected on M9 plates supplemented with 10 mM succinate and 5 μg/mL 

gentamicin. As a negative control, the empty vector pUC18-mini-Tn7T-Gm was used. 

 

Identification of sorgoleone catabolism pathways by Snekmer analysis. To examine the 

distribution of the sorgoleone degradation genes, proteome datasets were searched with kmer 

composition profile models using the conserved Srg protein sequences. Training sets for each 

of the genes were built that included the genes in the srg cluster from A. pitti SO1, P. 

sorgoleonovorans SO81 and B. anthina SO82, as well as genes from 25 organisms in the 

UniProt Reference Proteome (v 2021_03) that shared both sequence similarity and gene 

synteny. Protein family models were built using Snekmer, a tool that leverages alternate 

encoding of proteins to account for amino acid substitutions and k-mer based similarity 

calculation (22). The kmer length and alphabet parameters were optimized using cross-

validation of the training set. In brief, we examined the performance of the models using kmer 

lengths of 4, 8, 12, and 16 and using six different amino acid reduction alphabets including the 

original sequence (i.e., no recoding). The best performance across the families was achieved 

with a kmer length of 8 and the MIQS alphabet, which groups amino acids by observed 

substitution rates (48). A genome was considered positive for sorgoleone genes if it had positive 

predictions for all three of the gene families that were found in the same genomic region either 

continuous or separated by no more than three intervening genes to allow more generous 

detection of the set of functions. 
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Phylogenetic analysis of poplar- and sorghum-derived Streptomyces isolates. Genomes 

of Streptomyces isolates derived from poplar (n=30) and sorghum (n=43) were used to build a 

phylogenetic tree with GToTree (49). Each genome was searched for 73 single copy genes 

across bacterial tree of life which were used to build the tree. Briefly, target genes were 

identified with HMMER3 v3.2.2 (50), individually aligned with muscle v5.1 (51), trimmed with 

trimal v1.4.rev15 (52), and concatenated prior to phylogenetic estimation with FastTree2 v2.1.11 

(53). The resultant tree was plotted with Ggtree (54) and annotated with the presence or 

absence of the srg cluster as determined by Snekmer (22) and the capacity to grow on 

sorgoleone as a sole carbon source. 

 

Cultivation of sorghum-derived Streptomyces on sorgoleone. To validate the ability to 

metabolize sorgoleone by organisms identified by the Snekmer analysis, we performed growth 

assays of 27 Streptomyces strains using sorgoleone as the sole carbon source. Strains were 

grown on Tryptic Soy Agar plates at 30 °C for 3 days. Three colonies of similar size were 

inoculated into glass tubes containing M9 supplemented with 4 mM sorgoleone and incubated 

for 7 days at 30 °C with shaking at 250 rpm. Additional cultures were made by inoculating each 

strain in M9 media containing 2 mM glucose (positive control) or in M9 media without carbon 

source (negative control). For each strain, three biological replicates were carried out. Due to 

the filamentous morphology of Streptomyces, bacterial growth was measured by cell biomass 

as following: bacterial cells were harvested by centrifugation for 10 min at 12,000 rpm and 

stored at -20 °C. Frozen pellets were ground in a homogenizer with steel beads for 1 min at 25 

Hz. Additionally, cells were hydrolyzed with 1 M NaOH overnight at 4 °C. Bradford reactions 

were performed in 96-well plates (U-shape Greiner bio-one microplates) with 10 µl of each 

sample and 200 µl of Coomassie (Bradford) Protein Assay Kit (Thermo Scientific) and incubated 

for 10 min at room temperature. Absorbance was defeminated at 595 nm using a TECAN 

infinite M Nano plate reader.  
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Data availability. Whole genome sequence data of sorgoleone utilizing strains of A. pitti SO1 

(GenBank accession CP125227.1), P. sorgoleonovorans SO81 (GenBank accession 

CP126126.1), and B. anthina SO82 (GenBank accession pending) have been deposited at 

GenBank (https://www.ncbi.nlm.nih.gov/genbank/) under the BioProject accession 

PRJNA878512. Corresponding MIGS.ba.plant-associated.5.0 compliant metadata standards 

have been provided under BioSample accessions: SAMN31055411 (A. pitti SO1), 

SAMN31055412 (P. sorgoleonovorans SO81), and SAMN31055413 (B. anthina SO82). CD 

Genomics PacBio (https://www.cd-genomics.com/PacBio-SMRT-Sequencing.html) long-read 

raw sequence data have been submitted to the Sequence Read Archive (SRA) 

(https://www.ncbi.nlm.nih.gov/sra) under the following accessions: SRX17787341 (A. pitti SO1), 

SRX17787342 (P. sorgoleonovorans SO81), and SRX17787343 (B. anthina SO82). High-

throughput RNA-seq data have been deposited (GEO accessions pending) at the NCBI Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds/). Primary RNA-seq data 

submissions contain MINSEQE metadata standards, processed gene expression profile 

analysis, and raw data files located at SRA (accessions pending). The locus tags of A. pitti SO1 

(IMG Submission ID 282913), P. sorgoleonovorans SO81 (IMG Submission ID 273153), and B. 

anthina SO82 (IMG Submission ID 273157) deposited to the IMG database were used 

throughout this manuscript, and lookup table of the IMG and the GenBank locus tags can be 

found in SI Appendix, Table S4. 

A comprehensive collection of all integrated high-throughput omics data and process 

method metadata are accessible from the PNNL DataHub (https://data.pnnl.gov/about) 

institutional repository under the following PerCon SFA project page digital object identifier 

https://doi.org/10.25584/1969551. PerCon SFA data download DOI contents are structured for 

DOE compliance leveraging reporting guidelines provided by Genomic Standards Consortium 

community standard initiatives and stakeholder policies supporting FAIR data principles 
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(https://doi.org/10.25504/FAIRsharing.19ne3m). Data package contents reported here are the 

first version and contain both primary and secondary Persistence Control of Engineered 

Functions in Complex Soil Microbiomes (PerCon SFA) project deliverables and subsequent 

digital data objects. Updated versions of the data reported here are accessible from the drop-

down options located under the main PNNL DataHub project page DOI (listed above).   
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Table 1. Genes highly expressed in strains grown on sorgoleonea 

Predicted gene product 

A. pitti 

SO1 locus 

P. sorgoleonovorans 

SO81 locus 

B. anthina 

SO82 locus 

α/β fold family hydrolase SO1_17710 (467) SO81_17440 (231) SO82_69410 (294) 

α/β fold family hydrolase SO1_17720 (131) SO81_17450 (165) SO82_69800 (7.5) 

Monooxygenase SO1_17730 (80) SO81_17460 (199) SO82_69780 (258) 

Cytosine deaminase SO1_17740 (41) SO81_17480 (96) SO82_69770 (347) 

Alkane 1-monooxygenase SO1_22090 (117) SO81_11930 (3.4) SO82_20560 (6.7) 

2,4-dienoyl-CoA reductase SO1_25070 (3.9) SO81_08370 (4.1) SO82_24270 (15) 

Acyl-CoA dehydrogenase SO1_34600 (2.6) SO81_19860 (3.6) SO82_06880 (19) 

a Number in parentheses indicates the fold change in expression relative to acetate-grown cells. 

 

 

 

 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2023. ; https://doi.org/10.1101/2023.05.26.542311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542311


 26 

Fig. 1. Summary of sorgoleone isolation. (A) Germination of sorghum seeds. (B) Extraction of 

sorgoleone from germinated sorghum roots using MeOH/dichloromethane and fractionation by 

thin layer chromatography. (C) Qualification of purified sorgoleone by NMR analysis. (D) 

Chemical structure of sorgoleone. 
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Fig. 2.  Growth of A. pitti SO1, P. sorgoleonovorans SO81, and B. anthina SO82 on 2 mM 

sorgoleone as a sole carbon and energy source. Growth as expressed as colony forming units 

(CFU). The averages of three replicate cultures are plotted with error bars showing the standard 

deviations.  
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Fig. 3. The srg cluster for sorgoleone degradation. The color code indicates similar functions 

among strains. Percentages indicates the protein identity to P. sorgoleonovorans SO81 genes. 
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Fig. 4. Summary of RB-TnSeq and RNA-Seq data from P. sorgoleonovorans SO81. (A) Venn 

diagram showing overlap between genes with substantial fitness values when P. 

sorgoleonovorans SO81 is grown on sorgoleone and genes that are more highly expressed 

when P. sorgoleonovorans SO81 is cultivated in sorgoleone versus acetate as carbon sources. 

Plots comparing differential expression (x-axis) versus mean RB-TnSeq fitness values on the y-

axis. RB-TnSeq values displayed are from cultures grown on either (B) sorgoleone, (C) acetate, 

or (D) octanoate. Positive and negative differential expression values indicate higher expression 

during growth on sorgoleone and acetate as carbon sources, respectively. Dots indicate 

transporters (dark red), β-oxidation enzymes (red), dioxygenase (orange), glyoxylate shunt 

enzymes (orange stripes), pyruvate shunt enzymes (yellow), a putative secreted hydrolase (light 

yellow), the srg cluster (light blue), genes adjacent to the srg cluster (light blue stripes), 

transcription factor adjacent to the srg cluster (blue), NAD(P)H transhydrogenase (dark blue), 

and all other genes (gray). Values represent the mean of three to four biological replicates of 

RB-TnSeq analysis and four biological replicates of RNA-Seq differential expression analysis. 

Genes lacking fitness or differential expression value are not displayed.  
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Fig. 5. Phylogenetic analysis and growth of selected Streptomyces strains on sorgoleone. 
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Supporting Information 

 

SI Appendix, Table S1. Statistics of whole genome sequencing of sorgoleone utilizing isolates 

Taxonomic classification Total length 

(bp) 

Scaffold 

No. 

Contig length 

(bp) 

Average 

coverage 
%GC 

A. pittii SO1 3,924,059 1 3,924,059 x5771 38.9 

P. sorgoleonovorans SO81 4,842,577 1 4,842,577 x1081 65.4 

B. anthina SO82 7,843,004 1 3,584,230   x111 67.0 

   2 3,002,478   x112 66.9 

   3 1,022,242   x109 67.5 

   4    234,054   x143 61.4 

 

 

 

SI Appendix, Table S2a-S2c. Transcriptome analysis of sorgoleone-grown strains (supplied as 

an Excel file) 

 

 

SI Appendix, Table S3. P. sorgoleonovorans SO81 RB-TnSeq analysis (supplied as an Excel 

file) 

 

 

SI Appendix, Table S4. Lookup table of the IMG and the GenBank locus tags (supplied as an 

Excel file) 
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SI Appendix, Fig. S1. Summary of differential expression results. Differential expression of 

genes in A. pitti SO1, P. sorgoleonovorans SO81, and B. anthina SO82 during growth on 

sorgoleone versus acetate. Log2 -fold change in gene expression and -log10-transformed 

multiple test adjusted p-values are shown on the x- and y-axes, respectively. Positive numbers 

and negative numbers on the x-axis indicate higher expression during growth on sorgoleone 

and acetate, respectively. Dotted lines indicate ≥2.5-fold change in gene expression. Blue and 

red colored points indicate genes with both ≥8-fold change in expression and multiple test 

adjusted p-value <0.05 during growth on sorgoleone and acetate, respectively. 
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SI appendix, Fig. S2. Growth P. sorgoleonovorans SO81 on sorgoleone depends on the srg 

genes SO81_17440-17460.  Cells were incubated for 24h with 3 mM sorgoleone as a sole 

carbon source. 

 

 

  

0 24 0 24 0 24 0 24
105

106

107

108

109

1010

Time (h)

C
el

l n
um

be
r (

C
FU

/m
L)

SO81wt
SO81∆17440-17460
SO81∆17440-17460::pSO81_17440-17460
SO81∆17440-17460::pTn7 (empty vector)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2023. ; https://doi.org/10.1101/2023.05.26.542311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542311


 35 

SI appendix, Fig. S3. Prevalence of the srg cluster based on the Snekmer approach. 
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SI Appendix, Fig. S4. Alignment of srg gene clusters and neighboring genome sequences. 

Using the srgC genes identified by Snekmer analysis as central points, 20kb sequence regions 

were extracted from each genome containing a srg cluster (see color key for srg gene 

identifications). The proteins found within those regions were clustered using mmseqs2. Pastel 

colors of flanking genes indicate regions of conserved gene sequence and order across 

organisms. Genes with light gray fill did not cluster with any other genes in the analysis. 
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