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(Mazor and Laurent, 2005; Broome et al., 2006; Churchland et al., 

2007). Reservoir networks do not require classical attractor states 

and are compatible with the view that cortical computation is based 

on transient dynamics (Mazor and Laurent, 2005; Durstewitz and 

Deco, 2008; Rabinovich et al., 2008). It has been shown that neural 

systems may exhibit transients of long durations which carry more 

information about the stimulus then the steady states towards which 

the activity evolves (Mazor and Laurent, 2005).

Attempts to endow RNNs with unsupervised learning abilities 

by incorporating biologically plausible local plasticity mechanisms 

such as spike-timing-dependent plasticity (STDP) (Markram 

et al., 1997; Bi and Poo, 1998) have remained largely unsuc-

cessful (and often unpublished). The problem is most diffi cult, 

because structural changes induced by plasticity will impact the 

network’s dynamics giving rise to altered fi ring patterns between 

neurons. These altered fi ring patterns can further induce changes 

in connectivity through the plasticity mechanisms and so forth. 

Understanding and controlling the ensuing self-organization of 

network structure and dynamics as a function of the network’s 

inputs is a formidable challenge.

The key to the brain’s solution to this problem may be the syner-

gistic combination of multiple forms of neuronal plasticity. There 

has been extensive evidence that synaptic learning is accompa-

nied by homeostatic mechanisms. Synaptic scaling regulates the 

total synaptic drive received by a neuron but maintains the rela-

tive strength of synapses established during learning (Turrigiano 

et al., 1998). At the same time, intrinsic plasticity (IP) was shown 

to directly regulate neuronal excitability (Desai et al., 1999; Zhang 

and Linden, 2003). In a RNN, IP induced robust homeostatic effects 

on the network dynamics (Steil, 2007; Schrauwen et al., 2008). But 

there is only little work combining several forms of plasticity in 

RNNs (Lazar et al., 2007).

In the following, we present a RNN of threshold units combining 

three different forms of plasticity that learns to effi ciently repre-

sent and “understand” the spatio-temporal patterns in its input. 

The SORN model (self-organizing recurrent network) consists 

INTRODUCTION

The mammalian neocortex is the seat of our highest cognitive 

 functions. Despite much effort, a detailed characterization of its 

complex neural dynamics and an understanding of the relation-

ship between these dynamics and cognitive processes remain elu-

sive. Cortical networks present an astonishing ability to learn and 

adapt via a number of plasticity mechanisms which affect both 

their synaptic and neuronal properties. These mechanisms allow 

the recurrent networks in the cortex to learn representations of 

complex spatio-temporal stimuli. Interestingly, neuronal responses 

are highly dynamic in time (even when the stimulus is static) 

(Broome et al., 2006) and contain a rich amount of information 

about past events (Brosch and Schreiner, 2000; Bartlett and Wang, 

2005; Broome et al., 2006; Nikolic et al., 2006).

But mimicking these features in artifi cial neural networks has 

proven to be very diffi cult. The fi rst models that could address tem-

poral tasks have incorporated in their structure an explicit represen-

tation of time (Elman and Zipser, 1988). Recurrent neural networks 

(RNNs) were the fi rst models to represent time implicitly, through 

the effect that is has on processing (Hopfi eld, 1982; Elman, 1990). In 

the recently developed framework of ‘reservoir’ computing (Jaeger, 

2001; Maass et al., 2002), a randomly structured RNN non-linearly 

transforms a time varying input signal into a spatial representation. 

At each time step, the network combines the incoming stimuli with 

a volley of recurrent signals containing a memory trace of recent 

inputs. For a network with N neurons, the resulting activation vector 

at a discrete time t, can be regarded as a point in a N-dimensional 

space. Over time, these points form a pathway through the state 

space also referred to as a neural trajectory. A separate read-out layer 

is trained, with supervised learning techniques, to map different 

parts of the state space to desired outputs. In real cortical networks, 

experimental evidence has shown that different stimuli elicit differ-

ent trajectories while for a given stimuli the activity patterns evolve 

in time in a reproducible manner (Broome et al., 2006; Churchland 

et al., 2007). Furthermore, identical trials can present a high response 

variability, but the resulting trajectories are not dominated by noise 

SORN: a self-organizing recurrent neural network

Andreea Lazar1*, Gordon Pipa1,2 and Jochen Triesch1

1 Frankfurt Institute of Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
2 Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany

Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain 

processes information. In the neocortex, a range of different plasticity mechanisms are shaping 

recurrent networks into effective information processing circuits that learn appropriate 

representations for time-varying sensory stimuli. However, it has been diffi cult to mimic these 

abilities in artifi cial neural network models. Here we introduce SORN, a self-organizing recurrent 

network. It combines three distinct forms of local plasticity to learn spatio-temporal patterns 

in its input while maintaining its dynamics in a healthy regime suitable for learning. The SORN 

learns to encode information in the form of trajectories through its high-dimensional state 

space reminiscent of recent biological fi ndings on cortical coding. All three forms of plasticity 

are shown to be essential for the network’s success.

Keywords: synaptic plasticity, intrinsic plasticity, recurrent neural networks, reservoir computing, time series prediction

Edited by:

Hava T. Siegelmann, University of 

Massachusetts Amherst, USA

Reviewed by:

Phil Goodman, University of Nevada 

School of Medicine, USA

Robert Kozma, University of Memphis, 

USA

*Correspondence:

Andreea Lazar, Frankfurt Institute for 

Advanced Studies, Ruth-Moufang-

Str.1, 60438 Frankfurt am Main, 

Germany.

e-mail: lazar@fi as.uni-frankfurt.de



Frontiers in Computational Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 23 | 2

Lazar et al. SORN: a self-organizing recurrent network

of a population of excitatory cells and a smaller population of 

 inhibitory cells (Figure 1). The connectivity among excitatory units 

is sparse and subject to a simple STDP rule. Additionally, synaptic 

normalization (SN) keeps the sum of an excitatory neuron’s afferent 

weights constant, while IP regulates a neuron’s fi ring threshold to 

maintain a low average activity level. The network receives input 

sequences composed of different symbols and learns the structure 

embedded in these sequences in an unsupervised manner. The 

three types of plasticity mechanisms induce changes in network 

dynamics which we assess via hierarchical clustering and principal 

component analysis (PCA). In addition, we train a separate rea-

dout layer with supervised learning techniques and compare the 

performance of our network with that of fi xed random networks 

constructed in the spirit of reservoir computing.

We show that only the combination of all three types of plasticity 

allows the network to (a) learn to effectively represent the spatio-

temporal structure of its inputs, (b) maintain ‘healthy’ dynam-

ics1 that make effi cient use of all the network’s resources, and (c) 

perform much better on prediction tasks compared to random 

networks without plasticity. Furthermore, the network dynamics 

are consistent with a range of neurophysiological fi ndings.

MATERIALS AND METHODS

THE SORN MODEL

Network defi nition

We consider a network with NE excitatory (E) and NI = 0.2 × NE 

inhibitory (I) threshold units. Neurons are coupled through 

weighted synaptic connections, where W
ij
 is the connection strength 

from unit j to unit i, with i ≠ j. All possible connections between 

the excitatory and inhibitory neuron populations are present 

(WIE and WEI), while the excitatory–excitatory connections (WEE) 

are sparse and random with a mean number λW of incoming and 

outgoing connections per neuron. Direct connections between 

inhibitory units are not present. The weight strengths are drawn 

from the interval [0, 1] and subsequently normalized such that 

the incoming connections to a neuron sum up to a constant value: 

∑ =j ij

IEW 1, ∑ =j ij

EIW 1 and ∑ =j ij

EEW 1. Inputs are time series U(t) 

of different symbols (letters or digits). Each symbol is associated 

with a specifi c group of NU input units which all receive a positive 

input drive (νU = 1) when that particular symbol is active.

The network state, at a discrete time t, is given by the binary 

vectors x t N E

( ) { }∈ ,0 1  and y t N I

( ) { }∈ ,0 1  corresponding to the activity 

of the excitatory and inhibitory units, respectively. The evolution 

of the network state is described by:
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The TE and TI are threshold values for the excitatory and inhibi-

tory units. They are initially drawn from a uniform distribution 

in the interval [ ]0,T E

max  and [ ]0,T I

max , respectively. The heaviside step 

function Θ(.) constrains the activation of the network at time t to 

a binary representation: a neuron fi res if the total drive it receives 

is greater then its threshold, otherwise it stays silent.

At each time step the activity of the network is determined both 

by the inputs νi

U t( ) and the propagation of the previously emitted 

spikes through the network. This recurrent drive received by unit 

i is given by:
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Based on this, we defi ne a “pseudo state” x′(t) that only depends 

on the recurrent drive:

i ix t R t′ = ( );( ) ( )Θ
 

(4)

This equation is identical to Eq. 1, but lacking the input drive 

νi

U t( ). Most of our analysis focuses on the pseudo states x′(t) as the 

network’s internal representation of previous inputs, although it 

may contain less information than R(t) due to the thresholding 

operation.

Plasticity mechanisms

The network relies on three forms of plasticity: STDP, synaptic 

scaling of the excitatory–excitatory connections, and IP regulating 

the thresholds of excitatory units.

Learning with STDP is constrained to the set of WEE synapses. We 

use a simple model of STDP that strengthens the synaptic weight 

Wij

EE by a fi xed amount η
STDP

 = 0.001 whenever unit i is active in 

the time step following activation of unit j. When unit i is active 

in the time step preceding activation of unit j, Wij

EE is weakened by 

the same amount:
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FIGURE 1 | The self-organizing recurrent neural network (SORN) 

comprises populations of excitatory (blue) and inhibitory (red) cells. 

Directed connections with variable strength between neurons are indicated by 

black arrows. Some of the excitatory cells also receive external input (light 

blue). Three forms of plasticity interact to shape the dynamics of the network 

keeping them in a healthy regime and allowing the network to discover 

structure in its inputs. A population of readout units is trained with supervised 

learning methods.

1Dynamics suitable for computation.
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Δ = − − −( );W t x t x t x t x tij

EE

i j i j( ) ( ) ( ) ( ) ( )ηSTDP 1 1  (5)

STDP changes the synaptic strength in a temporally asymmetric 

“causal” fashion. The changes introduced by STDP can push the 

activity of the network to grow or shrink in an uncontrolled man-

ner. To keep the activity balanced during learning we make use of 

additional homeostatic mechanisms that are sensitive to the total 

level of synaptic effi cacy and the post-synaptic fi ring rate.

SN proportionally adjusts the values of incoming connections to 

a neuron so that they sum up to a constant value. Specifi cally, the 

WEE connections are rescaled at every time step according to:

W t W t W tij

EE

ij

EE

j

ij

EE( ) ( ) ( )← / .∑  (6)

This rule does not change the relative strengths of synapses 

established by STDP but regulates the total incoming drive a neu-

ron receives.

An IP rule spreads the activity evenly across units, such that on 

average each excitatory neuron will fi re with the same target rate H
IP
. 

To this end, a unit that has just been active increases its threshold 

while an inactive unit lowers its threshold by a small amount:

T t T t x t Hi

E

i

E

i( ) ( ) ( )+ = + −( ) ,1 ηIP IP  (7)

where η
IP

 = 0.001 is a small learning rate. We set the target rate to 

H
IP

 = 2 × NU/NE in which the input spikes are approximately half 

of the total number of spikes. Other settings of H
IP

 do not neces-

sarily lead to the desired improvements in prediction performance 

(see Appendix).

The implementation of the model described above and the simu-

lations presented in Section “Results” were performed in Matlab.

RESULTS

SORNs OUTPERFORM STATIC RESERVOIRS

We demonstrate the SORN’s ability to learn spatio-temporal struc-

ture in its inputs with a “counting” task, especially designed to test 

the memory property of the reservoir. To this end, we  construct 

input sequences U(t) as random alternations of two “words” 

‘abbb…bc’ and ‘eddd…df ’, composed of n + 2 “letters”, with let-

ters ‘b’ and ‘d’ repeating n times. In order to predict the next input 

letter correctly, the network has to learn to “count” how many rep-

etitions of letters ‘b’ and ‘d’ it has already seen. Increasing n raises 

the diffi culty of the task. We compare SORNs with all three forms of 

plasticity to static networks without plasticity. Networks of different 

sizes NE have their initial parameters set to NU = 5% × NE, T E

max = .0 5

, T I

max = 1 and λW = 10. For small static reservoirs, the parameters are 

tuned such that their dynamics is critical and the networks’ fi ring 

rate is similar to the rate exhibited by SORNs structured by plastic-

ity (see Supplementary Material and Section “Occluder Task”). It 

has been argued that a tuning of network dynamics to criticality 

should bring the performance of static reservoir networks close to 

the optimal performance (Bertschinger and Natschläger, 2004). To 

compute prediction performance, 5000 steps of network activity 

are simulated and a readout is trained in a supervised fashion to 

predict the next input [U(t)], e.g., ‘a’, or ‘c’, or 5th repetition of ‘b’, 

etc., based on the network’s internal state [x′(t)] after presentation 

of the preceding letter [U(t − 1)]. We use the Moore–Penrose pseu-

doinverse method that minimizes the squared difference between 

the output of the readout neurons and the target output value. 

The quality of the readout (the network performance) is assessed 

on a second sample of 5000 steps of activity using an independent 

input sequence.

The SORNs are exposed to the input sequences for 50,000 time 

steps. Then, all their weights and thresholds are frozen and a readout 

is trained in the same manner.

Since the input sequences are partly random – the order of letters 

within a word is fi xed but the order of words is random – prediction 

performance is inherently limited. We defi ne a normalized perform-

ance measure that obtains a score of 1 when the network always 

correctly predicts the next letter and its position within a word but 

is at chance level for guessing the fi rst letter of the next word (either 

‘a’ or ‘e’). Figure 2 compares the performance of SORNs and static 

reservoir networks. For any given network size (NE) and any given 

task diffi culty (n), the plastic SORNs perform considerably better 

than their randomly structured counterparts (Figure 2A). For the 

same task diffi culty n, larger networks perform better then smaller 
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FIGURE 2 | (A) Average normalized performance of 10 plastic SORNs and 10 

static reservoir networks of size NE, for different values of n. Numbers on top 

indicate optimal absolute performance achievable in the task. Error bars indicate 

standard deviation. (B) We show n
max

, the highest value of n where normalized 

performance exceeds 95%, as a function of network size. Plastic networks 

succeed for substantially harder problems compared to random reservoirs.
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networks. For a given network size the SORNs achieve a perform-

ance greater than 0.95 for much higher values of n compared to 

the static reservoirs (Figure 2B). A more detailed analysis of the 

network performance as a function of various initial parameter 

settings is given in the Appendix.

SORNs LEARN EFFECTIVE INTERNAL REPRESENTATIONS

To better understand the reason underlying the performance advan-

tage of SORNs over static reservoirs, we performed hierarchical 

clustering and PCA on the networks’ internal representations.

We performed agglomerative hierarchical clustering of the net-

works’ internal state representations (x'). Each pattern of activity 

x'(t) is a point in a NE-dimensional space. Agglomerative clustering 

starts by considering each of these points as centers of their own clus-

ter. The distance between two clusters is computed as the Euclidean 

distance between their centers. Repeatedly, the two closest clusters 

are merged into a single cluster, until the entire data are collapsed.

In Figures 3A,E we present a snapshot of the last 20 clusters of 

agglomerative clustering, for an example network with NE = 200, 

NU = 10, T E

max = .0 5, T I

max = .0 8, λ = 10 during a counting task with 

n = 8. In the case of randomly structured reservoir networks, the 

cluster structure of internal representations only weakly refl ects the 

underlying input conditions (Figure 3A). Many of the emerging 

clusters combine network states resulting from distinct input con-

ditions, i.e., the networks internal representation easily confuses, 

say, the 5th repetition of letter ‘b’ with its 6th repetition. In fact 

most clusters lump together as many as seven input conditions 

(Figure 3B). In contrast after 50,000 steps of plasticity, the SORN 

learns an internal representation that tends to map different input 

conditions on to distinct network states falling into separate clusters 

(Figure 3E). Here, each cluster will combine at most two different 

input conditions (Figure 3F). For a parallel with the performance 

tests from the previous section, the analysis was performed on 5000 

steps of activity with frozen weights and thresholds but the network 

presents similar clustering properties in the presence of plasticity.

We also performed PCA on the internal network states. In the 

case of random networks a single input condition produces a cloud 

of network states that is substantially overlapping with those from 

other input states within the projection space of the fi rst three PCs 

(Figure 3C). In contrast, the SORN develops an internal representa-

tion where an input conditions produces a tight cluster of network 

states that is well separated from those of other input conditions 

(Figure 3G). In particular, it learns to internally distinguish differ-

ent states that have a very similar history of inputs, say, fi ve vs. six 

repetitions of letter ‘b’. This leads to more orderly and stereotyped 

trajectories through the network state space in the case of SORNs. 

This is in line with the greater amount of variance explained by 

the fi rst few PCs in the SORNs compared to random networks 

(compare Figures 3D,H).

Interestingly, as long as plasticity is switched on, the internal rep-

resentation will keep changing, i.e., the network does not converge. 

The internal representations of different input conditions tend to 

change gradually with time. For example, in Figure 3G the input 

condition d4 is shown after an additional 5000 time steps of plastic-

ity, as d4’. To function properly, the network requires re- training 

of the readout as soon as the network’s internal representations 

change signifi cantly.

OCCLUDER TASK

We demonstrate the ability of the SORN to learn effective repre-

sentations on a second diffi cult task. Specifi cally, we consider an 

input sequence containing random alternations of the following 

four “words”: ‘12345678’, ‘87654321’, ‘19999998’, ‘89999991’. If we 

associate different spatial positions with the numbers 1–8, we can 

interpret these stimuli as left to right and right to left motion of 

an object along an axis. The symbol ‘9’ can be interpreted as an 

occluder that obstructs the sight of the object at locations 2–7. 

This task is more diffi cult than the counting task in that several 

words share start and end letters and the repetitive symbol ‘9’ is 

common in the last two sequences. The bidirectional quality of 

this stimuli might impose diffi culties for the causal STDP rule. 

The interference of enforced synaptic pathways could decrease the 

prediction performance of SORNs. On the other hand, due to syn-

aptic competition STDP might encourage one direction of motion 

and prune away the other. Our results suggest that both of these 

effects are avoided and SORNs present prediction advantages over 

random reservoirs.

We choose a network with NE = 200, NU = 15, T E

max = .0 75, 

T I

max = .1 4, and λW = 10. We run the SORN for 200,000 time steps 

and take snapshots of weights W and thresholds T at every 1000 

steps of self-organization through plasticity. We evaluate each of 

these networks in terms of prediction performance for the one step 

prediction task. Similarly to the previous experiment, the perform-

ance drastically improves (Figure 4A) and is close to the theoretical 

optimum for all the different time intervals of self-organization 

with plasticity. We also assess the criticality of the network dynamics 

by performing a perturbation analysis. For every state x(t), we per-

turb the activation of a randomly chosen excitatory neuron (from 

active to inactive or from inactive to active) creating an altered 

state ɶx t( ). The Hamming distance between x(t) and its perturbed 

version ɶx t( ) is 1 [d(t) = 1]. We calculate the successor states of x(t) 

and ɶx t( ) by applying Eq. 1 and obtain x(t + 1) and ɶx t( )+1  with the 

Hamming distance d(t + 1). If the average distance d t( )+ >1 1 the 

network amplifi es perturbations and is in a supercritical regime. 

If d t( )+ <1 1 the network has self-correcting properties and is in 

a subcritical dynamical regime. When d t( )+ ≈1 1 the dynamics is 

said to be critical. Performing perturbation analysis, we fi nd that 

the network dynamics changes from a critical regime, in the case 

of static reservoirs, to a subcritical regime for SORNs (Figure 4B). 

Interestingly, in the case of SORNs this corresponds to a higher 

network performance for prediction.

We also compare the tuning of the random reservoir network 

with the SORN after 50,000 steps of plasticity. For each of these 

two networks we consider 5000 time steps of network activity 

(in both cases without plasticity) and count the number of neu-

ron responses corresponding to each of the 32 input conditions: 

left–right motion (‘12345678’), left–right motion with occluder 

(‘19999998’), right–left motion (‘87654321’) and right–left motion 

with occluder (‘89999991’). For the random network we fi nd that 

a number of neurons are silent and do not fi re for any of the 

input conditions (Figure 4C). Also the neurons responding to the 

occluder sequences are not very selective in terms of either location 

or direction. In contrast, for the SORN all neurons take part in 

the activity and their responses are input specifi c (Figure 4D). We 

calculated “tuning curves” of two example neurons to illustrate this 
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point in more detail. To this end, we summed the neurons’ responses 

for each of the eight locations of the visual space irrespective of 

motion direction or occluder presence. The neuron in (Figure 4E) 

responded unselectively to all eight locations before any plasticity 

(static reservoir case, blue squares) and after  learning it has devel-

oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 

(static reservoir case). Through plasticity, it developed selectivity for 

locations 3 and 7 (SORN case). Interestingly, this selectivity is also 

specifi c with regard to motion direction. The neuron fi res when a 

stimulus is at location 3 moving to the right, or when the stimulus 

is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 

a static random reservoir. Only a single stage with 20 clusters is shown. For 

each of the 20 clusters, a histogram depicts the different input conditions that 

contributed to the cluster. Clusters tend to mix many distinct input conditions, 

especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 

(B) Histogram showing how many different input conditions contribute to each 

of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 

the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 

‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 

explained by the fi rst principal components. (E–H) Same as (A–D) but for 

SORNs. (E) The cluster structure in SORNs refl ects the different input 

conditions. (F) Representations of different inputs are comparatively distinct 

such that only one or two input conditions contribute to each cluster. (G) In 

PCA space, the different input conditions form compact clusters that are well 

separated for different input conditions. (H) Most of the variance is captured by 

only the fi rst few principal components, suggesting more orderly dynamics in 

the SORNs.
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HOMEOSTATIC PLASTICITY MECHANISMS ARE CRITICAL FOR 

MAINTAINING HEALTHY DYNAMICS

To better understand the role of the homeostatic plasticity 

mechanisms accompanying STDP-learning in SORNs, we com-

pare SORNs with plastic reservoirs in which either the synaptic 

scaling or the IP is switched off. We consider networks receiving 

unstructured inputs, here in the form of random alternations of 

six symbols. Thus, there is no specifi c spatio-temporal structure 

in the inputs that could be learned during these experiments. 

The networks (NE = 200, NU = 10, T E

max = .0 5, T I

max = 1 and λW = 10) 

are shaped in the presence of all three forms of plasticity for 

50,000 steps.

The results are summarized in Figure 5. When SN is missing, 

the network dynamics develop into a regime with seizure-like syn-

chronous bursts of activity (Figure 5A), even though the network 

is driven by random inputs. We compared the distribution of the 

total number of spikes per time step for 10 networks with and 

without SN (Figure 5B). In networks with SN the distribution is 

unimodal and centered at a low activity level. In contrast, networks 

without SN will show a bimodal distribution such that most units 

are either active or inactive at the same time. This is also expressed 

in the average correlation coeffi cient between neurons. In networks 

with SN the average correlation coeffi cient remains close to 0 with 

an average value of 0.025. For networks that lack SN the average 

correlation coeffi cient increases as a function of time to values 

beyond 0.8 within 50,000 steps of simulation, indicating a high 

degree of synchronization (Figure 5C).

When IP is missing a number of neurons remain permanently 

silent, while others develop an unnaturally high activity (Figure 5D). 

We calculated the distribution of average fi ring rates for 10 such 

networks. In networks with IP, all excitatory units develop average 

fi ring rates close to the desired target rate, which was 0.1 in these 

experiments. Without IP, the distribution is more spread out with 

some units staying completely silent and others being active in 

almost every time step (Figure 5E). We quantifi ed this effect by 

following the time evolution of the spike source entropy, which 

measures how much uncertainty there is about the origin of a spike 

in the network. It is defi ned as:

SSE log log= × / /
⎛

⎝⎜
⎞

⎠⎟= ..
∑

i N

i i

E

E

p p N
1

2 2 1) ( ,  (8)

where p
i
 is the probability that a spike is generated by the unit i. 

SSE achieves its maximum value of 1 if all units fi re at the same rate 

(p
i
 ∝ H

i
, where H

i
 is the fi ring rate of neuron i). SORNs show an 

abrupt increase in SSE to a value close to 1, which indicates identical 

rates across the neuronal population, compared to a smaller value 

of 0.94 for networks missing IP (Figure 5F). Due to IP, SORNs 

make effi cient use of all the network’s resources.

DISCUSSION

Self-organizing recurrent networks are the substrate for neural 

information processing in the brain. Such networks are shaped 

by a wealth of plasticity mechanisms which affect synaptic as well 

as neuronal properties and operate over various time scales (from 
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50 randomly selected neurons fi ring for different input conditions in static 

reservoirs (C) and the SORN (D). In the SORN fi ring is more specifi c to particular 

input conditions. (E,F) Tuning curves for two representative model neurons in a 
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neurons are sparsely active and respond to specifi c input conditions. In the 

static networks, some neurons will respond rather unspecifi cally for all input 

conditions (E) or not at all (F).
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 seconds to days and beyond). Somehow these mechanisms must 

work together to allow the brain to learn effi cient representa-

tions for the various tasks it is facing. They shape the neural code 

and form the foundation on which our higher cognitive abilities 

are built.

While great progress has been made in characterizing these 

mechanisms individually, we only have a poor understanding of 

how they work together at the network level. In a non-linear system 

like the brain, any local change to, say, a synaptic effi cacy potentially 

alters the pattern of activity at the level of the entire network and 

may induce further plastic changes to it. To investigate these proc-

esses, recent methods for observing the activities of large popula-

tions of neurons simultaneously need to be combined with careful 

measurements of the evolution of their synaptic and intrinsic 

 properties – a formidable task for experimental neuroscience.

Computational modeling and theoretical analysis can con-

tribute to this quest by providing simplifi ed model systems that 

hopefully capture the essence of some of the brain’s mechanisms 

and that can reveal underlying principles. In this article, we have 

introduced the SORN (self-organizing RNN). It combines three 

different kinds of plasticity and learns to represent and in a way 

“understand” the structure in its inputs. Maybe its most strik-

ing features is the ability to map identical inputs onto different 

internal representations based on temporal context. For example, 

it learns to distinguish the 5th repetition of an input from the 6th 

repetition by fi nding distinct encodings (internal representations) 

for the two situations (compare Figure 3). All this is happening 

in a completely unsupervised way without any guidance from the 

outside. The “causal” nature of the STDP rule is at the heart of 

this mechanism. It allows the network to incorporate predictable 

input structure into its own dynamics. At the same time, we have 

shown that STDP needs to be complemented by two homeostatic 

plasticity mechanisms. Without them the network will lose its 

favorable learning properties and may even develop seizure-like 

activity bursts (compare Figure 5).

Our network can be contrasted to recurrent networks without 

plasticity. Such static networks have received signifi cant attention 

in the recent past, giving rise to the fi eld of reservoir computing 

(Jaeger, 2001; Maass et al., 2002). The performance of a reservoir 

network relies on two requirements: (a) that different inputs to 

the network result in separable outputs based on the reservoir’s 

response (the separation property) and that (b) the network activ-

ity states maintain information about recent inputs (the fading 

memory property). Given the high dimensionality of the reservoir, 

the separation property is easy to meet. Dockendorf et al. (2009) 

have confi rmed this property for in vitro networks of cortical 

neurons. The memory property has been addressed in a series of 

experimental studies, across different brain areas, that compare the 

Rate H

%
 u

n
it

s

%
 u

n
it

s

     No IP

20

60

100

12500 25000

5

10

15

20

A

Time

ti
n

U

B

C

Time

C
C

1000

3000

5000

0 50 100 150 200

t
n

u
o

C

spikes/time step spikes/time step

1000

3000

5000

5

10

15

20

ti
n

U

12500 25000

Time

20

60

100

0   0.1  0.3 0.5  0.7  0.9

D

E

F

0 50 100 150 200

     No SNSORN 

10000 30000 50000
0

0.2

0.4

0.6

0.8

1

10000 30000 50000

Time

 
S

S
E

     No SN

SORN

     No IP

SORN 

     No SN      No IP

0.8

0.84

0.88

0.92

0.96

1

0    0.1 0.3  0.5 0.7  0.9

     SORN

Rate H

FIGURE 5 | Activity of SORN networks compared to networks missing 

synaptic normalization (A–C) or intrinsic plasticity (D–F). (A,D) Snapshot of 

activity for 50 randomly selected reservoir units. (B) Distribution of population 

activity after 50,000 time steps of simulation. (C) Average correlation coeffi cient 

between neurons is dramatically increasing without SN. (E) Distribution of fi ring 

rates becomes very wide when IP is missing. (F) Spike source entropy 

increases to the maximum value for SORN networks, indicating a uniform 

division of labor across neurons.



Frontiers in Computational Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 23 | 8

Lazar et al. SORN: a self-organizing recurrent network

neuronal response to a stimulus B vs. the response to B when it was 

preceded by stimulus A (Brosch and Schreiner, 2000; Bartlett and 

Wang, 2005; Broome et al., 2006; Nikolic et al., 2006). For example 

in (Nikolic et al., 2006), the authors analyzed neuronal responses in 

cat primary visual cortex, area 17, to a sequence of two letter images 

and were able to recover the identity of the fi rst and second letter 

reliably using a simple linear classifi er.

The most important force shaping the representations in 

the SORN is STDP. Although the STDP model we used is much 

simplifi ed, it captures what is arguably the essence of STDP: a 

“causal” modifi cation of synaptic strengths. In recent years much 

evidence has accumulated suggesting that the brain’s encoding 

of stimuli is subject to modifi cations due to STDP-like mecha-

nisms. Several studies showed that repetitive stimulation with 

temporally patterned inputs causes a rapid STDP-based synap-

tic reorganization (Yao and Dan, 2001; Fu et al., 2002; Yao et al., 

2007). Specifi cally, in Yao et al. (2007) a short repeated exposure 

to natural movies induced a rapid improvement in response reli-

ability in cat visual cortex. Interestingly, the movie stimulation 

also left a “memory trace” which could be picked up in subsequent 

spontaneous activity.

It is interesting to note that in all the example tasks we considered 

the SORNs outperformed optimized versions of recurrent networks 

without plasticity. We fi nd it unsurprising but rather reassuring 

that networks that try to discover and incorporate the temporal 

structure of their inputs into their dynamics outperform static 

reservoirs. Under repetitive stimulation with temporally structured 

inputs, SORNs selforganize in effi cient ways that boost the net-

work memory and separation properties. In our results, the SORNs 

could incorporate much longer input sequences as compared to 

the static reservoirs of similar size (Figure 2). SORNs developed 

internal representations where each input condition, refl ecting both 

spatial and temporal aspects of the input, produced a tight clus-

ter of network states that was well separated from those of other 

input conditions. This results in orderly and stereotyped trajectories 

through the network state space, that can be easily separated by a 

linear readout.

Reservoir computing architectures are thought to function best 

when their dynamics are critical (which we also found true for 

random reservoirs). It has been proposed that self-organization 

based on neuronal plasticity is able to achieve critical dynamics 

(Lazar et al., 2007; Gómez et al., 2009). Interestingly, the SORNs 

develop dynamics that are subcritical (compare Figure 4). 

This raises two questions. First, what is the exact mechanism 

that gives rise to the subcritical dynamics? Second, why are the 

subcritical dynamics of SORNs superior to the critical dynamics 

of static networks? Regarding the latter, we speculate that SORNs’ 

ability to incorporate the predictable sequence of inputs into their 

internal dynamics makes it unnecessary to maintain criticality, 

which should give the best fading memory for arbitrary input 

sequences. But if there is predictable structure in the input, the 

recurrent network should try to exploit and use it’s resources to 

model this specifi c structure rather than striving to have a general 

purpose fading memory.

The current model is particularly suited for effi cient hardware 

implementation due to the simplicity of the chosen model neu-

rons. In the current design individual neurons do not have any 

intrinsic memory properties, which makes a strong point that all 

memory information is maintained by the recurrent dynamics. An 

open problem is to investigate the generality of these ideas in the 

context of more elaborate network models based on integrate and 

fi re neurons or conductance based neurons, which also include 

direct connections between inhibitory units. Future work needs 

to address if the performance advantage of SORNs over static net-

works transfers from the simple problems studied here to more 

diffi cult engineering problems in time series prediction, speech 

recognition, etc.

We have shown how the synergistic combination of different 

local plasticity mechanisms can shape the global structure and 

dynamics of RNNs in meaningful and adaptive ways. This emer-

gent property could not have been easily predicted on the basis of 

the individual mechanisms – the whole is more than the sum of 

its parts. This implies that as we try to understand neural plasticity 

and how it shapes the brain’s representation and processing, it is 

insuffi cient to study individual mechanisms in isolation. Only by 

studying their interaction at the network level, we have a chance 

to unravel this mystery.

APPENDIX

PERFORMANCE AND NETWORK SETTINGS

For static reservoirs the choice of threshold values for excita-

tory (T E

max) and inhibitory units (T I

max) plays an important role in 

determining the network rate H
0
, defi ned as the mean fraction of 

fi ring neurons per unit of time. Furthermore, the setting of T E

max 

and T I

max has an impact on the reservoir’s dynamics in terms of 

criticality and performance for prediction. A detailed analysis of 

the dependence between initial threshold settings and network 

dynamics for static reservoirs and SORNs is given in the sup-

plementary online material.

In Figure 6A example networks with NE = 200, NU = 10, 

λW = 10, T E

max = .0 25 and various values of T I

max present signifi cant 

improvements in prediction scores for SORNs (green) over static 

reservoirs (blue). The fraction of input spikes at the beginning of 

training is approximately NU/NE. A higher H
IP

 (H
IP

 = 3 × NU/NE) 

leads to a higher fraction of reservoir spikes compared to input 

spikes and results in a smaller increase in performance for SORNs 

(Figure 6A green triangles). These results suggest that a purposeful 

self- organization with signifi cant improvements in performance 

relies on a balanced representation of input drive and internally 

generated drive (Figure 6A green circles).

In addition, we varied the number of synaptic connections 

per neuron (λW = 1.25, 2.5, 5, 10, 20, 40). Figure 6B compares 

the  prediction performance of networks with NE = 200, NU = 10, 

T E

max = .0 5, T I

max = .0 8 performing a counting task with n = 14. We 

fi nd that a sparse connectivity is preferable both for static net-

works (blue) as well as SORNs (green). A high network connectivity 

induced seizure-like bursts of activity at the expense of computa-

tion (not shown). For a sparse connectivity SORNs perform better 

then the corresponding static reservoirs.

To summarize, SORN’s prediction performance: (a) is inde-

pendent of the rate, criticality and performance of the initial static 

reservoir, (b) requires sparse network connectivity and (c) relies 

on a balanced representation of input spikes vs. reservoir spikes 

during learning.
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