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Abstract

Recent research in Visual Question Answer-

ing (VQA) has revealed state-of-the-art mod-

els to be inconsistent in their understanding

of the world – they answer seemingly difficult

questions requiring reasoning correctly but

get simpler associated sub-questions wrong.

These sub-questions pertain to lower level vi-

sual concepts in the image that models ide-

ally should understand to be able to answer

the reasoning question correctly. To address

this, we first present a gradient-based inter-

pretability approach to determine the ques-

tions most strongly correlated with the rea-

soning question on an image, and use this to

evaluate VQA models on their ability to iden-

tify the relevant sub-questions needed to an-

swer a reasoning question. Next, we propose

a contrastive gradient learning based approach

called Sub-question Oriented Tuning (SOrT)

which encourages models to rank relevant sub-

questions higher than irrelevant questions for

an <image, reasoning-question> pair. We

show that SOrT improves model consistency

by up to 6.5% points over existing approaches,

while also improving visual grounding and ro-

bustness to rephrasings of questions.

1 Introduction

Current visual question answering (VQA) models

struggle with consistency. They often correctly

answer complex reasoning questions, i.e, those re-

quiring common sense knowledge and logic on top

of perceptual capabilities, but fail on associated

low-level perception questions, i.e., those directly

related to the visual content in the image. For e.g.,

in Fig 1, models answer the reasoning question

“Was this taken in the daytime?” correctly, but fail

on the associated perception question “Is the sky

bright?” indicating that the models likely answered

the reasoning question correctly for the wrong rea-

son(s). In this work, we explore the usefulness of

leveraging information about sub-questions, i.e.,

low-level perception questions relevant to a rea-

soning question, and irrelevant questions, i.e., any

other questions about the image unrelated to the rea-

soning question, to improve consistency in VQA.

Selvaraju et al. (2020) have studied this problem

and introduced the VQA-Introspect dataset that

draws a distinction between higher-level reasoning

questions and lower-level perception sub-questions.

We augment this dataset with additional perception

questions from the VQAv2 dataset such that each

<image, reasoning question> pair contains a set

of relevant perception questions, which we refer

to as sub-questions (e.g.,“Is the sky bright?” in

Fig 1) and irrelevant perception questions, which

we refer to as irrelevant questions (e.g., “Is the

train moving?” in Fig 1) throughout this paper.

We use Gradient-based Class Activation Map-

ping (Grad-CAM) vectors (Selvaraju et al., 2019a)

– a faithful function of the model’s parameters,

question, answer and image – to propose an inter-

pretability technique that determines the questions

most strongly correlated with a reasoning question

for a model. This is measured by ranking questions

based on the cosine similarity of their Grad-CAM

vectors with that of the reasoning question. We find

that top-performing VQA models often rank irrele-

vant questions higher than relevant questions.

Motivated by this, we introduce a new approach

based on contrastive gradient learning to fine-tune a

VQA model by enforcing relevant sub-questions to

be ranked higher than irrelevant questions while

answering a reasoning question.

This is achieved by forcing the cosine similarity

of the reasoning question’s Grad-CAM vector with

that of a sub-question to be higher than with that of

an irrelevant question. We find that our approach

improves the model’s consistency, defined as the

frequency with which the model correctly answers

a sub-question given that it correctly answers the

reasoning question.

Additionally, we assess the effects of our ap-
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Figure 1: The approach for SOrT. The reasoning question Was this taken in the daytime? has the sub-question Is

the sky bright? and an irrelevant question Is the train moving? We tune the model using cross entropy losses and

a contrastive gradient loss to align the reasoning question’s Grad-CAM vector with that of its sub-question, while

also distancing it from that of an irrelevant question.

proach on visual grounding by comparing Grad-

CAM heatmaps with human attention maps col-

lected in the VQA-HAT dataset (Das et al., 2016).

We find that our approach of enforcing this

language-based alignment through better ranking

of sub-questions also improves visual grounding.

We also demonstrate that training VQA models by

aligning Grad-CAM vectors helps in improving

robustness to rephrasings of questions, as evalu-

ated on the VQA-Rephrasings dataset (Shah et al.,

2019).

2 Related Work

Visual Question Answering. The VQA task

(Agrawal et al., 2015) requires answering a free-

form natural language question about visual con-

tent in an image. Previous work has shown that

models often do well on the task by exploiting

language and dataset biases (Agrawal et al., 2017;

Zhang et al., 2015; Ramakrishnan et al., 2018; Guo

et al., 2019; Manjunatha et al., 2018). In order to

evaluate the consistency of models, Selvaraju et al.

(2020) collected a new dataset, VQA-Introspect,

with human explanations via sub-questions and an-

swers for reasoning questions in the VQA dataset.

Model Interpretability. While prior work has at-

tempted to explain VQA decisions in the visual

modality (Selvaraju et al., 2019a,b; Qiao et al.,

2017; Liang et al., 2019), the multi-modal task

of VQA has a language component which cannot

always be explained visually, i.e., visual regions

can be insufficient to express underlying concepts

(Goyal et al., 2016; Hu et al., 2017). Park et al.

(2018) and Wu and Mooney (2019) generate textual

justifications through datasets curated with human

explanations. Our approach differs by using Grad-

CAM vectors which are fully self-contained and

faithful to the model, requiring no additional param-

eters or datasets to interpret its decisions. In recent

work on Human-AI collaboration (Bansal et al.,

2019, 2021), a key finding is that optimizing solely

for model accuracy does not always lead to better

overall utility in real-world, high-stakes datasets

where AI systems advise humans on making deci-

sions. Instead, improvements on yardsticks related

to the trustworthiness of predictions are important

steps towards successfully deploying these algo-

rithms. We believe that consistency, the core focus

of our work, is an intrinsically important post-hoc

explanatory metric and a proxy for common-sense

reasoning which could lead to stronger collective

performance in such collaborative settings.

Aligning network importances. Ross et al.

(2017) introduced an approach to train models with

input-gradient penalties that led to the generation

of faithful explanations and improved generaliz-

ability on image classifiers. Selvaraju et al. (2019b)

introduced an approach to align visual explana-

tions with regions deemed important by humans,

thereby improving visual grounding in VQA mod-

els. In followup work, Selvaraju et al. (2020) intro-

duced an approach to align attention maps for the

reasoning question and associated perception sub-

questions from VQA-Introspect to improve lan-

guage based grounding. In contrast to attention

maps, our work encourages Grad-CAM vectors of

a reasoning question to be closer to those of sub-

questions and farther away from those of irrelevant

questions. Intuitively, this means that we are mak-

ing the neurons used while answering a reasoning

question to be similar to those used while answer-

ing a sub-question and dissimilar to those used

while answering an irrelevant question. Our ex-

periments show that this alignment improves the

model’s consistency and visual grounding.
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3 Approach

3.1 Preliminaries

Grad-CAM. Grad-CAM, introduced by Selvaraju

et al. (2019a), is a technique to obtain visual expla-

nations from any CNN-based deep neural network.

In this work, we adopt Grad-CAM to compute the

contribution of a neuron at the layer in a VQA

model where the vision and language modalities

are combined. This is computed by first taking the

gradient of the predicted output class score with re-

spect to the neuron activations in the layer. We then

point-wise multiply this with the corresponding ac-

tivations to obtain our Grad-CAM vector. Specif-

ically, if yc denotes the score of the ground-truth

output class and Ak the activations of layer k of

the model, the Grad-CAM vector Gc
k is computed

as follows,

Gc
k =

∂yc

∂Ak

∗Ak (1)

Unlike Grad-CAM visualizations, these vectors

are not visually interpretable as they are not com-

puted on the final convolutional layer of the CNN.

Consistency in VQA models. As defined in Sel-

varaju et al. (2020), the consistency of a VQA

model refers to the proportion of sub-questions

answered correctly, given that their corresponding

reasoning questions were answered correctly. If a

model is inconsistent, it is likely relying on incor-

rect perceptual signals or biases in the dataset to

answer questions. Models that are consistent and

based on appropriate perceptual signals are more

likely to be reliable, interpretable and trustworthy.

3.2 Sub-question Oriented Tuning

The key idea behind Sub-question Oriented Tuning

(SOrT) is to encourage the neurons most strongly

relied on (as assessed by Grad-CAM vectors) while

answering a reasoning question (“Was this taken in

the daytime?” in Fig 1) to be similar to those used

while answering relevant sub-questions (“Is the sky

bright?”) and dissimilar to those used while answer-

ing irrelevant questions (“Is the train moving?”).

This enforces the model to use the same visual and

lingustic concepts while making predictions on the

reasoning question and the sub-questions. Our loss

has the following two components.

Contrastive Gradient Loss. With the Grad-

CAM vectors of the reasoning question (GR), sub-

question (GS) and irrelevant question (GI), we

formalize our contrastive gradient loss LCG as,

LCG = max







0,

cosine-sim(GR, GI )
︷ ︸︸ ︷

GR ·GI

|GR||GI |
−

GR ·GS

|GR||GS |
︸ ︷︷ ︸

cosine-sim(GR, GS )








(2)

Binary Cross Entropy Loss. To retain perfor-

mance of the model on the base task of answering

questions correctly, we add a Binary Cross Entropy

Loss term (LBCE) that penalizes incorrect answers.

Total Loss. Let oR, gtR, oS, gtS, oI and gtI rep-

resent the predicted and ground-truth answers for

the reasoning, sub-questions and irrelevant ques-

tions respectively, and λ1, λ2, λ3 be tunable hyper-

parameters. Our total loss LSOrT is,

LSOrT = LCG + λ1LBCE(oR, gtR)

+ λ2LBCE(oS, gtS) + λ3LBCE(oI, gtI)
(3)

4 Experiments

Dataset. Our dataset pools VQA-Introspect and

VQAv2 such that for every reasoning question in

VQA-Introspect, we have a set of <sub-question,

answer> pairs and a set of <irrelevant question,

answer> pairs. The training/val splits contain

54,345/20,256 <image, reasoning question> pairs

with an average of 2.58/2.81 sub-questions and

7.63/5.80 irrelevant questions for each pair.

Baselines. We compare SOrT against the follow-

ing baselines: 1) Pythia (Jiang et al., 2018), and

2) SQuINT in which Selvaraju et al. (2020) fine-

tuned Pythia with an attention alignment loss to

ensure that the model looks at the same regions

when answering the reasoning and sub-questions.

4.1 Metrics

Ranking.

1) Mean Precision@1 (MP@1). Proportion of

<image, reasoning question> pairs for which the

highest ranked question is a sub-question. 2) Rank-

ing Accuracy. Proportion of <image, reasoning

question> pairs whose sub-questions are all ranked

above their irrelevant questions. 3) Mean Recip-

rocal Rank (MRR). Average value of the high-

est reciprocal rank of a sub-question among all

<image, reasoning question> pairs. Higher is

better. 4) Weighted Pairwise Rank (WPR) Loss.

For pairs of incorrectly ranked <sub, irrelevant>

questions, this computes the differences of their
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Consistency Metrics Accuracy Metrics Ranking Metrics

Method R✓ S✓ ↑ R✓ S✗ ↓ R✗ S✓ ↓ R✗ S✗ ↓ Consistency% ↑ Reas. Accuracy% ↑ VQA Accuracy% ↑ MP@1 ↑ Ranking Accuracy ↑ MRR ↑ WPR ↓

Pythia 50.61 19.88 17.15 12.36 71.81 69.61 64.95 57.75 30.33 71.87 52.75

Pythia + SQuINT 53.89 16.26 19.34 10.52 76.84 69.88 64.73 55.87 29.45 71.49 39.20

Pythia + SOrT (only SQ) 54.57 15.46 20.31 10.66 77.92 69.03 63.69 59.47 30.73 74.22 41.06

Pythia + SOrT (SQ + IQ) 54.80 15.17 20.56 10.47 78.31 68.98 64.07 61.73 31.90 74.43 40.03

Table 1: Results on the Consistency, Accuracy and Ranking metrics described in Sec 4.1. Consistency and Ranking

are benchmarked on the val split of VQA-Introspect, while Reasoning Accuracy and VQA Accuracy are on the

reasoning and val splits of VQAv2 respectively. SQ refers to sub-questions and IQ to irrelevant questions.

similarity scores with the reasoning question. Av-

eraged across all pairs, this computes the extent by

which rankings are incorrect. Lower is better.

Model Performance.

1) Quadrant Analysis.

a. R✓ S✓ The pairs where reasoning and sub-

questions are both correctly answered. b. R✓ S✗

The pairs where the reasoning question is correctly

answered, while the sub-question is incorrectly an-

swered. c. R✗ S✓ The pairs where the reasoning

question is incorrectly answered, while the sub-

question is correctly answered. d. R✗ S✗ The

pairs where reasoning and sub-questions are both

incorrectly answered.

2) Consistency. The frequency with which a model

correctly answers a sub-question given that it cor-

rectly answers the reasoning question.

Consistency =
R✓ S✓

R✓ S✓ + R✓ S✗
(4)

3) Reasoning Accuracy. The accuracy on the rea-

soning split of VQAv2 dataset, and

4) Overall Accuracy. Accuracy on the VQAv2

validation set.

4.2 Results

We attempt to answer the following questions:

Does SOrT help models better identify the

perception questions relevant for answering a

reasoning question? As described in Sec 3.2,

the model ranks perception questions (sub-

questions and irrelevant questions) associated with

an <image, reasoning question> pair according

to the cosine similarities of their Grad-CAM vec-

tors with that of the reasoning question. As seen

in Table 1, we find that our approach outperforms

its baselines on nearly all the ranking metrics. We

observe gains of 4-6% points on MP@1 and MRR,

and 1.5-2.5% points on Ranking Accuracy. Like-

wise, the improvement in WPR - the soft metric that

computes the extent by which rankings are incor-

rect - is a substantial 12% points over Pythia. This

confirms that our approach helps better distinguish

Figure 2: An example of improvement in consistency

between Pythia (top) and SOrT (below) brought about

by better sub-question ranking.

between the relevant and irrelevant perceptual con-

cepts needed for answering a reasoning question.

Does recognizing relevant sub-questions make

models more consistent? We find that the im-

proved ranking of sub-questions through SOrT im-

proves consistency by 6.5% points over Pythia,

1.47% points over SQuINT and 0.4% points over

an approach that just uses sub-questions while dis-

carding irrelevant questions1. As seen in Table 1,

the consistency gains are due to significant im-

provements in the R✓ S✓ and R✓ S✗ quadrants.

As seen in Table 1, the consistency gains are due

to significant improvements in the R✓ S✓ and

R✓ S✗ quadrants. This comes at the expense of a

drop in overall accuracy and reasoning accuracy by

∼1% point, likely due to the active disincentization

of memorizing language priors and dataset biases

through our contrastive gradient learning approach.

Gradient-based explanations have been shown to

be more faithful to model decisions compared to at-

tention maps (Selvaraju et al., 2019b). Our results

confirm this by showing that aligning Grad-CAM

vectors for reasoning and sub-questions makes

models more consistent compared to SQuINT,

which aligns their attention maps. Fig 2 shows

an example of improved consistency using SOrT.

The Pythia model answers its sub-question in-

correctly. Our approach ranks the relevant sub-

question higher than the irrelevant ones and an-

swers it correctly – thus improving consistency.

1These numbers are averaged values from 10-fold cross
validation runs on the val split. The std dev values observed
were 0.3 for Pythia and 0.41 for SQuINT and SOrT.
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Figure 3: A qualitative example of the improvement in visual grounding by SOrT. For the <question, answer>

pair of <Is the baby using the computer?, Yes>, we see the comparison of the Grad-CAM heatmaps generated

by the 3 models and the human attention map. SOrT’s heatmap is most closely aligned with that of the human

attention map.

Does our approach also help with syntactic

consistency as tested on rephrased questions?

To test whether our approach of aligning Grad-

CAM vectors also helps with making models con-

sistent to rephrasings of questions, we use the

VQA-Rephrasings dataset introduced in Shah et al.

(2019), split into appropriate train / val / test

splits containing 85,042 / 24,297 / 12,148 pairs of

rephrased questions. We follow the same training

protocols outlined earlier for each of our baselines,

and retrain Pythia with the additional data. On

the held-out test split of this dataset, we observe

improvements in consistency - 80.73 (SOrT) v/s

79.98 (SQuINT) v/s 79.51 (Pythia). Interestingly,

we observe a minor improvement in accuracy as

well - 66.52 (SOrT) v/s 65.45 (SQuINT) v/s 66.38

(Pythia). This confirms the effectiveness of our ap-

proach for both semantic and syntactic consistency.

Does enforcing language-based alignment lead

to better visual grounding? To evaluate this, we

compute visual grounding through Grad-CAM ap-

plied on the final convolutional layer. We then com-

pute the correlation of Grad-CAM heatmaps with

the validation split of the VQA-Human ATtenion

(VQA-HAT) dataset (Das et al., 2016), comprising

4,122 attention maps. This dataset contains human-

annotated ‘ground truth’ attention maps which in-

dicate the regions humans chose to look at while

answering questions about images in the VQAv1

dataset. The proposed method to compare human

and model-based attention maps in this work was

to rank their pixels according to their spatial at-

tention, and then compute the correlation between

these two ranked lists.

We find that our approach gets a Spearman rank

correlation of 0.103± 0.008, versus 0.080± 0.009

for Pythia and 0.060 ± 0.008 for SQuINT. These

statistically significant improvements indicate that

enforcing language-based alignment during train-

ing improves visual grounding on an unseen dataset.

A qualitative example that demonstrates the supe-

rior visual grounding of SOrT compared to its base-

lines is shown in Fig 3. For the question Is the

baby using the computer? and its corresponding

answer Yes, we see that the Grad-CAM heatmap

generated by SOrT is closest to that of the human

attention map. It is also the only heatmap in this

example that actually points to the fingers of the

child, which is the essential visual component for

answering the question.

5 Discussion

In this work, we seek to improve consistency

in VQA. We first develop language-based inter-

pretability metrics to measure the relevance of a

lower-level perception question while answering a

higher-level reasoning question. Evaluating state-

of-the-art VQA models on these metrics reveals

that models often rank irrelevant questions higher

than relevant ones. We present SOrT (Sub-question

Oriented Tuning), a contrastive gradient learning

based approach for teaching VQA models to dis-

tinguish between relevant and irrelevant percep-

tual concepts while answering a reasoning ques-

tion. SOrT aligns Grad-CAM vectors of reasoning

questions with those of sub-questions, while dis-

tancing them from those of irrelevant questions.

We demonstrate SOrT’s effectiveness on datasets

that test for semantic as well as syntactic consis-

tency without major changes to accuracy, while

also improving visual grounding.
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7 Ethical Considerations

The key ethical considerations for this work relate

to fairness. Although not ubiquitous in application

today, the progress of research in VQA necessitates

work in the direction of transparency so as to build

trust among users before these systems are widely

deployed in the real world.

Prior work in this domain has revealed VQA

models to exploit visual and language based priors

in the datasets they are trained on (Das et al., 2016;

Agrawal et al., 2017; Zhang et al., 2015; Ramakr-

ishnan et al., 2018; Guo et al., 2019; Manjunatha

et al., 2018). Such models tend to compound the

biases prevalent in these datasets, and could have

detrimental effects on fairness. Our work could

better explain these biases by identifying the most

relevant perceptual concepts used by the model

while answering reasoning questions. In addition,

by improving consistency and visual grounding in

VQA systems, our work contributes to mitigating

some of these biases.
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A Appendix

A.1 Experimental Details

A.1.1 Algorithms

We use the Pythia model for our experiments.

Specifically, for our SOrT approach, we compute

Grad-CAM vectors for the reasoning question, sub-

questions and irrelevant questions on each image

at the layer where the vision and language modali-

ties are combined. We then use customized losses

described in Section 3.2 of the paper. The mathe-

matical computation of consistency is described in

Section 4.1, while the ranking metrics are described

below.

Mean Precision@1 (MP@1). For a given order-

ing of related questions (based on 1 of the 3 sim-

ilarity scores), we compute the fraction of pairs

in which a relevant perception sub-question was

ranked the highest, i.e, had the highest similarity

score with that of the reasoning question. This is

equivalent to setting a bare-bones expectation of

reasoning ability for the model - “Among all the

related questions for a pair, was atleast the high-

est ranked related question a relevant perception

sub-question?"

This is illustrated in an example below across

two sets.

Example Query 1 : “What is the capital of the

USA?"

Predicted Ranking 1 : [“New York", “Washing-

ton DC", “San Francisco"]

Ground Truth Answers 1 : [0, 1, 0]

Example Query 2 : “Where is the Golden Gate

Bridge located?"

Predicted Ranking 2 : [“San Francisco", “At-

lanta", “Los Angeles"]

Ground Truth Answers 2 : [1, 0, 0]

Across these two examples, the Mean Preci-

sion@1 value would be 1
2 since only one of them

has its highest ranked item as a correct answer.

Ranking Accuracy. This computes the propor-

tion of pairs in which all the relevant perception

sub-questions are ranked higher than the irrelevant

questions. This would represent a perfect ranking

capability of the model.

Example Query 1 : “Cities in Asia."

Predicted Ranking 1 : [“Stockholm", “Beijing",

“New Delhi"]

Ground Truth Answers 1 : [0, 1, 1]

Example Query 2 : “Planets in the solar system."

Predicted Ranking 2 : [“Neptune", “Jupiter",

“Phobos"]

Ground Truth Answers 2 : [1, 1, 0]

The combined Ranking Accuracy across these

two examples would be 1
2 since all the correct an-

swers are ranked higher than the incorrect ones

only in the second set.

Mean Reciprocal Rate (MRR). This is a varia-

tion of MP@1 which captures the highest rank of

a relevant item in a list. In our case, the reciprocal

rank is concerned with the highest rank of a rele-

vant perception sub-question among all the ranked

related questions for a pair. The reciprocal of this

highest relevant rank is averaged across the entire

dataset. This is represented in the example below.

Example Query 1 : “What is the capital of the

USA?"

Predicted Ranking 1 : [“New York", “Washing-

ton DC", “San Francisco"]

Ground Truth Answers 1 : [0, 1, 0]

Example Query 2 : “Where is the Golden Gate

Bridge located?"

Predicted Ranking 2 : [“San Francisco", “At-

lanta", “Los Angeles"]

Ground Truth Answers 2 : [1, 0, 0]

Across these two examples, the MRR could be

calculated as follows :

RR1 =
1

2

RR2 =
1

1
= 1.

MRR =
1

2
∗ (RR1 +RR2) =

1

2
∗
3

2
=

3

4

(5)

Weight Pairwise Rank (WPR) Loss. All the

above metrics only account for the ranking of the

candidate questions for a given pair, but do not con-

sider the extent by which these questions differ in

their rankings. Concretely, to have a comprehen-

sive understanding of the relevance of each ques-

tion, we need to account for the magnitude of their

similarity scores with the reasoning question in our

overall metric.

For a pair, we create a parallel list of ranked

questions in which all the relevant perception sub-

questions are higher than the other questions, while

retaining the same similarity scores as computed

for the originally ranked list. We then compare

these two lists pair-wise, i.e, in each index, and

sum up the differences of the similarity scores if

the rankings are different between the two lists.
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This provides us a way to measure not just the devi-

ation from the desired order of rankings but also the

magnitude of the differences in similarity scores

which are responsible for the erroneous rankings.

If S could be represented as the set of size n con-

taining all such incorrectly ranked pairs (r.r′) with

scores (α, α′), we could compute the WPR loss for

each set as the sum of the absolute values of the

differences between each α and α′.

WPR =

∑

(r,r′)∈S |α− α′|

n
(6)

This is then averaged across the entire dataset.

We illustrate an example for a single set.

Query : "Which of these is a national capital?"

Predicted Ranking With Scores : [(“Mexico

City", 0.9), (“Miami", 0.8), (“Copenhagen", 0.7)]

Ground Truth Answers : [1, 0, 1]

Parallel List w.r.t Ground Truth Answers :

[(“Mexico City", 0.9), (“Copenhagen", 0.7), (“Mi-

ami", 0.8)]

WPR =
1

2
∗ (0.1 + 0.1) = 0.1 (7)

A.1.2 Source Code

Our source code is accessible here :

https://github.com/sameerdharur/sorting-vqa.

A.1.3 Computing Infrastructure

The computing infrastructure used for training and

running each model described in the paper was 1

NVIDIA TITAN Xp GPU.

A.1.4 Runtime

The average training time for the model on each

combination of hyperparameters was roughly 12

hours.

A.1.5 Parameters

The details on the parameters of the model can be

found in the Pythia paper referenced in the main

section.

A.1.6 Validation Performance

The results of the validation performance on each

of the different metrics have been included in Sec-

tion 4.2 of the main section. The metrics have

been explained above, with the source code linked

above.

A.1.7 Hyperparameter Search

For the best performing models, the values of λ de-

scribed in the losses of Section 3.2 are λ1 = λ2 =
2.27, λ3 = 0.0003. These values were selected

based on the differing scales of the loss components

and chosen from running hyperparameter sweeps.

The rest of the hyperparameters were unchanged

from those reported for the best performing Pythia

model.

A total of 294 hyperparameter trial runs were

conducted with λ1 and λ2 ranging from 0.025 to

25, and λ3 ranging from 1e-5 to 100.

These values were picked by a combination of

uniform sampling and random tuning, and were

optimized on a combination of consistency and ac-

curacy. As mentioned in Section 4.2, the expected

validation results fall within the statistical range of

the results defined by a standard deviation of 0.3

and 0.41 for Pythia and SQuINT/SOrT.

A.1.8 Datasets

As detailed in Section 4, our dataset is a combina-

tion of the VQA-Introspect and VQAv2 datasets.

In total, our train/val splits contain 54,345/20,256

<image, reasoning question> pairs with an aver-

age of 2.58/2.81 sub-questions and 7.63/5.80 ir-

relevant questions for each pair respectively. Sub-

sets of this data have been attached in a zip file

with this submission to serve as representative ex-

amples. The details on the VQA-Introspect and

VQAv2 datasets, which are publicly available, can

be found in the corresponding papers cited in the

main section. The VQA-HAT dataset used in the vi-

sual grounding analysis and the VQA-Rephrasings

dataset used for evaluating syntactic consistency

are also publicly accessible.

https://github.com/sameerdharur/sorting-vqa

