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PREFACE

For any total tactical air funding level, it is essential to main-
tain the balance between programmed tactical air forces and war re-
serve procurement for air-to-ground munitions so as to maximize the
productivity of tactical sorties assigned to the air-to-surface mis-—
sions.

Recently the Directorate of Defense Program Analysis and Evalua~
tion (DDPA&E) evaluated some alternative air munitions mix methodologies.
Major ones assessed were (1) the Air Force Saber Mix methodology, (2)
the Navy's NAVMOR (Navy/Marine Corps Ordnance Requirements) methodology,
and (3) the Rand linear program [1].

The first two methodologies involve two-step processes: selecting
the "optimum" munition for each aircraft-target combination on the
basis of least-cost-per-target-killed; and allocating sorties carrying
the optimum munitions among targets. This sortie allocation is handled
quite differently in approaches (1) and (2). Saber Mix applies the
principle of marginal analysis to maximize some "military worth" ob-
jective function, and carries out the optimization for onme aircraft
type at a time.* The more subjective Navy methodology does not opti-
mize any explicit stated objective function (e.g., military worth),
and bases the sortie allocation on the value judgment of combat-
experienced Navy officers.

The Rand approach, based on a linear programming technique, con-
siders sortie allocation, target selection, and weapon selection as
all part of the same optimization process in which munition procure-
ment costs are minimized. Unlike Saber Mix, it considers sorties from
all aircraft types simultaneously in the optimization.

Upon examining these alternative approaches, DDPA&E concluded
that it is desirable to develop a methodology based on a mathematical
programming approach for maximizing some military worth objective

function. The problem was formulated as a nonlinear programming model

*
The Air Force is currently modifying Saber Mix so that all air-
craft are allocated at once.
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with given constraints and objective form, and Rand was requested to
develop an algorithm and an associated computer code for solving the
problem. The algorithm and computer code presented in this report are
intended for use by the DPA&E's own staff. This méthodology synthesizes
the best features of both Air Force and Navy methods, and could
serve as a common sortie allocation methodology for establishing
both Serviece's air-to-surface munitions requirements.

Although the computer program was developed for sortie allocation
problems, the nonlinear programming algorithm obviously has applicabil-
ity to a wide range of problems. Hence, it is discussed in some detail

and in more general terms than the sortie allocation problem calls for.
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SUMMARY

This report presents a mathematical programming approach to maxi-
mize a military worth objective function subject to resource constraints.
The formulation takes account of the diminishing returns obtained with
incremental capability increases, thus producing a problem of the con-
vex programming type.

A very general nonlinear programming algorithm is presented, along
with a discussion of its numerical properties and a proof of its con-
vergence for the convex programming problem. This is followed by a
description of the computer input for the specific problem studied,
and by an example problem with its associated computer output.

An appendix details the use of the general algorithm for applica-
tions that differ from the one considered here. This usage involves

altering several PL/1 procedures to the form desired.
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I. INTRODUCTION

This report describes a nonlinear programming algorithm and its
associated computer code written in the PL/l programming language.

The nonlinear programming techniques are used to select an air-to-
surface munitions mix to be stockpiled as war reserve inventory. The
specific problem formulated allocates tactical sorties to different
target types so as to maximize some "military worth" objective func-
tion. The solution, combined with data regarding the type and amount
of munitions to be carried in each sortie, provides the basis for de-
termining the quantity and quality of the air munitions to be procured
for the stockpile. To clarify where the algorithm fits in the total
process of munitions mix selection, we first discuss our general ap-
proach to the problem.

The proposed munitions mix selection methodology as applied to a
given interval consists of three steps: (1) it selects a munition for
each aircraft-target combination based on a criterion of least-cost-
per—expected—-target-killed; (2) it allocates sorties from all aircraft
types--each sortie carrying the selected "optimum" munition--among tar-
get types; and (3) it computes the required munition mix based on the
first two steps. The diagram in Fig. 1 displays the logical relation-
ships between these three steps and various input factors.

In allocating sorties among targets, we assume that a law of di-
minishing marginal productivity can be in effect, i.e., the number of
targets killed per sortie decreases for each successive sortie. The
degree to which the law of diminishing marginal productivity is in ef-
fect is determined by a single parameter for each target type. There
are several possible justifications for considering diminishing mar-
ginal productivity.

First, there is a question of target availability. As more sorties
are launched and more targets killed, the difficulty of finding live
targets increases. Second, remaining targets would become harder to
kill because they would either offer a stiffer resistance or be dis-

persed if they are mobile. Third, attacking forces may become less
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Fig. 1— Input-Output relationship in munitions mix calculation process



effective for a host of reasons: for example, attrition may have sap-
ped their strength, or tactics have become known to the enemy and ele-
ments of surprise no longer exist.

This methodology would provide an analytical mechanism and a re—
producible linkage between the threat (potential target arrays), coun-
terforces (available sorties), strategy/tactics (with implications for
relative target values), and munition selection. This would allow a
planner to examine, using a consistent logical framework, the different
mix of weapons demanded when the relevant variables and assumptions
change. '

As stated above, the primary purpose of the proposed methodology
is to establish war reserve munitions requirements that are consistent
with planning assumptions concerning programmed sortie capability, po-
tential enemy threat, and the effectiveness of current as well as fu-
ture tactical air munitions. In addition, the methodology has applica-

tions to other policy issues. Two examples follow.

1. Tactical Air Sortie Capability versus Air Munitions Procure-
ment. The productivity of tactical air forces, measured in
terms of target kill capability, depends on the number of
sorties that the forces can generate and the quantity and
quality of munitions that they can deliver to targets. Within
any total tactical air funding level, force productivity can
be changed by varying the resource allocation between sortie
capability and munitions. If all the resources were spent on
aircraft, the tactical air forces would obviously be less ef-
fective because they would lack the needed quantity as well
as quality of munitions. Hence, it is desirable to strive
for a balance between programmed tactical forces and air muni-
tions war reserve procurement. This issue is becoming more
critical because fiscal constraints for future military pro-
curement are expected to be more stringent.

The proposed methodology is primarily designed for de-
termining the most effective munitions mix for a given level

of sortie capability. By making a series of parametric studies



in which the sortie capability level is varied, it is possible
to determine the corresponding "optimum" munitions stockpile
and gain insight into the nature of tradeoffs between sortie
capability and munitions.

2. Relative Effectiveness of Munitions. The effectiveness of
munitions in development can be done in the context of a
total tactical warfare enviromment in which a scenario is
represented by available sorties and opposing enemy targets
and allows the planner to determine how the weapon being de-
veloped will compete with other weapon types already in pro-
duction. Analysis results will help determine the contribu-
tions that new munitions will make to the productivity of the

tactical air forces.

The remainder of this report formulates the sortie allocation prob-
lem as 2 nonlinear programming model, outlines the algorithm, and des-
cribes the computer code. The appendixes present technical details of

the algorithm and the code.



IT. MATHEMATICAL STATEMENT OF THE PROBLEM

1. PROBLEM FORMULATION

The problem is to determine the number of sorties Sij’ where i is
the aircraft type and j is the target type, by maximizing an objective

function subject to given constraints. The following notation is used:

i1 = afrcraft type index
I = number of aircraft types
j = target type index
J = number of target types
Tj = number of type j targets
Dj = number of dead targets
13 = number of type j targets killed by a type i sortie.
i1 = number of sorties, defined above; the independent
J variables.
C, = target parameter, between O and 1, designating for each
J target type the degree to which its status (dead or alive)
can be determined. This parameter controls the extent to
which the law of diminishing productivity applies.
; = upper limit on number of sorties for aircraft type i.
Vj = value (or value paraters) of target j.
Rj = lower bound on targets killed.

Other than Sij’ all of the above subscripted variables are given
constants for a specific problem. Kj’ defined by the following expres-—

*
sion, dis the number of kills of target type j:

zi Sy ]
Kj =T 1 -exp|- T (aj + iz Pijsij) » (1.1)

where aj is the constant

*
DDPA&E suggested this function to us. It is similar to the
objective function of the Saber Mix methodology.



T. C.
=-13 -
aj Cj og (]_ Tj Dj)' (1.2)

The problem is to determine nonnegative variables

(Sij’ i=1,2, vou, I, §=1,2, «0., J)

l, 2, ey I; (103)

[ s §
(7]
il
(77}
-
.
1]

L, <K, T, di=1,2, ..., J; (1.4)

and the side constraints each having the general form

J

Z a,s.,. <0
3=1 J 1]

for some aircraft type i, in order to maximize

3 .
v - . .
jzl j(Kj Dj) (1.6)

The sortie constraints have the form of an unscaled generalized

upper bound. This form permits the upper bound

< £ i i .
Sij Si or all i, j (1.7)
to be placed on each variable. (Note that Sij are the variables, Si
are constants). Each variable has a lower bound of zero. These upper
bounds do not actually constrain the solution because they are redundant
to the sortie constraints.

The target constraints appear to be nonlinear; however, this



nonlinearity can be eliminated by solving the inequality for the linear

term

Then the upper inequality of the target constraints takes the form

- 1 1 -20C,) - a, (1.8
13713 o8 P )

oL

I
)} P..S.. < -
i=1

for =1, 2, ..., J. When Cj is unity, the right-hand side of the
inequality is infinite, so that targets for which Cj is unity will not
require an upper target constraint. Similarly, the lower inequality

of the target constraints takes the form

I .
} P..S..(t) 2 -
RS & &

oL

' log (l - ;;-Zj)— o (1.9)
i J

which is not required if Lj < Dj because uj > Dj follows from a Taylor
expansion of 3.1, given below under "Numerical Approximations."

The side constraints are of two types; upper-bound sortie con-
straints and lower-bound sortie constraints. The upper-bound constraints
limit the sorties by a specific aircraft type against a specified 1list
of target types to a fractioﬁ of the total number of sorties flown by
that aircraft type. Thus if ¢ is a subset of {1, 2, ..., J}, then an

upper-bound constraint for an aircraft i has the form

J
] S..<f ) s, (1.10)
deJ +J j=

where 0 < £ < 1. The lower-bound constraints have the same form with

the reverse inequality.

The parameters of the problem, Tj’ Dj’ Qj, Cj’ Vj’ and Pij’ are
all nonnegative with O < Cj < 1 and Dj < Tj. Tj must be strictly posi-

tive so that division by zero will not be attempted. Because the



_8_
logarithm of 1 + x is subject to large round-off errors when x is small,
an approximating formula is used. This modification is discussed be-

low under "Numerical Approximations."

2. CONVEXITY OF THE OBJECTIVE FUNCTION

The problem as stated has linear constraints, and is also bounded
in its feasible region. To obtain the solution to this type of non-
linear programming problem readily, the objective function must be con-

vex in a minimization problem. Let the objective function be denoted

by ¢:

J
¢$= ) V., -D,). (2.1)
j=1 J73 h|
Then

. 3K

3¢ _ h|

3s, . Vj 3s,, °* (2.2)
ij 1j .

because Kj depends only on Sij variables of the same target type.
Thus

2
2 3 K,
94 _ =8 = ——d _y (2.3)
38, .95+~ jj 9s,.38+, '3’
ij "ij ij "ij

where 6j5 is one if j = 3, and zero otherwise. The second partials on

the right can be evaluated

2
ool (o b g
= - P,, Pz, exp | - o, + P..S, .}
asijasij ij "1ij Tj Tj i ke1 kji"kj

so that in general

2
C. C. I
5§§—§§:: =~ §,-V, Pi. P{. El exp |-~ El'(a, + Z Pk'sk'
15°°13 33 1 J 3 i 3 J k=1 J K]

If the matrix of second partial derivatives (called the Hessian)

of the objective function is nonnegative semidefinite at each feasible



point, then we consider the objective function convex on its feasible
domain. - The matrix developed here is the Hessian, H, of the negative
of the objective function (that is minimized); H is nonpositive semi-

- . T . .
definite if for any vector 7 the scalar 7 H7 is nonpositive.

2
Theorem: 3 ¢ 18 nonpositive

9S,,8S+~
iJ 1]

semidefinite.

Proof: The Hessian assumes the form of a block diagonal matrix;
it is sufficient to show that each block (with fixed j) is nonpositive
semidefinite. 1If Vj is zero, the j¢k% block is all zeros and thus trivi-
ally semidefinite: assume therefore that V, is positive. It is then
only a scale factor and can be ignored in any calculations. Thus it

is sufficient to show that the submatrices

2
d K, i=1,2, ..., 1I
asijasij i=1,2, ..., I
for 3 =1, 2, ..., J are nonpositive semidefinite for each j. Choose
any vector T = (Wl, Tos wees WI)T, and form the double sum
2
) 3 -
m,
i=1 I=1 i i 881 aS~+
(1] Do (-2 (e o)
=1- T, T P,.P=. exp | - o, +
i1 =1 1T 1 13 4] Tj TJ ( b kel kj"kj

C, I c. |t 5
- exp ~Tl(a.+ DRSS N I D U i R
J J ji=1 e
Since this expression is nonpositive for any choice of w, the matrix

is nonpositive semidefinite. QED.
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This discussion shows that we are dealing with a convex program-
ming problem here. Such problems have the property that any local op-
timum is a global optimum. This property allows the use of gradient

techniques to solve the problem.

3. NUMERICAL APPROXIMATIONS

As mentioned above, because of round-off errors certain functions
may be subject to large errors, even though long precision arithmetic

is used. Let us first define the function fl(x) as follows:

-}]?1og(l+x) for x # 0 x > -1.
fl(x) =31 for x =0
~undefined for x < -1,

Note that since

lim i—log (1+x)=1,
x>0

fl(x) is continuous for x > -1, 1Its derivative is (never used computa-

tionally)

i—-[ X - log (1 + x)} for x # 0 and x > -1

- 1/2 for x = 0.

fi(x) is also continuous for x > -1. If the occurrences of
log (1 + x) above are replaced by fl(x), the results are the following:

Equation (1.2) becomes

a, = D.f - = ; (3.1)
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Eq. (1.8) becomes

I .
P..S5,. £ T.£,(~C.) - a,; 3.2
izl 13713 | 1¢ J) 3 (3.2)
and Eq. (1.9) becomes
% C,ZJ
P..S,. 2 0, f [-—L=)-q. (3.3)
t=1 1313 j1 Tj j

In practice, the second-order Taylor expansion for log (1 + x) is

used when x is small; the computer program defines

‘%-1og 1+ x) if x > -1 and |x| > 10_4
fo(x) = ’
1 l-—%x iflx]s104.

This further implies that although Cj appears in the denominator of Egs.
(1.2), (1.8), and (1.9), because (3.1) through (3.3) are used in their
place, a value of zero is legal for Cj' When Cj = 0, Egs. (3.1) through
(3.3) become

+D, <T,, (3.4)

which is, in fact, the desired linear case.

The second function for which an approximation is used is

ifx 40

1 ifx=0
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As with fl’ f2 is continuously differentiable.

The implemented second-
order approximation is

-X
l—lxi— if |x| > 107%
f2(x) = .
1 -2 -4
2 if |x| < 10
This function is used to compute Kj (Eq. 1.1) by
. [cB. -
= 3.5
Kj ijz \—J——lT' 5 (3.5)
J
where
P.=a + ] P..S... (3.6)
i3 4Ly Ti3Tis

Since fz(O) = 1, when C, = 0, K, =

. .» so that if C. = 0,
J J J J 3
then

again the linear case.
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III. THE NONLINEAR PROGRAMMING ALGORITHM

1. INTRODUCTION

The basic technique for solving a general nonlinear programming
algorithm via a sequence of local linear programming problems [2] can
be rigorously demonstrated to converge in a finite number of steps to
a local linear stationary point. The local linear stationary points
depending on the conditions imposed on the original problems are in-
terpreted as global optimal points, local optimal points, saddlepoints,
or points demonstrating infeasibility of the original nonlinear system.
As is generally the case, however, this rigorous demomnstration of con-
vergence sheds little light on the rapidity of comvergence for prac-
tical problems and hence its utility as a practical test for real prob-
lems. Fortunately, the algorithm developed here has been extensively
used on a wide variety of real problems for over ten years [3,4,5,6].
It has evolved in response to actual problem needs and has performed
well. It represents a general procedure in that it handles general
nonlinear problems, but it is also efficient for the class of problems
described in Sec. II (i.e., problems with linear constraints). Other
general methods with some computational success are described in

[7,8,9,10].

2. OUTLINE OF THE NONLINEAR PROGRAMMING ALGORITHM

The algorithm employed for the nonlinear programming prcblems of
this report is a general purpose algorithm that solves problems of the
form

Subject to

Min g (y), (2.1)

where y is a vector in En, and gl(y) (i =1, ..., m) are differentiable

won

functions. It is a "local," "gradient, stepwise' correction descent
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algorithm (Fig. 2). By a "stepwise" procedure we mean that given a
point y° in the domain of the functions, a "correction" vector Ay is
determined and a new point y = yO + k Ay is used for the sucéessdr
"step". It is a "local" method because the correction direction Ay
and its length (determined by the scalar k) are obtained from the be-
havior of the system in a "sufficiently" small neighborhood of the
current point y°. It is a "gradient" technique inasmuch as the gradi-
ents of the function gi(y) are principally used to obtain the correc—
tion direction. The algorithm is a "local-gradient" tedhnique because
of reliance on the approximation of the functions gi(y) by the approxi-
mation theorem. |

Theorem l. Approximation

Let geC' in an open region D, and let E be a
closed bounded subeet of D. Let

°y = 36(v%)  38(y%) §g£zil
9y, 7 ¥y, 7T %y

Vg (y

be the "gradient" of g at the point y eE:

If
g(v° + ay) = g(s°) + g% sy + R(y°, 5Y) (2.2)
then
1im R—(Lo)_All-_:
ay~0 oy

wiformly for yer.
The proof of this result is found in Buck.*

The direction of improvement Ay in the stepwise procedure is ob-
tained from the function approximation in (2.2) by estimating the

Rl(yo, Ay) and solving the associated local linear programming problem:

*
See theorem 8 on page 184 of Ref. 11.
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Fig. 2 — General flow of nonlinear algorithm
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Subject to the constraints

Vg vy < gt (v - k rT i=1,2, .e.,m-1, (2.3)

choose Ay to minimize ng(yO)Ay.

The ri are an arbitrary set of positive constants that serve as
surrogates for the Ri(yo, Ay), where ri = 0 for the strictly linear
functions. Of course the Ri(yo, Ay) are truly functions of the direc-
tion Ay being sought, and substituting positive constants causes the
solution of the local linear programming problem to be an approxima~"
tion. In practice, the ri are taken to be the Ri(yo, dy) obtained
from the previous Ay correction vector. The k is used to adjust the
solutions of the local linear programming problems parametrically. 1In
general, as k decreases it beéomes easier to achieve feasibility in
the local linear programs, but unfortunately the gain that can be as-
sured in the convergence of the nonlinear problem also decreases. As
will be shown in the convergence proof, it is necessary to have
k > s >0 for some fixed 8 to prevent convergence to a nonoptimal limit

point.

3. NATURE OF THE SOLUTION

To discuss the convergence of the algorithm we must develop the
concept of an e-solution' of the problem. Given any € > 0, it is first
necessary to construct a suitable "feasible'" set. This consists of
exhibiting an ¢ Su?h that 0 < € € ¢, and defining the e-~feasible set
F = 3yly e E and gl(y) < €1s i=1, .vv, m - lz. The solutions y* are
then characterized as

Global e-minimums

For all yeF
g y*) < g7y + ¢ (3.1)
or

Local e-minimums

For some ¢ > 0 and yeF such that
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ly - y*| < s

g (y%) < g(y) + ¢ . (3.2)

Obviously, the concept of an e-solution is necessary when treat-
ing real valued functions. The solutions in general will be real
valued numbers and an answer can be determined only when the level of
accuracy desired is specified. A problem is considered completely
solved when for an arbitrary positive ¢ an e-solution can be guaranteed

in a finite number of steps.

4. REVIEW OF LINEAR PROGRAMMING RESULTS

We also require the following well-known fundamental results from

the theory of linear programming. A general mixed linear programming

problem can always be stated in both a primal and dual form.

Primal Form

Subject to the constraints

z aiqu = a; s 1 <ic< my
q
Z aiqu < a s m, < i <m (4.1)
q
yq 20 ny <q<nmn,

minimize
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Dual Form

Subject to the constraints

<j<n (4.2)

g o~ g~
™
o
IA
o
=}

maximize

The fundamental inequality of linear programming states:
Given any feasible solution yq of the constraints in (4.1)
and any feasible solution xp of the constraints in (4.2),

then

z a y = g xpaPn . (4.3)

The solvability or unsolvability of the linear programming prob-
lem as well as the relationship between the primal and dual problems
can be summarized in a general theorem.

Theorem 2. Linear Programming

Given a linear programming problem, exactly one of the following

conditions holds:

1. There exists a finite value v and feasible vectors yg and
x; of (4.1) and (4.2) such that

) amqy* =) xa L=V (4.4)
q P PP
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(and by the fundamental inequality (4.3), they must then be
optimal feasible vectors).

2. The constraints for the primal problem are inconsistent and
either the constraints of the dual problem are inconsistent
or the dual extremal function is unbounded.

3. The primal extremal function is wnbounded and the constraints

for the dual problem are inconsistent.

For a proof of this result, see a standard linear programming text such
as [12]. Note that the dual of Eq. (2.3) is the following:

Subject to the constraints

m-l P, P, © m, o
21 x Vg (y) =g (y) , (4.5)
p:

find % < 0 to maximize

m-1 o _
bool-x 11gP (%) + kP
p=1 P

5. DEFINITION OF BOUNDS USED IN THE THEORETICAL DEVELOPMENT

There are three bounds required in our development.

Bound 1

) (—xp) < B, . (5.1)

The bound on the magnitude of the dual variables encountered in solving
the local linear programming problems has to be imposed as an additional
condition on the problem. This condition merely acknowledges a limit

to our computational ability to distinguish nonsingularity in invert-
ing the basis associated with the local linear programming problem.

*
It is sufficient to satisfy a Kuhn-Tucker constraint qualificationm.

-
See page 39 of Ref. 13.
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Bound 2

IAy' < BZ . ) (5.2)

Since E is a bounded set, the vectors y of interest are bounded. By
the triangle inequality
o o

oyl = Iy =5 < |yl + I¥°] ,
and the correction vector is also bounded. Therefore, we can always
superimpose constraints of the form L' < v < Ul, which can be treated
algebraically without explicit introduction into the constraint set.
These bounds will always exclude obtaining an unbounded solution in
solving the local linear programming problems (alternative 3 of theorem

2).

Bound 3

IRi(yo, Ay)| < B {i=1, ..., m} . (5.3)

3’

Transposing (2.2),

Ri(yo, Ay) = gi(y) - gi(yo) - Vgi(yo)AY .

But since gi(y)eC', both gi(y) and Vgi(yo)Ay are continuous functions,
and the difference of continuous functions is a continuous function.
Hence Ri(yo, Ay) = p(y, yo) is a continuous function over a compact
set ExE and is therefore bounded. Taking the largest bound ovér the
finite set of bounds for the Ri(yo, Ay) , we obtain an overall bound

for the remainder terms.

6. INCONSISTENCY

To define a local linear stationary point of our algorithm and to

demonstrate couvergence in a finite number of steps, we must first
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establish a crucial result on the consistency of the local linear pro-
gramming problems. »

let M = {1, 2, ..., m - 1} be the indices of the constraints.

Let a subset of the indices of the constraints be denoted by H, and
let w be an element of M. (In the following result w and H can be
shown).

A local linear programming (L.L.P.) problem is consistent if there
is a Ay that satisfies all of the constraints. It is assumed that the
range restrictions that bound the problem are numbered among the con-
straints. Similarly, an L.L.P. is consistent with respect to HcM if
there 1s a Ay that satisfies the constraints with indices in H. Then

we have

Lemma 1.
Either the L.L.P. problems are consistent at y° for some
k = e/(B3 + B1B3) or there exists an index w, a set H, and a set of

multipliers X5 where X < 0 such that

EH (—xp>gp<y°> > g (v - €.
233

Proof

Let H =g i | Vgl(yo)Ay < [—gl(yo) - Erlj for some Ay%. H is a
consistent subset of M. Such a subset always exists since one can
always choose Ay = Li - yO and the set H will contain the range re-
striction constraints of the form Li < yg + Ayi < Ui. Let w be an
index such that

W, 0 W, 0 - W
Vg (y)dy > -g (y) - kr'

so that constraint w is infeasible at Ay with the current choice of

k. Solve the subproblem:
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Subject to

gl(yo) - kr® ieH s

IA

vg' (v°) oy
minimize
w
vg (D ay . (6.1)

This problem is consistent and bounded by construction, Therefore,
alternative 1 of Theorem 2 occurs and we have a w and dual variables

xp < 0 such that

vg" (3% = T x veP(y°)
peH P

and

Ve (y)ay = § x [-gP(y®) - ErP)
pel P

Let B = {i |iecH and i indexes the basic constraints of (6.1)}. Maintain-

ing this basis, the constraint w will be consistent for any k such that

vg  (yNsy = xp[—gpw") - keP) < -g"(v%) - Er
peH

or solving for k such that

k< -G+ J xgPeD | [+ T (x| 6.2
pcH P peH P

Now starting with any k, it can be adjusted (down) to remove any
inconsistencies generated. And since the basis B and the associated w
can never repeat (because k is monotone) in a finite number of steps, ﬁe
reach consistency in the L.L.P., or otherwise k will be chosen such

that
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€

[g“’(y% + 7 (=) - gp<y°>]
pel P

——— > Kk = -
(By + BBy [rw + 7 (-x )P
peH P
or
FW + 7 (—xp)rp
peH | _[ W, 0 _ p, o )
> -lg" ™) + ] <x>g<y>J,
(B3 * BlBB) peH P
or since
[rw+ ] (-x )rp]
| peH P <1
(B3 + BlBB)
then
e > —[gw<y°> + ] <—xp)gp<y°>} ,
peH
or

ZH (-xp)gp(yo) > -g"(y% - ¢ . QED.
pe

7. _CONVERGENCE OF THE ALGORITHM

We can now give the conditions for a stationary point of the al-

gorithm.

Definition: A point yo is a Local Linear Stationary Point of the non-
linear problem (2.1) if the dual variables of the L.L.P. at yo satisfy

one of the following conditions:

1) Z (—xp) > B (insufficient resolution)

P

1
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2) There exists a w and H such that

L (-x )gp(yo) 2 g (y°) -e (inconsistency)
peld P

m—-1 .
3 1 (x)eg (5D 2 -e  (optimality)
i=1

We provide an interpretation of the consequences of terminating the al-
gorithm with these stopping criteria after demonstrating that they are
the only conclusions.

Theorem 3. Convergence

Let gl, gz, vevs g" be convexr functions. Then it is always pos-

gible to choose k and k in such a manner that in a finite number of

steps a local linear stationary point is reached.

Proof:

Choose k = s/(B3 + BlB3). L o

To establish k, we must dominate the remainder terms R (y , Ay)
and require the following consequences of the approximation theorem
(1):

o] . .
For any y €E, there exists a 6§ > 0 such that for k °* lAyf < 4,

i, o - i
R7(y , kAy) kr .
K| Ay] : <B2 o e b e m -1, (7.1)
Rm(yo’ kay) L 1
k|by| B, 20 +3)) ° (7.2)

Recalling that IAy‘ < B2, and now choosing k = 6/B2, we have

i, o

rY(v°, xa _ g o
———L——Z—(k e, 1.1, o m-1, (7.3)

8 1

B2 2(1 + Bl) :

R'(y°, kdy) < &

(7.4)
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Let
Bmax ~ " 15" 7% 1675 > 0]
or
g =0 if ey <0 i=1, ..., m-1. (7.5)

The feasibility of the constraints is maintained or the infeasibility
is decreased (as measured by gmax) when k is chosen to satisfy the
constraints,

i i, o _ i, o i o . i, o .
g () =g (y +kiy) =g (y) +Vg(y)by - k+R (y, kby) =d " g

(7.6)

with 0 £ d < 1, and as close to zero as possible when & ax > 0. At the-
conclusion of the local linear programming probiem we are consistent
or by Lemma 1 we satisfy the inconsistency stationary condition 2 and
terminate. When we are consistent, we have from (2.3) the feasibility

conditions. Thus,

Ve (yDay ¢ ko< [-gt(y°) - krtlk, i=1,2, .o, m-1. (7.7

Substituting this into (7.6), it is sufficient to choose k such

that the stronger condition holds:

g% + -2t - kel RTGkay) <d g (7.8)

or

' i, o .
i d Bax ~ (I - kg ) _ Rl(yo, kdy)
k k

(7.9)
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with an appropriate choice of d, the term

d-g - 1-Kg G
m 20 for0<k<1.

That is, choose d = 0 when Bpax ~ 0, inasmuch as ¢ 0 implies

i o max

g (y ) £ 0, and choose d = (1 - k) when 8nax = 0» and recall
i, o

Bpax 2 8 (V).

Now with our choice of k = §/B_ and invoking (7.3), the condition

2
(7.9) is satisfied at every step. But then when d = (1 - k) = (1 - 6/B2),
the infeasibility g must be reduced by at least 6/B,‘'g at each

max 2 ®max
step. Given € > 0 in at most a finite number of steps, 8max © €1 and
remains so in all subsequent steps.

Further, at the conclusion of the solution of the local linear pro-

gramming problems, we must have

¥ (—xp)gp(y°> < -, (7.10)
p .

or we would satisfy condition 3 in our definition of a stationary point.
Because the local linear programming problem is optimal, (4.4) and

(4.5) yield,

vg" (y) by = ) (—xp)gp(yo) +k ) (—xp)rp. (7.11)
P P

Employing these results, we can demonstrate a bounded reduction in the

extremal function as follows:

g (y7) + 95"y ay + k + R™(kay)
[by 7.11]
g (y%) + [Z (-x ey + ) (-x )rp:|k + R™(kAy)
p P p P
[by (7.10), our choice of k and k, and (7.4)]

g (¥)

~1
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m, o € 8 e * & 1
g (y) + (-E t3 T3 3 BB > 3t
\ B3 + Bl B3 173 B2 B 2(1 + Bl)

IA

[by algebraic simplification]

B
m, o e = &8 1 1
g(y) -~ |1 - -
B2 [ (1 + Bl) 2(1 + Bl)]

E * S
gm(yo) - 2B2(l + Bl) . (7.12)

Inasmuch as gm(y) is reduced by at least 5-6/[282(1 + Bl)] at each step,
we can contradict any bound on gm(y) in a finite number of steps.
Hence we conclude that a stationary point is reached in at most a fi-

nite number of steps. QED.

8. INTERPRETATION OF THE STATIONARY POINT

To interpret a stationary point, we need an additional result.
Consider any y = yo + Ay that is an e-feasible solution of the con-
straints of (2.1), the original problem. By the Approximation Theorem

o o
g2 () = g’ %) + vgP 5Oy + RP(y°, ay) < e P=1, ..., m-1,
or
o o o
veP (v 8y < P (%) - RP(¥°, ay) + € - (8.1)

Now recall that for any solution xp < 0 of the dual problem as stated
in (4.5),

)

) xpVgp(yo) vg(y°) . (8.2)

P

Using the results of (8.1) and (8.2), we can obtain a lower bound

on the extremal function as follows:
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g () = "% + "%y + R%(y°, ay)

g (v%) + [E vagp(yo)]Ay + R"(y°, ay)
p

g (y%) + ) xp[Vgp(yo)Ay] + R(y°, Ay)

P
o
2 ') + ] (- )f ) + T (-x )RP(°, ay)
P P
Y p
+ R%°, ay) + X € - (8.3)
P

Choose el = E/Bl and assume that condition (1) of a local linear sta-

tionary is not satisfied, then

z X = -B and Z X €, 2 —-¢ ,
1 1
p P p F
Using this fact and recalling that global or local convexity for

all functions would imply Rl(yo, Ay) = 0. Formula (8.3) would then
imply,

g (y) 2 g"(y%) + § (%)) —e . (8.4)
P
When condition (3) in the definition of a stationary point obtains,

we conclude
gm(yo) < gm(y) + 2¢ for all y , (8.5)

and therefore by definitions (3.1) and (3.2) we have achieved a global
or local e-minimum. To demonstrate e-inconsistency, the identical

argument can be applied to a subproblem when condition (2) in the defi-
nition of a stationary point obtains. In fact, if the stronger condi-

tion

) (—xp)gp<y°> > -g" (y°) (8.6)
peH
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occurs at termination, the argument would demonstrate absolute incon-
sistency of the constraints. Without convexity it is theoretically

possible to terminate at a "saddlepoint," although this is virtually

impossible as a practical matter. The algorithm can be extended to a
second-order method by explicit introduction of first-order necessary
conditions as additional constraints [5]. It can also be extended to

treat equality constraints.

9. AN ANALYTIC EXAMPLE PROBLEM

To illustrate some of these ideas, consider the following non-

linear programming problem.

Subject to

1 2 2

g(}’)‘y1+}'2’950

2(9) ==y, —y, + 10

g (y) = -y, - v, < 0,
minimize

3 2

W = (v, -+ (v, - D,

(inO)

Graphically, the problem becomes that shown in Fig. 3.
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93(y

Optimum point

easible region

Fig.3 — Graphic solution of nonlinear example

The optimun occurs at the intersection of the line
Zyl - 3y2 =0
. . 1 3 1
connecting the centers of the circles g7 (y) and g (y) and the binding

constraint circle gl(y) = 0.

Eliminating vy from the above linear equation
vy, =32y,

and substituting in gl(y) = 0,

1
O

2 2
9/4 Yo = Y,

v, 6//13 .
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Plugging this value back into the expression for Yi»

y, = 3/2 6/V/13 = 9/V13

or numerically

*
vy, = 2.49615
1
*
Y, = 1.6641 ,

and the optimum value is
3 %
g (y ) = 0.366693 .

Now let us follow through the nonlinear programming algorithm.
Since we must seek the solution on a bounded domain, we superimpose

the range restrictions

0 < ¥y < 5 and 0 = ¥y < 5,

which are handled in the internal logic and not introduced explicitly
(bounds of 3 would have been sufficiently high, but we want to avoid

redundancy in this example). The associated local linear programming
problems are the following

Subject té
- i, o i, o - 1
Vg (y)by £ -g (y%) - ke,

ninimize

m (o]
Vg (y )by . (See 2.3)
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In our problem,

vgl(y) = 2y, 2y,]
gl () = [-1, -1]
7825 = 1267, - 9, 20y, - 2]

In general, r’ is taken as the error term Rl(yo, Ay) of the pre-
vious step and k = 1. The error terms Rl(yo, Ay)- reflect the length
‘Ay| of the previous step and may cause the local linear programming
problems to be inconsistent or prevent a local linear gain. As given
in Lemma 1, however, the k can then be adjusted down to as low as

= £
k = o——F——
+
(B3 BlB3)
parametrically in the course of the computation to gain consistency and
a local linear gain. More specifically, if an inconsistency is encoun-
tered in the local linear programming problem, an index w will exist

such that
W, 0 - W '
-5 (v") - ke'1 - vg"(y%)ay < 0 .
We employ (6.2) and calculate k to eliminate this violation, or

-8 (y%) - k"] —{ ) xp[—gp(yo) - Erp]} =0
pel

k= —[gw(yo) + ) (‘Xp)gp(yo):]/[rw + ) (—xp)rp]

peH peH

If

—[gw(yo) + ) (=x )gp(yo)] <e,
pel P
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then rearranging the terms,

’ (—xp)gp(yo) > -g" () - e,
peH

and we terminate with the knowledge that the nonlinear problem is in-
consistent inasmuch as we have satisfied condition (2) of a local

linear stationary point. Note if

- Eﬁ(yo) + ) (-x )gp(yoﬂ z e,
peH P

then by our definition of the bounds B BZ’ and B

1 3’

3
Z—_——
(B3 + BlB

k
3

3

and we guarantee a movement of sufficient magnitude to achieve conver—

gence. To insure a local linear gain, we must have
m, o
Vg (y)Ay <0 .
Using the equivalent expression given in (4.5) yields

T (x)g°G°%) +8 ) (=) <0,
P P P P

or

=) (-xp)gp<y°>
k< 2
g (—xp)rp

The dual variables xp required for these parametric adjustments are
readily available with our L.P. code. This parametric adjustment will

be illustrated in the course of solving the present problem.
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Suppose we start at the point y, = (0, 0), and since we have no

1 2
previous step estimates, take r~ = r

0. The initial linear program-

ming problem is the following:

Subject to

OAyl + OAy2 <9

—Ayl - Ayz < -1,
minimize
—6Ayl - 4Ay2 .

The implicit range restrictions on the variables are

IA

0 < Ayl <5 and 0 Ayz < 5.

The optimal solution (Fig. 4) is Ay = (5, 5).

N2 34 5 May, Y

Fig.4 — Graphic solution of first L.L.P.
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The new point will be of the form

0
y = ¥° + kiy = +tk ,
0

(9]

(9,1

where we must determine k < 1 to reduce 8 nax 1l or achieve feasibility.

The error term Rl(yo, Ay) is obtained from
1 1 1 1
g () =g (%) + 7 Moy + R (%, ay)
. . . 1 . 1, 0
by a single additional function evaluation of g (y), inasmuch as g (y)

is already available, and Vgl(yo) is given by the local linear program-—

ming solution. Carrying this out,

gl(y) - gl(yo) - Vgl(yo)Ay
41 - (-9) -0
= 50 .

1
R (y°, ay)

Using the quadratic approximation,
1 1 1 2
g = g (") + [vg  vV)aylk + RG®, ay)k

(which happens to be exact in this case) to solve for the k yields

“9+0 - k+50 k=0
3
k = —
/50
= 0.424264 ,
Now Rz(yo, Ay) = 0 since the second constraint is linear and

2 2
g (%) + g (5% ay -k
1-10 +«k
0 for k = 0.1 .

gz(y)

IA
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Hence, we are feasible for any value of k in the interval

0.1 < k < 0.424264. We take k = 0.424264 which yields the best gain
, 3

in g7 (y).

The new point becomes
v = (2.121321, 2.121321)

and in setting up the next linear programming problem we have,

gl(y°> =0

g2(y°) = 2.242641
RU(y°, ay®) = 50
R (s°, 4y%) = 0 .

The second linear program becomes the following:

Subject to

iA

-50
3.24264

4.24264 by, + 4.24264 by,
-1.0 Ay, - 1.0 2y,

IN

minimize
-1.75736 Ayl + 0.242641 Ay2
The range restrictions are

0 2y + Ay

A
w

or

-2.121321

A
N

by, < 2.878679

-2.121321

IA
IN

by, < 2.878679



-37-

Now, if we take both Ayl and Ay2 at their lower bounds, the first

linearized constraint becomes
4.24264 + (-2.121321) + 4.24264 - (-2.121321) = -18 > -50 ,

and the problem is clearly inconsistent. In the course of the solution
of the linear programming problem, the initial k = 1 is parametrically
adjusted down to k = 0.275148.

The right-hand side of the adjusted linear programming problem is

-0 -k - 50 = -13.7574

1 - 1
-8 (y%) - kR (y°, 4y

(e}

6% (5% - BR2(y°, 4y°) = -g%(3°) - k - 0 = 3.24264 .

The two linearized constraints were adjusted until they coincided to

give a feasible region (Fig. 5). The unrefined optimal solution is

by, = -1.12133

Ay2 -2.121321 .

At this point the computer program makes a post-optimal adjustment
of k to further improve the solution of the local linear program. The
optimal solution of a linear program always occurs at a basic solutiom.
The basis consists of n linearly independent row vectors or constraints
where for theoretical purposes we include the range constraints of the

form

e, Ay = U, - vy,
-] 7 J yJ

o]
e, Ay £y, - 1L, .
-3 Y yJ J

At the present optimal solution the basis is

4.24264 4.24264

0 -1
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AYq

Ay,

1
N4
|

/ Feasible region

Fig.5 — Graphic solution of second L.L.P.

This consists of the first constraint and the lower-bound constraint

on Ayz .

The optimal solution is
Ay = B—l(—g - kr)
In this particular instance,

0.235702

0

1
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and

0.235702 1]{o _[-50
Ay = ‘ + k
0 -1]12.121321 0
, -
2.121321 -11.7851
= +E
-2,121321 0

With our current adjusted k = 0.275148 we obtain
-1.12133
Ay = .
-2.121321

Now observe,

5 2.1213217 _[-11.7851
Ve  (y2)dy = (~1.75736, 0.242641 + &

-2.121321 0

-4.24264 + &k - 20.71066 .

With our current adjusted k 0.275148,

Vg3(y°)Ay = 1.455856 ,

and since this is positive, we cannot even obtain or achieve a local

gain. In general, as k » 0, we obtain the best "rate of gain," but

the distance we can move approaches zero when we are om a boundary.
Suppose one of the constraining functions gi(yo) = 0 (on boundary)

and we return to this boundary after movement,

i i, o i, o

g (y) = Vg (y )by - k+ R (y, kiy) = 0 . (9.1)
From the local linear program the linear gain is

Vgl(yo)Ay = k' . (9.2)
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Substituting expression (9.2) into expression (9.1) and using the ap-
proximation Rl(y, kiy) = k2 . Rl(y, Ay) yields

k(-k - £~ +k - R°(y°, ay)] = 0 ,

and we are at the boundary for k = 0 (no movement) and for

k =k ____Ef;__._

i, o
R™(y~, ay)
Now we neglect changes in the error term due to direction and
position (with circles there is no error because they have uniform
i i i, o 0 . .
curvature). Since we always take r = R (y”, Ay"), this assumption

translates to

) . T
1 1 (o] o] o [o]
r R, Ay) _ Ay Ay

' 1 T
R (y, &y) R (y, Ay) Ay by

’

and the distance moved becomes

. OT [o]
x = By ay%)

T
(8y~ay)
Assuming we move this distance, the objective is to minimize
m m, o
8 = "0 + 7y -k + G0, ay)d |
And employing our assumption that

. T
i, 0 Ay~A i
RiG, ay) = =52 R0, 499

2y° ay®
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as well as our expression for k yields

T
- o] [o]
(Ay”~ by
g"(y%) + ve" (y%) ay k T by )

g"(y) =
Ay~ Ay
T
-2 o) 0,2 T
+ k™(ay" Ay ) Ay~ Ay Rm(yo’ Ayo)
aylap? T o
) Ay~ Ay
m, o = m, o 0,72 oT 0
- o, 0 (Vg (y )by * k+ R (y , Ay )k“]ay” ay
g (y) + . T .
Ay Ay
Now defining
d = B_lg and p = —lrl R
we have
by = d + kp
and

AyTAy = g?d + ZQTR -k + (RT . p)l_c2 .

Further, defining am = ng(yo)i, Em = ng(yo)g

v (y7)ay = Vg (y%)d + kvg"(y*)p = d_+ kp_ .

With the additional definition of
21 ~ m o
= + R (A
p, = p  t Ry,
we can rewrite the expression for gm(y) as

T

v = =2 0", o
(d k +p k™) (dy" 4y")
d'd + 2d"pk + plpk?

gh(y) = "% +



-4~

, . m . .
To obtain the minimum value of g (y), we set the derivative

and solve for k.

Working through the algebra

k = n s
where

_ T ] ~ T
A= 2(dp) P, - d (P

_ T. =
B = (ddp_

= (aT\T
C= (g_g)dm .

In our example,

(p'p) = 13888882

(@'p) = -25

@a =9
5 = 70.710663
m
d_ = ~4.24263
m

A= -2946.286

B = 636.39746

C = -38.183762

0.0324352 ,
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—%
Using the optimal k yields

2.121321
Ay =
-2.121321

and the adjusted right-hand side
(Fig. 6) becomes
o]

1 —%_1
-5 (v - K R(y°, ay%)

-11.7851 1.739072

+ 0.0324352 = ,

0 -2.121321

of the underlying linear program

0 -k - 50 =-1.62175

2% -k - 0=

3.24264 .

Fig.é—quphic solution of second L.L.P.
* after parametric adjustment

Again, using the formula
1
R°(y, ay) =

we calculate

gl<y) - g(y%) - Vgl(yo)Ay ,

RY(y, Ay) = 7.524391 .
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Using the quadratic approximation
1 1 1, 0 2
g =g (%) + 95 Doaylk + R(y, sy)k

(which is exact in this case) to solve for k yields

0+ 1.621761 + k + 7.524391 k2 = O
= L:621761
© 7.524391
= 0.2155338 .

2
Now R"(Ay) = O because the second constraint is linear and

2 2
g°(y7) + g (v ey - k

32(y)

-3.242641 + 0.3822479 -+ k

=0

for k < 8.483084. Hence, we are feasible for 0 < k < 0.2155338, and
the optimum value of g3(y) on this interval occurs for k = 0.2155338.

Using this value of k, we calculate

[2.121321 1.739072
y=y,* kay + 0.215534

[ 2.121321 2,121321

—2.496150]

| 1.664104

the optimum solution. The optimum value is”
3
g (y) = 0.3666912

It should be observed that in making the parametric adjustments to k,
we may transfer basis in the linear programming tableau. This requires
calculating the range of adjustment of k to Preserve the current basis

and making additional pivots if we adjust beyond these limits.
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IV. PROGRAM INPUT, OUTPUT AND EXAMPLE

1. INPUT

Except for the last card, input for the program is in the free

format "LIST" style. Decimal points need not be punched for numbers

having integer values. One or more spaces separate entries on a data

input card. As the program is currently written, an input record

consists

of one, and only one, punched card. Only columns 1 through

72 are processed; columns 73 through 80 are ignored.

Let the following symbols (which are the same in the program) be
defined:
NAT = number of aircraft types (=I)
NTT = number of target types (=J)
NADC = number of side constraints.
The input for the program consists of the following cards:
1. One card with the title of the problem punched in columns
1 through 72.
2. One card with the values for Sl’ ey SNAT (sortie limits).
The number of nonzero numbers punched on this card defines
the value of NAT, whose maximum value is 10, and whose mini-
mum is 1.
3. NIT cards, each giving the data for one target type, and the

target type being given the number of the card in the order
read. For card j of the set, the data assigned to target j

are read from the card in the order

L P I .
T Py e G Ve Prge e Prang
Each card would normally have NAT + 5 numbers punched in it.
LIf it has less than this, the program supplies zeroes for
the missing data. Tj must be nonzero on every card. The

maximum number of.cards is. 45, and the minimum is 1.
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4. The next card is blank. This signals ‘the end of the target
data read in step 3 and permits the value of NTT to be de-
fined. This card is equivalent to a card in step 3 being
read with a value of Tj = 0.

5. NADC cards, each card giving the data for one side constraint.
Each card has data giving "+'" for an upper-bound constraint
and "-" for a lower-bound constraint, followed immediately
by the aircraft type to which it applies. There is no blank
between the sign and the aircraft type. Then, after one or
more blanks, the card contains the percentage of sorties (ex-
pressed as a decimal fraction) applicable to this constraint,
and this is followed by a list of the target types (a maximum
of 10) that are affected by this constraint. The maximum
number of cards in this step is 50, and the minimum is zero.

6. The next card is blank. This allows NADC to be defined as
the number of cards read in step 5, similar to the way NTT
was defined in step 4.

7. The last card is the card with the parémeters for the non-
linear program. This card generally does not change for a
particular deck compilation, and its parameters depend on
the parameter sizes and options in the underlying nonlinear
program. With the current version of the program, this card

should be
IX1 =0 ;

which is the parameter that controls the amount of interme-—

diate output.

Output corresponding to the input is produced for cross-checking
purposes,

At this point the program will attempt to solve the problem pre-
sented and will display the output when computation is completed.

Only one problem may be solved in any particular computer run.

Since this is the case, the card of step 7 should be the last card
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in the input data set and should be followed by the end of data set

delimiter card.

2. INPUT FOR A SAMPLE PROBLEM
The attached exhibit (Fig. 7) titled

Sample Data of
Sortie Allocation Model

will be used to illustrate the input and the output of the computer
program. The input for the computer program consists of 27 of the 29
cards shown in Fig. 8. Two of the cards listed are not input cards,
they are Job Control Language cards required by the IBM 370/158 oper-
ating system. In particular, the card on line 1 (//GO.SYSIN DD %)
signals the beginning of the input data set, and the card on line 29
(/*) signals the end of the data set.

Line 2 is the title card; it may contain any title that the user
wishes repeated on the output. Columns 1-through 72 are used for in-
put and columns 73 through 80 are ignored in this, and all other cards
to follow.

Line 3 is a list of the sortie limits; we have used 0.9Si as given
below in the Sample Data. Note that there are 4 entries: This de-
fines the number of aircraft types (NAT) to be 4.

Lines 4 through 13 are the 10 cards needed giving the information
on the 10 target types. The information is exactly in the order given
as the Target Type data in the Sample Data, with the exception that
the subscript j is not punched, and explicit zeroes replace the posi-
tions where no entry (--) is made.

Line 14 is the blank card that terminates the Target Type data.

Lines 15 through 20 are the 6 cards needed for the upper-bound
sortie constraints. They are.punched exactly as the information shown
in the Sample Data.

Lines 21 through 26 are the 6 cards needed for the lower-bound
sortie constraints. The first number in each line is preceded by a

minus sign in order to distinguish the lower-bound from the upper-bound
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Target Type 3 TJ Dj L Cj Vj Plj sz P3j P4j
Building 1 598 | 9 0 lO-5 0.97) 0.516 | 0.521 | 0.153 -
Ground control 5

interceptor radar 2 663 0 014 10 2.08 ] 0.990{1.137 | 1.087 -
Petroleum, o0il, and s

lubrication refinery 3 2410 0110 0.3710.148 | 0.152 | 0.117 -
Air base shelter 41222710 0 3.13 | 0.343 |1 0.513 | 0.462 -
Aircraft revetted 51166610 0 3,131 6.183 | 6.555 | 7.545 -
SAM site 6| 1900 01107 3.77 | 2.630 | 2.501 | 1.046 —-—
Tanks 711260 |0 0]10™|1.00]0.816 | 0.804 -~ |1.997
Trucks _ 8| 1358 |0 0 10_5 0.951{0.627 {0.408 - 0.584
Mobile SAM site 9 180 10 lO_5 3.4310.725 | 0.573 - 0.423
Personnel in foxhole 10 85710 (0] 10-5 0.51]0.262 |0.205 - 0.377

Aircraft Type i Si

A-7 1 200

F-4D 2 400

F-111 3 500

AX 4 200

Upper-Bound Sortie Constraints Lower-Bound Sortie Constraints
Aircraft | Max 7 Aircraft | Max %
Type Sortie | Target | Set | J Type Sortie | Target | Set | J
1 80 2 6 9 1 10 1 415
2 80 2 4 2 10 3 6
3 80 2. 5 3 10 1 4
4 80 7 4 10 9 10
1 80 1 4 5 1 10 8 10
3 80 1 4 3 10 2 4 15
e.g., S + S + S < 0.8 8 e. S + S + S =2 0.1 8
8 1,27 1,6 " °1,0 1 Ber P11 7 P1,4 7 P15 1

Fig. 7 — Sample data of Sortie Allocation Model



1. //GC.3YSII DD *

2. WEAPONS nIX ... SHALL TEST PROBLEd #2
Je 100 360 450 120

4. HeE. 9 0 1.E-5 0.97 0.516 C.521 0.153 Q.
e 06%. 0 0 1.5-5 2.08 0.€90 1.137 1.087 C.
G. 24. 0 0 1.8-5 0.37 0.143 C.152 0.117 C.
Te 227 0 0 1. 3.13 0.343 0.515 0.462 0.

Se 16¢6 0O 0 1. 3.1% 6.183 6.555 7.545 0.

a. 190. 0 0 1.E-5 3.77 2.620 £.501 1.046 O.
1C. 1200 0 0 1.E-5 1.0G 0.816 G.304 0. 1.997
11. 1358 O 0 1.E-5 0.9 0.627 C.40C 0. 0.5C4
12. 12. 0 10 1.E-5 %.4% 0.725 0,575 Q. 0.423
15, 357. 0 0 1.E-5 0.571 0.262 0.205 0. 0.377
1.

15. T .8 269

16. W3 24

17 W 25

Ze L30T

19. 7.0 145

U T3 14

2. -1 .1 145

AN -2 .1 356

e =% <1 14

=0, - 21 210

L -1 .1 210

Z0. -5 .1 24 ¢

“fo

il I1X1=0;

Y. *
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Fig. 8 — Sample input data cards

constraints. Otherwise these data are exactly the same as the infor-
mation shown in the Sample Data.

Line 27 is the blank card that ends the data for the side con-
straints.

The last data card, on line 28, sets the value of TXl to zero.
This is the only card that requires a semicolon to end the input of
the card; the other cards (except the title card) do not contain
punctuation (other than decimal points) and automatically end in
column 72, The value of IX1 may be 0, 1, 2, 3, or 4, and this num-
ber controls the amount of intermediate output that will be generated.
Since intermediate output is used primarily for debugging purposes,
we have set the value to zero, which indicates that we wish no inter-
mediate output. '
3. OUTPUT

Much of the program output is self-evident from the descriptidn

of the input and from the problem definition. The output will



-50-

usually occupy eight pages; for a small problem such as the sample
problem above, much of each page will be blank. The output produced
specifically for the type of problem we are concerned with (as op—
posed to a general nonlinear programming problem) is divided into
eight logical pages: each logical page will occupy at least one phys-
ical page, perhaps more.

In general, the output the program produces is as follows:

Logical Page Contents of Page
1 Target type data input and sortie limit
input.
2 Input for side constraints; Type = "UP"

for upper bound and "LO" for lower
bound. Alsoc prints problem parameters
(see below).

3 Intermediate output of nonlinear program-
ming problem; in the Sample Problem above,
this page contains only a list of the
nonlinear program's default parameters.

The remainder of the output consists of
the optimal primal and dual solution.

4 Solution: optimal value and multipliers
for the Target Type constraints and the
Alrcraft Type comstraints.

5 Solution: multipliers for the side con-
straints.

6 Solution: number and total sorties by
alrcraft and target types.

7 Solution number of kills calculated from
the sorties.

8 Final output of the nonlinear programming
routine. The multipliers and primal
variables are listed by variable number.
This output is redundant and may be used
for cross-checking. The value for "TCK"
should be a small negative number or zero
to indicate numerical convergence. In
general, convergence is indicated by
-TL < TCK < 0, where TL is printed on
page 1 and has the value 0.0001. 1In the
Sample Problem, convergence was exact, so
that "TCK" is zero.
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The parameters on logical page 2 are NAT, NTT, NADC, MNAT, MNTT,
and MNADC. Of these, NAT, NTT, and NADC are as defined in the input,
while MNAT, MNTT, and MNADC are the maximum values that the dimensions
of the program will allow for NAT, NTT, and NADC, respectively.

4. OUTPUT FOR A SAMPLE PROBLEM

The 8-page output from the sample problem given above is shown

in Fig. 9. The format is exactly as above for the general case.



WEAPCNS MIX ...

TARGET T
1 298
PR Y%
3 24
4 2227
5 looo
6 190
7 1260
8 1350
9 18

1c 857

SGRTIE LIMITS
1380.000000

C
9

o]

36C.000C

L8

0

Cu

WEAPCONS MIX ...

SICE COUNSTRAINTS

# TYPE
1 up
PR
3 we
4 up
5

6

7

8

>

WeEdURN~EESLNEN

c

up
up
Ly
Lc
9 Lta
10 LG
11 Lo
12 Lo

CCASTRAINT COUNT

A[RCRAFT TYPES

TARGET TYPES

SILE CCNSTRAINTS

SMALL TEST PROBLEM w2

cc

0.0000140
0.0000100
G.0UV01G0o
1.0090000
1.00000C0
0.09001¢C0
0.0000100
C.00001¢C
0.0000 10V

G.000014G0

450.000CC0O

SMALL TEST FROBLEM #2

WEAPCNS MIX ... SMALL TEST PROBLEM #2

M= 37 MZ2=
[X1l= 0 Ix2=
Il= 9.9999999699999G69E~09
HELAX=-1,C0C0CCOQCUOUCCCE+OD
€B= V.00000C000000000E+Q0O
AR= 1.LCOCuU0QC0000000E+03
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180.000000

VALUE
0.97U
2.080
0.370
3.130
3.130
3.770
1.000
3.950
3.430

0.510

100

PROBeas
0.5160
0.99G0
0.1480
0.3430
6.1830
2.0300
0.d8160
0.621Q
V.7250

Q.2020

0.5210
1.1370
C.1520
0.5130
0.5550
2.5010
0.8040
C.4080
Je5730

J.2050

PAGE

N2=
M=

9.999999999999999E-05

PCT TARGETS ...
0.8000¢ 2 ¢ 9
0.8000¢C 2 4
0.8CC0C 2 05
0.80¢0C 7
0.80C0C 1 4 s
C.8GCCC 1 4
0.1000¢ 1 4 5
0.10000 3 e
0.10000 1 4
0.10000 S 1C
0.1000¢ 8 10
¢.1060¢ 2 4 5

MAX LMUM NUM BER

10 4
45 16
50 12
0 N3= 4u
0 KERNF =
TL=
1RD=
aG=
NP= 43

Fig. 9 — Sample output

Q
1. CU00LUOOCO0000CIE+D

IWR=
Q

0.1530
1.0470
0.11170
C.406l0
7.5420
Leb4cC
J.0u0J0
¢.00Q0
0.00Q0

0.0000

3

PAGE 1

0.0000
0.0000
0.0000
0.0000
0.0000
C.0000
1.9970
0.5840
0.4230

0.3770

PAGE ¢

ICYCLE=

NEGF=

25
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WEAPGNS MIX .e. SMALL TEST PRCBLEM #2 PAGE
- ITERATICN 190 UBJECTIVE VALUE 6533.46401

MARGINAL VALUES CN KILL LIMITS

TARGET UPPER BLUND LCnER BUUNC

1 0.000000 C.00000C
2 0.C0CCCC €.000u00
3 0.000¢CCC C.00000¢C
4 0.000C€CY C.J03030
5 €.C0v000 C.J0030v
6 2.969157 C.00020¢C
7 0.00000u C.00099Q
-] ¢.CaQcuo C.000000
S 0.524516 C.00000¢C
10 0.000CQ0 C.000u00

MARGINAL VALUES ON AIRCRAFT TYPE AVAILABILITY

A/C TYPE VALUE

2.106116
2.2328321}
1,4192311
1.228€10

S W

WEAPCNS MIX ... SMALL TEST PRCALEM K2 PAGE
MARGINAL VALUES ON SIDE CUNSTRAINTS

[ TYPE A/C VALUE

1 upP 1 ¢.0CC000
2 up 2 C.132117
3 up 3 1.15C1742
4 Le 4 Q.7€8185
5 up L €.0Ccuce
6 ue 3 0.0000¢C0
7 Lo 1 g.0cdicco
8 Lo 2 C.23c018
9 LG 3 ¢.00a000C
10 La 4 c.0cgcco
1t LG 1 1.51C4¢7
12 Le 3 0.G0Lu0Q
WEAPCNS MIX ... SPALL TEST PRUBLEM #2 PAGE
SCRTIES BY A/C TYPE

TARGET TYPE TCTAL 1 2 3 4

L 0.9C0 0.00G 0,000 0.v00 J.000

2 288.0C0 093¢ 288.000 C.00¢ 0. 000

3 C.000 Q.90uv 0.000 0.00¢C 0.000

4 GC.0CO C.uG¢ 0.000 90,000 U.000

5 516.167 120.161 36.000 36C.00C 0. 0G0

& 74.0CS 38.009 36.000 0.004 J.000

7 L44.0CC 0.000 0.000 0.000 144.000

8 18.000 18.00¢C 0.000 Q.030 0. 000

9 39.824 3.d24 0,000 0.009 320.900

10 c.0ccC 0.000 0.000 0.000 0,000

TCTAL 1170.000 180.000 3604000 450.,0GC 180.000

Fig. 9 — continved
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TARGET TYPE

WEAPCNS MIX

1

2
3
4
5
6
7
.|
9
0

-

TOTAL
9.000
327.455
0.002
41.194
1484.663
190.000
287.5¢8
tl.28¢
18.000
0.0C0

WEAPONS MIX

eee SMALL TE
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ST PROBLEM #2

1 2 3 4
0.000 0.000 0.000 U.000
0.000 327.455 0.000 J.u00
U.000 0.000 ¢.00C 0.000
J.000 0.000 41.194 0.C00

298.525 94.815 1091.349 0.000
99.964 90.036 0.000 u.000
0.000 0.000 0.000 287.568
li.28¢ 0.000 0.000 V.000
2.772 0,000 0.000 15.228
0,300 Q.000 0.000 0.000

see SMALL TEST PROBLEM k2

LAGRANGE MULTIPLIERS

1L, 2.1061172CE+QC 12,

Gy 2.960915728E+0C 17,
14, 1.2288104SE+0C 13,
16, 1.32116643€-CL 22,
ITCl= 1u IPC= 1 [PN=
SLPG= C.000000CE+Q0 TCK=
PRIMAL VARIABLES

5 1.2016054E+02
6 3.8009499F+C1
8 1.7595$S4E+C1
9 3.8235674E+C0

12 2.87958GS8E+Q2

1S 3.,60CCCACE+CL

16 3.5956587E+01

24 9.0000021F+01

25 3.59994958F+02

37 1.4399559F+02

kL 3.6G0CCCSE+0L

20232383168E+00 25, L.51046725E+00

Lo 15C74438E+00 138,y 7.68104932E-01

1.41931130E4+00 9, 5.249706456E-01

2.30CL0323€E-01

0.CCO0000E+U0  G(M)= -0.5334640E+03

Fig. 9 — continued

PAGE

8
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Appendix A
DETAILS OF THE NONLINEAR PROGRAM

The nonlinear program solves the following problems: subject to

the constraints
i ,
g (yl’ y2’ LA ] yN3) =0 for i = l, 2, seey M2
and
gl(yl, Ypr cees Yygg) SO for i=M2 41, M2 42, ..., M-1,
minimize the function
M
g8 (¥ys Yy -.-,yN3)
with

yl, yz, ceey yN2 unrestricted

and

yN2+l’ yN2+2, cens yN3 nonnegative.

The above variables are also subject to default bounds; the de-
faults are lower bound of -100 and upper bound of +100. These bounds
may be set in a user procedure (SETUP or RESET) to any numbers con-
sistent with the type of problem being solved.

The constants M2, M, N2, N3 appear in the program as in the above
equations. It is permissible for M2 and N2 to be zero; this results
in an absence of equality constraints or free variables, respectively.
Also there may be no constraints at all, in which case M = 1. The in-
dependent variables yl, y2, ey yN3 appear in the program as the

vector Y(+). The only explicit restriction on the gi functions is
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that their derivatives should exist and be continuous. An evaluation
of the gi functions is stored in the program in the vector G(*) after
being evaluated in the procedure FCNGEN. The program also evaluates
the gradient of the g functions. It does this one variable at a time--
to obtain the partials of the g functions with respect to yj, the pro-
gram calls the procedure COLGEN(j). The resulting derivatives are
stored in the CA(‘) vector.

Communication among the various procedures is done via global
variables (or EXTERNAL variables in PL/1l programs). Brief descrip-
tions of these variables are given in Tables 1 and 2. Most have a
distinct operational use; however, some may be used for temporary
storage or for special applications. Certain nondimensioned variables
may be input via a "GET DATA" statement; these need only be input if
the user wants to override the defaults of the program. (An exception
to this is that at least one parameter must be read in; this applica-
tion uses the parameter IX1, which controls the amount of intermediate
printout.) Some of the parameters in the "GET DATA" statement are
global variables, while others are used only in the main routine and
are nonglobal. Not every one of these parameters is applicable to the
general continuous nonlinear programming problem described here.

The remainder of this section contains (1) dimensioned global
variables, (2) nondimensioned global variables, (3) input parameters,
(4) nonlinear subroutine calls, (5) flow of main procedure, (6) func-
tions of the individual procedures, (7) logic for procedure INVDET,

and (8) logic of column selection when KO(3) is being determined.



Variable

Y(.)
CA(.)
G(.)

V()

UB(.)
BL(.)
FL(.)
R(.)
PT(.)
DEL(.)
G1(.)
LGV(.)
IPR(.)

1(.)
J(.)

K(.)
LGB (.)

IS(.)
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DIMENSIONED GLOBAL VARIABLES

Meaning

Values of the primal variables,
One column of the gradient as produced by procedure COLGEN.

The evaluated function values as produced by procedure
FCNGEN.

The kernel of the inverse of the local linear programming
problem.

The upper-bound vector associated with the variables.
The lower-bound vector for variables.

The linear correction term Vgi(yo)Ayo.

The estimate of the remainder Ri(yo, Ay).

Temporary P, used in procedure POAD.

The computed change in the primal variables.

Storage for the previous value of G,

Logical vector, denotes accessibility of variables;

Permutation vector, allows order of variables to be
changed,

Permutation vector of row numbers.
Permutation vector for basic columns.
Control sequence (used in blocking).

Logical bound: variable at lower bound = -1, at upper
bound = +1, between = 0.

Scanning sequence in procedure LINPRG.



Variable

ZL*
TL*
VALID
SUPG
BEND
sC

M*
N3*%
M2%
N2%
ISF
KFFQ*

IX1#*
IX2*

IPC*
IPN*
N

LH
ICYCLE#*
KERNF
LT

LS
ITC1
ITC
NEGF*

M1
M3
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NONDIMENSIONED GLOBAL VARIABLES

Meaning

Zero level for variables.

Termination level, "e."

Termination check calculation in main routine.
Value of the maximum infeasibility.

Bend factor, k in the theoretical development.
Sliding factor used in approximation range calculation.
Number of constraints plus one (for objective).
Number of variables.

Number of equality constraints (default 0).
Number of free variables (default 0).

Stop flag. Set to 1 when terminating.

Kernel flush frequency. The parameter KERNF is zero ex-
cept on iteration multiples of this parameter at which
time KERNF = 1000. 1If KFFQ = 0, KERNF is always zero.
Default O.

Amount of intermediate output; 0, 1, 2, 3, 4. Default 1.

Default to O for general problem. If 1, solves linear
problem,

First permutation level to calculate. Default 1.
Last permutation level to calculate.

Number of columns in explicit tableau.

Number of rows in kernel.

Iteration limit. Default 25.

Lower bound on kernel size before flush.

Index of row for pivot.

Index of column for pivot.

Outside iteration counter.

Number of pivots in local linear program.

Cost selection rule: most negative = 1, default; first
negative = 0.

Number of binding equations in basis.

Number of constraints (M - 1).

* denotes input parameter.
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NONDIMENSIONED GLOBAL VARIABLES (continued)

Variable Meaning

N1 Number of free variables in dual basis (driven from B to K).
NO Length of the control sequence, K.

NS Length of the scanning sequence, IS.

NMAX Maximum size of LH, currently 114.



Parameter

JM

RELAX

EB
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NONGLOBAL INPUT PARAMETERS

Meaning

JM=1 means that a search for minimum will be done among
NP points; JM=0 means that a quadratic approximation is
used to find the minimum. 1In this application, JM=0 is
the default.

(Default = -1.) Used in the termination check calcula—
tion.

Equation Bandwidth. Used with nonlinear equality con—
straints to leave space between the two inequalities.
Default to zero.

Approximation Range. Used when the steps are large and
wild. Default is 10.

Number of points used with JM=1 option. Default is 4.
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Set Default Values

Read Default Overrides, |f Any

Set Default Bounds and Vectors

Initialize Arrays

CALL SETUP

Caleulate SUPG = max G (i)

210
237

Solve Local Linear Program

l

Do Post— Optimal Adjustment

Yes

Resolve LLP ?

Save G in GL ADD
DEL to Y
Calculate New G

[
Coleulate R=G -G1-FL

Do Interval Determination
CALL RESET ENPTL and ENPTR

Compute Scale Factor for Objective
SKQ = -FL(M) /[2* R(M)]

Take Scale Factor SK as min of SL and SKQ

Do True Correction of Y~— Y + SK *DEL .
No Yes '

ISF 2 1 or lter
! <limit exceeded >

If Feasible and Optimal Set ISF = ]

Fig. Il — Main procedure




Procedure

MAIN

POAD

INVDET

GENMIN
LINP

RCK

COLT

INCON

LINPRG

TRAN
INCHR

INCHC

BOUND

PRINT

WRTOUT
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FUNCTIONS OF THE INDIVIDUAL PROCEDURES

Meaning

Central control for the flow of logic needed to solve
the general problem.

(Post-Optimal Adjustment.) Adjusts the parameters for
the nonlinear step. Does the bookkeeping for the vari-
ables at upper and lower bounds, using vector LGB. Cal-
culates Ay (DEL) and then finds kK (BEND).

(Interval Determination.) Uses a quadratic approxima-
tion on each constraint to determine feasible interval
of movement. If the intersection of all the intervals
is null, the main program decreases the required in-
feasibility by a factor of two (up to 32 times) and then
redoes the calculation for a feasible interval.

Does a search on the feasible interval for a minimum ob-
jective function value (option for when JM > 0).

Main control for solving the local linear programming
problem.

(Row Check.) Checks the target row [K(2)] for the first
negative element (if NEGF = 0) for the maximum negative
element (if NEGF # 0). 1If one is found, the column is
designated JH.

(Column Transformation.) Transforms column in the CA
vector and places it in the N-1lst column of V.

Calculates (if IEX < 0) the transformed R vector and
places it in PT. If IEX > 0, adjusts the transformed
right-hand side by TM*PT(-). If IEX = 0, calculates PT
as above and does the above inconsistency adjustment.

Solves one step, including resolution of blocking of the
local linear programming problem. Determines the neces—
sary pivot columns and rows,

Called by LINPRG to do the actual pivot calculations.
The pivot element is (LS,LT).

(Interchange Rows.) Interchanges rows LR1 and LR2. Re-
places LR2 in the control sequence by LR1.

(Interchange Columns.) Interchanges rows LCl and LC2 in
the basis. Replaces column LC2 in the control sequence
by column LCl.

Does the calculations that preserve the bounds when doing
the LINPRG procedure.,

Does the detailed column generation printouts when the
intermediate print flag, IX1, is set to its maximum value
of 4.

Prints final solution and Lagrange multipliers. Termi-
nates the run if the stop flag is set (if ISF > 1.
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INTERVAL DETERMINATION

Logic for procedure INVDET when all constraints are inequalities.

This logic is repeated for row indices i from 1 through m - 1.

I. 1If Ri = 0.
A. If FL(i) = O done.
B. If FL(i) # 0 set Al = 0, A2 = 2.
i. TIf FL{(i) > O set Al D - G1(i)/FL(4i).
ii. 1If FL(i) < O set A2 = D - G1(i)/FL(4i).
Go to step III.
II. 1If Ri # 0. Compute DS1 = FL(i)2 -4 - Ri[Gl(i) - D].
i. Let DS = sign (DS1) + /[DsI].
0 and A2 = + =
and then do parts A, B, C, or D, depending on signs.

A, Gl(i) > 0 and Ri > 0. If DS < 0 quit procedure, else

ii. Let Al

_ -FL(1) - D§ . =FL(1) + DS
Al 2Ri and A2 = 2Ri .

B. G1l(i) > 0 and Ri < 0. If DS < 0, done; else

_ =FL(i). - DS
Al 2%,

C. G1l(i) < 0 and Ri > 0.

1 - FL + DS

A2
2Ri

D. G1(i) < 0 and Ri < 0. If DS < 0 done, if FL(i) < 0 done;

else

-FL(i) + DS

2Ri

A2 =

Now do step III.
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III. A. 1If A2 < ENPTR, set KFLG = 1.
B. Set ENPTL = max(Al, ENPTL)
ENPTR = min(A2, ENPTR).
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Yes

©
© V (IC, IR) ©
Y
Yes IR = M2 IR=M?
No No
V @ @ ‘
V (N, IR) © ©) V (N, IR)
® Y ©
N — Icsne S
No
]
LGB (J(JC))
©
Y Y
L | VvV (IC, IR)|<BST? Yes

No

Set BST = V(IC, IR)

Set K(3)

IC

Y

END -

Logic from range (30,39) of LINPRG. BST initially zero.
I1C ranges from M1 + 1 to N - 1.

Fig. 12 — Logic of column selection when KO(3) is being determined
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) Appendix B
USE OF THE NONLINEAR PROGRAMMING ALGORITHM
FOR OTHER APPLICATIOQNS

The PL/1l version of the nonlinear programming routine consists
of twenty internal procedures enclosed by an external procedure named
NONLIN. Of the twenty internal procedures, only four procedures need
vary with the particular application. These four are SETUP, RESET,
FCNGEN, and COLGEN. The function of each subprogram is quite simple,
and it may be modified for other applicatiomns than the one presented
here. These four procedures may, in fact, be removed from the main
procedure and compiled separately, and the sixteen remaining proce-
dures may be compiled into a load module that does not change. The
global variables associated with the external procedure WONLIN must
then be declared external, as these variables are used to pass infor-
mation between the sixteen '"fixed" procedures and the four varying
procedures. A brief description of the four potentially varying pro-
cedures and an indication of how to use them follows.

In addition to communicating with the sixteen fixed procedures,
the four varying subroutines must communicate with each other. In
this application, these four procedures, together with the procedure
"PAGE", have additional external variables defined in them. The def-

initions of these variables are as follows.
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EXTERNAL VARIABLES FOR FOUR SUBROUTINES

Variable Name

Meaning

TITLE Information in the title card.

B(-) Right-hand side of linear constraints.

() The variable Tj.

SL(+) The variable Qj.

D(-) The variable Dj'

CC(+) The variable Cj'

VALUE(-) The variable Vj'

PROB(*>*) The variable Pij'

PS(+) The sum Ei Pij sij'

TK(-) An intermediate variable in the objective calcula-
tion, ?j (Sec. II, Eq. (3.6)).

SMAX(+) The maximum sorties for aircraft i, Si'

ADC(+»-) Coefficient matrix for the side constraints.

ROW(*) Aircraft type associated with a side constraint.

NAT Number of aircraft types.

NTT Number of target. types.

NADC Number of side constraints.

NAATT NAT + NTT.

IPAGE Page number of last page printed.
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The procedure SETUP does all of the data reading that is neces-
sary to run the problem. If there are coefficients for the objective
function or any of the constraints, these coefficients must be read
in this procedure. The dimension of the problem, and any variable
that is to be set to a nondefault value is computed in this procedure.
In this application, SETUP reads in the information for T, D, CC,
VALUE, PROB, SMAX, ADC, ROW, NAT, NTT, NADC, and NAATT. In addition

it sets the value of M, the number of constraints plus one, to
NAT + NIT + NADC + 1 ;
and the value of N3, the number of independent variables, to
NTT * NAT

Procedure SETUP also does any printing associated with the input.

The two procedures, FCNGEN and COLGEN, operate as a pair. FCNGEN
evaluates the functions g(yo) and- COLGEN evaluates the gradient Vg(yo).
Note that the objective function is always the mth or last component
of g. g and Vg must be written correctly so that the program will
behave consistently; if COLGEN and FCNGEN do not refer to the same
functions, the main programs may behave erratically. There is a pro-
cedure for testing the consistency of COLGEN and FCNGEN; it is called
"CONTEST" and is described in Appendix C.

FCNGEN is called with one parameter "JP". If JP = 1, then only
gm(yo) should be calculated. If JP = 0, then all m functions should
be evaluated. The values of the calculated functions are put in the
array "G"; i.e., G(M) is the objective value and G(1), G(2), ..., G(M - 1)
are the values of the constraints.

The procedure COLGEN is also called with one parameter, called "JC".
JC is the component or column number of the gradient to be evaluated.

The procedure stores the JCth column of the gradient in
CA(1), CA(2), ..., cA(M).
The procedure RESET is called when the nonlinear programming

routines have determined that a termination condition has occurred.
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RESET allows the user to print the output associated with the problem
just completed, to input the data for a new problem as in SETUP, and
to set the termination conditions. In this application, we only print

the output and then set the termination condition by setting
ISF = 1 ,

where ISF, the "stop flag,'" is zero to continue and one to stop. In
an application in which the basis is saved, ISF would be set to zero.
If one wished to continue but with a new basis, the following state-

ments should be included:

ISF =0
LPC = 0,

where LPC is the parameter of the procedure.

V Procedure RESET indicates whether the current solution is feasi-
ble. If K(2) is equal to M, the solution is feasible; otherwise it
is not. The dual variables associated with the nonocbjective rows may

be recovered as X(*) as follows:

(1) . Set X(*) = 0;
(2) For JC in the range [1, LH], set X[I(JC)] = v[JCc, K(2)1].

Note that the above representation of the V matrix is by column and
row, which is the PL/1 convention and is opposite to the FORTRAN con-
vention. When the problem is infeasible, the current objective row

for the purpose of reducing infeasibility is I[K(2)].
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Appendix C
THE CONTEST PROGRAM

The CONTEST program is a main procedure that is designed to evalu-
ate new FCNGEN and COLGEN procedures. It will test these procedures
for consistency and nonlinearity. (Any reasonably complicated set of
functions is very likely to contain errors when the procedures are
first written.)

In addition to FCNGEN and COLGEN, the procedure SETUP must be
included in the CONTEST run. This is because SETUP initiates many of
the parameters and sets the dimensions that are needed in the other
procedures. In addition to checking the consistency of these routines,
CONTEST will also detect compilation errors that might not be detected
until the routines are run in the much larger general system.

To use CONTEST, the user sets up his input and writes SETUP,
COLGEN, and FCNGEN as he would ordinarily do with the general system.
Then he compiles these procedures along with the CONTEST main proce-
dure (which is only about 93 cards), and runs with the normal "Compile
and Go" job control language. Provided that the resulting program is
error free, the output produced may then be checked for consistency.

For printed values of y, each line of output contains values for
gt (y), vg' (y ), ¥V 5 i(y), vy, FL(1) = ngl(y)Vy.. and R(i) = Vg (y)

- FL(1). If both VJg (y) and Vg (y ) are zero, the above values are
not printed for the corresponding (1,3) pairs. The program calculates
a step-size Vyj that is one-tenth the difference between the upper

and the lower bounds of each variable. Then Vg (y ) = gi(yO + Vy,)

- gi(yo) In turn, CA(i) as produced by COLGEN(J) is Bg (y)/ay or
ngi(y). When the factor gi is llnear, then V g (y)Vy = Vg (y )N

and R(i) is zero. When the function g is convex, then R(i) is posi—
tive.. When the values printed by CONTEST check for function values,
linearity, and convexity, then the procedures SETUP, COLGEN, and
FCNGEN may be ready for testing in the general system.
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Initialize Default Values .
Read Default Overrides.
Set Default Bounds.
Call SETUP

J

Set (Column Number) j=1

No

Evaluate gP (y°). Denote By g:’ i-1,2,..., m

UB = Upper Bound
Set & = 1/10 [UB (j) - BL (J)] BL = Lower Bound

Replace A By - Alf yf + A > UB(j)

CALL COLGEN (j) To Obtain VJ gl (y®) i=1,2,e00 ,m

Set FL (i) = A'ng' (y9) 1=1,2, 00, m

Sety, =yZ2+4A

AR .

Call FCNGEN To Obtain gp (y}. Denote By g1I i =1,2,0 ¢ 0, m.
Setr|=91i'9°i'FL(i) i=1,00e, m

Reploceg; By goi +1/2 FL(I) +1/4 r i=1, 400, m

Decregse )'J By 1/2 A
Call F.NGEN To Obtain g (y). Denote By g%:
Decrease Y By 1/2A To yj°

J

Set i=1

=] Set COMG = g/ - g
o

N

Is"COMG =0 Yes
And FL (i) =07

No

Set FLAG = Blank' If | COMG | < ZL Else FLAG = ‘#oxs 1.

¢

PRINT j,i, g , COMG, FLAG, v g 4O, B, B, F, 4O
z J

No

Fig. 13 — General flow of contest program
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