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cells and the prospects for using optical forces
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Abstract 

Contemporary biomedical research requires development of novel techniques for sorting and manipulation of cells 
within the framework of a microfluidic chip. The desired functions of a microfluidic chip are achieved by combin-
ing and integrating passive methods that utilize the channel geometry and structure, as well as active methods that 
include magnetic, electrical, acoustic and optical forces. Application of magnetic, electric and acoustics-based meth-
ods for sorting and manipulation have been and are under continuous scrutiny. Optics-based methods, in contrast, 
have not been explored to the same extent as other methods, since they attracted insufficient attention. This is due 
to the complicated, expensive and bulky setup required for carrying out such studies. However, advances in optical 
beam shaping and computer hardware, and software have opened up new opportunities for application of light to 
development of advanced sorting and manipulation techniques. This review outlines contemporary techniques for 
cell sorting and manipulation, and provides an in-depth view into the existing and prospective uses of light for cell 
sorting and manipulation.
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Background

In the fields of biomedicine and biological research effi-

cient and high-throughput cell sorting and manipulation 

is crucial. Cell sorting and manipulation methods devel-

opment, and miniaturization is key to point-of-care diag-

nostics and therapeutics research. Advances in medical 

science have shown importance of performing analysis 

of heterogeneous cells in a sample, e.g. tumor, circulating 

cancer cells (CTC) and blood, etc. [1–4].

Among these types of samples blood is, arguably, 

under the highest level of scrutiny due to the easy acces-

sibility, and information density and variety. Accurate 

analysis of information residing in the blood requires 

efficient and accurate separation of blood cells. If cells 

have clearly distinguishable physical properties, such as 

size or density, they are filtered easily by centrifugation 

or sedimentation, which also allows batch processing. 

Microfluidics-based sorting and isolation techniques are 

employed for the cases, where cells are similar in physi-

cal properties and batch processing becomes unreliable. 

Precise and continuous sorting of cells in a microfluidic 

system requires accurate identification of cells. Gener-

ally, this is achieved by tagging cells using special label-

ling particles or molecules that either fluoresce or change 

affinity of cells towards electromagnetic fields.

In biomedical research and clinical diagnostics, along 

with filtration, centrifugation and sedimentation tech-

niques, fluorescent activated cell sorting (FACS) and 

magnetic activated cell sorting (MACS) have become 

standard methodologies for accurate and continuous 

sorting of physically similar, heterogeneous mixtures of 

cells and particles. FACS and MACS methods utilize dif-

ferences in cell surface molecules to target specific cells 

using antibodies. �ese technologies have reached matu-

rity, so their improvement to achieve lower cost, higher 

portability, smaller sample sizes and greater purity has 

become a difficult task. �ese factors have led many 

researchers to study alternative methods of cell separa-

tion. In the field of clinical diagnostics and therapeutics, 
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novel, miniature separation technologies are allowing to 

achieve extremely high precision of cancer diagnostics 

[5–8]. In the case of blood cells, diagnosis of many dis-

eases requires extraction and analysis of specific blood 

cell populations, such as erythrocytes [9–11], leukocytes 

[12–14], platelets [15, 16], and pure plasma [17–21].

Cell sorting is also being extensively used in Regen-

erative Medicine and Tissue Engineering applications 

[22–25]. Another emerging field of study where cell sepa-

ration techniques are being employed is Personalized 

Medicine, where rapid and accurate cell separation and 

enrichment is of paramount importance [26–28]. Finally, 

fundamental biological studies focusing on understand-

ing of individual characteristics of various populations of 

cells make heavy use of novel cell separation platforms.

Contemporary cell manipulation and sorting methods 

utilize microfluidics or combination of microfluidics and 

physical forces, i.e. magnetic, electric, acoustic and opti-

cal. Magnetic, electric and acoustic methods have been 

reviewed extensively by multiple researchers. It is advised 

to refer to works by Shields et al. [29] and by Sajeesh and 

Sen [30] for a detailed review of cell sorting and manipu-

lation. Additionally, for an in-depth review of individual 

topics within this field it is advised to refer to works by 

Plouffe et  al. [31], Lenshof and Laurell [32] and others 

[33–36]. Overview of gravity and centrifugal force-based 

methods are excluded entirely from this review and the 

focus is kept on physical force fields.

�e use of optical forces for cell manipulation and sort-

ing, on the other hand, has not been investigated to the 

same extent as aforementioned forces and methods due 

to the complicated, expensive and bulky setup required 

for carrying out such studies. However, in the past years, 

several technologies were developed and others were 

improved allowing efficient use and shaping of optical 

beams. Optical systems are, usually, built in a way that 

does not interfere with other forces and techniques for 

cell manipulation and sorting, thus allowing multi-level 

integration [37]. �ese advancements provide a good 

opportunity for development of novel separation tech-

niques, the so-called optophoresis, which use optical 

forces for separation of cells and particles.

�is paper reviews recent advancements in the field of 

cell manipulation and separation using advanced optical 

tweezers systems and future prospects of this field. �e 

paper consists of two parts. In the first part an overview 

of conventional cell separation and manipulation tech-

niques, i.e. magnetic, electric and acoustic is provided. 

Noteworthy, this part highlights methods for cell sepa-

ration and manipulation with a focus on micro-scale 

objects, as well as latest studies and developments that 

contributed to the fields of science where these methods 

found their use. Although some of the methods described 

herein can be applied to macro-scale separation and 

manipulation, a detailed review of them is omitted due to 

being out of the scope of this article.

In the second part, recent progress in optical forces-

based cell manipulation and separation methods is 

reviewed. In addition, some design considerations for 

realization of holographic optical tweezers and an over-

view of standard methods for advanced beam shaping are 

brought up in later sections of this part, as well as future 

prospects of using optical forces for cell separation and 

manipulation.

Methods for separation and manipulation of cells 

and particles

�e majority of methods that are employed today for 

separation and manipulation of cells rely on microflu-

idic systems. �e use of microfluidics has unique advan-

tages thanks to the properties of fluid flow at micro scale. 

�ese advantages include small dimensions, laminar flow 

profile, velocity gradients, high surface to volume ratio, 

fast rate of processing, ability to perform analysis with 

an extremely small sample quantity, and ability to inte-

grate into larger systems [38]. �ese advantages enable 

coupling of other, physical forces-based cell sorting and 

manipulation methods, i.e. magnetic, electric, acoustic or 

optical, into a microfluidic system as well as integration 

with other microfluidics devices for simultaneous analy-

sis of a sample. Such capabilities allow to reduce costs, 

increase efficiency and automate sample analysis.

Methods for sorting and manipulation can be divided 

into two groups: passive and active methods. Passive 

methods use geometric properties of the channel or 

structures, e.g. deterministic lateral displacement, to 

manipulate fluid flow and thus sort cells based on their 

physical properties [39–42]. Active methods, on the 

other hand, achieve the same by applying external forces 

on cells, or beads that are attached to cells rendering 

them susceptible to these forces. Active methods uti-

lize magnetic, electric, acoustic and/or optical forces. In 

this review article, the focus is on active methods utiliz-

ing physical forces for cell sorting and manipulation. 

Noteworthy, active methods rely on some sort of passive 

methods, such as microfluidics, that complement it.

All the passive and active techniques are in intensive 

study and development stage, but in comparison with the 

rest, optics-based methods attract insufficient attention. 

�e major advantage of using optical forces is the flex-

ibility in terms of integration [43–45]. Optical systems 

generating light beams or optical traps are a level above 

traditional physical force methods and do not interfere 

with a functioning and design of the microfluidic system. 

Optical forces can be “superimposed” on top of the other 

techniques and methods.
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Each of the active methods used in microfluidic-

based cell separation or sorting can apply forces using 

bead labelling, fluorescent labelling, or directly without 

labelling (label-free). Bead labelling-based sorting and 

manipulation of cells rely on binding of, usually spherical, 

particles to cells and consequent exposure to electromag-

netic and acoustic forces. Beads are made to be of various 

sizes and material depending on the application. Bead-

based separation allows simultaneous manipulation of 

multiple target cells. Fluorescent label-based sorting and 

manipulation make use of fluorescent dyes and probes to 

tag target cells. �e tagged cells are then scanned as they 

pass through a microfluidic system. As cells of interest 

are identified they can be sorted into separate channels or 

compartments within a microfluidic system. Label-free 

methods utilize flow parameters of channels of various 

shapes and sizes to manipulate streamlines carrying cells 

and particles. In addition, label free methods use various 

structures in the path to filter cells or divert streamlines 

[34, 36, 39, 41, 46, 47].

Magnetic force

Separation of cells and particles using magnetic forces 

is called magnetophoresis. Magnetic manipulation and 

sorting of cells rely on the use of nanoparticles, some-

times called beads, to make cells susceptible to magnetic 

forces. Magnetic beads are a collection of magnetic nano-

particles enclosed in a biocompatible, inert coating. �ey 

are often used for enhanced sorting and manipulation 

of cells in microfluidic systems. Major requirements for 

the beads are: uniform size, biocompatibility, stability in 

various types of media and biodegradability. Finally, mag-

netic beads’ surface has to be modified to be functional 

by making it adsorbent towards proteins, antibodies and 

other biomolecules. �us, magnetic beads in majority of 

cases are made for a predetermined application [31].

Equations for lateral separation of the cell-magnetic 

bead complexes or beads in a microfluidic system are 

governed by the following equation [48] 

where mp is the mass and �up is the velocity of the par-

ticle. �e magnetic, �Fmag , and drag, �Fdrag , forces affect-

ing the particle are given by the following equations, 

respectively:

(1)mp
d�up

dt
= �Fmag + �Fdrag .

(2)�Fmag = Vbχeff

(

�B · �∇

)

�B/µ0,

(3)�Fdrag = 6πηRp

(

�up − �uf
)

.

Here, Vb and χeff are the bead volume and effective 

magnetic susceptibility, �B is the magnetic field, μ0 is the 

permeability of vacuum, Rp is the effective particle radius, 

η is the fluid viscosity, and uf is the fluid velocity.

Due to simplicity of their operation and low cost, mag-

netic bead-based sorting has become one of the widely 

used standards for cell sorting in the form MACS [49]. 

Increasing popularity has driven development of a 

wide selection of tagging nanoparticles and targeting 

antibodies.

Development of superparamagnetic iron oxide nano-

particles and high-strength magnets has allowed mag-

netic beads to be of practical use in high-throughput 

sorting. In recent literature, magnetic nanoparticle label-

based sorting has been used to detect and sort elusive 

circulating tumor cells. Cho et al. [50] have developed a 

disposable microfluidic device with a reusable magnetic 

functional substrate that is able to isolate CTCs from 

nucleated blood cell sample of breast cancer patients. 

Similarly, Ozkumur et al. [47] have developed an inertial 

focusing—enhanced microfluidic CTC capture platform 

(see Fig.  1) with the use of magnetophoresis method. 

�eir study demonstrates vast potential of integrating 

multiple separation methods into a single system.

Magnetophoresis has also been shown to be effective 

in separation of bacteria. A microfluidic free-flow mag-

netophoresis device was developed by Ngamsom et  al. 

[51] that demonstrated a multiplex sorting of Salmonella 

typhimurium and Escherichia coli with the use of mag-

netic beads.

In a recent study, magnetophoresis in a microfluidic 

device was also used for manipulation and concentration 

of DNA, showing its promise for manipulation of large 

molecules [52].

Magnetophoresis can be used to separate red blood 

cells from other blood cells without the use of magnetic 

beads due to their iron content. �is method was first 

developed by Melville et al. [53].

Lastly, ferrofluids can be used to “push” and “pull” cells 

enabling label-free manipulation and separation of cells 

and bacteria. �is method was pioneered by Kose et  al. 

[54]. �e ferromicrofluidic platform was reported to have 

99% size-based separation efficiency of both micropar-

ticles and live cells [54]. More recently, a study by Zhao 

et  al. [55] has demonstrated a low-cost, label-free and 

rapid, throughput ≈ 106 cells h−1, ferrofluidic separation 

of HeLa cells and erythrocytes with > 99% recovery rate. 

Furthermore, recently, Zhang et  al. [56] have developed 

a novel viscoelastic ferrofluid and investigated sheathless, 

size-based separation of particles by employing viscoelas-

tic 3D focusing and negative magnetophoresis.

�e major inconvenience of magnetic force-based sort-

ing and manipulation methods is an almost compulsory use 
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of beads, which might interfere with cell functioning and 

further downstream analyses. For some applications, elec-

tromagnets might be used resulting in Joule heating, which 

can be detrimental to cellular viability and integrity of a 

microfluidic system. Further, for some applications persis-

tent magnetic field generated by a permanent magnet might 

become an obstacle, while for others this is an advantage.

Electric force

A number of techniques for cell sorting are based on 

electric interaction. First, electrophoresis is a method 

where particles suspended in a liquid medium or gel 

migrate toward a charged electrode in direct current. In 

such cases, particles move to charges opposite to their 

own and the speed of the movement depends on the size, 

viscosity of the medium, charge and strength of the field. 

Cells, for example, tend to move toward the positive elec-

trode due to distribution of negatively charged molecules 

on their surface [29, 36, 57].

Kostal et  al. [58] developed a micro free-flow electro-

phoresis (μFFE) system for mitochondria separation. �e 

system is reported to require 100-fold less sample volume, 

tenfold less buffer volume and lower electric fields than con-

ventional FFE systems. Completion of analysis in less than 

30 s is another advantage of the µFFE system. Existing FFE 

methods achieve separation within approximately 25 min.

Another recent study carried out by Guo et  al. [59] 

has demonstrated sorting of water droplets in oil using 

electrophoresis. It was reported that this method allows 

to achieve considerably higher throughput in continuous 

flow.

Dielectrophoretic method can be used to perform cell/

particle sorting without requiring the presence of surface 

charges as in conventional DC electrophoresis. �e term 

dielectrophoresis itself stands to describe a phenomenon 

of moving particles in a non-uniform electric field. �is 

phenomenon was first described by Pohl [60]. Every par-

ticle, in the presence of an AC field, demonstrates electro-

phoretic movement. �e particles/cells exhibit movement 

due to induction of a dipole moment across the particle/

cell. �e dielectrophoretic force depends on the size, shape 

and electric permeability of the particle and the surround-

ing medium [8, 30, 61]. �e classic equation of the net die-

lectrophoretic force exerted by a nonuniform electric field 

on a lossless dielectric particle is given below [62]:

Here, ɛf and ɛp are the permittivity of the lossless die-

lectric fluid and the homogenous dielectric spherical par-

ticle, respectively. Rp is the radius of the dielectric sphere, 

E0 is the non-uniform electric field.

�ere are two subdivisions of dielectrophoresis that are 

defined by the mode of action: positive dielectrophore-

sis (pDEP) and negative dielectrophoresis (nDEP). In the 

pDEP mode, particles possess higher electric permeabil-

ity than the surrounding media, thus the particle moves 

toward the place where field intensity is strongest. In the 

nDEP the opposite is taking place, particles with lower 

electric permeability move toward lowest field inten-

sity region. In biological applications, the latter method, 

nDEP, is more prevalent as it doesn’t expose cells to 

(4)�Fdep = 2πεf R
3

p

(

εp − εf

εp + 2εf

)

∇E2

0 .

Fig. 1 CTC-iChip, developed by Ozkumur et al., capable of sorting rare CTCs from whole blood at 107 cells/s [47]. Schematic representation of three 
microfluidic comportments is shown. Immunomagnetically labeled whole blood and buffer are introduced into the first compartment via two 
input channels. In the first compartment, magnetically labeled CTCs and white blood cells are hydrodynamically sorted from the whole blood. Next, 
CTCs and WBCs are focused. Finally, a magnetic field (grey arrow) is applied to separate labeled CTCs and WBCs
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potential harmful effects of the strong electric field. Due 

to the dependency of the DEP force on the size and elec-

tric properties of the medium and particles, DEP is useful 

in multimodal sorting of particles/cells by size and other 

properties [32, 46].

A good example of using DEP force to dynamically 

control position of particles in the channel for sorting 

was provided by Wang et al. [63]. In their study, a device 

with a sequence of electrodes in sidewalls along the main 

channel were used to generate non-uniform electric 

fields for positioning of particles at different equilibrium 

points and subsequent sorting into five distinct channels.

Electric fields patterns can also be generated by interac-

tion of focused light patterns with photoelectric elements 

integrated into a microfluidic system. Such method was 

developed by Chiou et al. [64] and used to demonstrate 

massively parallel manipulation of particles. �e same 

technique can be used to isolate cells.

�e use of electrical fields for cell manipulation and 

sorting might cause electrical damage to cells reducing 

their viability. Heating is also a drawback of this methods. 

Furthermore, the effect of electrical fields on biology of 

cells is underexplored [65, 66]. �us, downstream analy-

sis of cells that interacted with strong electric fields might 

be inaccurate.

Acoustic force

Manipulation of objects position and sorting thereof 

using acoustic waves is referred to as acoustophoresis. 

Benefits of using acoustic forces on micro scales for cell 

sorting include precise spatial control, fast action/switch 

rate and little interference with cell viability [67].

In microfluidic devices that use acoustic forces for sort-

ing and manipulation, standing wave-type interaction is 

more popular. Acoustic forces from travelling waves are 

rarely used in such devices. Pressure waves, identical 

to each other both in frequency and magnitude, gener-

ated by acoustic devices in mutually opposite directions 

through a viscous medium form standing waves con-

tained multiple nodes and anti-nodes. �e nodes are 

regions where summation of opposite pressure waves 

results in zero pressure fluctuation regions. �e anti-

nodes are regions experiencing alternating minimum 

pressure and maximum pressure fluctuations. �ese 

regions separate and capture particles/cells with varying 

acoustic contrast factor (i.e., compressibility and density 

of particles and medium) into either nodes or anti-nodes 

[29, 30, 32, 68–73].

�e classic expression of the radiation force exerted on 

a particle in a standing wave field is given below [32]:

(5)Fr = −

(

πp2
0
Vpβf

2�

)

· φ(β , ρ) · sin(2kx),

Here, λ is the wavelength of the acoustic wave, Vp is 

the volume of the particle, p0 is the pressure amplitude, 

βf and βp are the compressibility of the medium and 

particles, respectively, ρf and ρp are the corresponding 

densities, and φ is the acoustic contrast factor. Figure  2 

contains graphical representation standing waves’ mode 

of action [74].

In a recent study by Jakobsson et  al. acoustic waves 

were used in combination with fluorescence activation-

based identification to sort particles in real time with a 

purity of 80% and at a rate of 50 particles per second [73].

Another, arguably more effective, way to sort cells is to 

generate, using interdigital transducers (IDT), standing 

acoustic wave along the bottom surface of the channel 

in such a way that the fluctuations position the particles 

along several distinct streams. Coupled with fluores-

cence-based tagging and identification, such devices are 

of particular interest as they could be used to sort par-

ticles into multiple channels. �e opposing IDT can be 

used to generate surface standing acoustic waves (SSAW) 

and this method was used to filter 8 µm particles from a 

collection of 5 and 10.36  µm particles in a recent study 

by Fakhfouri et al. [75]. Moreover, SSAW can be used as 

acoustic tweezers and has been shown to be capable of 

manipulating cells and microorganisms [29].

Although standing wave-based separation methods are 

more prevalent in the literature, travelling waves have 

(6)φ =
5ρp − 2ρf

2ρp + ρf
−

βp

βf
.

Fig. 2 Acoustic confinement of cells in a rectangular acoustofluidic 
device. a Unbound cells and elastomeric particles in an acoustic 
standing wave. b Bound cell-particle complexes in an acoustic stand-
ing wave (Adapted from Shields et al. [74])
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been demonstrated to perform high-efficiency sorting of 

particles. In a recent study by Ma et al. [70], a single sur-

face acoustic wave actuated bandpass filter was used to 

sort intermediate sized (15.2 µm) particles from the popu-

lation of smaller (10.2 µm) and larger (19.5 µm) particles. 

In a similar manner, a focusing IDT (FIDT) can be used 

to deterministically sort individual particles by generating 

highly focused, high frequency SAWs as it was recently 

demonstrated by Ma et al. [70, 72] and Collins et al. [76].

Active sorting using acoustic forces can be improved 

by combining it with passive sorting methods. A recently 

published study by Ung et  al. [77] describes the devel-

opment of a 3D microfluidic chip with topographical 

structures on top of the microchannel that was used in 

combination with SAWs to considerably increase the 

sorting efficiency (see Fig. 3).

In conclusion, the manipulation and sorting of particles 

based on acoustic forces has advantages over its com-

petitors which are design simplicity, compactness, ease 

of operation and high biocompatibility. However, when 

compared to methods that use optical forces, acoustic 

methods lack the same level of precision that allows to 

manipulate individual particles in a large group of closely 

located particles and resolution that, for example, allows 

optical tweezers to manipulate nanoscale objects such as 

protein molecules, DNA and even individual atoms [68]. 

Furthermore, when applied to blood cells, high-intensity 

focused ultrasound (HIFU) was demonstrated to stimu-

late activation of platelets resulting in hemostasis [78]. 

HIFU were also shown to activate genes in tumor and 

other cells [79–82]. �ese factors might interfere with 

analysis of cells after sorting and manipulation.

Application of light radiation

Optical force

Experimental detection of the radiation pressure exerted 

by a light beam was first reported in 1901 by Lebedew 

[83] and by Nichols and Hull [84]. Light pressure has 

since been used by researchers for realization of various 

particle sorting and manipulation devices that use light 

to push particles into a desired location.

A more advanced method of optical manipulation and 

trapping of microparticles was discovered by Ashkin [85]. 

It was demonstrated that transparent dielectric particles 

can be captured and controlled both in air and water by 

harnessing the momentum of light. Also it was dem-

onstrated that it is possible to manipulate particles in 

3-dimensions using two laser beams or a tightly focused 

laser beam [86]. �e latter method was called optical 

tweezers and has served as a foundation of various meth-

ods of optical manipulation.

Numerous experimental studies have shown that these 

forces can be used to stably manipulate and capture par-

ticles [87]. In addition to particle manipulation, optical 

tweezers have been used to measure intermolecular and 

intercellular forces, which range from several femtonew-

tons to tens of piconewtons [88, 89].

Due to its properties optical tweezers have been applied 

to tasks that require precise and singular manipulation, 

sorting and localization of microscale objects in liquid 

media. Optical tweezers have also been used for physical 

and morphological characterization of biological mate-

rial, such as DNA, proteins, organelles and cells [89–92]. 

Specifically, blood cells are at the center of interest in 

optical manipulation of cells. Many research groups are 

extensively studying red and white blood cells’ mechani-

cal properties using optical tweezers [93].

�e trapping phenomenon depends on the refrac-

tive index difference of the media and the object that is 

being trapped, size and mass of the object being trapped, 

wavelength of the laser and its absorption rate of the 

object. �e most common size of objects used for optical 

trapping ranges from 1 to 10  µm. Although, atoms and 

particles greater than 100  µm have been reported to be 

trapped using optical tweezers [94, 95].

According to electromagnetic theory, optical tweezers 

enable trapping and manipulation of particles via two 

light pressure forces: gradient force and scattering force. 

�e gradient force moves the particle along the axis per-

pendicular to the beam propagation axis, attracting the 

particle to the most intense part of the beam. Scattering 

force tries to move the particle to the most intense part of 

the light beam along the axis of propagation [85].

Noteworthy, that any movement of the particle away 

from the center of the trap is counteracted by the restor-

ing force that returns the particle back to the point of 

highest intensity. Properties of the optical trap define the 

distance at which the restoring force is maximal. From 

the center of the optical trap to this point change in the 

restoring force can be approximated as being linear.

�e maximum force of an optical trap with fixed 

parameters has been named the ‘escape trapping force, 

Fesc’ in the related literature [87, 93, 96–98].

�e gradient and scattering forces affecting the particle 

depend on the trapping laser wavelength and size of thew 

particle. �ere are three approximations that can be used 

to describe optical trapping: ray optics, Rayleigh scat-

tering, and Mie scattering. �e ray optics regime is used 

when the particle size is much larger than the wavelength. 

�e Rayleigh regime is used when the particle is much 

smaller than the wavelength. �e Mie regime is used when 

the particle is of comparable size with the wavelength [94].
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In the case of large biological cells, the ray optics 

approximation is sufficient for simulation of forces. �e 

total force acting on a sphere by the incident laser ray can 

be expressed using the following equations [87, 99]:

Fig. 3 A 3D microfluidic chip with integrated structures for particle sorting using surface acoustic waves. a Cross-section of the device. b Design of 
the device. c–e Mode of action (Adapted from Ung et al. [77])

(7)Fscat =
nmP

c

(

1 + R cos 2θi −
T 2

[

cos(2θi − 2θrf ) + R cos 2θi
]

1 + R2 + 2R cos 2θrf

)

,

(8)
Fgrad =

nmP

c

(

R sin 2θi −
T 2

[

sin(2θi − 2θrf ) + R sin 2θi
]

1 + R2 + 2R cos 2θrf

)

,
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where Fscat is the scattering force acting in the direction 

of the incident ray; Fgrad is the gradient force perpendic-

ular to the direction of incident ray, nm is the refractive 

index of the medium, P is the power hitting a dielectric 

sphere, c is the speed of light in free space, R and T are 

the Fresnel reflection and transmission coefficients at a 

dielectric boundary, θi and θrf are the angles of incidence 

and refraction.

In the ray optics regime, the axial forces are obtained 

by summing all vectors of incident rays converging in at 

the focal point. �e transverse forces are calculated in the 

same manner, also taking into account the direction of 

the incident rays as they reach the sphere [85, 99].

In the field of optical manipulation, a lot of resources 

have been dedicated to realization of adjustable optical 

potential landscapes, which could be used to manipulate 

multiple particles simultaneously [100]. �e generation 

of arrays of optical traps with the use of microlens arrays 

and diffraction optics has been demonstrated in multiple 

studies [101]. �e major limitation of using static ele-

ments is the inability of independent control of each trap 

or a region of traps. �e whole pattern is adjusted simul-

taneously. A popular method for generating dynamic 

optical traps is to use an acousto-optic device, which 

reflects and modulates a laser beam [102, 103]. Progress 

in hardware and software for computers and optics has 

opened up new possibilities for real-time advanced opti-

cal beam shaping. More recently, modern spatial light 

modulator (SLM) devices in the form of a digital micro-

mirror device (DMD) and a ferroelectric modulator see 

increased application for the realization of holographic 

optical tweezers [104, 105]. Furthermore, as the cost 

of this hardware decreases the study and application of 

optical methods become practical and accessible. �e 

next three subsections highlight hardware and software 

technologies and techniques that enable the development 

of advanced optical and optophoresis systems.

Liquid crystal on silicon–spatial light modulator

Advanced optical beam shaping is achieved using a 

SLM device, which is able to modulate the polarization, 

phase and amplitude of light. SLMs can be categorized 

into two categories based on their mode of action, phase 

modulation (e.g. LC–SLM) and amplitude modulation 

(DMD). For realization of advanced optical tweezers, a 

liquid crystal on silicon SLM (LCOS–SLM) has been at 

the center of attention due to its small size and weight, 

programmability, high transmission rate and low power 

consumption [106].

�e technology for liquid crystal on silicon has a long 

history, however a high-resolution LCOS was first intro-

duced into the market in 2002 by Forth Dimension 

Displays [107]. Liquid crystal (LC) materials possess 

robust non-linear electro-optic properties. High electro-

optic coefficient in combination with low voltage actua-

tion, which causes crystals to change their orientation 

also changing their optical refraction coefficients, is 

what makes LC materials excellent for digital spatial light 

modulation [108]. Figure 4 shows a schematic displaying 

the configuration of the LCOS–SLM device with multi-

layer structure.

LCOS–SLMs combine complementary metal oxide 

semiconductor technology and properties of LC, allow-

ing to modulate either polarization or phase of light. 

However, contrary to conventional LC panels, LCOS 

devices operate via reflection of the beam instead of 

transmission. �e various types of arrangement of 

the liquid crystal layers in the device allow to modu-

late incident light beams in distinct ways. �e electro-

optic effects that are responsible for such modulation 

depend on the voltage applied to the LC material layer. 

�e stringent requirements of the industry stipulate the 

development of advanced light modulation. As a result, 

many variations of electro-optics structures, also called 

LC modes, in LCOS devices have been studied. Among 

them are: vertically aligned nematic [109–111], twisted 

nematic [112], hybrid field effect liquid crystal [113], 

electrically controlled birefringence [114, 115], optical 

compensated bend or pi-cell [116], surface-stabilized fer-

roelectric liquid crystal [117–121]. Most of these types 

of LCOS devices achieve light modulation via rotation of 

linear polarization of the incident light beam. �e switch-

ing rate of a ferroelectric liquid crystal device reaches up 

to 1  kHz, but the drawback is that it is a binary mode 

only device. For other types of LC–SLMs the switch rate 

ranges in several hundreds of Hz, but they can achieve a 

variety of arbitrary force potentials.

Fig. 4 Configuration of the LCOS-SLM device, consisting of trans-
parent top glass substrate with transparent indium tin oxide (ITO) 
electrode, alignment layers, liquid crystal material, reflective mirror, 
pixelized electrode structure and silicon substrate (Adapted from 
Matsumoto et al. [108])
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An extensive overview of fundamentals of LC and 

LCOS devices is given in a review paper by Zhang et al. 

[122].

Digital micromirror device

A digital micromirror device is a spatial modulation digi-

tal light processing device that was invented by Hornbeck 

(Texas Instruments) [123]. Since then it has been applied 

to many areas such as stereolithography, video projec-

tion and imaging. In recent years, a gradual improvement 

of DMDs allowed its application to be expanded into 

advanced beam shaping, high-resolution microscopy and 

optical aberration correction [118, 123–125].

A DMD is comprised of an array of mirrors each of 

which are opto-electromechanical elements manufac-

tured on top of static random-access memory cells allow-

ing each element to be addressed separately (see Fig. 5). 

�ese mirrors, individually, are also referred to as pixel. 

Each pixel of a DMD device has two stable states (− 12° 

and + 12° in modern DMDs). �e direction of light 

reflected from the pixel is determined by the state of the 

mirror. �e pixel that is tilted in such way that it reflects 

the light into the projection lens is considered to be in an 

“on” or “positive” state. Conversely, if the pixel reflects 

the light into an absorber, then it is considered to be in an 

“off” or “negative” state. �ese two operational states and 

an “unpowered” state are the only states of a micromirror 

[123].

Programmability of a DMD, rapid switching rate and 

polarization properties are crucial factors for advanced 

beam shaping [125]. Furthermore, if a DMD is used in 

combination with high-performance computer there is a 

possibility for real-time, dynamic beam shaping and opti-

cal aberration correction.

�e application of DMD-technologies is more estab-

lished for interaction with physical and inorganic sys-

tems, beginning with microscopy, optogenetics, physics 

and finishing with information technologies. Manipula-

tion of organic systems, e.g. DNA, proteins, cell, with the 

use of DMD is yet to be explored. �e use of this tech-

nology for wavefront shaping in cutting edge biological 

research has considerable value for development of novel 

methods and devices.

Advances in software and algorithms

Both DMD and LCOS–SLM are able to form images 

either by patterning the laser beam into a desired image 

and projecting it directly onto the plane, or by using 

Fig. 5 Advanced beam shaping devices. a Transmissive LCD panel. b Reflective Liquid Crystal on Silicon (LCOS) panel. c Digital micromirror device 
and a detailed schematic of its internal structure. The inset is the DMD pixel exploded view (Adapted from Hornbeck [123])
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optical system to convert a hologram displayed on the 

device into an intensity pattern. �e former method is 

simple, but results in major inefficiencies due to a small 

effective area that is used to project the pattern. �e lat-

ter method, is more efficient in terms of power trans-

fer, and can also be used to generate three-dimensional 

optical traps, but is computationally expensive. Realiza-

tion of real-time, dynamic holographic tweezers requires 

both fast hologram generation algorithms and a power-

ful computer system. Holographic optical tweezers are 

usually realized by phase-only LC–SLMs, holograms for 

which are generated using an iterative phase retrieval 

algorithm, e.g. Gerchberg–Saxton algorithm (GS) [126], 

mixed-region amplitude freedom algorithm (MRAF) 

[127], offset MRAF (OMRAF) [128] and conjugate gra-

dient minimization [129]. Gerchberg–Saxton algorithm, 

proposed in 1971, is shown schematically in Fig.  6. �e 

core of MARF and OMRAF algorithms is based on GS 

algorithm [128].

DMDs are amplitude modulation devices, and can be 

used for realization of holographic optical tweezers. �e 

light energy transfer efficiency is low and depends on the 

algorithm used for generation of holograms (maximum 

≈ 10.1%), however fast switching rates of up to 50  kHz 

allow real-time manipulation of particles. Several dif-

ferent algorithms can be used to create a hologram for 

binary amplitude modulator devices, among them are 

binary rounding, dithering and weighted Gerchberg–

Saxton. Binary rounding algorithm is the simplest one 

and can be used to generate a single trap using DMD 

with a maximum theoretical power of ≈ 10.1%. �is algo-

rithm can be applied to generation of multiple traps by 

summation of holograms, however this method is not 

the best as the intensities of generated traps might vary 

and phantom traps can appear. High switch rate of DMD 

can be harnessed to overcome this problem by minimiz-

ing non-linearity of the algorithm by rapidly flipping mir-

rors between ‘off’ and ‘on’ state resulting in a pixel with 

an average value. �e downside of these methods is a 

reduction of power transfer efficiency per trap. Previ-

ously described Gerchberg–Saxton algorithm can also be 

used for calculation of a hologram for DMD-based holo-

graphic optical tweezers, which also achieves maximum 

theoretical power efficiency similar to that of binary 

rounding algorithm. A more detailed review dedicated 

to aforementioned algorithms is provided by Stuart et al. 

[130]. For even more details on the algorithms for holo-

gram generation it is advised to refer to original papers 

[126–129, 131].

Optical manipulation and sorting

�e application of optical tweezers for manipulation 

of individual microparticles is more widespread and 

has been explored in numerous studies [103, 132–137], 

beginning with the work of Ashkin [85]. Application of 

optical forces towards development of novel separation 

methods, on the other hand, has seen rise in popularity 

in the end of 1990s and beginning of 2000s. Among these 

works, holographic optical tweezers have seen increased 

usage in cell and particle manipulation and sorting stud-

ies starting from 2003 with the publishing of the seminal 

review paper by Grier in Nature titled “A revolution in 

optical manipulation” [138]. In the next year, a study by 

Enger et  al. [139] was published describing application 

Fig. 6 Gerchberg-Saxton algorithm. The hologram, φ(r), is generated in the SLM plane, thus shaping the input Gaussian laser beam into a desired 
state, which is projected onto the trapping plane. F  denotes the Fourier transform. F−1 is the inverse Fourier transform. After several iterations the 
resulting hologram converges to a hologram that generates multiple optical traps with equally distributed intensity (Adapted from [128])
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of optical tweezers to a microfluidic system. In this work 

they demonstrated translocation of E. coli cells between 

reservoirs on a time-scale of seconds. Although this 

manipulation was slow, the work has validated feasibil-

ity and paved the way for development of more elaborate 

optical sorting and manipulation systems.

A paper published by MacDonald et al. [140] described 

application of a light field to study the effect on kinetic 

motion of dielectric particles (see Fig.  7). �erein, an 

optical sorting has been performed on microscopic par-

ticles by an interlinked 3D optical lattice that can be eas-

ily reconfigured and extended. �e sorting was reported 

to be by size and refractive index. �e optical lattice was 

generated using diffractive optical element and the study 

consisted of the observation of the effect and its quantifi-

cation. Noteworthy, authors have not explored deflection 

angles and distances in varied flow condition.

Wang et al. [24] reported development of a single cell 

manipulation tool integrating microfluidic technology 

with optical tweezers for high accuracy sorting of small 

cell populations (see Fig. 8). Among the advantages of the 

device they are reporting high recovery rate and purity 

of sorting. �e design of the device relies on condition 

of fluid flow and beam shaping for realization of adjust-

able  3D optical traps, which is achieved by means of a 

holographic optical trapping device. Baker’s yeast cells 

with sizes of 5–8 µm were used as a target for manipula-

tion. �eir flow velocity was 120 µm s−1. Moreover, the 

authors have implemented cell recognition to sort yeast 

cells and human embryonic cells [24].

�e speed of particle/cell processing for this device is 

very slow, in the range of 1–5 particles per second. �us, 

there is a very limited applicability of such system. A 

more robust system is required to make enough improve-

ment of contemporary “gold standard” systems.

An extensive theoretical study of optical sorting in a 

holographic trap array with experimental validation was 

performed by Ahlawat et  al. [141]. �ey have demon-

strated the influence of inter-trap separation on selec-

tive sorting of 3 and 5  µm silica microparticles. In this 

study the fluid flow was simulated by moving a motor-

ized translational stage to simulate movement of particles 

through the static patterns of optical traps. �e cham-

ber for the solution of particles was made by separating 

microscope slide and a cover glass with a ~ 450 µm thick 

spacer [141]. Although, the theoretical study was deep, 

it would be beneficial to add experimental confirmation 

in an actual flow condition inside a microfluidic channel 

and quantify the efficiency of separation at various parti-

cle velocities.

Jákl et  al. [142] have demonstrated a sorting method 

using optical forces exerted by travelling interference 

fringes. �e periodicity of the fringes was modulated by 

an SLM. �e setup was tested on particles in a static solu-

tion located in a chamber made of microscope slide and a 

cover glass separated by a spacer.

A developing direction in optical manipulation is opto-

electronics. DMDs allow development of optoelectronic 

tweezers [64]. �is technology allows precise manipula-

tion of cells and particles via light-induced dielectropho-

resis. �is technique was initially developed by Chiou 

et al. [64]. �e developed system was able to generate and 

manipulate 15,000 traps on a 1.3 × 1.0  mm2 area. Later, 

Huang et  al. [143] exploited this technique for devel-

opment of a dynamic particle manipulation on a chip 

device. Using this device, they have successfully demon-

strated real-time interactive manipulation of thousands 

of cells over an area of 240 mm2.

Notably, in the literature, cell and particle manipula-

tion studies are more prevalent than works exploring the 

Fig. 7 A schematic diagram of the optical sorting system described 
by MacDonald et al. [140]. Chamber A contains buffer solution. Cham-
ber B holds mixed particles. After passing through the optical lattice, 
selected particles are deflected into chamber C, while other particles 
flow straight into chamber D. The optimum lattice for fractiona-
tion was a body-centered tetragonal (b.c.t.) lattice. FC denotes the 
fractionation chamber

Fig. 8 A schematic diagram of the device developed by Wang et al. 
[24]. The sample and buffer are introduced into the channel from the 
two inlets located on the left. As the cells pass through the region 
of interest (ROI) they are captured by the CCD camera. The images 
are processed in real-time to locate cells of interest. A control signal 
is then generated positioning the optical trap on the cell of interest. 
After capture it is moved to the desired outlet
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topic of separation and sorting thereof using holographic 

optical tweezers.

Conclusion

Latest advances in cell biology, disease diagnostics and 

medicine have increased the demand in rapid, safe and 

accurate cell sorting and manipulation devices. Microflu-

idic devices are at the center of attention due to low sam-

ple and reagent volume requirement, portability, ability 

to work on a single cell scale level and self-contained 

nature allowing safer handling of hazardous liquids and 

materials.

Technologies and studies outlined in this review com-

prise the core of the latest developments in respective 

areas of study. Despite the advantages of performing cell 

analysis, sorting and manipulation in a microfluidic chip, 

they still have a number of limitations that prevent stand-

ardization for clinical use and wide commercialization. 

Among these are device throughput, lifespan, multipart 

manufacturing and ease of handling. Multimodal, paral-

lel integration of microfluidics with active sorting and 

manipulation methods is a promising approach to over-

coming these limitations. Magnetic, electric, acoustic 

and optical forces can be harnessed to cater for a wide 

spectrum of applications. Moreover, as discussed in this 

review, optical forces can be applied from the outside of 

the microfluidic device, thus allowing development of 

highly modular, multi-purpose systems for cell sorting 

and manipulation. Optical forces offer more interaction 

freedom, which can be adjusted in real-time. Further 

investigation and development of novel techniques uti-

lizing optical forces might prove to be a stepping stone 

towards development of state of the art lab-on-a-chip 

devices.
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