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Sorting and Ordering Sparse Linear Systams

R. P. Tewarson

1., Introduction. .
Let us consider the solution of the system of simultaneous linear
equations

Ax = b, ' (1.1)
where A 1g & non-singular sparse matrix of order n, x and B are n element
column vectors. It is well known'thaﬁ the Gaussian Elimination method
for the solution of (1.1) is not only simple to implemcnt on the computer
put alsn gives falrly good resilis for the amount of computational wori:
(Wilkinson, 1965, pn. 244-2L&). During the forward course of the Gaussian
Hlimiration, generally rew non-zero elements are creabted. But the back
substitution part doss not lead to any wew non-zerco elements. We would
like to minimize the total number of such non-zero elements created dur-

)

the entire forward course of the Gaussian Elimination. This leads nct
only to less roundcff errors (since computations involving zerces are
exact in most computers) bub alsc saves the computer slorage, because
usually the storage releasged by column being eliminated at a pafticular
stage of the elimination is not sufficient to store the additional non-
zero elements created in the remaining columns. Furthermore, minimizing

the vumber of such non-zero elements decreases the round-off errors not

only in the Forward course but also in the back substitution part of the

+ TInvited papesr. Conference on "Large Sparse Sels of L1P°°r Fguations",
April 5-8, 1970 at Oxford University, Englund. This research was supported
in part by the Netional Aeronsubtics and Spaece Administraztion, Wmqun[ton) n.C.
Crant No. NGE-33-015-013.
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PRECEDING
Gaussian Elimination method, since whenéver there is a zero element in
the column under consideration no operations ars performed on thes cor-
responding elemsnt on the right hand side.
In view of the above facts, we would like to tramsform A by means
of row column permutations to s form which leads to the éreation of a
mipimum number of new non-zero elements during the forward course of the
Gaussian Elimination. This is equivalent to the "a priori" determination
of permutation matrices R and Q, such that
RAQ = G, -4 (1.2)
dnd if, d = Rb and Q'x = y, then from (1.1) it follows that
Gy = d. o (1.3)
.In Fig. 1, some of the forms that G could have, which are de-
sirable for Gaussian elimination, are given, viz., (1) block triangular
form(BTF), (2) bordered block triangular form(EBTF), {3) block diagonal
form(BDF), (L) singly bordered block diagonal form(SBBDF), (5) doubly
bordered block diagonal form(DBBDF), (6) band triangular form (BNTF), (7)
bordered band triangular form(BBNTF), (8) band form(BF), (9) singly
bordered band form{SBBF), and (10) doubly bordered band form(DBBF). The
non-zero elements in each case lie only in the shaded areas. If in each case,
the diagonal elements are chosen as pivots, then the new non-zero elements
can only be created in the shaded areas during the elimination., If shaded
areas contain no non-zero elements,then it is clear that during the elimi-
ﬁation process no non-zero elements will be cresated.
If A is symmetric and positive definite, then in (1.2) it is gen-
erally advantageous to have G also symmetric so that only the non-zero
elements on and above the diagonal of G need to be stored, and the di-
agonal elements of A and G are same (though in different positions).

A large number of sparse matrices occuring in various application areas

jae]
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are symaetric and positive definite. 1In such cases, in place of (1.2),
we have

QAQ = G,
and cases (3), (5), (8) and (10) in Fig. 1 are some of the desirable forms
for G. In this paper, we shall be -primarily concerned with the deter-
mination of Q such that G is either in the DBBDF, BF or DBDF (cases (5),
(8) and (10)in Fig. 1). The case when G in in BDF has already been in-
vestigated (e.g. Harary, 1962 and Tewarson, 1967).

Ir A is not symmetric, then several methods are available for
transforming it by row-column permutations to one of forms given in Fig.
1. A survey of such methods (as well as general computational methods)
for épare matrices is given in (Tewarson, 1969).

In section 2 of this paper we will derive some results for matrices
in BF, bBBF and DBBDF, and make use of these results in Section 3 for
constructing algorithms to transform an arbitrary symmetric positive de-
finite sparse matrix to BF, DBBF or DBBDF.

2. Matrices in band form, doubly bordered band form, and doubly
bordered block diagonal form.

In this section we will derive some useful propoerties of matrices
in BF, DBEF and DBBDF, which will be used in the next section for trans-
forming symmetric sparse matrices to one of these forms. ILet us assume

that G is in band form such that

g5 = Ofor |i-3] > and P(gs4 # O for li-3] < A with i # 3) = p;
th

th row and the j

where 81 j is the i columan element of G, ) is called
the bandwidth of G and p is the probability that a non—diagdnal element
within the band is non-zero(P(...) = p denotes that the probability of

'...' is p). The diagonal elemente of G ars all non-zero, since iu

(3..L)

(2.1)



view of (1.l}) G is positive definite, for A is positive definite. If

p =1, then G is said to be a '"full’ bhand matrix. We assume that n is

.1 . . -
large, A < < n and p has a largs value, say 0 <<z > L« p = 1.
[

We will make use of a matrix B, which is obtained by replacing each
non-zero element of G by unity. B is called the incidence matrix that
correspondes to G. Let V be the n dimensional column vector of all ones
and e; the 1M column of the identity matrix I of order n. Evidently,

v :igl ej. Let B, denote the expected number of the non-zero elements of

G (which is defined according tc (2.1))., Then

Be = V'GV

n+ 2 (n-1) + (n-2) + ... + (n-2)1p

i}

n + (2n-1)px - pr*.

Solving for A, we have

1
A =n [1-{1-11-“ (20)77- Bg pln~" + (pn)'l]aj - ; ,

but A < < n and p ZJE_:_; implies that Be is of order n {and not nz)ﬁ
2

<

therefore neglecting the terms of the order n™ in (2.2), we have

Vel

2pn

If p = 1, then the number of non-zero elemznts in G, viz.,B is
given by

= VGV = n + (2n-1) x-)%,

™
i

. and

>
i

= 1 L1~{1an"2+ (2n)"2f% ] -

1
5

~ AT
~ .

2n

We will need the Boolean powers of the incidence mabrix B, which are

defined as follows,

(h+ 6 .
Bkn. 1)=B(l)""1fB,h=—l—$ 2’ 3’ cvo’

L.

(2.3)

(2.L)



where % denotes that when computingz the inner product of vectors (in

the matrix multiplications), in place of usual addition, Boolean additon

. / .
is uged, viz., 1 +1 =1, and Bkl) = B, We now have
a , - ) .
Theorem 2.1 If p =1 and k is an integer < n-1 , then B(Lf is a
N

full band matrix having a bandwidth of k).

In order to prove this theorsm we need the following definitions for
vectors wnose entries consist of only zeroes and ones. Let u aﬁd v two
such n dimensional column vestors. If u'v # 0 (6r equivalently u’ % v = 1),
then u and v are said to 'intersect'! and u'v is the 'length of the inter-
section' betwesn them (Tewarson 1968). Evidently u’v = 0 (or u’* v = 0)
‘mplies that u and v do not 'intersect!. The 'length'! of u is defined as
uw'u (or u’V). Throughout this paper we shall use the term 'length! in the

above sense rather than the usual Euclidezn length.

th (2)

Proof of Thsorem 2.1. The i*" row of B'°/, (where 1 <4 < % + 1) is

oY
given by e/ B\Z’ = e{ B % B, But the 1%0 0w of B (which is identical

i
with its 1% columm) intersects the first through the (1 + 23)% columns

th row of B<2) has the first 2)} + i elements non-

th

of B. Therefore, the i

zero, in contrast with A + i such elemtns in the 1™ row of B. Similarly,

it can bs seen that for » + 1 <1 <n - ), 2h elenents on elther side of

the 1R

diagonal element are non-zero and for n - » < i €£n, the last

2x +1 + n - 1 elements are non-zero. Therefore, B(z) is a band matrix
of width 23. Proceeding in the above manner it can be easily shown that
if B(h) is a band matrix of width h) then B(h+1), in (2.5), is also a
band matrix of width (h+1)\,provided that 2(h*l) » + 1 =n. Thsrefore,
by. induction on h, B(k) is a band matrix of band width KA for all k with
2k + 1 < n or k < Eil, This completes the proof of Taeorem 2.1.

-

[

In order to make use of Theorem 2.1, whan O <« p < 1, we will need

the following.



Thecrem 2.2. If the ith zlements of u and v are denoted by iy and
vy, and it is known that elther u; or v,;, or both are egual to ﬁero for
a total of n-v distinet values of i, and P(ui #C) =P (v__.L #0) = p for
v values of i, then
P{u’ # v #0) = 1-(2-p%)", | (2.5)
and the expscted valuz of u'v is given by -

2

E(u'v) = v p (2.7)

Proof. Evidently the n-v values of 1 for which u; or vy, or
both are zero can be gafely iguored and for the vremaining v disbinet
values of 1i,P{u,v, #0) = P(u, £ 0) P(v, # 0)= 9 and P(u,v, = 0) = 1-p3.
i1 1 i 14 k
Therefore Biu'v) = E(Zluivi) = ¢ p°, and since u; #* vy = u,Vy, we have
23V s . .
Plu’ % ¢ =0) = P{% vy = 0) = {1-p°)Y, which implies (2.5).

Corollary 2.2 1If in Theoren 2.2, P(ui #£0) = Plv, £0) = p, for

4
only v-2 values of ij and for some i, and i, (i, #1ig), wi =1,
P(Vi1¢ 0) = p, vy = 1, P(u12¥ 0) =P, tuen

P(u’ % v £ 0) = 1-(1-p%)V2(1-p)?, (2.8)

and

i

E(u'v) = v p® + 2p(1-p). , (2.9)

Proof: Since P(uilvil¢ 0) P(uizvig £0) = p, or P(uilvil =0) =

P(u; v5 = 0) = 1-p, therefore, similar to the proof of Theorem 2.2, it
2 2

- can be easily shown that E(u'v)=(y-2)p®+2p=vp®+2p(1-p),and P(u’* v=0) =

(1-p®)V23(1-p)?, from which (2.8) directly follows.

We can now make use of Thercem 2.1 to prove

th (=) is

Theorem 2.3, If the 1¥ row and the 3V column element of B

denoted by b§ ), and P(bij £ 0, |i~j\ <\ i #3) =psand byy =1, then

-
2

.
J

forl <i<3<n



£

o o : Yy B..
P(béj)i 0) = p§j) =1 -(1-p?) (1) Y, for |i-3] <2 %,

[}

0, otherwise ' (2.10)
where |

(a) vy =1+ 2 -2, Bij=2,for1§i<j£)\+1,

"j+2>\"‘19 Bl:]

i

2, for 1<ish+land Aa+1<jsi+,

~~
o
—”
5
Cte
1
}.J-

or X+l<di<n-hand i<i=si+ )
(c) \)ij=i-j+2>\+1, giﬁ=o, forl<i<chi+landi+ << i+20,
or A *+l<i<n-hand i+ A< j<si+22),
(a) vig =a-J+r-1, gg=2forn-r<i<is=n. '
| Proof. In view of Theorem 2.1 and the fact that A <« <« n, it is
evident that pg) = 0, for ‘:’L—j] >2 k. For }i-—j\ < 2 h; Wwe have bii) =
ei' B * Bej = (Bei) I Bej, Thus big) # 0, if the i and the j'bh columns |
of B have a non-zero interssction. If 1 <1 < J < X + 1, Then in view
of Corolla-ry 2.2, and the facts that byy = 1, I,)(bij £0) = p, bij = 1
P(bji #0) =p, and for only i + X - 2 elements Plog; #0) = P(btj #0) = p;
it follows bhab P(b§§> £0) = P [ (Bey) ! % (Be,) #0 Je1 sy,
where y = i + ), and (2.10) follows since Vig = i+)3-2=y~2 and
Bij = 2 (case (a)}. The proof for the other tlhiree cases follows exactly
the same routine arguments and is omitted. It should be noted that in
case (c), corresponding to the diagonal element of one colwumn there is
a zero in the other column, therefore we use Theorem 2.2 instead of
dorollary 2.2, This accounts for the fact that 8,4 = 0 in case (c).

Corollary 2.3. In Theorem 2.3, if either Bij =2,0r Bi’] =0 but \)ij 22 and

- § 2
P 25_2_:!. , then pjg_j) Z P.

Proof,

2 A B.. ’ . 3. .
p;gj) > p&==1-(1-p°) 1J(l~p) o p%‘:'%(l-pa)\)l'j(l~p) ij <1,



Therefore, for B_ 3 2

2 L Vs . :
(]) b pg%::@;(t %) *(1-p) <1, which holds for all vis = 0, since

_O’

p < 1. On the other hand, for Bis =

(= \)j-j N 2
pii) 2 p&=D(1p7) 7 s (1-p) =2 (1p%)° < (1Pl *p -1 20,

the last insquality is trues since p zxﬂi;L .

From tas above Corollary, it follows tuat, for all elements of B( )
- (2) — o .
within the band, pij z p, excapt those for which Vi 5 = 1 and QlJ = 03
B J_L
2
and in the case of such elements pg.) =p° <p. Bub 8.. =0 and v;s = 1
ij iJ iy
for only |i-j| = 2A3 and if in B, the outermost elemeuts in the band are
. \ - - . () -
_ noun-zero viz., bqt =1 for ‘q~t\ = %, then for |i-3j] = 2%, ® 15 °
(1. ! 3 o, =N, . % h. . = 1M ba s = D i+ = ] .
\Bei) S 333 °1+xg1 * OJ-X;J 1, since i 3] 2N N X 3 A

In view of the above results and Corollary 2.3, we have.
Coroilary 2.4, If in B, the outermost elements in the band are
non-zero and p is the probability of the non-diagonal elements within tae
( ) st
band being non-zero, then P, [1-3; < 2.
We will now give a theorem for o;, which is defined as the expected
valus of the sum of the 'intersections' of the i'® colum of B with all

the other columns. In other words,

T (Bey) (Bb ) 7 =E| v e/B%, 1
LJ£1 > [ 3 °i eJ -

=K [ e. Be(z e ) [ e;BZ(v-ei) ] s . (2.11)
A ]

where B® is obtained by usual(not Boolean)matrix multiplication.

Theorem 2.4. If B is a band matrix and o; is defined by (2.11), then

Q
0

p [p( =\ - % A+ 2) + i(2yp-2pt2) + z(xul)] , L<i<ytl, (2.12)

3] << 2% (2.13)

p [p(2x2~6x~1) + Ly + L oplaa-

i
3
mu—v
miw

5 n =



= 2pi [P(2x—1) + 2J s a1 <1 <n - 2% (2.20)
Proof. TIF 1 <1 =3+ 1, then ab most L + 2% colwms have a non-zero

interzasction wibth the ith

coluan. Oub of bhese colwans the diagonal elements
have to be zongidered in the first 4 + )\ ecolums. If in Theorem 2.2 and
Corollary 2.2, we let u = Bey and v = Be s, then from (2.9) and (2.7) it

follows that

E [(Bei)’(Bej)}

E(eiBzej) = vijpz +20(1-p), 1 £ J =i+, J+#i,

=y, PP, L+ A< f i+ 2y,
1]
where y,. = j + < Jj<i
Vig T A 1 <]
=i+, i<fsa+l
=i-J+ o+ 1, v+ 1l < i+ 2%,

Therefore, in view of the above facts and (2.11) w2 have

oy E(e{Bzej) s, L<3j<i+ 2,

=.Z’

CJA

..2+2f1_)ﬂ+v R I P A i+ 2

Z-: \)l:}p P\i-p P VlJP s s J#Fi =1 A
j ' R

2

< i+

>

i

P° T v. t2(ita-1) p(l-p), T < j < i+ 2)
T
2p{1-p) (i+\-1) + pz[ T () v s (142) + 5 (d-3+22e1) |
Jj < i i«jcx< A1 ')\+1<j -

]

whicn 6n'simplification giveé (2.12). Similar computations zan be used
to prove {2.13) and (2.1h).
Similar to % s another usaful gquantity is y“j which is given by
Theorem 2.5. If % is the expected value of the sum of the
lengtns of intersections of the jth coluwmn with the first y columns of
a band matrix B, then
Yuljzup[ip()\+%__g-—)+2],1$u<j:§)\+1, (2.15)

-

. ’ b .
=P [p{u(Ek - e B 5) o+ 2{52-10 7 e(u—j+x+1)J s L=+l
(2.16)

and A+ 2 < J <22,



(2x + y - )2 T2ty - s 1l gpsrand 20+ 1 < J < 3), o

il
jaes
V)

A+l <y <2)and 30+ L s § by, or

A+l spand pr A< st 2 (2.17)

[}

P[pw?x - :QL—- * %— b= 3)- 2001-3)1 + 200 leed) |, A+ 1 s s 2,

A+ 2 < Fomon+l, , ,  (2.18)

i

p(uN[Rlu) + p(2n - 1) + 2]+ p(11) (230-p12),

Atlsp<c2iand 2+l <3, or2a+l<cpu<)<yt . (2.19)

Proof, Let 1 € p< j € » + 1, then

H

= u‘ -4 I A
vy =B LB (o) (Be))]

. 5 ‘ﬁj E[(Be ) (Be, )]

% { pe + 2p(1-p)] , uging (2.9).
1
2 E(i+))p“ + 2p(1—p)] s since vlj =1 + 3,

= ***-E*-—*(;l) p% + p [x p? + Zp(l-P}]

1t

pp [pOu s & -2+ 2],

This proves (2.15). In similar manner (2.16)-{2.19) can be proved.

In case B is of doubly bordsrad band form (case 10, in Fig. 1) and
o is the width of the border, then we have

Theorem 2.6, If B is DBBF and for 1 # j,

(bij £0) =p, for 1 <1, j <n - gand |i-ji< %,

n
3>

s for either i or j or both in [n-o+l,n],

and o, is defined according to (2.11), then

10.



R
i

. , A
D [k p(_g._ N *g_._) - 2p(i-1)+2(x +41 - 1) |

+ 5P L(k+i—1)p+(n—1)§+1] , 1 s i<+,

= p D232 = 5% - 1) + Ly + ip(2h - -1« .2—*]
P [p A 5A )+ La + ip( > )
~ . . ~ A
+op Bx *+i-1p+ (A1) P+1lj, a+2=1is2)

20% [(2x—1)p+2] + 0D [z(xp+1)+,§(n—2)] s 2+ 1 €1 < n-2x-0o

o

it

p [{2(n-o)— A-13 ap +(2n—2)+(o~l)(2n—c—2)p] , n~g < i < n.
Proof. The proof of this theorem follows the same routine argumsants
as those of Theorem 2.4 and is thevefore omitted,
. a e . -m v ~ I L D7 7 E_-‘
‘Theorem 2.7 If B is D3BF¥ or DBBDF such that Agbii #0) = p =d27% for

1 #3and i or j or both in [n-o+l,n]), and ¢ > 1, then

(2)

P'\’bii #O) 213, for all 1 < i, j < N

Proof. For 3ll 1 <31, j < n we have, b€f)= e/B(”)e. = {Be, )’ % Be..

ij 1 J i J

Since for the last elements of both the it1 and the jth columns of B,
P(byy # 0) = P<bti £ 0) = p(in fact, the inequality holds for only the
diagonal elemants), therefore in view of (2.6), Corollary 2.3 and the

fact that ¢ > 1, we have

Nbs)#o)zl-%Lﬁﬂczﬁo
|

3. Permuting matrices to B¥, DB3F and DBBDF.

In the preceding section, we gave some results for matrices in BF,
DB3F and DB3DF. In thig ssction, we will show how these results canbe
uwsed to transform an arbitrary symmetric positive definite matrix A to
one of thess forms. Leb 3 be the matrix obtained from A by replacing
sach non-zero element of A by cne. In view of (1.L), ahd the definitions
of B it is evideab that,

Q/sQ = B.

&

(r

(2.20)

(2.21)

(2.22)

(2.23)

£2.1)



In the above egyuation, S is known and we would like te find Q such that
B is 1ia BF, DB3BF or DBBDF. We assume that S ia sparse viz., V/SV=p=o(n)
and not o{n®). TIa order to dsssribe an algorithm for the dstermination
of Q and B we will need a few gimple theorems which follow easily firom
the results given in Section 2.
Theoren 3.1, If S( ) - S % 5, and there exlsts a permutation

matrix Q such that Q’SQ = B, where B is either DBBF or DB3DF, then for
all i

E(e{ S(Z)V) = o(n), ‘ ' (3.2)

Proof. Since Q has only one non-zero 2lement in each row and colurm
J P

1}

thergfofe QQ = QQ =TI, Q'V =17, and 3 = Q’SQ = Q™% 5 % Q, Thus, for

1l <1i<n, '

i
[&]
£
TN
ve.

P
J
g
<4

S N e/ 1B Q* QB QT
3 :

i}

o' 83y, for 1 2 3 2.
(=)

But from Thsorem 2.7, P(b

B [ef S(Q)V] = [ ! V] = o{n).
1

Corollary 3.1, If in Theorem 3.1, B is a band malrix, then

E(e, s(z)V) = o{)) <<o(n). (3.3)

# 0) = p, which implies that

2 -
Proof. From Corollary 2.3, P(bg,) # 0) = p(except for the outermost
1] :
o rg(@hyy =g [er g(®h (23)
element in the band,) therefore, E(ei s\oy) = ej B /V | = pl(2n
4 . N
o{2) < < of{n), since \ < < n.

In making use of the above Corollary, ) can be esitimated by using
(2.4), where 8 = V'S V. It shonld be noted that, in view of (2.3) and
the fact that 0 < p <1, the value of )\ 80 obtained is gsaerally an
wderestinate.

In ordar Lo find e rows and columns of 3, that correspond to the

last ¢ rows aad columns of B{when 3 is DBBF or JB3DF), we will use the

12.



following Theorem. Let I' denote the set of indices of those rows and
coluﬁns of S which after permutation according to (3.1), becoms the last
o rows and columns of B, then we have

Theorem 3.2. If in (3.1), B is in DBBF with p = 5, A = o, and

Q'ei = ej, then!

E [e£ S“(V—ei)} Az 2np [(2% - 1)p + 1] , icrl A n (3.h)

.. /I a2 _ "]N 2 . - . ' o
and M?x E [ei Se(V ei)J ~AP°n , 1 &I | (3.5)
Proof. From (2.11), (3.1) and the facts that QV = V, e, = er,
we have
‘ - - . . gl
o, =L e’ BV - ej)] = Leé Q' s® Q(v - ej)] =& [ei SV - ei)J .

3 L7

But from (2.23) and the fact that A < < n, we have

@ =P Ekp(Zn -3 -1) +(en-2) + (A - 1)(2n - - 2)p]

= 2p [Xp(Zn -2x - 1) + (n-1)(1-p) |
A 2Np L(QX'— Lp +1 J , which pfoves (3.4).
On the other hand, for i €T, E [ei S2(V - ei)] will be maximum for
2+ 1<i<n-0- 2\ and from (2.22) it follows that
aj = Ap Ep(éx +n - h) + 6]
~ Ap°n, which proves (3.5)
From the above theorem it follows that
A r B
) Y- , /a2 3
E [ei S2(V - e;) j~ 6 E Lej S*(V - ej)J s (3.6)
where i €T and j & T, and 6 = | + _%_(—%— - 1) 2k, since 0 <p < 1,
It can be shown that (3.6) also holds for DBBDF, if we assume that the
diagonal blocks are of average size A. However, in this case 6 = 3.
Therefore, we can generally make use of S®to determine the rowsvand

columns of S which belong to I'. If such rows and columns are removed

from 5, then we need to determine whether the remaining matrix can he
bl
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transformed to the BDF or BF. To this end we will nesed the following.

6 _ 0

Theorem 3.3. If B is in band form and S™7 =

then

~

and k = —%—"
k .
E(e{ s< )v)= o(n). (3.7)
Proof. In the proof of Theorem 2.1 we have seen that the bandwidth
(k+1). (k) - Ly
of B is A more than that for B ™/ if p = 1. Therefore it follows that
k
B< ) = V'V for k 2._%_° In case 0 < p < 1, then from Corollary 2.3 it
follows that for nearly all elements bég) of B<k), P(b§§) #0) = p.
/
Therefore E(e’ B\k)V) = o(n), since 1 =z p = szl.
l s
Theorem 3.h4. If in (3.1), B is in BDF with P(bij #0) =p Tor i, j
in any of the diagonsl blocks and gzero otherwise, and m is the size of the

largest diagonal block, then

Max E(a! S(k)V) < . (3.8)
i,k i

Proof: Since only the columms belonging to the same diagonal blocks
can have a non-zerc intersection and the Boolean powers of B increase the
probability(of being non zerc)of those elements that lie in the diagonal
blocks, therefore at most m elements can be non-zero in any row or colum,
and (3.8) follows. This completes the proof of the theorem.

If we know that S can be parmuted to the form of a band matrix, then
we need the following results for ordering the rows and columns of S
(viz., to determine Q).

From the proof of Theorem 3.2, we have

E [eiSS(V—ei)] = E [eng(V—ei)] =, where Q 65 = €y} (3.9)
and from (2.12) it follows that |

@y - oy " p(2ap-2p+2)(j-i), 1 sdi < jsa+1

and min (o, - ;)= p(2ap-2p+2), 11 < js A +1
1,J |
> l%l, since p > _%,. , " ' (3.10)

1h.



Let VU be the vector obtained from V by replacing its Iast n - y elements

by zero. Then ij, which was defined in Theorem 2.5, can be expresssed as

/5 D .
.= Ele. BV ), 3 > u. (3.11)
YU‘J ( j AR (3 J
If we let QV = Qu and er = ey, then from (3.10) and (3.1) it follows that
= Ele! BV ) = E(e’ S® Q). E .12
v,, = Bej BV ) = e] 57 ) (3.22)

We are now finally in a poéition to describe an algorithm for finding
a permutation matrix Q corresponding to a given sparse symmetric positive
definite matrix A such that the matrix G defined according to (1.L) is in
DBBF, DBBDF, or BF.

Algorithm 3.1.

"1l. Construct S, the incidence matrix corresponding to A and compute S°, From

S®%, construct the corresponding incidence matrix S(E).If for all i,
e! S(E)V==o(n) then i tep 6 (In vi f Th ar 1
5 1)y go to step n view of Theorem 3.1 and Corollary 3.1,

B can be either DBBDF, or DBBF but not in BF or BDF) .

- - B-n «(X) n ) k
2. Compute B = V/SV, A e 5 and S ', where k ZT . If M?X ei S( )\T =

o(n), then go to step L(B is in band form-this follows from Theorems 3.3
and 3.L and the fact that m < < n, since A is sparse. It should be noted
that )\ 2 ng(e{ S V-1), since 2A + 1 is the maximum number of non-zero
elements in any row of B; also in view of (2.3),-the value of )\ given by
X Rjﬁgg is generally an underestimate).

3. Compute S(n) and denote its ith row and jth column slement by
sgg). Then s§?> # 0, for all ;olumns(rows)of S which belong to the same
diagonal block as the jth colum(row). Starting with the first columm,
assign each column(row)of S to a particular diagonal block. This determines

/ ~
Q such that @ S Q is in BDF(Harary 1962, Tewarson 1967}. Stop.

Lh. Determine 2\ values of 1 for which

15.



&ﬂ = eﬁ SE(V—eﬂ)g e{ SH(V—ei),i # T, 1L <1< n. Separatc thess values
s i
of M into two sets as follows. If s% % = 0 (or eﬁ g° op = 0), r # k,
: r 'k r k
then 1), and ﬂk belong to different sets. Within each set arrange the
values of T's in the order of ascending values of &ﬂ . Let My, Moy ooy
ﬂx and TL, TE,..., ﬁi be the resulting arrangements fer the T's in the

first and the second set respectively, then snl, Gﬂp’ ...,'en are the
’ A

first A columns and e=
nx

(Remarks: Note that X was estimated in step 2 of this algorithm. Further-

y seey eﬁz, eﬁ1 are the last & columns of Q.

more, from (3.9) and (3.10) it follows that for the MN's in each set, the

values of &Tfs'are generally distinct. Ties can be broken by using

|

' SV.). Construct an n dimensional column vector Q which has unity in

°
positions My, Moy eceey ﬂk and zeroes elsewhere.

5. Compute ;T = Max e; S®Q, i # aq , then e, is the next colum
of Q. (This follows frém (3.12), (2.15) and (2.16). It can easily be
‘shown that if 7 has more than one valus, then the corresponding colums
of B are very close together. We can use e; SQ(V—eT) to break the ties
in the beginning if any.). Make the < th element of (@ a one. Similarly
the additional columns of Q from the right hand side are also determined
by using {3, which  has unity in positions ﬁl, ﬁé, vensy ﬁl' Repeat the
‘current step of the algorithm until all columns of S bave been exhausted,
viz., O + Q = V, and Q has been determined. Stop.

6. Compute &j = e Sf(V—ej), 3 =1, 2, «ue, N Determine the set
I', such that if p €T and k & I’ then &p is significanily greater.than

@ . (For example, & o~ B &k’ where 6 ~ L, this follows from (3.6)). Let

k p

Prs Pos se+y P_CT. Then e €. 4, ss.y &8 are the last columms of Q.
) Prs Pz P
Now delete the rows and columms of S which bhelong to I’ and we have a matrix

of order n-g, which is either in BF or BIF. Go to step 2 with n replacaed

16.



by n-o to determine the first n-o columms of Q. This completes Algorithm
3.1.
We shall now make a few pertinent remarks about the above algorj.thm°

Let ¢ be the undirected graph which corresponds to S such that it has n

th h

nodes and there is an edge betwesen its i“* and jt nodes if and only if

515 7 i1

rows and the colums of S (according to (3.1))is equivalent to the re-

= 1, (Busacker and Saaty, 1965). Then ths permutation of the

arrangement of the nodes of ¢ to get an undirected graph | which corresponds
to B (matrix B is in BF, DBBF or DBBDF). In view of these definitions of

@ and ¢, it is evident that the equation e{ 5% V = o(n) in the first step
of Algorithm 3.1 implies that there is a path of length two or less be-
tween most of the nodes of o (of ¢). TFurthermore, in step 6, we determine
and delete some nodes and the associated edges of ¢, such that the re-
maining graph does not have most of its nodes connected by paths of length
two or less (the associated matrix can be permuted to BF or BDF). In step

S(n) to determine the nodes be-

3, we make use of the connectivity matrix
longing to each connected subgraph of ¢ (the diagonal blocks of B). The
determination of Q in steps L and 5 generally does not lead to a matrix
which has ‘bandwidth close to the one estimated in step 2, mainly due to
the non-uniquenessof the quantities &n and QT, however the rows and
columms which will minimize the bandwidth are in general fairly closse
together in Q'S Q at the conclusion of these steps. Therefore, a few
édditional interchanges of rows and columns might at times be desirable.
The above Algorithm ic based on the assumption that there exists a

Q such that Q° S Q = B; where B is either in BF, DBBF, or BBBDF and the

probability of its elements (within the shaded areas in cases 8, 10 or

3 0 ' [ 3 ‘ —— -
5 in Fig. 1) being nen~-zerc is p =2 1, and m, ¢, » are of same order
2
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of magnituds, but ruch less than n. The closer p is to unity the mors
efficiept the algorithm will be. For arbitrary symmetric matrix S with
ncn-zercsg on the diagonal, the efficiency of this Algorithm will have
to be decided oﬁ the basis of a large number of computational ex-
periments. In any case, the algorifhm should certainly do better than theE
present methods in litefature that the author is familiar, aué to the
following reasons. First, ﬁhe rows and columns of S which would keep us
from minimizing A of m are put in the set I'; and second, at each stage
of the algorithm we have used more information from the rows and columns
of both S and the desired forin B than other methods seem to utilize.

We conclude this paper with a brief description of the methods
for matrix bandwidth minimization presently available in literature.
If ws let ni =1 -3, J< 1 and zero otherwise, where aijbis the left
most non-zero element of A in the i‘B row, then Akyuz and Utku (1968)
give an iterative program for finding the quantity € = méf “%_iél m .
Their method is based on interchanging two successive rows of A if band-
width is decreased or a row with large number of zerces goes away from
the central row. The above’problem can alsc be expressed as a Linear
Progranmming problem (Tewarson, 1967).> he related problem of finding
€ = méF M@x ni is discussed by Alway and Martin (1965), Cuthill and

i

McKee (1969) and Rosen (1968). Alway and Martin (1965) have constructed
a program which by means of an educated sesarch of possible permutations
determines Q. Rosen's (1968) program is an iterative scheme which is
based on interchanging a pair of diagonal elements of A, such that either
max ﬂi is decreased or in certain cases remainé the sams. Cuthill and
M;Kee (1969) base their scheme on renumbering the diageonal elements of
A by looking at a few permitations suggested by the structure of ¢ (the

associated graph).

18.



The Algorithm given in this paper should be especially useful
where many problems with similar pattern of non-zero elaments but
differing values have to be solved. t will perhaps te advantageous
to use powers of S greater than two in steps L and 5 of the algorithm
for greater expected seperation between the &j's and %T‘s. We hope that
the probabilistic approach used in this paper will in the future lead
to additional algorithms.

December 15, 1969
State University of New York, Stony Brook, New York
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