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SORTING AND SELECTING IN ROUNDS*

NICHOLAS PIPPENGER"

Abstract. We present upper bounds for sorting and selecting the median in a fixed number of rounds.
These bounds match the known lower bounds to within logarithmic factors. They also have the merit of
being "explicit modulo expansion"; that is, probabilistic arguments are used only to obtain expanding
graphs, and when explicit constructions for such graphs are found, explicit algorithms for sorting and
selecting will follow. Using the best currently available explicit constructions for expanding graphs, we
present the best currently known explicit algorithms for sorting and selecting in rounds.

Key words, sorting, selecting, median, parallel computation

AMS(MOS) subject classification. 68P10

1. Introduction and history. The three principal problems of comparison-tree-
based complexity theory are sorting, merging and selecting an element of prescribed
rank (such as the minimum, maximum or median). For each problem we may study
the worst-case complexity using Valiant’s parallel comparison-tree model IV]. There
are three commonly studied degrees of parallelism for these problems: the case of a
single "processor" (or a fixed number of processors), which we shall call the serial
case; the case of a number of processors equal to the number of elements, which we
shall call the balanced case; and the case of a number of processors large enough to
allow the solution to be found in a fixed number of "rounds," which we shall call the
highly parallel case.

For sorting n elements it has long been known that, in the serial case, O(n log n)
steps are needed. This implies that fl(log n) steps are needed in the balanced case;
Ajtai, Koml6s and Szemer6di [AKS] showed that O(log n) steps are sufficient. For
the highly parallel case, Higgkvist and Hell [HH2] showed that fl(n 1+1//) comparisons
are needed to sort in k rounds; this has been improved to (nl+l/k(log n) l/k) by Alon,
Azar and Vishkin [AAV]. Bollobfis and Thomason [BT] showed that O(n3/2 log n)
comparisons are sufficient to sort in 2 rounds. This has been improved by Alon, Azar
and Vishkin [AAV] to O(n3/- log n/(log log n)/) comparisons, and generalized by
Bollobfis and Hell [BH1] to O(n+/ log n) comparisons for k rounds. In this paper
we shall show that O(n+l/k’(log n)-2//) comparisons are sufficient to sort in k rounds.
While slightly larger than the upper bound reported by Bollobfis and Hell, this result
has the merit of being "explicit modulo expansion," about which we shall have more
to say later.

For merging two lists of n elements, it has long been known that, in the serial
case, 19(n) steps are needed. In the balanced case, Valiant IV] showed that O(log log n)
steps are sufficient; Borodin and Hopcroft [BH2] showed that fl(log log n) steps are

necessary In the highly parallel case, Higgkvist and Hell [HH3] showed that
0(n1+1/(2-1)) comparisons are needed to merge in k rounds.

For selecting an element of prescribed rank, it is desirable to distinguish between
finding the minimum (or selecting an element of fixed rank), which seems to be easier
than the general case, and finding the median, to which the general case can be reduced.

* Received by the editors February 18, 1986; accepted for publication (in revised form) January 21, 1987.
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In the serial case, (R)(n) steps are needed (the bound of O(n) steps for finding the
median being due to Blum, Floyd, Patt, Rivest and Tarjan [BFPRT]). In the balanced
case, Valiant IV] showed that gl(log log n) steps are necessary, and that O(log log n)
steps are sufficient for finding the minimum; Ajtai, Koml6s, Steiger and Szemer6d
[AKSS] showed that O(log log n) steps are sufficient for finding the median.

In the highly parallel case, H/iggkvist and Hell [HH1] showed that l(n 1/1/2k-1)
comparisons are necessary for selection in k rounds, and that O(rl l+l/(2k-1)) com-
parisons are sufficient for finding the minimum in k rounds. Alon, Azar and ishkin

2/(2k--1) f r[AAV] have shown that gl(nl/l/Ek-l(log n) comparisons are necessary o
finding the median. In this paper we shall show that O(nl/I/Ek-(log r/)2-2/(2k-1))
comparisons are sufficient for finding the median in k rounds. This result is also
"explicit modulo expansion."

The results that we have just described will be obtained by using a "probabilistic
argument"; such an argument shows that a decision tree satisfying certain bounds
exists without giving an algorithm (short of exhaustive search) for constructing one.
Unlike most previous work on sorting in rounds, however, we shall use only one
property of random graphs, namely, that with high probability a random graph is an
"expanding graph." Considerable attention has been given to explicit constructions
for expanding graphs, and it is not implausible that constructions for expanding graphs
as good as those promised by probabilistic arguments will eventually be found. The
results of this paper will then give. explicit algorithms for sorting and selecting in
rounds, achieving the bounds described above. (We have not defined formally what
we mean by an "explicit construction." For the purposes of this paper we may take
it to mean that the successive nodes in a decision tree may be computed in time
polynomial in n.) Using what is presently known about the explicit construction of
expanding graphs (see Lubotzky, Phillips and Sarnak [LPS]), we shall give explicit
algorithms for sorting in k rounds using O(rl 1+2/(k+ r/)2-4/(k+l(lg 1) comparisons, and
selecting in k rounds using O(n/E-2/a-’-2-2(log n)-2 -/ca -k-2) comparisons.

The best previously known explicit algorithm for sorting in 2 rounds (due to Alon
[A]) is 0(n7/4), based on a projective geometry of dimension 4. No better bound was
known for selection. By applying Corollary 9 below with a projective geometry of
dimension 3, we could give an explicit algorithm for sorting in 2 rounds using
O(n5/3 log n) comparisons. By applying Proposition 6 with a projective geometry of
dimension 2, we could give an explicit algorithm for selection in 2 rounds using
O(n3/E(log n)2) comparisons. These bounds are only slightly weaker than those for
k-2 obtained from the results of Lubotzky, Phillips and Sarnak, but projective
geometries seem to give poor results for k _-> 3. This difficulty may be traced to the fact
that the dimension of a projective geometry must be an integer, and the results of
Lubotzky, Phillips and Sarnak may be viewed as providing a surrogate for combinatorial
geometries with continuously varying dimensions.

The approach taken in this paper is to assume that the number of rounds is fixed,
and to minimize as far as possible the number of processors; we have only succeeded
in doing this to within logarithmic factors. Another possible approach is to assume
that the numbers of elements and processors are given, and to minimize as far as
possible the number of rounds. For sorting, Alon, Azar and Vishkin [AAV] have shown
that (R)(log n/log (1 +p/n)) rounds are necessary and sufficient with p processors and
n elements. For merging, Kruskal [K] has shown that

nip+log
log (l-p/n)
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comparisons are necessary and sufficient. It is natural to conjecture that a similar
bound applies to finding the median, but it is not yet known whether O(log log n)
rounds suffice for O(n/loglog n) processors and n elements.

2. Statements and proofs of results.
THEOREM 1. For every fixed integer k >-1, there are algorithms (explicit modulo

expansion) that select an element ofprescribed rankfrom among n elements in k rounds
using O(nl+l/2k-1)(log n)-/2-)) comparisons.

THEOREM 2. For every fixed integer k >-1, there are algorithms (explicit modulo
expansion) that sort n elements in k rounds using o(nl+l/k(log t/)2-2/k) comparisons.

THEOREM 3. For everyfixed integer k >-_ 1, there are explicitly constructed algorithms
that select an element of prescribed rank from among n elements in k rounds using
O(nl+2-2/(a--2-2)(log rl 2-2k-1/(3k--2k-2)) comparisons.

THEOREM 4. For everyfixed integer k >- 1, there are explicitly constructed algorithms
that sort n elements in k rounds using (nl+/k+l)(log r)2-4/(k+1)) comparisons.

The proofs of all these results will use expanding graphs. The following definition
of expansion is best adapted to our purposes. Leta be a nonnegative real number.
An undirected graph is a-expanding if any two disjoint sets of vertices, each containing
at least a + 1 vertices, are joined by an edge. The key to our results is the following
lemma, which is implicit in [AKSS].

LEMMA 5. Ir an a-expanding graph, for every set of vertices X containing at least
5a vertices, there exists a set of vertices Y disjoint from X and containing at most a
vertices such that every set of vertices Z disjoint from X [ Y and containing at most a
vertices has at least 21Z neighbors in X, where [Z[ denotes the cardinality of Z.

Proof. Let Y be a maximal (with respect to inclusion) set of vertices satisfying
the following properties: (1) Y is disjoint from X, (2) Y contains at most 2a vertices
and (3) Y has fewer than 2[ YI neighbors in X. Properties (2) and (3) imply that Y
has fewer than 4a neighbors in X.

We claim first that Y contains at most a vertices. If not, then since the graph is
a-expanding, all but at most a of the vertices not in Y would be neighbors of Y, so
X in particular would contain at least 5a-a =4a neighbors of Y, a contradiction.
Finally, we observe that if Z were a set violating the conclusion of the lemma, then
Y[3 Z would be a proper superset of Y satisfying properties (1)-(3), contradicting
the maximality of Y.

This lemma is used to prove the following propsition. We shall assume that our
algorithms deal with n distinct and totally ordered elements. If, after some comparisons
have been performed, an element v is known to be too large or too small to have rank
m, we shall say that v is excluded from rank m; otherwise we shall say that v is a
candidate for rank m. If M is a set of ranks, we shall say that v is excluded from M
if it is excluded from every rank in M; otherwise we shall say that it is a candidate
for M.

PROPOSITION 6. Ifrl elements are compared according to the edges ofan a-expanding
graph, there will be O(a log n) candidates for any rank.

Proof. Suppose that the element of rank m is being sought (where the minimum
is the element of rank 1 and the maximum is the element of rankn). Let b=
1+ [log (a + 1)J O(log n). We shall show that, after the comparisons have been
performed, all but at most a(6b+2)=O(a log n) of the elements with rank greater
than m will be known to have rank greater than m. By the dual argument, all but at
most a(6b + 2) of the elements with rank less than m will be known to have rank less
than m, completing the proof.
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If m > n a(6b + 1), then there are fewer than a(6b + 1) elements with rank greater
than m, and there is nothing to prove. Otherwise, classify the elements into three classes
as follows. Let G_ contain the smallest rn + a elements, let Go contain the next a(6b + 1)
elements, and let G+ contain the remaining elements. Since G_ t_J Go contains just
a(6b + 1) elements with rank greater than m, it will suffice to show that G/ contains
at most a such elements.

Further classify the elements of Go into b subclasses G1, , Gb, with G1 contain-
ing the smallest 6a elements of Go, , and with Gb containing the largest 6a elements
of Go. Finally, classify the elments in each of the classes G1," ", Gb as "good" or
"bad" as follows. All of the elements of G1 are good. Suppose that, for some 1 <- c
b-1, the elements of Gc have been classified and that there are at least 5a good
elements in G. To classify the elements of G+I, apply Lemma 5 with X as the set
of good elements in G. Classify as bad those elements of G+I that belong to the
resulting set Y, of which there are at most a; classify as good the remaining elements
of G+I, of which there are at least 6a-a 5a. By Lemma 5, this classification has
the following property: any set Z of z-< a good elements in Gc+l has at least 2z good
neighbors in G.

If an element is known to be larger than at least a + 1 good elements in G1, then
by comparisons according to an a-expanding graph, it is also known to be greater
than all but at most a elements in G_, and thus is known to have rank greater than
m. We shall show by induction on c that if, for some 0 =< c <- b- 1, an element is known
to be larger than at least (a+ 1)/2 good elements in G+I, then it is known to have
rank greater than m. The basis, c 0, is the foregoing observation. Suppose that c >= 1
and that the element v is known to be larger than at least (a + 1)!2 good elements in
Gc/. These good elements in G/I have at least 2(a+ 1)/2 (a + 1)/2- good neigh-
bors in G. By transitivity, v is known to be larger than these elements in Go, and thus
by inductive hypothesis v is known to have rank greater than m. This completes the
inductive step. Taking c b- 1, we see that if an element is known to be larger than
at least one good element in Gb, then it is known to have rank greater than m.

The set Gb contains at least 5a--> a+ 1 good elements. Thus, by comparisons
according to the edges of an a-expanding graph, all but at most a elements in G+ are
known to be larger than at least one good element in Gb. Thus all but at most a
elements in G/ are known to have rank greater than m.

To prove Theorem 1, we shall use this proposition together with the following
lemma.

LEMMA 7. For all 1 <= a <-_ n with n sufficiently large, there is an a-expanding graph
with n vertices and O((n2 log n)/a) edges.

Proof. If a =< 2 In n, the bound O(n 2) is trivial, so suppose a => 2 In n. Let G be a
random graph on n vertices in which each edge is independently present with probability
p and absent with probability l-p, where p=(21n n)/a. We shall show that (1) the
probability that G contains two disjoint sets of a + 1 vertices not joined by an edge is
at most 1In, and (2) the probability that G contains more than 2(n2 In n)/a edges is
at most 1/(n In n). Since 1/n2+ 1/(n In n)<l when n->2, the lemma will follow.

To prove (1), we observe that there are

a+ 1, a+ 1

ways to choose two disjoint sets of a + 1 vertices, and that for each choice, the probability
that no edge joins them is

(1--p)(a+l)2 < e-p(a+l)2.
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Thus, the probability of the event in question is at most

/2(a+l) e-P(a+l)2_

To prove (2), we observe that the mean and variance of the number of edges in
G are ()p<(nEln n)/a and ()p(1-p)<(nEln n)/a, respectively. Thus, by Cheby-
shev’s inequality, the probability that G contains more than 2(n2 In n)/a edges is at
most a/(n2 In n) < 1/(n In n).

Proof of Theorem 1. We proceed by induction on k. If k 1, the bound O(n2) is
trivial. If k _-> 2, let

a rll-1/(Ek-1)/(ln /’/) 1-2/(2k-1).

Compare the elements according to the edges of the graph supplied by Lemma 7. By
Proposition 6, at most

O(a log n)= O(nl-1/2k-l(log n)2/2k-1)
elements will remain as candidates. By inductive hypothesis, the element sought can
be selected from these candidates in k-1 rounds using

o(tl+l/(Ek---l)(log t)E--E/(Ek-l--1))_. O(irll+l/(Ek-1)(log /1)2--2/(2k--1))
further comparisons.

To prove Theorem 3, we shall use Proposition 6 together with explicitly constructed
expanding graphs provided by the following lemma.

LEMMA 8. Let p and q be distinct primes congruent to 1 modulo 4, with p < q. Then
there is an explicitly constructed (2(q + 1)/(p + 1)l/2)-expanding graph with q + 1 vertices
and (p+ 1)(q+ 1)/2 edges.

Proof Lubotzky, Phillips and Sarnak [LPS] have shown that if p and q satisfy
the hypotheses of the lemma, there is an explicitly constructed graph G with q + 1
vertices and p / 1 edges meeting every vertex such that (1) the largest eigenvalue p + 1
of the adjacency matrix M of G has multiplicity 1 and (2) all other eigenvalues of M
have magnitude at most 2p 1/2. We shall show that G is (2(q / 1)/(p + 1)l/2)-expanding.

Suppose that A and B are disjoint sets of m elements that are not joined by an
edge in G. We shall show that m<-2(q+ 1)/(p+ 1) 1/2.

Let e be the function that assigns the value I to each vertex of G. Then (e, e) q + 1
and e is the unique eigenvector of MTM (which equals M2, since M is symmetric)
corresponding to the eigenvalue (p/ 1)2.

Let f be the function that assigns the value 1 to vertices in A and the value 0 to
all other vertices. Then (f f) m. Let the functions g e(e, f)/n be the part off lying
parallel to e and let h =f- g be the part off lying perpendicular to e. We shall estimate
(f, MrMf)= (Mf, Mf) in two ways.

First, (f, MrMf)=(g, MrMg)+(h, MrMh). Thus

(f, MrMf) <- (p + 1)2(g, g) + 4p( h, h)

(p+l)Em2 4pm(n-m)+

since all eigenvalues of MrM other than (p / 1)2 have magnitude at most 4p.
Second, let d be the function that assigns the value 0 to vertices in B and to all

other vertices. By Cauchy’s inequality, (Mf, Mf) > (Mf, d)E/(d, d). Now the function
Mf assigns to each vertex the number of neighbors it has in A. Since no vertex of B
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has a neighbor in A, Mf vanishes on all vertices for which d vanishes. Thus (Mf, d)
(Mf, e)=(f, Mre)=(p+l)m and, of course, (d, d)=n-m. Thus we have

Mf, Mf) >- (p+ 1)2m2

Combining this inequality with that of the preceding paragraph yields m_-<

2(q+ 1)/(p+ 1) 1/2 and completes the proof. ]

PROPOSITION 9. For all 1 <= a <-_ n with n/a sufficiently large, there is an explicitly
constructed a-expanding graph with n vertices and O(/13/a2) edges.

Proof. If a-Sn 1/2, the bound O(n2) is trivial, so suppose 4(4n/a)E<n.-- Take
x (4n/a)2- 1 and y n 1. By the prime number theorem for arithmetic progressions
(see Davenport [D], for example), the number rl,4(x) of primes congruent to I modulo
4 and at most x satisfies rl,4(x) x/(2 In x). It follows that rl,4(2x) rl,4(x) x/2 In x.
Thus for all sufficiently large n/a there is a prime p congruent to 1 modulo 4 and
satisfying x<-p<-_2x and therefore (4n/a)E<-_p+l<-2(4n/a)2. Similarly, there is a
prime q congruent to 1 modulo 4 and satisfying y -<_ q _-< 2y and therefore n _-< q / 1 -<_ 2n.
Furthermore, since 2(4n/a)E<n, we have p<q. Applying Lemma 8, we obtain a
(2(q+ 1)/(p+ 1)1/2)-expanding graph with q+l vertices and (p+ 1)(q+1)/2=
O( hal a2) edges. Since 2(q + 1 )/( p + 1 )1/2 __< 4n/ p + 1 1/2 ___. a, this graph is a-expanding.
By identifying q / 1-n disjoint pairs of vertices to form single vertices we obtain a
graph with n vertices, the same number of edges and the same expanding property. U

Proof of Theorem 3. We proceed as in the proof of Theorem 1, but let

a ll--2k--a/(3k-l--2k-2)/(ln n) 1--2k-2/(3k---Ek-2)

and use Proposition 9. D
To prove Theorems 2 and 4, we shall use the following corollary of Proposition 6.
COROLLARY 10. Ifn elements are compared according to the edges ofan a-expanding

graph, then after the comparisons have been performed we may construct O(n/ (a log n))
sets, each containing O(a log n) elements, such that the relationship between any pair of
elements is known unless they both belong to a common set.

Proof. Partition the ranks into O(n/(a log n)) contiguous intervals, each contain-
ing at most O(a log n) successive ranks. Let [i,j] be such an interval. By Proposition
6, all but at most O(a log n) of the elements with rank less than are known to have
rank less than i, and all but at most O(a log n) of the elements with rank greater than
j are known to have rank greater than j. Since at most O(a log n) elements have ranks
in [i,j], at most O(a log n) elements are candidates for the interval [i,j]. The sets of
elements that we construct will be the sets of candidates for the intervals.

If an element is not a candidate for an interval, then either it is known to be too
large to have its rank in that interval or it is known to be too small to have its rank
in that interval. It follows that the family of intervals for which an element is a candidate
is contiguous.

Consider any pair v and w of elements. If v and w do not both belong to a
common set, then the family A of intervals for which v is a candidate is disjoint from
the family B of intervals for which w is a candidate. Since these families are each
contiguous, either all intervals of A are less than all intervals of B (in which case v
must be less than w) or all intervals of A are greater than all intervals of B (in which
case v must be greater than w). D

Proof of Theorem 2. We proceed by induction on k. If k 1, the bound O(n) is
trivial. If k >_-2, let

a nl-X/k/(ln r) 1-’/k.
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Compare the elements according to the edges of the graph supplied by Lemma 7. By
Corollary 10, we may construct

s O(n/(a log n))= o(nl/k(log n)-2/k)
sets each containing

t= O(a log n)= O(nl-1/k(log n)2/k)
elements and it will suffice to sort each of these sets. By inductive hypothesis, these
sets can be sorted in k-1 rounds using

O(stl+l/(k-1)(log t)2-2/(k-1))__ O(nl+l/k(log n):z-2/k)
further comparisons. [3

Proof of Theorem 4. We proceed as in the proof of Theorem 2, but let

a nl-/(k+l)/(ln n)1-2/k+

and use Proposition 9.
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